]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/arm/mv/mv_common.c
Merge lldb trunk r366426, resolve conflicts, and update FREEBSD-Xlist.
[FreeBSD/FreeBSD.git] / sys / arm / mv / mv_common.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 2008-2011 MARVELL INTERNATIONAL LTD.
5  * All rights reserved.
6  *
7  * Developed by Semihalf.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of MARVELL nor the names of contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/kdb.h>
43 #include <sys/reboot.h>
44
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/openfirm.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48
49 #include <machine/bus.h>
50 #include <machine/fdt.h>
51 #include <machine/vmparam.h>
52 #include <machine/intr.h>
53
54 #include <arm/mv/mvreg.h>
55 #include <arm/mv/mvvar.h>
56 #include <arm/mv/mvwin.h>
57
58
59 MALLOC_DEFINE(M_IDMA, "idma", "idma dma test memory");
60
61 #define IDMA_DEBUG
62 #undef IDMA_DEBUG
63
64 #define MAX_CPU_WIN     5
65
66 #ifdef DEBUG
67 #define debugf(fmt, args...) do { printf("%s(): ", __func__);   \
68     printf(fmt,##args); } while (0)
69 #else
70 #define debugf(fmt, args...)
71 #endif
72
73 #ifdef DEBUG
74 #define MV_DUMP_WIN     1
75 #else
76 #define MV_DUMP_WIN     0
77 #endif
78
79 struct soc_node_spec;
80
81 static enum soc_family soc_family;
82
83 static int mv_win_cesa_attr(int wng_sel);
84 static int mv_win_cesa_attr_armv5(int eng_sel);
85 static int mv_win_cesa_attr_armada38x(int eng_sel);
86 static int mv_win_cesa_attr_armadaxp(int eng_sel);
87
88 uint32_t read_cpu_ctrl_armv5(uint32_t reg);
89 uint32_t read_cpu_ctrl_armv7(uint32_t reg);
90
91 void write_cpu_ctrl_armv5(uint32_t reg, uint32_t val);
92 void write_cpu_ctrl_armv7(uint32_t reg, uint32_t val);
93
94 static int win_eth_can_remap(int i);
95
96 static int decode_win_cesa_valid(void);
97 static int decode_win_cpu_valid(void);
98 static int decode_win_usb_valid(void);
99 static int decode_win_usb3_valid(void);
100 static int decode_win_eth_valid(void);
101 static int decode_win_pcie_valid(void);
102 static int decode_win_sata_valid(void);
103 static int decode_win_sdhci_valid(void);
104
105 static int decode_win_idma_valid(void);
106 static int decode_win_xor_valid(void);
107
108 static void decode_win_cpu_setup(void);
109 static int decode_win_sdram_fixup(void);
110 static void decode_win_cesa_setup(u_long);
111 static void decode_win_a38x_cesa_setup(u_long);
112 static void decode_win_usb_setup(u_long);
113 static void decode_win_usb3_setup(u_long);
114 static void decode_win_eth_setup(u_long);
115 static void decode_win_neta_setup(u_long);
116 static void decode_win_sata_setup(u_long);
117 static void decode_win_ahci_setup(u_long);
118 static void decode_win_sdhci_setup(u_long);
119
120 static void decode_win_idma_setup(u_long);
121 static void decode_win_xor_setup(u_long);
122
123 static void decode_win_cesa_dump(u_long);
124 static void decode_win_a38x_cesa_dump(u_long);
125 static void decode_win_usb_dump(u_long);
126 static void decode_win_usb3_dump(u_long);
