]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/arm/mv/mv_common.c
Merge ^/head r319801 through r320041.
[FreeBSD/FreeBSD.git] / sys / arm / mv / mv_common.c
1 /*-
2  * Copyright (C) 2008-2011 MARVELL INTERNATIONAL LTD.
3  * All rights reserved.
4  *
5  * Developed by Semihalf.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of MARVELL nor the names of contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/kdb.h>
41 #include <sys/reboot.h>
42
43 #include <dev/fdt/fdt_common.h>
44 #include <dev/ofw/openfirm.h>
45 #include <dev/ofw/ofw_bus_subr.h>
46
47 #include <machine/bus.h>
48 #include <machine/fdt.h>
49 #include <machine/vmparam.h>
50 #include <machine/intr.h>
51
52 #include <arm/mv/mvreg.h>
53 #include <arm/mv/mvvar.h>
54 #include <arm/mv/mvwin.h>
55
56
57 MALLOC_DEFINE(M_IDMA, "idma", "idma dma test memory");
58
59 #define IDMA_DEBUG
60 #undef IDMA_DEBUG
61
62 #define MAX_CPU_WIN     5
63
64 #ifdef DEBUG
65 #define debugf(fmt, args...) do { printf("%s(): ", __func__);   \
66     printf(fmt,##args); } while (0)
67 #else
68 #define debugf(fmt, args...)
69 #endif
70
71 #ifdef DEBUG
72 #define MV_DUMP_WIN     1
73 #else
74 #define MV_DUMP_WIN     0
75 #endif
76
77 static int win_eth_can_remap(int i);
78
79 static int decode_win_cesa_valid(void);
80 static int decode_win_cpu_valid(void);
81 static int decode_win_usb_valid(void);
82 static int decode_win_usb3_valid(void);
83 static int decode_win_eth_valid(void);
84 static int decode_win_pcie_valid(void);
85 static int decode_win_sata_valid(void);
86 static int decode_win_sdhci_valid(void);
87
88 static int decode_win_idma_valid(void);
89 static int decode_win_xor_valid(void);
90
91 static void decode_win_cpu_setup(void);
92 #ifdef SOC_MV_ARMADAXP
93 static int decode_win_sdram_fixup(void);
94 #endif
95 static void decode_win_cesa_setup(u_long);
96 static void decode_win_usb_setup(u_long);
97 static void decode_win_usb3_setup(u_long);
98 static void decode_win_eth_setup(u_long);
99 static void decode_win_neta_setup(u_long);
100 static void decode_win_sata_setup(u_long);
101 static void decode_win_ahci_setup(u_long);
102 static void decode_win_sdhci_setup(u_long);
103
104 static void decode_win_idma_setup(u_long);
105 static void decode_win_xor_setup(u_long);
106
107 static void decode_win_cesa_dump(u_long);
108 static void decode_win_usb_dump(u_long);
109 static void decode_win_usb3_dump(u_long);
110 static void decode_win_eth_dump(u_long base);
111 static void decode_win_neta_dump(u_long base);
112 static void decode_win_idma_dump(u_long base);
113 static void decode_win_xor_dump(u_long base);
114 static void decode_win_ahci_dump(u_long base);
115 static void decode_win_sdhci_dump(u_long);
116 static void decode_win_pcie_dump(u_long);
117
118 static int fdt_get_ranges(const char *, void *, int, int *, int *);
119 #ifdef SOC_MV_ARMADA38X
120 int gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt,
121     int *trig, int *pol);
122 #endif
123
124 static int win_cpu_from_dt(void);
125 static int fdt_win_setup(void);
126
127 static uint32_t dev_mask = 0;
128 static int cpu_wins_no = 0;
129 static int eth_port = 0;
130 static int usb_port = 0;
131
132 static struct decode_win cpu_win_tbl[MAX_CPU_WIN];
133
134 const struct decode_win *cpu_wins = cpu_win_tbl;
135
136 typedef void (*decode_win_setup_t)(u_long);
137 typedef void (*dump_win_t)(u_long);
138
139 /*
140  * The power status of device feature is only supported on
141  * Kirkwood and Discovery SoCs.
142  */
143 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
144 #define SOC_MV_POWER_STAT_SUPPORTED             1
145 #else
146 #define SOC_MV_POWER_STAT_SUPPORTED             0
147 #endif
148
149 struct soc_node_spec {
150         const char              *compat;
151         decode_win_setup_t      decode_handler;
152         dump_win_t              dump_handler;
153 };
154
155 static struct soc_node_spec soc_nodes[] = {
156         { "mrvl,ge", &decode_win_eth_setup, &decode_win_eth_dump },
157         { "marvell,armada-370-neta", &decode_win_neta_setup, &decode_win_neta_dump },
158         { "mrvl,usb-ehci", &decode_win_usb_setup, &decode_win_usb_dump },
159         { "marvell,orion-ehci", &decode_win_usb_setup, &decode_win_usb_dump },
160         { "marvell,armada-380-xhci", &decode_win_usb3_setup, &decode_win_usb3_dump },
161         { "marvell,armada-380-ahci", &decode_win_ahci_setup, &decode_win_ahci_dump },
162         { "marvell,armada-380-sdhci", &decode_win_sdhci_setup, &decode_win_sdhci_dump },
163         { "mrvl,sata", &decode_win_sata_setup, NULL },
164         { "mrvl,xor", &decode_win_xor_setup, &decode_win_xor_dump },
165         { "mrvl,idma", &decode_win_idma_setup, &decode_win_idma_dump },
166         { "mrvl,cesa", &decode_win_cesa_setup, &decode_win_cesa_dump },
167         { "mrvl,pcie", &decode_win_pcie_setup, &decode_win_pcie_dump },
168         { NULL, NULL, NULL },
169 };
170
171 struct fdt_pm_mask_entry {
172         char            *compat;
173         uint32_t        mask;
174 };
175
176 static struct fdt_pm_mask_entry fdt_pm_mask_table[] = {
177         { "mrvl,ge",            CPU_PM_CTRL_GE(0) },
178         { "mrvl,ge",            CPU_PM_CTRL_GE(1) },
179         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(0) },
180         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(1) },
181         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(2) },
182         { "mrvl,xor",           CPU_PM_CTRL_XOR },
183         { "mrvl,sata",          CPU_PM_CTRL_SATA },
184
185         { NULL, 0 }
186 };
187
188 static __inline int
189 pm_is_disabled(uint32_t mask)
190 {
191 #if SOC_MV_POWER_STAT_SUPPORTED
192         return (soc_power_ctrl_get(mask) == mask ? 0 : 1);
193 #else
194         return (0);
195 #endif
196 }
197
198 /*
199  * Disable device using power management register.
200  * 1 - Device Power On
201  * 0 - Device Power Off
202  * Mask can be set in loader.
203  * EXAMPLE:
204  * loader> set hw.pm-disable-mask=0x2
205  *
206  * Common mask:
207  * |-------------------------------|
208  * | Device | Kirkwood | Discovery |
209  * |-------------------------------|
210  * | USB0   | 0x00008  | 0x020000  |
211  * |-------------------------------|
212  * | USB1   |     -    | 0x040000  |
213  * |-------------------------------|
214  * | USB2   |     -    | 0x080000  |
215  * |-------------------------------|
216  * | GE0    | 0x00001  | 0x000002  |
217  * |-------------------------------|
218  * | GE1    |     -    | 0x000004  |
219  * |-------------------------------|
220  * | IDMA   |     -    | 0x100000  |
221  * |-------------------------------|
222  * | XOR    | 0x10000  | 0x200000  |
223  * |-------------------------------|
224  * | CESA   | 0x20000  | 0x400000  |
225  * |-------------------------------|
226  * | SATA   | 0x04000  | 0x004000  |
227  * --------------------------------|
228  * This feature can be used only on Kirkwood and Discovery
229  * machines.
230  */
231 static __inline void
232 pm_disable_device(int mask)
233 {
234 #ifdef DIAGNOSTIC
235         uint32_t reg;
236
237         reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
238         printf("Power Management Register: 0%x\n", reg);
239
240         reg &= ~mask;
241         soc_power_ctrl_set(reg);
242         printf("Device %x is disabled\n", mask);
243
244         reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
245         printf("Power Management Register: 0%x\n", reg);
246 #endif
247 }
248
249 int
250 fdt_pm(phandle_t node)
251 {
252         uint32_t cpu_pm_ctrl;
253         int i, ena, compat;
254
255         ena = 1;
256         cpu_pm_ctrl = read_cpu_ctrl(CPU_PM_CTRL);
257         for (i = 0; fdt_pm_mask_table[i].compat != NULL; i++) {
258                 if (dev_mask & (1 << i))
259                         continue;
260
261                 compat = ofw_bus_node_is_compatible(node,
262                     fdt_pm_mask_table[i].compat);
263 #if defined(SOC_MV_KIRKWOOD)
264                 if (compat && (cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
265                         dev_mask |= (1 << i);
266                         ena = 0;
267                         break;
268                 } else if (compat) {
269                         dev_mask |= (1 << i);
270                         break;
271                 }
272 #else
273                 if (compat && (~cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
274                         dev_mask |= (1 << i);
275                         ena = 0;
276                         break;
277                 } else if (compat) {
278                         dev_mask |= (1 << i);
279                         break;
280                 }
281 #endif
282         }
283
284         return (ena);
285 }
286
287 uint32_t
288 read_cpu_ctrl(uint32_t reg)
289 {
290
291         return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg));
292 }
293
294 void
295 write_cpu_ctrl(uint32_t reg, uint32_t val)
296 {
297
298         bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg, val);
299 }
300
301 #if defined(SOC_MV_ARMADAXP) || defined(SOC_MV_ARMADA38X)
302 uint32_t
303 read_cpu_mp_clocks(uint32_t reg)
304 {
305
306         return (bus_space_read_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg));
307 }
308
309 void
310 write_cpu_mp_clocks(uint32_t reg, uint32_t val)
311 {
312
313         bus_space_write_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg, val);
314 }
315
316 uint32_t
317 read_cpu_misc(uint32_t reg)
318 {
319
320         return (bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE, reg));
321 }
322
323 void
324 write_cpu_misc(uint32_t reg, uint32_t val)
325 {
326
327         bus_space_write_4(fdtbus_bs_tag, MV_MISC_BASE, reg, val);
328 }
329 #endif
330
331 void
332 cpu_reset(void)
333 {
334
335 #if defined(SOC_MV_ARMADAXP) || defined (SOC_MV_ARMADA38X)
336         write_cpu_misc(RSTOUTn_MASK, SOFT_RST_OUT_EN);
337         write_cpu_misc(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
338 #else
339         write_cpu_ctrl(RSTOUTn_MASK, SOFT_RST_OUT_EN);
340         write_cpu_ctrl(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
341 #endif
342         while (1);
343 }
344
345 uint32_t
346 cpu_extra_feat(void)
347 {
348         uint32_t dev, rev;
349         uint32_t ef = 0;
350
351         soc_id(&dev, &rev);
352
353         switch (dev) {
354         case MV_DEV_88F6281:
355         case MV_DEV_88F6282:
356         case MV_DEV_88RC8180:
357         case MV_DEV_MV78100_Z0:
358         case MV_DEV_MV78100:
359                 __asm __volatile("mrc p15, 1, %0, c15, c1, 0" : "=r" (ef));
360                 break;
361         case MV_DEV_88F5182:
362         case MV_DEV_88F5281:
363                 __asm __volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (ef));
364                 break;
365         default:
366                 if (bootverbose)
367                         printf("This ARM Core does not support any extra features\n");
368         }
369
370         return (ef);
371 }
372
373 /*
374  * Get the power status of device. This feature is only supported on
375  * Kirkwood and Discovery SoCs.