127 static void decode_win_eth_dump(u_long base);
128 static void decode_win_neta_dump(u_long base);
129 static void decode_win_idma_dump(u_long base);
130 static void decode_win_xor_dump(u_long base);
131 static void decode_win_ahci_dump(u_long base);
132 static void decode_win_sdhci_dump(u_long);
133 static void decode_win_pcie_dump(u_long);
134
135 static uint32_t win_cpu_cr_read(int);
136 static uint32_t win_cpu_armv5_cr_read(int);
137 static uint32_t win_cpu_armv7_cr_read(int);
138 static uint32_t win_cpu_br_read(int);
139 static uint32_t win_cpu_armv5_br_read(int);
140 static uint32_t win_cpu_armv7_br_read(int);
141 static uint32_t win_cpu_remap_l_read(int);
142 static uint32_t win_cpu_armv5_remap_l_read(int);
143 static uint32_t win_cpu_armv7_remap_l_read(int);
144 static uint32_t win_cpu_remap_h_read(int);
145 static uint32_t win_cpu_armv5_remap_h_read(int);
146 static uint32_t win_cpu_armv7_remap_h_read(int);
147
148 static void win_cpu_cr_write(int, uint32_t);
149 static void win_cpu_armv5_cr_write(int, uint32_t);
150 static void win_cpu_armv7_cr_write(int, uint32_t);
151 static void win_cpu_br_write(int, uint32_t);
152 static void win_cpu_armv5_br_write(int, uint32_t);
153 static void win_cpu_armv7_br_write(int, uint32_t);
154 static void win_cpu_remap_l_write(int, uint32_t);
155 static void win_cpu_armv5_remap_l_write(int, uint32_t);
156 static void win_cpu_armv7_remap_l_write(int, uint32_t);
157 static void win_cpu_remap_h_write(int, uint32_t);
158 static void win_cpu_armv5_remap_h_write(int, uint32_t);
159 static void win_cpu_armv7_remap_h_write(int, uint32_t);
160
161 static uint32_t ddr_br_read(int);
162 static uint32_t ddr_sz_read(int);
163 static uint32_t ddr_armv5_br_read(int);
164 static uint32_t ddr_armv5_sz_read(int);
165 static uint32_t ddr_armv7_br_read(int);
166 static uint32_t ddr_armv7_sz_read(int);
167 static void ddr_br_write(int, uint32_t);
168 static void ddr_sz_write(int, uint32_t);
169 static void ddr_armv5_br_write(int, uint32_t);
170 static void ddr_armv5_sz_write(int, uint32_t);
171 static void ddr_armv7_br_write(int, uint32_t);
172 static void ddr_armv7_sz_write(int, uint32_t);
173
174 static int fdt_get_ranges(const char *, void *, int, int *, int *);
175 int gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt,
176     int *trig, int *pol);
177
178 static int win_cpu_from_dt(void);
179 static int fdt_win_setup(void);
180
181 static int fdt_win_process_child(phandle_t, struct soc_node_spec *, const char*);
182
183 static void soc_identify(uint32_t, uint32_t);
184
185 static uint32_t dev_mask = 0;
186 static int cpu_wins_no = 0;
187 static int eth_port = 0;
188 static int usb_port = 0;
189 static boolean_t platform_io_coherent = false;
190
191 static struct decode_win cpu_win_tbl[MAX_CPU_WIN];
192
193 const struct decode_win *cpu_wins = cpu_win_tbl;
194
195 typedef void (*decode_win_setup_t)(u_long);
196 typedef void (*dump_win_t)(u_long);
197 typedef int (*valid_t)(void);
198
199 /*
200  * The power status of device feature is only supported on
201  * Kirkwood and Discovery SoCs.