376  */
377 uint32_t
378 soc_power_ctrl_get(uint32_t mask)
379 {
380
381 #if SOC_MV_POWER_STAT_SUPPORTED
382         if (mask != CPU_PM_CTRL_NONE)
383                 mask &= read_cpu_ctrl(CPU_PM_CTRL);
384
385         return (mask);
386 #else
387         return (mask);
388 #endif
389 }
390
391 /*
392  * Set the power status of device. This feature is only supported on
393  * Kirkwood and Discovery SoCs.
394  */
395 void
396 soc_power_ctrl_set(uint32_t mask)
397 {
398
399 #if !defined(SOC_MV_ORION)
400         if (mask != CPU_PM_CTRL_NONE)
401                 write_cpu_ctrl(CPU_PM_CTRL, mask);
402 #endif
403 }
404
405 void
406 soc_id(uint32_t *dev, uint32_t *rev)
407 {
408
409         /*
410          * Notice: system identifiers are available in the registers range of
411          * PCIE controller, so using this function is only allowed (and
412          * possible) after the internal registers range has been mapped in via
413          * devmap_bootstrap().
414          */
415         *dev = bus_space_read_4(fdtbus_bs_tag, MV_PCIE_BASE, 0) >> 16;
416         *rev = bus_space_read_4(fdtbus_bs_tag, MV_PCIE_BASE, 8) & 0xff;
417 }
418
419 static void
420 soc_identify(void)
421 {
422         uint32_t d, r, size, mode, freq;
423         const char *dev;
424         const char *rev;
425
426         soc_id(&d, &r);
427
428         printf("SOC: ");
429         if (bootverbose)
430                 printf("(0x%4x:0x%02x) ", d, r);
431
432         rev = "";
433         switch (d) {
434         case MV_DEV_88F5181:
435                 dev = "Marvell 88F5181";
436                 if (r == 3)
437                         rev = "B1";
438                 break;
439         case MV_DEV_88F5182:
440                 dev = "Marvell 88F5182";
441                 if (r == 2)
442                         rev = "A2";
443                 break;
444         case MV_DEV_88F5281:
445                 dev = "Marvell 88F5281";
446                 if (r == 4)
447                         rev = "D0";
448                 else if (r == 5)
449                         rev = "D1";
450                 else if (r == 6)
451                         rev = "D2";
452                 break;
453         case MV_DEV_88F6281:
454                 dev = "Marvell 88F6281";
455                 if (r == 0)
456                         rev = "Z0";
457                 else if (r == 2)
458                         rev = "A0";
459                 else if (r == 3)
460                         rev = "A1";
461                 break;
462         case MV_DEV_88RC8180:
463                 dev = "Marvell 88RC8180";
464                 break;
465         case MV_DEV_88RC9480:
466                 dev = "Marvell 88RC9480";
467                 break;
468         case MV_DEV_88RC9580:
469                 dev = "Marvell 88RC9580";
470                 break;
471         case MV_DEV_88F6781:
472                 dev = "Marvell 88F6781";
473                 if (r == 2)
474                         rev = "Y0";
475                 break;
476         case MV_DEV_88F6282:
477                 dev = "Marvell 88F6282";
478                 if (r == 0)
479                         rev = "A0";
480                 else if (r == 1)
481                         rev = "A1";
482                 break;
483         case MV_DEV_88F6828:
484                 dev = "Marvell 88F6828";
485                 break;
486         case MV_DEV_88F6820:
487                 dev = "Marvell 88F6820";
488                 break;
489         case MV_DEV_88F6810:
490                 dev = "Marvell 88F6810";
491                 break;
492         case MV_DEV_MV78100_Z0:
493                 dev = "Marvell MV78100 Z0";
494                 break;
495         case MV_DEV_MV78100:
496                 dev = "Marvell MV78100";
497                 break;
498         case MV_DEV_MV78160:
499                 dev = "Marvell MV78160";
500                 break;
501         case MV_DEV_MV78260:
502                 dev = "Marvell MV78260";
503                 break;
504         case MV_DEV_MV78460:
505                 dev = "Marvell MV78460";
506                 break;
507         default:
508                 dev = "UNKNOWN";
509                 break;
510         }
511
512         printf("%s", dev);
513         if (*rev != '\0')
514                 printf(" rev %s", rev);
515         printf(", TClock %dMHz", get_tclk() / 1000 / 1000);
516         freq = get_cpu_freq();
517         if (freq != 0)
518                 printf(", Frequency %dMHz", freq / 1000 / 1000);
519         printf("\n");
520
521         mode = read_cpu_ctrl(CPU_CONFIG);
522         printf("  Instruction cache prefetch %s, data cache prefetch %s\n",
523             (mode & CPU_CONFIG_IC_PREF) ? "enabled" : "disabled",
524             (mode & CPU_CONFIG_DC_PREF) ? "enabled" : "disabled");
525
526         switch (d) {
527         case MV_DEV_88F6281:
528         case MV_DEV_88F6282:
529                 mode = read_cpu_ctrl(CPU_L2_CONFIG) & CPU_L2_CONFIG_MODE;
530                 printf("  256KB 4-way set-associative %s unified L2 cache\n",
531                     mode ? "write-through" : "write-back");
532                 break;
533         case MV_DEV_MV78100:
534                 mode = read_cpu_ctrl(CPU_CONTROL);
535                 size = mode & CPU_CONTROL_L2_SIZE;
536                 mode = mode & CPU_CONTROL_L2_MODE;
537                 printf("  %s set-associative %s unified L2 cache\n",
538                     size ? "256KB 4-way" : "512KB 8-way",
539                     mode ? "write-through" : "write-back");
540                 break;
541         default:
542                 break;
543         }
544 }
545
546 static void
547 platform_identify(void *dummy)
548 {
549
550         soc_identify();
551
552         /*
553          * XXX Board identification e.g. read out from FPGA or similar should
554          * go here
555          */
556 }
557 SYSINIT(platform_identify, SI_SUB_CPU, SI_ORDER_SECOND, platform_identify,
558     NULL);
559
560 #ifdef KDB
561 static void
562 mv_enter_debugger(void *dummy)
563 {
564
565         if (boothowto & RB_KDB)
566                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
567 }
568 SYSINIT(mv_enter_debugger, SI_SUB_CPU, SI_ORDER_ANY, mv_enter_debugger, NULL);
569 #endif
570
571 int
572 soc_decode_win(void)
573 {
574         uint32_t dev, rev;
575         int mask, err;
576
577         mask = 0;
578         TUNABLE_INT_FETCH("hw.pm-disable-mask", &mask);
579
580         if (mask != 0)
581                 pm_disable_device(mask);
582
583         /* Retrieve data about physical addresses from device tree. */
584         if ((err = win_cpu_from_dt()) != 0)
585                 return (err);
586
587         /* Retrieve our ID: some windows facilities vary between SoC models */
588         soc_id(&dev, &rev);
589
590 #ifdef SOC_MV_ARMADAXP
591         if ((err = decode_win_sdram_fixup()) != 0)
592                 return(err);
593 #endif
594
595         if (!decode_win_cpu_valid() || !decode_win_usb_valid() ||
596             !decode_win_eth_valid() || !decode_win_idma_valid() ||
597             !decode_win_pcie_valid() || !decode_win_sata_valid() ||
598             !decode_win_xor_valid() || !decode_win_usb3_valid() ||
599             !decode_win_sdhci_valid() || !decode_win_cesa_valid())
600                 return (EINVAL);
601
602         decode_win_cpu_setup();
603         if (MV_DUMP_WIN)
604                 soc_dump_decode_win();
605
606         eth_port = 0;
607         usb_port = 0;
608         if ((err = fdt_win_setup()) != 0)
609                 return (err);
610
611         return (0);
612 }
613
614 /**************************************************************************
615  * Decode windows registers accessors
616  **************************************************************************/
617 WIN_REG_IDX_RD(win_cpu, cr, MV_WIN_CPU_CTRL, MV_MBUS_BRIDGE_BASE)
618 WIN_REG_IDX_RD(win_cpu, br, MV_WIN_CPU_BASE, MV_MBUS_BRIDGE_BASE)
619 WIN_REG_IDX_RD(win_cpu, remap_l, MV_WIN_CPU_REMAP_LO, MV_MBUS_BRIDGE_BASE)
620 WIN_REG_IDX_RD(win_cpu, remap_h, MV_WIN_CPU_REMAP_HI, MV_MBUS_BRIDGE_BASE)
621 WIN_REG_IDX_WR(win_cpu, cr, MV_WIN_CPU_CTRL, MV_MBUS_BRIDGE_BASE)
622 WIN_REG_IDX_WR(win_cpu, br, MV_WIN_CPU_BASE, MV_MBUS_BRIDGE_BASE)
623 WIN_REG_IDX_WR(win_cpu, remap_l, MV_WIN_CPU_REMAP_LO, MV_MBUS_BRIDGE_BASE)
624 WIN_REG_IDX_WR(win_cpu, remap_h, MV_WIN_CPU_REMAP_HI, MV_MBUS_BRIDGE_BASE)
625
626 WIN_REG_BASE_IDX_RD(win_cesa, cr, MV_WIN_CESA_CTRL)
627 WIN_REG_BASE_IDX_RD(win_cesa, br, MV_WIN_CESA_BASE)
628 WIN_REG_BASE_IDX_WR(win_cesa, cr, MV_WIN_CESA_CTRL)
629 WIN_REG_BASE_IDX_WR(win_cesa, br, MV_WIN_CESA_BASE)
630
631 WIN_REG_BASE_IDX_RD(win_usb, cr, MV_WIN_USB_CTRL)
632 WIN_REG_BASE_IDX_RD(win_usb, br, MV_WIN_USB_BASE)
633 WIN_REG_BASE_IDX_WR(win_usb, cr, MV_WIN_USB_CTRL)
634 WIN_REG_BASE_IDX_WR(win_usb, br, MV_WIN_USB_BASE)
635
636 #ifdef SOC_MV_ARMADA38X
637 WIN_REG_BASE_IDX_RD(win_usb3, cr, MV_WIN_USB3_CTRL)
638 WIN_REG_BASE_IDX_RD(win_usb3, br, MV_WIN_USB3_BASE)
639 WIN_REG_BASE_IDX_WR(win_usb3, cr, MV_WIN_USB3_CTRL)
640 WIN_REG_BASE_IDX_WR(win_usb3, br, MV_WIN_USB3_BASE)
641 #endif
642
643 WIN_REG_BASE_IDX_RD(win_eth, br, MV_WIN_ETH_BASE)
644 WIN_REG_BASE_IDX_RD(win_eth, sz, MV_WIN_ETH_SIZE)
645 WIN_REG_BASE_IDX_RD(win_eth, har, MV_WIN_ETH_REMAP)
646 WIN_REG_BASE_IDX_WR(win_eth, br, MV_WIN_ETH_BASE)
647 WIN_REG_BASE_IDX_WR(win_eth, sz, MV_WIN_ETH_SIZE)
648 WIN_REG_BASE_IDX_WR(win_eth, har, MV_WIN_ETH_REMAP)
649
650 WIN_REG_BASE_IDX_RD2(win_xor, br, MV_WIN_XOR_BASE)
651 WIN_REG_BASE_IDX_RD2(win_xor, sz, MV_WIN_XOR_SIZE)
652 WIN_REG_BASE_IDX_RD2(win_xor, har, MV_WIN_XOR_REMAP)
653 WIN_REG_BASE_IDX_RD2(win_xor, ctrl, MV_WIN_XOR_CTRL)
654 WIN_REG_BASE_IDX_WR2(win_xor, br, MV_WIN_XOR_BASE)
655 WIN_REG_BASE_IDX_WR2(win_xor, sz, MV_WIN_XOR_SIZE)
656 WIN_REG_BASE_IDX_WR2(win_xor, har, MV_WIN_XOR_REMAP)
657 WIN_REG_BASE_IDX_WR2(win_xor, ctrl, MV_WIN_XOR_CTRL)
658
659 WIN_REG_BASE_RD(win_eth, bare, 0x290)
660 WIN_REG_BASE_RD(win_eth, epap, 0x294)
661 WIN_REG_BASE_WR(win_eth, bare, 0x290)
662 WIN_REG_BASE_WR(win_eth, epap, 0x294)
663
664 WIN_REG_BASE_IDX_RD(win_pcie, cr, MV_WIN_PCIE_CTRL);
665 WIN_REG_BASE_IDX_RD(win_pcie, br, MV_WIN_PCIE_BASE);