202  */
203 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
204 #define SOC_MV_POWER_STAT_SUPPORTED             1
205 #else
206 #define SOC_MV_POWER_STAT_SUPPORTED             0
207 #endif
208
209 struct soc_node_spec {
210         const char              *compat;
211         decode_win_setup_t      decode_handler;
212         dump_win_t              dump_handler;
213         valid_t                 valid_handler;
214 };
215
216 static struct soc_node_spec soc_nodes[] = {
217         { "mrvl,ge", &decode_win_eth_setup, &decode_win_eth_dump, &decode_win_eth_valid},
218         { "marvell,armada-370-neta", &decode_win_neta_setup,
219             &decode_win_neta_dump, NULL },
220         { "mrvl,usb-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid},
221         { "marvell,orion-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid },
222         { "marvell,armada-380-xhci", &decode_win_usb3_setup,
223             &decode_win_usb3_dump, &decode_win_usb3_valid },
224         { "marvell,armada-380-ahci", &decode_win_ahci_setup,
225             &decode_win_ahci_dump, NULL },
226         { "marvell,armada-380-sdhci", &decode_win_sdhci_setup,
227             &decode_win_sdhci_dump, &decode_win_sdhci_valid},
228         { "mrvl,sata", &decode_win_sata_setup, NULL, &decode_win_sata_valid},
229         { "mrvl,xor", &decode_win_xor_setup, &decode_win_xor_dump, &decode_win_xor_valid},
230         { "mrvl,idma", &decode_win_idma_setup, &decode_win_idma_dump, &decode_win_idma_valid},
231         { "mrvl,cesa", &decode_win_cesa_setup, &decode_win_cesa_dump, &decode_win_cesa_valid},
232         { "mrvl,pcie", &decode_win_pcie_setup, &decode_win_pcie_dump, &decode_win_pcie_valid},
233         { "marvell,armada-38x-crypto", &decode_win_a38x_cesa_setup,
234             &decode_win_a38x_cesa_dump, &decode_win_cesa_valid},
235         { NULL, NULL, NULL, NULL },
236 };
237
238 #define SOC_NODE_PCIE_ENTRY_IDX         11
239
240 typedef uint32_t(*read_cpu_ctrl_t)(uint32_t);
241 typedef void(*write_cpu_ctrl_t)(uint32_t, uint32_t);
242 typedef uint32_t (*win_read_t)(int);
243 typedef void (*win_write_t)(int, uint32_t);
244 typedef int (*win_cesa_attr_t)(int);
245 typedef uint32_t (*get_t)(void);
246
247 struct decode_win_spec {
248         read_cpu_ctrl_t  read_cpu_ctrl;
249         write_cpu_ctrl_t write_cpu_ctrl;
250         win_read_t      cr_read;
251         win_read_t      br_read;
252         win_read_t      remap_l_read;
253         win_read_t      remap_h_read;
254         win_write_t     cr_write;
255         win_write_t     br_write;
256         win_write_t     remap_l_write;
257         win_write_t     remap_h_write;
258         uint32_t        mv_win_cpu_max;
259         win_cesa_attr_t win_cesa_attr;
260         int             win_cesa_target;
261         win_read_t      ddr_br_read;
262         win_read_t      ddr_sz_read;
263         win_write_t     ddr_br_write;
264         win_write_t     ddr_sz_write;
265 #if __ARM_ARCH >= 6
266         get_t           get_tclk;
267         get_t           get_cpu_freq;
268 #endif
269 };
270
271 struct decode_win_spec *soc_decode_win_spec;
272
273 static struct decode_win_spec decode_win_specs[] =
274 {
275         {
276                 &read_cpu_ctrl_armv7,
277                 &write_cpu_ctrl_armv7,
278                 &win_cpu_armv7_cr_read,
279                 &win_cpu_armv7_br_read,
280                 &win_cpu_armv7_remap_l_read,
281                 &win_cpu_armv7_remap_h_read,
282                 &win_cpu_armv7_cr_write,
283                 &win_cpu_armv7_br_write,
284                 &win_cpu_armv7_remap_l_write,
285                 &win_cpu_armv7_remap_h_write,
286                 MV_WIN_CPU_MAX_ARMV7,
287                 &mv_win_cesa_attr_armada38x,
288                 MV_WIN_CESA_TARGET_ARMADA38X,
289                 &ddr_armv7_br_read,
290                 &ddr_armv7_sz_read,
291                 &ddr_armv7_br_write,
292                 &ddr_armv7_sz_write,