666 WIN_REG_BASE_IDX_RD(win_pcie, remap, MV_WIN_PCIE_REMAP);
667 WIN_REG_BASE_IDX_WR(win_pcie, cr, MV_WIN_PCIE_CTRL);
668 WIN_REG_BASE_IDX_WR(win_pcie, br, MV_WIN_PCIE_BASE);
669 WIN_REG_BASE_IDX_WR(win_pcie, remap, MV_WIN_PCIE_REMAP);
670 WIN_REG_BASE_IDX_RD(pcie_bar, br, MV_PCIE_BAR_BASE);
671 WIN_REG_BASE_IDX_RD(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
672 WIN_REG_BASE_IDX_RD(pcie_bar, cr, MV_PCIE_BAR_CTRL);
673 WIN_REG_BASE_IDX_WR(pcie_bar, br, MV_PCIE_BAR_BASE);
674 WIN_REG_BASE_IDX_WR(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
675 WIN_REG_BASE_IDX_WR(pcie_bar, cr, MV_PCIE_BAR_CTRL);
676
677 WIN_REG_BASE_IDX_RD(win_idma, br, MV_WIN_IDMA_BASE)
678 WIN_REG_BASE_IDX_RD(win_idma, sz, MV_WIN_IDMA_SIZE)
679 WIN_REG_BASE_IDX_RD(win_idma, har, MV_WIN_IDMA_REMAP)
680 WIN_REG_BASE_IDX_RD(win_idma, cap, MV_WIN_IDMA_CAP)
681 WIN_REG_BASE_IDX_WR(win_idma, br, MV_WIN_IDMA_BASE)
682 WIN_REG_BASE_IDX_WR(win_idma, sz, MV_WIN_IDMA_SIZE)
683 WIN_REG_BASE_IDX_WR(win_idma, har, MV_WIN_IDMA_REMAP)
684 WIN_REG_BASE_IDX_WR(win_idma, cap, MV_WIN_IDMA_CAP)
685 WIN_REG_BASE_RD(win_idma, bare, 0xa80)
686 WIN_REG_BASE_WR(win_idma, bare, 0xa80)
687
688 WIN_REG_BASE_IDX_RD(win_sata, cr, MV_WIN_SATA_CTRL);
689 WIN_REG_BASE_IDX_RD(win_sata, br, MV_WIN_SATA_BASE);
690 WIN_REG_BASE_IDX_WR(win_sata, cr, MV_WIN_SATA_CTRL);
691 WIN_REG_BASE_IDX_WR(win_sata, br, MV_WIN_SATA_BASE);
692 #if defined(SOC_MV_ARMADA38X)
693 WIN_REG_BASE_IDX_RD(win_sata, sz, MV_WIN_SATA_SIZE);
694 WIN_REG_BASE_IDX_WR(win_sata, sz, MV_WIN_SATA_SIZE);
695 #endif
696
697 WIN_REG_BASE_IDX_RD(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
698 WIN_REG_BASE_IDX_RD(win_sdhci, br, MV_WIN_SDHCI_BASE);
699 WIN_REG_BASE_IDX_WR(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
700 WIN_REG_BASE_IDX_WR(win_sdhci, br, MV_WIN_SDHCI_BASE);
701
702 #ifndef SOC_MV_DOVE
703 WIN_REG_IDX_RD(ddr, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
704 WIN_REG_IDX_RD(ddr, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
705 WIN_REG_IDX_WR(ddr, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
706 WIN_REG_IDX_WR(ddr, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
707 #else
708 /*
709  * On 88F6781 (Dove) SoC DDR Controller is accessed through
710  * single MBUS <-> AXI bridge. In this case we provide emulated
711  * ddr_br_read() and ddr_sz_read() functions to keep compatibility
712  * with common decoding windows setup code.
713  */
714
715 static inline uint32_t ddr_br_read(int i)
716 {
717         uint32_t mmap;
718
719         /* Read Memory Address Map Register for CS i */
720         mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
721
722         /* Return CS i base address */
723         return (mmap & 0xFF000000);
724 }
725
726 static inline uint32_t ddr_sz_read(int i)
727 {
728         uint32_t mmap, size;
729
730         /* Read Memory Address Map Register for CS i */
731         mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
732
733         /* Extract size of CS space in 64kB units */
734         size = (1 << ((mmap >> 16) & 0x0F));
735
736         /* Return CS size and enable/disable status */
737         return (((size - 1) << 16) | (mmap & 0x01));
738 }
739 #endif
740
741 /**************************************************************************
742  * Decode windows helper routines
743  **************************************************************************/
744 void
745 soc_dump_decode_win(void)
746 {
747         uint32_t dev, rev;
748         int i;
749
750         soc_id(&dev, &rev);
751
752         for (i = 0; i < MV_WIN_CPU_MAX; i++) {
753                 printf("CPU window#%d: c 0x%08x, b 0x%08x", i,
754                     win_cpu_cr_read(i),
755                     win_cpu_br_read(i));
756
757                 if (win_cpu_can_remap(i))
758                         printf(", rl 0x%08x, rh 0x%08x",
759                             win_cpu_remap_l_read(i),
760                             win_cpu_remap_h_read(i));
761
762                 printf("\n");
763         }
764         printf("Internal regs base: 0x%08x\n",
765             bus_space_read_4(fdtbus_bs_tag, MV_INTREGS_BASE, 0));
766
767         for (i = 0; i < MV_WIN_DDR_MAX; i++)
768                 printf("DDR CS#%d: b 0x%08x, s 0x%08x\n", i,
769                     ddr_br_read(i), ddr_sz_read(i));
770 }
771
772 /**************************************************************************
773  * CPU windows routines
774  **************************************************************************/
775 int
776 win_cpu_can_remap(int i)
777 {
778         uint32_t dev, rev;
779
780         soc_id(&dev, &rev);
781
782         /* Depending on the SoC certain windows have remap capability */
783         if ((dev == MV_DEV_88F5182 && i < 2) ||
784             (dev == MV_DEV_88F5281 && i < 4) ||
785             (dev == MV_DEV_88F6281 && i < 4) ||
786             (dev == MV_DEV_88F6282 && i < 4) ||
787             (dev == MV_DEV_88F6828 && i < 20) ||
788             (dev == MV_DEV_88F6820 && i < 20) ||
789             (dev == MV_DEV_88F6810 && i < 20) ||
790             (dev == MV_DEV_88RC8180 && i < 2) ||
791             (dev == MV_DEV_88F6781 && i < 4) ||
792             (dev == MV_DEV_MV78100_Z0 && i < 8) ||
793             ((dev & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY && i < 8))
794                 return (1);
795
796         return (0);
797 }
798
799 /* XXX This should check for overlapping remap fields too.. */
800 int
801 decode_win_overlap(int win, int win_no, const struct decode_win *wintab)
802 {
803         const struct decode_win *tab;
804         int i;
805
806         tab = wintab;
807
808         for (i = 0; i < win_no; i++, tab++) {
809                 if (i == win)
810                         /* Skip self */
811                         continue;
812
813                 if ((tab->base + tab->size - 1) < (wintab + win)->base)
814                         continue;
815
816                 else if (((wintab + win)->base + (wintab + win)->size - 1) <
817                     tab->base)
818                         continue;
819                 else
820                         return (i);
821         }
822
823         return (-1);
824 }
825
826 static int
827 decode_win_cpu_valid(void)
828 {
829         int i, j, rv;
830         uint32_t b, e, s;
831
832         if (cpu_wins_no > MV_WIN_CPU_MAX) {
833                 printf("CPU windows: too many entries: %d\n", cpu_wins_no);
834                 return (0);
835         }
836
837         rv = 1;
838         for (i = 0; i < cpu_wins_no; i++) {
839
840                 if (cpu_wins[i].target == 0) {
841                         printf("CPU window#%d: DDR target window is not "
842                             "supposed to be reprogrammed!\n", i);
843                         rv = 0;
844                 }
845
846                 if (cpu_wins[i].remap != ~0 && win_cpu_can_remap(i) != 1) {
847                         printf("CPU window#%d: not capable of remapping, but "
848                             "val 0x%08x defined\n", i, cpu_wins[i].remap);
849                         rv = 0;
850                 }
851
852                 s = cpu_wins[i].size;
853                 b = cpu_wins[i].base;
854                 e = b + s - 1;
855                 if (s > (0xFFFFFFFF - b + 1)) {
856                         /*
857                          * XXX this boundary check should account for 64bit
858                          * and remapping..
859                          */
860                         printf("CPU window#%d: no space for size 0x%08x at "
861                             "0x%08x\n", i, s, b);
862                         rv = 0;
863                         continue;
864                 }
865
866                 if (b != rounddown2(b, s)) {
867                         printf("CPU window#%d: address 0x%08x is not aligned "
868                             "to 0x%08x\n", i, b, s);
869                         rv = 0;
870                         continue;
871                 }
872
873                 j = decode_win_overlap(i, cpu_wins_no, &cpu_wins[0]);
874                 if (j >= 0) {
875                         printf("CPU window#%d: (0x%08x - 0x%08x) overlaps "
876                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
877                             cpu_wins[j].base,
878                             cpu_wins[j].base + cpu_wins[j].size - 1);
879                         rv = 0;
880                 }
881         }
882
883         return (rv);
884 }
885
886 int
887 decode_win_cpu_set(int target, int attr, vm_paddr_t base, uint32_t size,
888     vm_paddr_t remap)
889 {
890         uint32_t br, cr;
891         int win, i;
892
893         if (remap == ~0) {
894                 win = MV_WIN_CPU_MAX - 1;
895                 i = -1;
896         } else {
897                 win = 0;
898                 i = 1;
899         }
900
901         while ((win >= 0) && (win < MV_WIN_CPU_MAX)) {
902                 cr = win_cpu_cr_read(win);
903                 if ((cr & MV_WIN_CPU_ENABLE_BIT) == 0)
904                         break;
905                 if ((cr & ((0xff << MV_WIN_CPU_ATTR_SHIFT) |
906                     (0x1f << MV_WIN_CPU_TARGET_SHIFT))) ==
907                     ((attr << MV_WIN_CPU_ATTR_SHIFT) |
908                     (target << MV_WIN_CPU_TARGET_SHIFT)))
909                         break;
910                 win += i;
911         }
912         if ((win < 0) || (win >= MV_WIN_CPU_MAX) ||
913             ((remap != ~0) && (win_cpu_can_remap(win) == 0)))
914                 return (-1);
915
916         br = base & 0xffff0000;
917         win_cpu_br_write(win, br);
918
919         if (win_cpu_can_remap(win)) {
920                 if (remap != ~0) {
921                         win_cpu_remap_l_write(win, remap & 0xffff0000);
922                         win_cpu_remap_h_write(win, 0);
923                 } else {
924                         /*
925                          * Remap function is not used for a given window
926                          * (capable of remapping) - set remap field with the
927                          * same value as base.