293 #if __ARM_ARCH >= 6
294                 &get_tclk_armada38x,
295                 &get_cpu_freq_armada38x,
296 #endif
297         },
298         {
299                 &read_cpu_ctrl_armv7,
300                 &write_cpu_ctrl_armv7,
301                 &win_cpu_armv7_cr_read,
302                 &win_cpu_armv7_br_read,
303                 &win_cpu_armv7_remap_l_read,
304                 &win_cpu_armv7_remap_h_read,
305                 &win_cpu_armv7_cr_write,
306                 &win_cpu_armv7_br_write,
307                 &win_cpu_armv7_remap_l_write,
308                 &win_cpu_armv7_remap_h_write,
309                 MV_WIN_CPU_MAX_ARMV7,
310                 &mv_win_cesa_attr_armadaxp,
311                 MV_WIN_CESA_TARGET_ARMADAXP,
312                 &ddr_armv7_br_read,
313                 &ddr_armv7_sz_read,
314                 &ddr_armv7_br_write,
315                 &ddr_armv7_sz_write,
316 #if __ARM_ARCH >= 6
317                 &get_tclk_armadaxp,
318                 &get_cpu_freq_armadaxp,
319 #endif
320         },
321         {
322                 &read_cpu_ctrl_armv5,
323                 &write_cpu_ctrl_armv5,
324                 &win_cpu_armv5_cr_read,
325                 &win_cpu_armv5_br_read,
326                 &win_cpu_armv5_remap_l_read,
327                 &win_cpu_armv5_remap_h_read,
328                 &win_cpu_armv5_cr_write,
329                 &win_cpu_armv5_br_write,
330                 &win_cpu_armv5_remap_l_write,
331                 &win_cpu_armv5_remap_h_write,
332                 MV_WIN_CPU_MAX,
333                 &mv_win_cesa_attr_armv5,
334                 MV_WIN_CESA_TARGET,
335                 &ddr_armv5_br_read,
336                 &ddr_armv5_sz_read,
337                 &ddr_armv5_br_write,
338                 &ddr_armv5_sz_write,
339 #if __ARM_ARCH >= 6
340                 NULL,
341                 NULL,
342 #endif
343         },
344 };
345
346 struct fdt_pm_mask_entry {
347         char            *compat;
348         uint32_t        mask;
349 };
350
351 static struct fdt_pm_mask_entry fdt_pm_mask_table[] = {
352         { "mrvl,ge",            CPU_PM_CTRL_GE(0) },
353         { "mrvl,ge",            CPU_PM_CTRL_GE(1) },
354         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(0) },
355         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(1) },
356         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(2) },
357         { "mrvl,xor",           CPU_PM_CTRL_XOR },
358         { "mrvl,sata",          CPU_PM_CTRL_SATA },
359
360         { NULL, 0 }
361 };
362
363 static __inline int
364 pm_is_disabled(uint32_t mask)
365 {
366 #if SOC_MV_POWER_STAT_SUPPORTED
367         return (soc_power_ctrl_get(mask) == mask ? 0 : 1);
368 #else
369         return (0);
370 #endif
371 }
372
373 /*
374  * Disable device using power management register.
375  * 1 - Device Power On
376  * 0 - Device Power Off
377  * Mask can be set in loader.
378  * EXAMPLE:
379  * loader> set hw.pm-disable-mask=0x2
380  *
381  * Common mask:
382  * |-------------------------------|
383  * | Device | Kirkwood | Discovery |
384  * |-------------------------------|
385  * | USB0   | 0x00008  | 0x020000  |
386  * |-------------------------------|
387  * | USB1   |     -    | 0x040000  |
388  * |-------------------------------|
389  * | USB2   |     -    | 0x080000  |
390  * |-------------------------------|
391  * | GE0    | 0x00001  | 0x000002  |
392  * |-------------------------------|
393  * | GE1    |     -    | 0x000004  |
394  * |-------------------------------|
395  * | IDMA   |     -    | 0x100000  |
396  * |-------------------------------|
397  * | XOR    | 0x10000  | 0x200000  |
398  * |-------------------------------|
399  * | CESA   | 0x20000  | 0x400000  |
400  * |-------------------------------|
401  * | SATA   | 0x04000  | 0x004000  |
402  * --------------------------------|
403  * This feature can be used only on Kirkwood and Discovery
404  * machines.
405  */
406
407 static int mv_win_cesa_attr(int eng_sel)
408 {
409
410         if (soc_decode_win_spec->win_cesa_attr != NULL)
411                 return (soc_decode_win_spec->win_cesa_attr(eng_sel));
412
413         return (-1);
414 }
415
416 static int mv_win_cesa_attr_armv5(int eng_sel)
417 {
418
419         return MV_WIN_CESA_ATTR(eng_sel);
420 }
421
422 static int mv_win_cesa_attr_armada38x(int eng_sel)
423 {
424
425         return MV_WIN_CESA_ATTR_ARMADA38X(eng_sel);
426 }
427
428 static int mv_win_cesa_attr_armadaxp(int eng_sel)
429 {
430
431         return MV_WIN_CESA_ATTR_ARMADAXP(eng_sel);
432 }
433
434 enum soc_family
435 mv_check_soc_family()
436 {
437         uint32_t dev, rev;
438
439         soc_id(&dev, &rev);
440         switch (dev) {
441         case MV_DEV_MV78230:
442         case MV_DEV_MV78260:
443         case MV_DEV_MV78460:
444                 soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_XP];
445                 soc_family = MV_SOC_ARMADA_XP;
446                 break;
447         case MV_DEV_88F6828:
448         case MV_DEV_88F6820:
449         case MV_DEV_88F6810:
450                 soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_38X];
451                 soc_family = MV_SOC_ARMADA_38X;
452                 break;
453         case MV_DEV_88F5181:
454         case MV_DEV_88F5182:
455         case MV_DEV_88F5281:
456         case MV_DEV_88F6281:
457         case MV_DEV_88RC8180:
458         case MV_DEV_88RC9480:
459         case MV_DEV_88RC9580:
460         case MV_DEV_88F6781:
461         case MV_DEV_88F6282:
462         case MV_DEV_MV78100_Z0:
463         case MV_DEV_MV78100:
464         case MV_DEV_MV78160:
465                 soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMV5];
466                 soc_family = MV_SOC_ARMV5;
467                 break;
468         default:
469                 soc_family = MV_SOC_UNSUPPORTED;
470                 return (MV_SOC_UNSUPPORTED);
471         }
472
473         soc_identify(dev, rev);
474
475         return (soc_family);
476 }
477
478 static __inline void
479 pm_disable_device(int mask)
480 {
481 #ifdef DIAGNOSTIC
482         uint32_t reg;
483
484         reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
485         printf("Power Management Register: 0%x\n", reg);
486
487         reg &= ~mask;
488         soc_power_ctrl_set(reg);
489         printf("Device %x is disabled\n", mask);
490
491         reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
492         printf("Power Management Register: 0%x\n", reg);
493 #endif
494 }
495
496 int
497 mv_fdt_is_type(phandle_t node, const char *typestr)
498 {
499 #define FDT_TYPE_LEN    64
500         char type[FDT_TYPE_LEN];
501
502         if (OF_getproplen(node, "device_type") <= 0)
503                 return (0);
504
505         if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0)
506                 return (0);
507
508         if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0)
509                 /* This fits. */
510                 return (1);
511
512         return (0);
513 #undef FDT_TYPE_LEN
514 }
515
516 int
517 mv_fdt_pm(phandle_t node)
518 {
519         uint32_t cpu_pm_ctrl;
520         int i, ena, compat;
521
522         ena = 1;
523         cpu_pm_ctrl = read_cpu_ctrl(CPU_PM_CTRL);
524         for (i = 0; fdt_pm_mask_table[i].compat != NULL; i++) {
525                 if (dev_mask & (1 << i))
526                         continue;
527
528                 compat = ofw_bus_node_is_compatible(node,
529                     fdt_pm_mask_table[i].compat);
530 #if defined(SOC_MV_KIRKWOOD)
531                 if (compat && (cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
532                         dev_mask |= (1 << i);
533                         ena = 0;
534                         break;
535                 } else if (compat) {
536                         dev_mask |= (1 << i);
537                         break;
538                 }
539 #else
540                 if (compat && (~cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