928                          */
929                         win_cpu_remap_l_write(win, base & 0xffff0000);
930                         win_cpu_remap_h_write(win, 0);
931                 }
932         }
933
934         cr = ((size - 1) & 0xffff0000) | (attr << MV_WIN_CPU_ATTR_SHIFT) |
935             (target << MV_WIN_CPU_TARGET_SHIFT) | MV_WIN_CPU_ENABLE_BIT;
936         win_cpu_cr_write(win, cr);
937
938         return (0);
939 }
940
941 static void
942 decode_win_cpu_setup(void)
943 {
944         int i;
945
946         /* Disable all CPU windows */
947         for (i = 0; i < MV_WIN_CPU_MAX; i++) {
948                 win_cpu_cr_write(i, 0);
949                 win_cpu_br_write(i, 0);
950                 if (win_cpu_can_remap(i)) {
951                         win_cpu_remap_l_write(i, 0);
952                         win_cpu_remap_h_write(i, 0);
953                 }
954         }
955
956         for (i = 0; i < cpu_wins_no; i++)
957                 if (cpu_wins[i].target > 0)
958                         decode_win_cpu_set(cpu_wins[i].target,
959                             cpu_wins[i].attr, cpu_wins[i].base,
960                             cpu_wins[i].size, cpu_wins[i].remap);
961
962 }
963
964 #ifdef SOC_MV_ARMADAXP
965 static int
966 decode_win_sdram_fixup(void)
967 {
968         struct mem_region mr[FDT_MEM_REGIONS];
969         uint8_t window_valid[MV_WIN_DDR_MAX];
970         int mr_cnt, err, i, j;
971         uint32_t valid_win_num = 0;
972
973         /* Grab physical memory regions information from device tree. */
974         err = fdt_get_mem_regions(mr, &mr_cnt, NULL);
975         if (err != 0)
976                 return (err);
977
978         for (i = 0; i < MV_WIN_DDR_MAX; i++)
979                 window_valid[i] = 0;
980
981         /* Try to match entries from device tree with settings from u-boot */
982         for (i = 0; i < mr_cnt; i++) {
983                 for (j = 0; j < MV_WIN_DDR_MAX; j++) {
984                         if (ddr_is_active(j) &&
985                             (ddr_base(j) == mr[i].mr_start) &&
986                             (ddr_size(j) == mr[i].mr_size)) {
987                                 window_valid[j] = 1;
988                                 valid_win_num++;
989                         }
990                 }
991         }
992
993         if (mr_cnt != valid_win_num)
994                 return (EINVAL);
995
996         /* Destroy windows without corresponding device tree entry */
997         for (j = 0; j < MV_WIN_DDR_MAX; j++) {
998                 if (ddr_is_active(j) && (window_valid[j] != 1)) {
999                         printf("Disabling SDRAM decoding window: %d\n", j);
1000                         ddr_disable(j);
1001                 }
1002         }
1003
1004         return (0);
1005 }
1006 #endif
1007 /*
1008  * Check if we're able to cover all active DDR banks.
1009  */
1010 static int
1011 decode_win_can_cover_ddr(int max)
1012 {
1013         int i, c;
1014
1015         c = 0;
1016         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1017                 if (ddr_is_active(i))
1018                         c++;
1019
1020         if (c > max) {
1021                 printf("Unable to cover all active DDR banks: "
1022                     "%d, available windows: %d\n", c, max);
1023                 return (0);
1024         }
1025
1026         return (1);
1027 }
1028
1029 /**************************************************************************
1030  * DDR windows routines
1031  **************************************************************************/
1032 int
1033 ddr_is_active(int i)
1034 {
1035
1036         if (ddr_sz_read(i) & 0x1)
1037                 return (1);
1038
1039         return (0);
1040 }
1041
1042 void
1043 ddr_disable(int i)
1044 {
1045
1046         ddr_sz_write(i, 0);
1047         ddr_br_write(i, 0);
1048 }
1049
1050 uint32_t
1051 ddr_base(int i)
1052 {
1053
1054         return (ddr_br_read(i) & 0xff000000);
1055 }
1056
1057 uint32_t
1058 ddr_size(int i)
1059 {
1060
1061         return ((ddr_sz_read(i) | 0x00ffffff) + 1);
1062 }
1063
1064 uint32_t
1065 ddr_attr(int i)
1066 {
1067         uint32_t dev, rev;
1068
1069         soc_id(&dev, &rev);
1070         if (dev == MV_DEV_88RC8180)
1071                 return ((ddr_sz_read(i) & 0xf0) >> 4);
1072         if (dev == MV_DEV_88F6781)
1073                 return (0);
1074
1075         return (i == 0 ? 0xe :
1076             (i == 1 ? 0xd :
1077             (i == 2 ? 0xb :
1078             (i == 3 ? 0x7 : 0xff))));
1079 }
1080
1081 uint32_t
1082 ddr_target(int i)
1083 {
1084         uint32_t dev, rev;
1085
1086         soc_id(&dev, &rev);
1087         if (dev == MV_DEV_88RC8180) {
1088                 i = (ddr_sz_read(i) & 0xf0) >> 4;
1089                 return (i == 0xe ? 0xc :
1090                     (i == 0xd ? 0xd :
1091                     (i == 0xb ? 0xe :
1092                     (i == 0x7 ? 0xf : 0xc))));
1093         }
1094
1095         /*
1096          * On SOCs other than 88RC8180 Mbus unit ID for
1097          * DDR SDRAM controller is always 0x0.
1098          */
1099         return (0);
1100 }
1101
1102 /**************************************************************************
1103  * CESA windows routines
1104  **************************************************************************/
1105 static int
1106 decode_win_cesa_valid(void)
1107 {
1108
1109         return (decode_win_can_cover_ddr(MV_WIN_CESA_MAX));
1110 }
1111
1112 static void
1113 decode_win_cesa_dump(u_long base)
1114 {
1115         int i;
1116
1117         for (i = 0; i < MV_WIN_CESA_MAX; i++)
1118                 printf("CESA window#%d: c 0x%08x, b 0x%08x\n", i,
1119                     win_cesa_cr_read(base, i), win_cesa_br_read(base, i));
1120 }
1121
1122 /*
1123  * Set CESA decode windows.
1124  */
1125 static void
1126 decode_win_cesa_setup(u_long base)
1127 {
1128         uint32_t br, cr;
1129         uint64_t size;
1130         int i, j;
1131
1132         for (i = 0; i < MV_WIN_CESA_MAX; i++) {
1133                 win_cesa_cr_write(base, i, 0);
1134                 win_cesa_br_write(base, i, 0);
1135         }
1136
1137         /* Only access to active DRAM banks is required */
1138         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1139                 if (ddr_is_active(i)) {
1140                         br = ddr_base(i);
1141
1142                         size = ddr_size(i);
1143 #ifdef SOC_MV_ARMADA38X
1144                         /*
1145                          * Armada 38x SoC's equipped with 4GB DRAM
1146                          * suffer freeze during CESA operation, if
1147                          * MBUS window opened at given DRAM CS reaches
1148                          * end of the address space. Apply a workaround
1149                          * by setting the window size to the closest possible
1150                          * value, i.e. divide it by 2.
1151                          */
1152                         if (size + ddr_base(i) == 0x100000000ULL)
1153                                 size /= 2;
1154 #endif
1155
1156                         cr = (((size - 1) & 0xffff0000) |
1157                             (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1158                             (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1159                             IO_WIN_ENA_MASK);
1160
1161                         /* Set the first free CESA window */
1162                         for (j = 0; j < MV_WIN_CESA_MAX; j++) {
1163                                 if (win_cesa_cr_read(base, j) & 0x1)
1164                                         continue;
1165
1166                                 win_cesa_br_write(base, j, br);
1167                                 win_cesa_cr_write(base, j, cr);
1168                                 break;
1169                         }
1170                 }
1171         }
1172 }
1173
1174 /**************************************************************************
1175  * USB windows routines
1176  **************************************************************************/
1177 static int
1178 decode_win_usb_valid(void)
1179 {
1180
1181         return (decode_win_can_cover_ddr(MV_WIN_USB_MAX));
1182 }
1183
1184 static void
1185 decode_win_usb_dump(u_long base)
1186 {
1187         int i;
1188
1189         if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port - 1)))
1190                 return;
1191
1192         for (i = 0; i < MV_WIN_USB_MAX; i++)
1193                 printf("USB window#%d: c 0x%08x, b 0x%08x\n", i,
1194                     win_usb_cr_read(base, i), win_usb_br_read(base, i));
1195 }
1196
1197 /*
1198  * Set USB decode windows.