541                         dev_mask |= (1 << i);
542                         ena = 0;
543                         break;
544                 } else if (compat) {
545                         dev_mask |= (1 << i);
546                         break;
547                 }
548 #endif
549         }
550
551         return (ena);
552 }
553
554 uint32_t
555 read_cpu_ctrl(uint32_t reg)
556 {
557
558         if (soc_decode_win_spec->read_cpu_ctrl != NULL)
559                 return (soc_decode_win_spec->read_cpu_ctrl(reg));
560         return (-1);
561 }
562
563 uint32_t
564 read_cpu_ctrl_armv5(uint32_t reg)
565 {
566
567         return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg));
568 }
569
570 uint32_t
571 read_cpu_ctrl_armv7(uint32_t reg)
572 {
573
574         return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg));
575 }
576
577 void
578 write_cpu_ctrl(uint32_t reg, uint32_t val)
579 {
580
581         if (soc_decode_win_spec->write_cpu_ctrl != NULL)
582                 soc_decode_win_spec->write_cpu_ctrl(reg, val);
583 }
584
585 void
586 write_cpu_ctrl_armv5(uint32_t reg, uint32_t val)
587 {
588
589         bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg, val);
590 }
591
592 void
593 write_cpu_ctrl_armv7(uint32_t reg, uint32_t val)
594 {
595
596         bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg, val);
597 }
598
599 uint32_t
600 read_cpu_mp_clocks(uint32_t reg)
601 {
602
603         return (bus_space_read_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg));
604 }
605
606 void
607 write_cpu_mp_clocks(uint32_t reg, uint32_t val)
608 {
609
610         bus_space_write_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg, val);
611 }
612
613 uint32_t
614 read_cpu_misc(uint32_t reg)
615 {
616
617         return (bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE, reg));
618 }
619
620 void
621 write_cpu_misc(uint32_t reg, uint32_t val)
622 {
623
624         bus_space_write_4(fdtbus_bs_tag, MV_MISC_BASE, reg, val);
625 }
626
627 uint32_t
628 cpu_extra_feat(void)
629 {
630         uint32_t dev, rev;
631         uint32_t ef = 0;
632
633         soc_id(&dev, &rev);
634
635         switch (dev) {
636         case MV_DEV_88F6281:
637         case MV_DEV_88F6282:
638         case MV_DEV_88RC8180:
639         case MV_DEV_MV78100_Z0:
640         case MV_DEV_MV78100:
641                 __asm __volatile("mrc p15, 1, %0, c15, c1, 0" : "=r" (ef));
642                 break;
643         case MV_DEV_88F5182:
644         case MV_DEV_88F5281:
645                 __asm __volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (ef));
646                 break;
647         default:
648                 if (bootverbose)
649                         printf("This ARM Core does not support any extra features\n");
650         }
651
652         return (ef);
653 }
654
655 /*
656  * Get the power status of device. This feature is only supported on
657  * Kirkwood and Discovery SoCs.
658  */
659 uint32_t
660 soc_power_ctrl_get(uint32_t mask)
661 {
662
663 #if SOC_MV_POWER_STAT_SUPPORTED
664         if (mask != CPU_PM_CTRL_NONE)
665                 mask &= read_cpu_ctrl(CPU_PM_CTRL);
666
667         return (mask);
668 #else
669         return (mask);
670 #endif
671 }
672
673 /*
674  * Set the power status of device. This feature is only supported on
675  * Kirkwood and Discovery SoCs.
676  */
677 void
678 soc_power_ctrl_set(uint32_t mask)
679 {
680
681 #if !defined(SOC_MV_ORION)
682         if (mask != CPU_PM_CTRL_NONE)
683                 write_cpu_ctrl(CPU_PM_CTRL, mask);
684 #endif
685 }
686
687 void
688 soc_id(uint32_t *dev, uint32_t *rev)
689 {
690         uint64_t mv_pcie_base = MV_PCIE_BASE;
691         phandle_t node;
692
693         /*
694          * Notice: system identifiers are available in the registers range of
695          * PCIE controller, so using this function is only allowed (and
696          * possible) after the internal registers range has been mapped in via
697          * devmap_bootstrap().