1199  */
1200 static void
1201 decode_win_usb_setup(u_long base)
1202 {
1203         uint32_t br, cr;
1204         int i, j;
1205
1206         if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port)))
1207                 return;
1208
1209         usb_port++;
1210
1211         for (i = 0; i < MV_WIN_USB_MAX; i++) {
1212                 win_usb_cr_write(base, i, 0);
1213                 win_usb_br_write(base, i, 0);
1214         }
1215
1216         /* Only access to active DRAM banks is required */
1217         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1218                 if (ddr_is_active(i)) {
1219                         br = ddr_base(i);
1220                         /*
1221                          * XXX for 6281 we should handle Mbus write
1222                          * burst limit field in the ctrl reg
1223                          */
1224                         cr = (((ddr_size(i) - 1) & 0xffff0000) |
1225                             (ddr_attr(i) << 8) |
1226                             (ddr_target(i) << 4) | 1);
1227
1228                         /* Set the first free USB window */
1229                         for (j = 0; j < MV_WIN_USB_MAX; j++) {
1230                                 if (win_usb_cr_read(base, j) & 0x1)
1231                                         continue;
1232
1233                                 win_usb_br_write(base, j, br);
1234                                 win_usb_cr_write(base, j, cr);
1235                                 break;
1236                         }
1237                 }
1238         }
1239 }
1240
1241 /**************************************************************************
1242  * USB3 windows routines
1243  **************************************************************************/
1244 #ifdef SOC_MV_ARMADA38X
1245 static int
1246 decode_win_usb3_valid(void)
1247 {
1248
1249         return (decode_win_can_cover_ddr(MV_WIN_USB3_MAX));
1250 }
1251
1252 static void
1253 decode_win_usb3_dump(u_long base)
1254 {
1255         int i;
1256
1257         for (i = 0; i < MV_WIN_USB3_MAX; i++)
1258                 printf("USB3.0 window#%d: c 0x%08x, b 0x%08x\n", i,
1259                     win_usb3_cr_read(base, i), win_usb3_br_read(base, i));
1260 }
1261
1262 /*
1263  * Set USB3 decode windows
1264  */
1265 static void
1266 decode_win_usb3_setup(u_long base)
1267 {
1268         uint32_t br, cr;
1269         int i, j;
1270
1271         for (i = 0; i < MV_WIN_USB3_MAX; i++) {
1272                 win_usb3_cr_write(base, i, 0);
1273                 win_usb3_br_write(base, i, 0);
1274         }
1275
1276         /* Only access to active DRAM banks is required */
1277         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1278                 if (ddr_is_active(i)) {
1279                         br = ddr_base(i);
1280                         cr = (((ddr_size(i) - 1) &
1281                             (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
1282                             (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1283                             (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1284                             IO_WIN_ENA_MASK);
1285
1286                         /* Set the first free USB3.0 window */
1287                         for (j = 0; j < MV_WIN_USB3_MAX; j++) {
1288                                 if (win_usb3_cr_read(base, j) & IO_WIN_ENA_MASK)
1289                                         continue;
1290
1291                                 win_usb3_br_write(base, j, br);
1292                                 win_usb3_cr_write(base, j, cr);
1293                                 break;
1294                         }
1295                 }
1296         }
1297 }
1298 #else
1299 /*
1300  * Provide dummy functions to satisfy the build
1301  * for SoCs not equipped with USB3
1302  */
1303 static int
1304 decode_win_usb3_valid(void)
1305 {
1306
1307         return (1);
1308 }
1309
1310 static void
1311 decode_win_usb3_setup(u_long base)
1312 {
1313 }
1314
1315 static void
1316 decode_win_usb3_dump(u_long base)
1317 {
1318 }
1319 #endif
1320 /**************************************************************************
1321  * ETH windows routines
1322  **************************************************************************/
1323
1324 static int
1325 win_eth_can_remap(int i)
1326 {
1327
1328         /* ETH encode windows 0-3 have remap capability */
1329         if (i < 4)
1330                 return (1);
1331
1332         return (0);
1333 }
1334
1335 static int
1336 eth_bare_read(uint32_t base, int i)
1337 {
1338         uint32_t v;
1339
1340         v = win_eth_bare_read(base);
1341         v &= (1 << i);
1342
1343         return (v >> i);
1344 }
1345
1346 static void
1347 eth_bare_write(uint32_t base, int i, int val)
1348 {
1349         uint32_t v;
1350
1351         v = win_eth_bare_read(base);
1352         v &= ~(1 << i);
1353         v |= (val << i);
1354         win_eth_bare_write(base, v);
1355 }
1356
1357 static void
1358 eth_epap_write(uint32_t base, int i, int val)
1359 {
1360         uint32_t v;
1361
1362         v = win_eth_epap_read(base);
1363         v &= ~(0x3 << (i * 2));
1364         v |= (val << (i * 2));
1365         win_eth_epap_write(base, v);
1366 }
1367
1368 static void
1369 decode_win_eth_dump(u_long base)
1370 {
1371         int i;
1372
1373         if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port - 1)))
1374                 return;
1375
1376         for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1377                 printf("ETH window#%d: b 0x%08x, s 0x%08x", i,
1378                     win_eth_br_read(base, i),
1379                     win_eth_sz_read(base, i));
1380
1381                 if (win_eth_can_remap(i))
1382                         printf(", ha 0x%08x",
1383                             win_eth_har_read(base, i));
1384
1385                 printf("\n");
1386         }
1387         printf("ETH windows: bare 0x%08x, epap 0x%08x\n",
1388             win_eth_bare_read(base),
1389             win_eth_epap_read(base));
1390 }
1391
1392 #define MV_WIN_ETH_DDR_TRGT(n)  ddr_target(n)
1393
1394 static void
1395 decode_win_eth_setup(u_long base)
1396 {
1397         uint32_t br, sz;
1398         int i, j;
1399
1400         if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port)))
1401                 return;
1402
1403         eth_port++;
1404
1405         /* Disable, clear and revoke protection for all ETH windows */
1406         for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1407
1408                 eth_bare_write(base, i, 1);
1409                 eth_epap_write(base, i, 0);
1410                 win_eth_br_write(base, i, 0);
1411                 win_eth_sz_write(base, i, 0);
1412                 if (win_eth_can_remap(i))
1413                         win_eth_har_write(base, i, 0);
1414         }
1415
1416         /* Only access to active DRAM banks is required */
1417         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1418                 if (ddr_is_active(i)) {
1419
1420                         br = ddr_base(i) | (ddr_attr(i) << 8) | MV_WIN_ETH_DDR_TRGT(i);
1421                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1422
1423                         /* Set the first free ETH window */
1424                         for (j = 0; j < MV_WIN_ETH_MAX; j++) {
1425                                 if (eth_bare_read(base, j) == 0)
1426                                         continue;
1427
1428                                 win_eth_br_write(base, j, br);
1429                                 win_eth_sz_write(base, j, sz);
1430
1431                                 /* XXX remapping ETH windows not supported */
1432
1433                                 /* Set protection RW */
1434                                 eth_epap_write(base, j, 0x3);
1435
1436                                 /* Enable window */
1437                                 eth_bare_write(base, j, 0);
1438                                 break;
1439                         }
1440                 }
1441 }
1442
1443 static void
1444 decode_win_neta_dump(u_long base)
1445 {
1446
1447         decode_win_eth_dump(base + MV_WIN_NETA_OFFSET);
1448 }
1449
1450 static void
1451 decode_win_neta_setup(u_long base)
1452 {
1453
1454         decode_win_eth_setup(base + MV_WIN_NETA_OFFSET);
1455 }
1456
1457 static int
1458 decode_win_eth_valid(void)
1459 {
1460
1461         return (decode_win_can_cover_ddr(MV_WIN_ETH_MAX));
1462 }
1463
1464 /**************************************************************************
1465  * PCIE windows routines
1466  **************************************************************************/
1467 static void
1468 decode_win_pcie_dump(u_long base)
1469 {
1470         int i;
1471
1472         printf("PCIE windows base 0x%08lx\n", base);
1473         for (i = 0; i < MV_WIN_PCIE_MAX; i++)
1474                 printf("PCIE window#%d: cr 0x%08x br 0x%08x remap 0x%08x\n",
1475                     i, win_pcie_cr_read(base, i),
1476                     win_pcie_br_read(base, i), win_pcie_remap_read(base, i));
1477
1478         for (i = 0; i < MV_PCIE_BAR_MAX; i++)
1479                 printf("PCIE bar#%d: cr 0x%08x br 0x%08x brh 0x%08x\n",
1480                     i, pcie_bar_cr_read(base, i),
1481                     pcie_bar_br_read(base, i), pcie_bar_brh_read(base, i));
1482 }
1483
1484 void
1485 decode_win_pcie_setup(u_long base)
1486 {
1487         uint32_t size = 0, ddrbase = ~0;
1488         uint32_t cr, br;
1489         int i, j;
1490
1491         for (i = 0; i < MV_PCIE_BAR_MAX; i++) {
1492                 pcie_bar_br_write(base, i,
1493                     MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1494                 if (i < 3)
1495                         pcie_bar_brh_write(base, i, 0);
1496                 if (i > 0)
1497                         pcie_bar_cr_write(base, i, 0);
1498         }
1499
1500         for (i = 0; i < MV_WIN_PCIE_MAX; i++) {
1501                 win_pcie_cr_write(base, i, 0);
1502                 win_pcie_br_write(base, i, 0);
1503                 win_pcie_remap_write(base, i, 0);
1504         }
1505
1506         /* On End-Point only set BAR size to 1MB regardless of DDR size */
1507         if ((bus_space_read_4(fdtbus_bs_tag, base, MV_PCIE_CONTROL)
1508             & MV_PCIE_ROOT_CMPLX) == 0) {
1509                 pcie_bar_cr_write(base, 1, 0xf0000 | 1);
1510                 return;
1511         }
1512
1513         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1514                 if (ddr_is_active(i)) {
1515                         /* Map DDR to BAR 1 */
1516                         cr = (ddr_size(i) - 1) & 0xffff0000;
1517                         size += ddr_size(i) & 0xffff0000;
1518                         cr |= (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1519                         br = ddr_base(i);
1520                         if (br < ddrbase)
1521                                 ddrbase = br;
1522
1523                         /* Use the first available PCIE window */
1524                         for (j = 0; j < MV_WIN_PCIE_MAX; j++) {
1525                                 if (win_pcie_cr_read(base, j) != 0)
1526                                         continue;
1527
1528                                 win_pcie_br_write(base, j, br);
1529                                 win_pcie_cr_write(base, j, cr);
1530                                 break;
1531                         }
1532                 }
1533         }
1534
1535         /*
1536          * Upper 16 bits in BAR register is interpreted as BAR size
1537          * (in 64 kB units) plus 64kB, so subtract 0x10000
1538          * form value passed to register to get correct value.
1539          */
1540         size -= 0x10000;
1541         pcie_bar_cr_write(base, 1, size | 1);
1542         pcie_bar_br_write(base, 1, ddrbase |
1543             MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1544         pcie_bar_br_write(base, 0, fdt_immr_pa |
1545             MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1546 }
1547
1548 static int
1549 decode_win_pcie_valid(void)
1550 {
1551
1552         return (decode_win_can_cover_ddr(MV_WIN_PCIE_MAX));
1553 }
1554
1555 /**************************************************************************
1556  * IDMA windows routines
1557  **************************************************************************/
1558 #if defined(SOC_MV_ORION) || defined(SOC_MV_DISCOVERY)
1559 static int
1560 idma_bare_read(u_long base, int i)
1561 {
1562         uint32_t v;
1563
1564         v = win_idma_bare_read(base);
1565         v &= (1 << i);
1566
1567         return (v >> i);
1568 }
1569
1570 static void
1571 idma_bare_write(u_long base, int i, int val)
1572 {
1573         uint32_t v;
1574
1575         v = win_idma_bare_read(base);
1576         v &= ~(1 << i);
1577         v |= (val << i);
1578         win_idma_bare_write(base, v);
1579 }
1580
1581 /*
1582  * Sets channel protection 'val' for window 'w' on channel 'c'
1583  */
1584 static void
1585 idma_cap_write(u_long base, int c, int w, int val)
1586 {
1587         uint32_t v;
1588
1589         v = win_idma_cap_read(base, c);
1590         v &= ~(0x3 << (w * 2));
1591         v |= (val << (w * 2));
1592         win_idma_cap_write(base, c, v);
1593 }
1594
1595 /*
1596  * Set protection 'val' on all channels for window 'w'
1597  */
1598 static void
1599 idma_set_prot(u_long base, int w, int val)
1600 {
1601         int c;
1602
1603         for (c = 0; c < MV_IDMA_CHAN_MAX; c++)
1604                 idma_cap_write(base, c, w, val);
1605 }
1606
1607 static int
1608 win_idma_can_remap(int i)
1609 {
1610
1611         /* IDMA decode windows 0-3 have remap capability */
1612         if (i < 4)
1613                 return (1);
1614
1615         return (0);
1616 }
1617
1618 void
1619 decode_win_idma_setup(u_long base)
1620 {
1621         uint32_t br, sz;
1622         int i, j;
1623
1624         if (pm_is_disabled(CPU_PM_CTRL_IDMA))
1625                 return;
1626         /*
1627          * Disable and clear all IDMA windows, revoke protection for all channels
1628          */
1629         for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
1630
1631                 idma_bare_write(base, i, 1);
1632                 win_idma_br_write(base, i, 0);
1633                 win_idma_sz_write(base, i, 0);
1634                 if (win_idma_can_remap(i) == 1)
1635                         win_idma_har_write(base, i, 0);
1636         }
1637         for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
1638                 win_idma_cap_write(base, i, 0);
1639
1640         /*
1641          * Set up access to all active DRAM banks
1642          */
1643         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1644                 if (ddr_is_active(i)) {
1645                         br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i);
1646                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1647
1648                         /* Place DDR entries in non-remapped windows */
1649                         for (j = 0; j < MV_WIN_IDMA_MAX; j++)
1650                                 if (win_idma_can_remap(j) != 1 &&
1651                                     idma_bare_read(base, j) == 1) {
1652
1653                                         /* Configure window */
1654                                         win_idma_br_write(base, j, br);
1655                                         win_idma_sz_write(base, j, sz);
1656
1657                                         /* Set protection RW on all channels */
1658                                         idma_set_prot(base, j, 0x3);
1659
1660                                         /* Enable window */
1661                                         idma_bare_write(base, j, 0);
1662                                         break;
1663                                 }
1664                 }
1665
1666         /*
1667          * Remaining targets -- from statically defined table
1668          */
1669         for (i = 0; i < idma_wins_no; i++)
1670                 if (idma_wins[i].target > 0) {
1671                         br = (idma_wins[i].base & 0xffff0000) |
1672                             (idma_wins[i].attr << 8) | idma_wins[i].target;
1673                         sz = ((idma_wins[i].size - 1) & 0xffff0000);
1674
1675                         /* Set the first free IDMA window */
1676                         for (j = 0; j < MV_WIN_IDMA_MAX; j++) {
1677                                 if (idma_bare_read(base, j) == 0)
1678                                         continue;
1679
1680                                 /* Configure window */
1681                                 win_idma_br_write(base, j, br);
1682                                 win_idma_sz_write(base, j, sz);
1683                                 if (win_idma_can_remap(j) &&
1684                                     idma_wins[j].remap >= 0)
1685                                         win_idma_har_write(base, j,
1686                                             idma_wins[j].remap);
1687
1688                                 /* Set protection RW on all channels */
1689                                 idma_set_prot(base, j, 0x3);
1690
1691                                 /* Enable window */
1692                                 idma_bare_write(base, j, 0);
1693                                 break;
1694                         }
1695                 }
1696 }
1697
1698 int
1699 decode_win_idma_valid(void)
1700 {
1701         const struct decode_win *wintab;
1702         int c, i, j, rv;
1703         uint32_t b, e, s;
1704
1705         if (idma_wins_no > MV_WIN_IDMA_MAX) {
1706                 printf("IDMA windows: too many entries: %d\n", idma_wins_no);
1707                 return (0);
1708         }
1709         for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
1710                 if (ddr_is_active(i))
1711                         c++;
1712
1713         if (idma_wins_no > (MV_WIN_IDMA_MAX - c)) {
1714                 printf("IDMA windows: too many entries: %d, available: %d\n",
1715                     idma_wins_no, MV_WIN_IDMA_MAX - c);
1716                 return (0);
1717         }
1718
1719         wintab = idma_wins;
1720         rv = 1;
1721         for (i = 0; i < idma_wins_no; i++, wintab++) {
1722
1723                 if (wintab->target == 0) {
1724                         printf("IDMA window#%d: DDR target window is not "
1725                             "supposed to be reprogrammed!\n", i);
1726                         rv = 0;
1727                 }
1728
1729                 if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
1730                         printf("IDMA window#%d: not capable of remapping, but "
1731                             "val 0x%08x defined\n", i, wintab->remap);
1732                         rv = 0;
1733                 }
1734
1735                 s = wintab->size;
1736                 b = wintab->base;
1737                 e = b + s - 1;
1738                 if (s > (0xFFFFFFFF - b + 1)) {
1739                         /* XXX this boundary check should account for 64bit and
1740                          * remapping.. */
1741                         printf("IDMA window#%d: no space for size 0x%08x at "
1742                             "0x%08x\n", i, s, b);
1743                         rv = 0;
1744                         continue;
1745                 }
1746
1747                 j = decode_win_overlap(i, idma_wins_no, &idma_wins[0]);
1748                 if (j >= 0) {
1749                         printf("IDMA window#%d: (0x%08x - 0x%08x) overlaps "
1750                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
1751                             idma_wins[j].base,
1752                             idma_wins[j].base + idma_wins[j].size - 1);
1753                         rv = 0;
1754                 }
1755         }
1756
1757         return (rv);
1758 }
1759
1760 void
1761 decode_win_idma_dump(u_long base)
1762 {
1763         int i;
1764
1765         if (pm_is_disabled(CPU_PM_CTRL_IDMA))
1766                 return;
1767
1768         for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
1769                 printf("IDMA window#%d: b 0x%08x, s 0x%08x", i,
1770                     win_idma_br_read(base, i), win_idma_sz_read(base, i));
1771                 
1772                 if (win_idma_can_remap(i))
1773                         printf(", ha 0x%08x", win_idma_har_read(base, i));
1774
1775                 printf("\n");
1776         }
1777         for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
1778                 printf("IDMA channel#%d: ap 0x%08x\n", i,
1779                     win_idma_cap_read(base, i));
1780         printf("IDMA windows: bare 0x%08x\n", win_idma_bare_read(base));
1781 }
1782 #else
1783
1784 /* Provide dummy functions to satisfy the build for SoCs not equipped with IDMA */
1785 int
1786 decode_win_idma_valid(void)
1787 {
1788
1789         return (1);
1790 }
1791
1792 void
1793 decode_win_idma_setup(u_long base)
1794 {
1795 }
1796
1797 void
1798 decode_win_idma_dump(u_long base)
1799 {
1800 }
1801 #endif
1802
1803 /**************************************************************************
1804  * XOR windows routines
1805  **************************************************************************/
1806 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
1807 static int
1808 xor_ctrl_read(u_long base, int i, int c, int e)
1809 {
1810         uint32_t v;
1811         v = win_xor_ctrl_read(base, c, e);
1812         v &= (1 << i);
1813
1814         return (v >> i);
1815 }
1816
1817 static void
1818 xor_ctrl_write(u_long base, int i, int c, int e, int val)
1819 {
1820         uint32_t v;
1821
1822         v = win_xor_ctrl_read(base, c, e);
1823         v &= ~(1 << i);
1824         v |= (val << i);
1825         win_xor_ctrl_write(base, c, e, v);
1826 }
1827
1828 /*
1829  * Set channel protection 'val' for window 'w' on channel 'c'
1830  */
1831 static void
1832 xor_chan_write(u_long base, int c, int e, int w, int val)
1833 {
1834         uint32_t v;
1835
1836         v = win_xor_ctrl_read(base, c, e);
1837         v &= ~(0x3 << (w * 2 + 16));
1838         v |= (val << (w * 2 + 16));
1839         win_xor_ctrl_write(base, c, e, v);
1840 }
1841
1842 /*
1843  * Set protection 'val' on all channels for window 'w' on engine 'e'
1844  */
1845 static void
1846 xor_set_prot(u_long base, int w, int e, int val)
1847 {
1848         int c;
1849
1850         for (c = 0; c < MV_XOR_CHAN_MAX; c++)
1851                 xor_chan_write(base, c, e, w, val);
1852 }
1853
1854 static int
1855 win_xor_can_remap(int i)
1856 {
1857
1858         /* XOR decode windows 0-3 have remap capability */
1859         if (i < 4)
1860                 return (1);
1861
1862         return (0);
1863 }
1864
1865 static int
1866 xor_max_eng(void)
1867 {
1868         uint32_t dev, rev;
1869
1870         soc_id(&dev, &rev);
1871         switch (dev) {
1872         case MV_DEV_88F6281:
1873         case MV_DEV_88F6282:
1874         case MV_DEV_MV78130:
1875         case MV_DEV_MV78160:
1876         case MV_DEV_MV78230:
1877         case MV_DEV_MV78260:
1878         case MV_DEV_MV78460:
1879                 return (2);
1880         case MV_DEV_MV78100:
1881         case MV_DEV_MV78100_Z0:
1882                 return (1);
1883         default:
1884                 return (0);
1885         }
1886 }
1887
1888 static void
1889 xor_active_dram(u_long base, int c, int e, int *window)
1890 {
1891         uint32_t br, sz;
1892         int i, m, w;
1893
1894         /*
1895          * Set up access to all active DRAM banks
1896          */
1897         m = xor_max_eng();
1898         for (i = 0; i < m; i++)
1899                 if (ddr_is_active(i)) {
1900                         br = ddr_base(i) | (ddr_attr(i) << 8) |
1901                             ddr_target(i);
1902                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1903
1904                         /* Place DDR entries in non-remapped windows */
1905                         for (w = 0; w < MV_WIN_XOR_MAX; w++)
1906                                 if (win_xor_can_remap(w) != 1 &&
1907                                     (xor_ctrl_read(base, w, c, e) == 0) &&
1908                                     w > *window) {
1909                                         /* Configure window */
1910                                         win_xor_br_write(base, w, e, br);
1911                                         win_xor_sz_write(base, w, e, sz);
1912
1913                                         /* Set protection RW on all channels */
1914                                         xor_set_prot(base, w, e, 0x3);
1915
1916                                         /* Enable window */
1917                                         xor_ctrl_write(base, w, c, e, 1);
1918                                         (*window)++;
1919                                         break;
1920                                 }
1921                 }
1922 }
1923
1924 void
1925 decode_win_xor_setup(u_long base)
1926 {
1927         uint32_t br, sz;
1928         int i, j, z, e = 1, m, window;
1929
1930         if (pm_is_disabled(CPU_PM_CTRL_XOR))
1931                 return;
1932
1933         /*
1934          * Disable and clear all XOR windows, revoke protection for all
1935          * channels
1936          */
1937         m = xor_max_eng();
1938         for (j = 0; j < m; j++, e--) {
1939
1940                 /* Number of non-remaped windows */
1941                 window = MV_XOR_NON_REMAP - 1;
1942
1943                 for (i = 0; i < MV_WIN_XOR_MAX; i++) {
1944                         win_xor_br_write(base, i, e, 0);
1945                         win_xor_sz_write(base, i, e, 0);
1946                 }
1947
1948                 if (win_xor_can_remap(i) == 1)
1949                         win_xor_har_write(base, i, e, 0);
1950
1951                 for (i = 0; i < MV_XOR_CHAN_MAX; i++) {
1952                         win_xor_ctrl_write(base, i, e, 0);
1953                         xor_active_dram(base, i, e, &window);
1954                 }
1955
1956                 /*
1957                  * Remaining targets -- from a statically defined table
1958                  */
1959                 for (i = 0; i < xor_wins_no; i++)
1960                         if (xor_wins[i].target > 0) {
1961                                 br = (xor_wins[i].base & 0xffff0000) |
1962                                     (xor_wins[i].attr << 8) |
1963                                     xor_wins[i].target;
1964                                 sz = ((xor_wins[i].size - 1) & 0xffff0000);
1965
1966                                 /* Set the first free XOR window */
1967                                 for (z = 0; z < MV_WIN_XOR_MAX; z++) {
1968                                         if (xor_ctrl_read(base, z, 0, e) &&
1969                                             xor_ctrl_read(base, z, 1, e))
1970                                                 continue;
1971
1972                                         /* Configure window */
1973                                         win_xor_br_write(base, z, e, br);
1974                                         win_xor_sz_write(base, z, e, sz);
1975                                         if (win_xor_can_remap(z) &&
1976                                             xor_wins[z].remap >= 0)
1977                                                 win_xor_har_write(base, z, e,
1978                                                     xor_wins[z].remap);
1979
1980                                         /* Set protection RW on all channels */
1981                                         xor_set_prot(base, z, e, 0x3);
1982
1983                                         /* Enable window */
1984                                         xor_ctrl_write(base, z, 0, e, 1);
1985                                         xor_ctrl_write(base, z, 1, e, 1);
1986                                         break;
1987                                 }
1988                         }
1989         }
1990 }
1991
1992 int
1993 decode_win_xor_valid(void)
1994 {
1995         const struct decode_win *wintab;
1996         int c, i, j, rv;
1997         uint32_t b, e, s;
1998
1999         if (xor_wins_no > MV_WIN_XOR_MAX) {
2000                 printf("XOR windows: too many entries: %d\n", xor_wins_no);
2001                 return (0);
2002         }
2003         for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
2004                 if (ddr_is_active(i))
2005                         c++;
2006
2007         if (xor_wins_no > (MV_WIN_XOR_MAX - c)) {
2008                 printf("XOR windows: too many entries: %d, available: %d\n",
2009                     xor_wins_no, MV_WIN_IDMA_MAX - c);
2010                 return (0);
2011         }
2012
2013         wintab = xor_wins;
2014         rv = 1;
2015         for (i = 0; i < xor_wins_no; i++, wintab++) {
2016
2017                 if (wintab->target == 0) {
2018                         printf("XOR window#%d: DDR target window is not "
2019                             "supposed to be reprogrammed!\n", i);
2020                         rv = 0;
2021                 }
2022
2023                 if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
2024                         printf("XOR window#%d: not capable of remapping, but "
2025                             "val 0x%08x defined\n", i, wintab->remap);
2026                         rv = 0;
2027                 }
2028
2029                 s = wintab->size;
2030                 b = wintab->base;
2031                 e = b + s - 1;
2032                 if (s > (0xFFFFFFFF - b + 1)) {
2033                         /*
2034                          * XXX this boundary check should account for 64bit
2035                          * and remapping..
2036                          */
2037                         printf("XOR window#%d: no space for size 0x%08x at "
2038                             "0x%08x\n", i, s, b);
2039                         rv = 0;
2040                         continue;
2041                 }
2042
2043                 j = decode_win_overlap(i, xor_wins_no, &xor_wins[0]);
2044                 if (j >= 0) {
2045                         printf("XOR window#%d: (0x%08x - 0x%08x) overlaps "
2046                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
2047                             xor_wins[j].base,
2048                             xor_wins[j].base + xor_wins[j].size - 1);
2049                         rv = 0;
2050                 }
2051         }
2052
2053         return (rv);
2054 }
2055
2056 void
2057 decode_win_xor_dump(u_long base)
2058 {
2059         int i, j;
2060         int e = 1;
2061
2062         if (pm_is_disabled(CPU_PM_CTRL_XOR))
2063                 return;
2064
2065         for (j = 0; j < xor_max_eng(); j++, e--) {
2066                 for (i = 0; i < MV_WIN_XOR_MAX; i++) {
2067                         printf("XOR window#%d: b 0x%08x, s 0x%08x", i,
2068                             win_xor_br_read(base, i, e), win_xor_sz_read(base, i, e));
2069
2070                         if (win_xor_can_remap(i))
2071                                 printf(", ha 0x%08x", win_xor_har_read(base, i, e));
2072
2073                         printf("\n");
2074                 }
2075                 for (i = 0; i < MV_XOR_CHAN_MAX; i++)
2076                         printf("XOR control#%d: 0x%08x\n", i,
2077                             win_xor_ctrl_read(base, i, e));
2078         }
2079 }
2080
2081 #else
2082 /* Provide dummy functions to satisfy the build for SoCs not equipped with XOR */
2083 static int
2084 decode_win_xor_valid(void)
2085 {
2086
2087         return (1);
2088 }
2089
2090 static void
2091 decode_win_xor_setup(u_long base)
2092 {
2093 }
2094
2095 static void
2096 decode_win_xor_dump(u_long base)
2097 {
2098 }
2099 #endif
2100
2101 /**************************************************************************
2102  * SATA windows routines
2103  **************************************************************************/
2104 static void
2105 decode_win_sata_setup(u_long base)
2106 {
2107         uint32_t cr, br;
2108         int i, j;
2109
2110         if (pm_is_disabled(CPU_PM_CTRL_SATA))
2111                 return;
2112
2113         for (i = 0; i < MV_WIN_SATA_MAX; i++) {
2114                 win_sata_cr_write(base, i, 0);
2115                 win_sata_br_write(base, i, 0);
2116         }
2117
2118         for (i = 0; i < MV_WIN_DDR_MAX; i++)
2119                 if (ddr_is_active(i)) {
2120                         cr = ((ddr_size(i) - 1) & 0xffff0000) |
2121                             (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
2122                         br = ddr_base(i);
2123
2124                         /* Use the first available SATA window */
2125                         for (j = 0; j < MV_WIN_SATA_MAX; j++) {
2126                                 if ((win_sata_cr_read(base, j) & 1) != 0)
2127                                         continue;
2128
2129                                 win_sata_br_write(base, j, br);
2130                                 win_sata_cr_write(base, j, cr);
2131                                 break;
2132                         }
2133                 }
2134 }
2135
2136 #ifdef SOC_MV_ARMADA38X
2137 /*
2138  * Configure AHCI decoding windows
2139  */
2140 static void
2141 decode_win_ahci_setup(u_long base)
2142 {
2143         uint32_t br, cr, sz;
2144         int i, j;
2145
2146         for (i = 0; i < MV_WIN_SATA_MAX; i++) {
2147                 win_sata_cr_write(base, i, 0);
2148                 win_sata_br_write(base, i, 0);
2149                 win_sata_sz_write(base, i, 0);
2150         }
2151
2152         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
2153                 if (ddr_is_active(i)) {
2154                         cr = (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
2155                             (ddr_target(i) << IO_WIN_TGT_SHIFT) |
2156                             IO_WIN_ENA_MASK;
2157                         br = ddr_base(i);
2158                         sz = (ddr_size(i) - 1) &
2159                             (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT);
2160
2161                         /* Use first available SATA window */
2162                         for (j = 0; j < MV_WIN_SATA_MAX; j++) {
2163                                 if (win_sata_cr_read(base, j) & IO_WIN_ENA_MASK)
2164                                         continue;
2165
2166                                 /* BASE is set to DRAM base (0x00000000) */
2167                                 win_sata_br_write(base, j, br);
2168                                 /* CTRL targets DRAM ctrl with 0x0E or 0x0D */
2169                                 win_sata_cr_write(base, j, cr);
2170                                 /* SIZE is set to 16MB - max value */
2171                                 win_sata_sz_write(base, j, sz);
2172                                 break;
2173                         }
2174                 }
2175         }
2176 }
2177
2178 static void
2179 decode_win_ahci_dump(u_long base)
2180 {
2181         int i;
2182
2183         for (i = 0; i < MV_WIN_SATA_MAX; i++)
2184                 printf("SATA window#%d: cr 0x%08x, br 0x%08x, sz 0x%08x\n", i,
2185                     win_sata_cr_read(base, i), win_sata_br_read(base, i),
2186                     win_sata_sz_read(base,i));
2187 }
2188
2189 #else
2190 /*
2191  * Provide dummy functions to satisfy the build
2192  * for SoC's not equipped with AHCI controller
2193  */
2194 static void
2195 decode_win_ahci_setup(u_long base)
2196 {
2197 }
2198
2199 static void
2200 decode_win_ahci_dump(u_long base)
2201 {
2202 }
2203 #endif
2204
2205 static int
2206 decode_win_sata_valid(void)
2207 {
2208         uint32_t dev, rev;
2209
2210         soc_id(&dev, &rev);
2211         if (dev == MV_DEV_88F5281)
2212                 return (1);
2213
2214         return (decode_win_can_cover_ddr(MV_WIN_SATA_MAX));
2215 }
2216
2217 static void
2218 decode_win_sdhci_setup(u_long base)
2219 {
2220         uint32_t cr, br;
2221         int i, j;
2222
2223         for (i = 0; i < MV_WIN_SDHCI_MAX; i++) {
2224                 win_sdhci_cr_write(base, i, 0);
2225                 win_sdhci_br_write(base, i, 0);
2226         }
2227
2228         for (i = 0; i < MV_WIN_DDR_MAX; i++)
2229                 if (ddr_is_active(i)) {
2230                         br = ddr_base(i);
2231                         cr = (((ddr_size(i) - 1) &
2232                             (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
2233                             (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
2234                             (ddr_target(i) << IO_WIN_TGT_SHIFT) |
2235                             IO_WIN_ENA_MASK);
2236
2237                         /* Use the first available SDHCI window */
2238                         for (j = 0; j < MV_WIN_SDHCI_MAX; j++) {
2239                                 if (win_sdhci_cr_read(base, j) & IO_WIN_ENA_MASK)
2240                                         continue;
2241
2242                                 win_sdhci_cr_write(base, j, cr);
2243                                 win_sdhci_br_write(base, j, br);
2244                                 break;
2245                         }
2246                 }
2247 }
2248
2249 static void
2250 decode_win_sdhci_dump(u_long base)
2251 {
2252         int i;
2253
2254         for (i = 0; i < MV_WIN_SDHCI_MAX; i++)
2255                 printf("SDHCI window#%d: c 0x%08x, b 0x%08x\n", i,
2256                     win_sdhci_cr_read(base, i), win_sdhci_br_read(base, i));
2257 }
2258
2259 static int
2260 decode_win_sdhci_valid(void)
2261 {
2262
2263 #ifdef SOC_MV_ARMADA38X
2264         return (decode_win_can_cover_ddr(MV_WIN_SDHCI_MAX));
2265 #endif
2266
2267         /* Satisfy platforms not equipped with this controller. */
2268         return (1);
2269 }
2270
2271 /**************************************************************************
2272  * FDT parsing routines.
2273  **************************************************************************/
2274
2275 static int
2276 fdt_get_ranges(const char *nodename, void *buf, int size, int *tuples,
2277     int *tuplesize)
2278 {
2279         phandle_t node;
2280         pcell_t addr_cells, par_addr_cells, size_cells;
2281         int len, tuple_size, tuples_count;
2282
2283         node = OF_finddevice(nodename);
2284         if (node == -1)
2285                 return (EINVAL);
2286
2287         if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
2288                 return (ENXIO);
2289
2290         par_addr_cells = fdt_parent_addr_cells(node);
2291         if (par_addr_cells > 2)
2292                 return (ERANGE);
2293
2294         tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
2295             size_cells);
2296
2297         /* Note the OF_getprop_alloc() cannot be used at this early stage. */
2298         len = OF_getprop(node, "ranges", buf, size);
2299
2300         /*
2301          * XXX this does not handle the empty 'ranges;' case, which is
2302          * legitimate and should be allowed.
2303          */
2304         tuples_count = len / tuple_size;
2305         if (tuples_count <= 0)
2306                 return (ERANGE);
2307
2308         if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
2309                 return (ERANGE);
2310
2311         *tuples = tuples_count;
2312         *tuplesize = tuple_size;
2313         return (0);
2314 }
2315
2316 static int
2317 win_cpu_from_dt(void)
2318 {
2319         pcell_t ranges[48];
2320         phandle_t node;
2321         int i, entry_size, err, t, tuple_size, tuples;
2322         u_long sram_base, sram_size;
2323
2324         t = 0;
2325         /* Retrieve 'ranges' property of '/localbus' node. */
2326         if ((err = fdt_get_ranges("/localbus", ranges, sizeof(ranges),
2327             &tuples, &tuple_size)) == 0) {
2328                 /*
2329                  * Fill CPU decode windows table.
2330                  */
2331                 bzero((void *)&cpu_win_tbl, sizeof(cpu_win_tbl));
2332
2333                 entry_size = tuple_size / sizeof(pcell_t);
2334                 cpu_wins_no = tuples;
2335
2336                 /* Check range */
2337                 if (tuples > nitems(cpu_win_tbl)) {
2338                         debugf("too many tuples to fit into cpu_win_tbl\n");
2339                         return (ENOMEM);
2340                 }
2341
2342                 for (i = 0, t = 0; t < tuples; i += entry_size, t++) {
2343                         cpu_win_tbl[t].target = 1;
2344                         cpu_win_tbl[t].attr = fdt32_to_cpu(ranges[i + 1]);
2345                         cpu_win_tbl[t].base = fdt32_to_cpu(ranges[i + 2]);
2346                         cpu_win_tbl[t].size = fdt32_to_cpu(ranges[i + 3]);
2347                         cpu_win_tbl[t].remap = ~0;
2348                         debugf("target = 0x%0x attr = 0x%0x base = 0x%0x "
2349                             "size = 0x%0x remap = 0x%0x\n",
2350                             cpu_win_tbl[t].target,
2351                             cpu_win_tbl[t].attr, cpu_win_tbl[t].base,
2352                             cpu_win_tbl[t].size, cpu_win_tbl[t].remap);
2353                 }
2354         }
2355
2356         /*
2357          * Retrieve CESA SRAM data.
2358          */
2359         if ((node = OF_finddevice("sram")) != -1)
2360                 if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram"))
2361                         goto moveon;
2362
2363         if ((node = OF_finddevice("/")) == 0)
2364                 return (ENXIO);
2365
2366         if ((node = fdt_find_compatible(node, "mrvl,cesa-sram", 0)) == 0)
2367                 /* SRAM block is not always present. */
2368                 return (0);
2369 moveon:
2370         sram_base = sram_size = 0;
2371         if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2372                 return (EINVAL);
2373
2374         /* Check range */
2375         if (t >= nitems(cpu_win_tbl)) {
2376                 debugf("cannot fit CESA tuple into cpu_win_tbl\n");
2377                 return (ENOMEM);
2378         }
2379
2380         cpu_win_tbl[t].target = MV_WIN_CESA_TARGET;
2381 #ifdef SOC_MV_ARMADA38X
2382         cpu_win_tbl[t].attr = MV_WIN_CESA_ATTR(0);
2383 #else
2384         cpu_win_tbl[t].attr = MV_WIN_CESA_ATTR(1);
2385 #endif
2386         cpu_win_tbl[t].base = sram_base;
2387         cpu_win_tbl[t].size = sram_size;
2388         cpu_win_tbl[t].remap = ~0;
2389         cpu_wins_no++;
2390         debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2391
2392         /* Check if there is a second CESA node */
2393         while ((node = OF_peer(node)) != 0) {
2394                 if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram")) {
2395                         if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2396                                 return (EINVAL);
2397                         break;
2398                 }
2399         }
2400
2401         if (node == 0)
2402                 return (0);
2403
2404         t++;
2405         if (t >= nitems(cpu_win_tbl)) {
2406                 debugf("cannot fit CESA tuple into cpu_win_tbl\n");
2407                 return (ENOMEM);
2408         }
2409
2410         /* Configure window for CESA1 */
2411         cpu_win_tbl[t].target = MV_WIN_CESA_TARGET;
2412         cpu_win_tbl[t].attr = MV_WIN_CESA_ATTR(1);
2413         cpu_win_tbl[t].base = sram_base;
2414         cpu_win_tbl[t].size = sram_size;
2415         cpu_win_tbl[t].remap = ~0;
2416         cpu_wins_no++;
2417         debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2418
2419         return (0);
2420 }
2421
2422 static int
2423 fdt_win_process(phandle_t child)
2424 {
2425         int i;
2426         struct soc_node_spec *soc_node;
2427         int addr_cells, size_cells;
2428         pcell_t reg[8];
2429         u_long size, base;
2430
2431         for (i = 0; soc_nodes[i].compat != NULL; i++) {
2432
2433                 soc_node = &soc_nodes[i];
2434
2435                 /* Setup only for enabled devices */
2436                 if (ofw_bus_node_status_okay(child) == 0)
2437                         continue;
2438
2439                 if (!ofw_bus_node_is_compatible(child, soc_node->compat))
2440                         continue;
2441
2442                 if (fdt_addrsize_cells(OF_parent(child), &addr_cells,
2443                     &size_cells))
2444                         return (ENXIO);
2445
2446                 if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
2447                         return (ENOMEM);
2448
2449                 if (OF_getprop(child, "reg", &reg, sizeof(reg)) <= 0)
2450                         return (EINVAL);
2451
2452                 if (addr_cells <= 2)
2453                         base = fdt_data_get(&reg[0], addr_cells);
2454                 else
2455                         base = fdt_data_get(&reg[addr_cells - 2], 2);
2456                 size = fdt_data_get(&reg[addr_cells], size_cells);
2457
2458                 base = (base & 0x000fffff) | fdt_immr_va;
2459                 if (soc_node->decode_handler != NULL)
2460                         soc_node->decode_handler(base);
2461                 else
2462                         return (ENXIO);
2463
2464                 if (MV_DUMP_WIN && (soc_node->dump_handler != NULL))
2465                         soc_node->dump_handler(base);
2466         }
2467
2468         return (0);
2469 }
2470 static int
2471 fdt_win_setup(void)
2472 {
2473         phandle_t node, child, sb;
2474         phandle_t child_pci;
2475         int err;
2476
2477         sb = 0;
2478         node = OF_finddevice("/");
2479         if (node == -1)
2480                 panic("fdt_win_setup: no root node");
2481
2482         /*
2483          * Traverse through all children of root and simple-bus nodes.
2484          * For each found device retrieve decode windows data (if applicable).
2485          */
2486         child = OF_child(node);
2487         while (child != 0) {
2488                 /* Lookup for callback and run */
2489                 err = fdt_win_process(child);
2490                 if (err != 0)
2491                         return (err);
2492
2493                 /* Process Marvell Armada-XP/38x PCIe controllers */
2494                 if (ofw_bus_node_is_compatible(child, "marvell,armada-370-pcie")) {
2495                         child_pci = OF_child(child);
2496                         while (child_pci != 0) {
2497                                 err = fdt_win_process(child_pci);
2498                                 if (err != 0)
2499                                         return (err);
2500
2501                                 child_pci = OF_peer(child_pci);
2502                         }
2503                 }
2504
2505                 /*
2506                  * Once done with root-level children let's move down to
2507                  * simple-bus and its children.
2508                  */
2509                 child = OF_peer(child);
2510                 if ((child == 0) && (node == OF_finddevice("/"))) {
2511                         sb = node = fdt_find_compatible(node, "simple-bus", 0);
2512                         if (node == 0)
2513                                 return (ENXIO);
2514                         child = OF_child(node);
2515                 }
2516                 /*
2517                  * Next, move one more level down to internal-regs node (if
2518                  * it is present) and its children. This node also have
2519                  * "simple-bus" compatible.
2520                  */
2521                 if ((child == 0) && (node == sb)) {
2522                         node = fdt_find_compatible(node, "simple-bus", 0);
2523                         if (node == 0)
2524                                 return (0);
2525                         child = OF_child(node);
2526                 }
2527         }
2528
2529         return (0);
2530 }
2531
2532 static void
2533 fdt_fixup_busfreq(phandle_t root)
2534 {
2535         phandle_t sb;
2536         pcell_t freq;
2537
2538         freq = cpu_to_fdt32(get_tclk());
2539
2540         /*
2541          * Fix bus speed in cpu node
2542          */
2543         if ((sb = OF_finddevice("cpu")) != 0)
2544                 if (fdt_is_compatible_strict(sb, "ARM,88VS584"))
2545                         OF_setprop(sb, "bus-frequency", (void *)&freq,
2546                             sizeof(freq));
2547
2548         /*
2549          * This fixup sets the simple-bus bus-frequency property.
2550          */
2551         if ((sb = fdt_find_compatible(root, "simple-bus", 1)) != 0)
2552                 OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq));
2553 }
2554
2555 static void
2556 fdt_fixup_ranges(phandle_t root)
2557 {
2558         phandle_t node;
2559         pcell_t par_addr_cells, addr_cells, size_cells;
2560         pcell_t ranges[3], reg[2], *rangesptr;
2561         int len, tuple_size, tuples_count;
2562         uint32_t base;
2563
2564         /* Fix-up SoC ranges according to real fdt_immr_pa */
2565         if ((node = fdt_find_compatible(root, "simple-bus", 1)) != 0) {
2566                 if (fdt_addrsize_cells(node, &addr_cells, &size_cells) == 0 &&
2567                     (par_addr_cells = fdt_parent_addr_cells(node) <= 2)) {
2568                         tuple_size = sizeof(pcell_t) * (par_addr_cells +
2569                            addr_cells + size_cells);
2570                         len = OF_getprop(node, "ranges", ranges,
2571                             sizeof(ranges));
2572                         tuples_count = len / tuple_size;
2573                         /* Unexpected settings are not supported */
2574                         if (tuples_count != 1)
2575                                 goto fixup_failed;
2576
2577                         rangesptr = &ranges[0];
2578                         rangesptr += par_addr_cells;
2579                         base = fdt_data_get((void *)rangesptr, addr_cells);
2580                         *rangesptr = cpu_to_fdt32(fdt_immr_pa);
2581                         if (OF_setprop(node, "ranges", (void *)&ranges[0],
2582                             sizeof(ranges)) < 0)
2583                                 goto fixup_failed;
2584                 }
2585         }
2586
2587         /* Fix-up PCIe reg according to real PCIe registers' PA */
2588         if ((node = fdt_find_compatible(root, "mrvl,pcie", 1)) != 0) {
2589                 if (fdt_addrsize_cells(OF_parent(node), &par_addr_cells,
2590                     &size_cells) == 0) {
2591                         tuple_size = sizeof(pcell_t) * (par_addr_cells +
2592                             size_cells);
2593                         len = OF_getprop(node, "reg", reg, sizeof(reg));
2594                         tuples_count = len / tuple_size;
2595                         /* Unexpected settings are not supported */
2596                         if (tuples_count != 1)
2597                                 goto fixup_failed;
2598
2599                         base = fdt_data_get((void *)&reg[0], par_addr_cells);
2600                         base &= ~0xFF000000;
2601                         base |= fdt_immr_pa;
2602                         reg[0] = cpu_to_fdt32(base);
2603                         if (OF_setprop(node, "reg", (void *)&reg[0],
2604                             sizeof(reg)) < 0)
2605                                 goto fixup_failed;
2606                 }
2607         }
2608         /* Fix-up succeeded. May return and continue */
2609         return;
2610
2611 fixup_failed:
2612         while (1) {
2613                 /*
2614                  * In case of any error while fixing ranges just hang.
2615                  *      1. No message can be displayed yet since console
2616                  *         is not initialized.
2617                  *      2. Going further will cause failure on bus_space_map()
2618                  *         relying on the wrong ranges or data abort when
2619                  *         accessing PCIe registers.
2620                  */
2621         }
2622 }
2623
2624 struct fdt_fixup_entry fdt_fixup_table[] = {
2625         { "mrvl,DB-88F6281", &fdt_fixup_busfreq },
2626         { "mrvl,DB-78460", &fdt_fixup_busfreq },
2627         { "mrvl,DB-78460", &fdt_fixup_ranges },
2628         { NULL, NULL }
2629 };
2630
2631 #ifndef INTRNG
2632 static int
2633 fdt_pic_decode_ic(phandle_t node, pcell_t *intr, int *interrupt, int *trig,
2634     int *pol)
2635 {
2636
2637         if (!ofw_bus_node_is_compatible(node, "mrvl,pic") &&
2638             !ofw_bus_node_is_compatible(node, "mrvl,mpic"))
2639                 return (ENXIO);
2640
2641         *interrupt = fdt32_to_cpu(intr[0]);
2642         *trig = INTR_TRIGGER_CONFORM;
2643         *pol = INTR_POLARITY_CONFORM;
2644
2645         return (0);
2646 }
2647
2648 fdt_pic_decode_t fdt_pic_table[] = {
2649 #ifdef SOC_MV_ARMADA38X
2650         &gic_decode_fdt,
2651 #endif
2652         &fdt_pic_decode_ic,
2653         NULL
2654 };
2655 #endif
2656
2657 uint64_t
2658 get_sar_value(void)
2659 {
2660         uint32_t sar_low, sar_high;
2661
2662 #if defined(SOC_MV_ARMADAXP)
2663         sar_high = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2664             SAMPLE_AT_RESET_HI);
2665         sar_low = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2666             SAMPLE_AT_RESET_LO);
2667 #elif defined(SOC_MV_ARMADA38X)
2668         sar_high = 0;
2669         sar_low = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2670             SAMPLE_AT_RESET);
2671 #else
2672         /*
2673          * TODO: Add getting proper values for other SoC configurations
2674          */
2675         sar_high = 0;
2676         sar_low = 0;
2677 #endif
2678
2679         return (((uint64_t)sar_high << 32) | sar_low);
2680 }