698          */
699         *dev = 0;
700         *rev = 0;
701         if ((node = OF_finddevice("/")) == -1)
702                 return;
703         if (ofw_bus_node_is_compatible(node, "marvell,armada380"))
704                 mv_pcie_base = MV_PCIE_BASE_ARMADA38X;
705
706         *dev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 0) >> 16;
707         *rev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 8) & 0xff;
708 }
709
710 static void
711 soc_identify(uint32_t d, uint32_t r)
712 {
713         uint32_t size, mode, freq;
714         const char *dev;
715         const char *rev;
716
717         printf("SOC: ");
718         if (bootverbose)
719                 printf("(0x%4x:0x%02x) ", d, r);
720
721         rev = "";
722         switch (d) {
723         case MV_DEV_88F5181:
724                 dev = "Marvell 88F5181";
725                 if (r == 3)
726                         rev = "B1";
727                 break;
728         case MV_DEV_88F5182:
729                 dev = "Marvell 88F5182";
730                 if (r == 2)
731                         rev = "A2";
732                 break;
733         case MV_DEV_88F5281:
734                 dev = "Marvell 88F5281";
735                 if (r == 4)
736                         rev = "D0";
737                 else if (r == 5)
738                         rev = "D1";
739                 else if (r == 6)
740                         rev = "D2";
741                 break;
742         case MV_DEV_88F6281:
743                 dev = "Marvell 88F6281";
744                 if (r == 0)
745                         rev = "Z0";
746                 else if (r == 2)
747                         rev = "A0";
748                 else if (r == 3)
749                         rev = "A1";
750                 break;
751         case MV_DEV_88RC8180:
752                 dev = "Marvell 88RC8180";
753                 break;
754         case MV_DEV_88RC9480:
755                 dev = "Marvell 88RC9480";
756                 break;
757         case MV_DEV_88RC9580:
758                 dev = "Marvell 88RC9580";
759                 break;
760         case MV_DEV_88F6781:
761                 dev = "Marvell 88F6781";
762                 if (r == 2)
763                         rev = "Y0";
764                 break;
765         case MV_DEV_88F6282:
766                 dev = "Marvell 88F6282";
767                 if (r == 0)
768                         rev = "A0";
769                 else if (r == 1)
770                         rev = "A1";
771                 break;
772         case MV_DEV_88F6828:
773                 dev = "Marvell 88F6828";
774                 break;
775         case MV_DEV_88F6820:
776                 dev = "Marvell 88F6820";
777                 break;
778         case MV_DEV_88F6810:
779                 dev = "Marvell 88F6810";
780                 break;
781         case MV_DEV_MV78100_Z0:
782                 dev = "Marvell MV78100 Z0";
783                 break;
784         case MV_DEV_MV78100:
785                 dev = "Marvell MV78100";
786                 break;
787         case MV_DEV_MV78160:
788                 dev = "Marvell MV78160";
789                 break;
790         case MV_DEV_MV78260:
791                 dev = "Marvell MV78260";
792                 break;
793         case MV_DEV_MV78460:
794                 dev = "Marvell MV78460";
795                 break;
796         default:
797                 dev = "UNKNOWN";
798                 break;
799         }
800
801         printf("%s", dev);
802         if (*rev != '\0')
803                 printf(" rev %s", rev);
804         printf(", TClock %dMHz", get_tclk() / 1000 / 1000);
805         freq = get_cpu_freq();
806         if (freq != 0)
807                 printf(", Frequency %dMHz", freq / 1000 / 1000);
808         printf("\n");
809
810         mode = read_cpu_ctrl(CPU_CONFIG);
811         printf("  Instruction cache prefetch %s, data cache prefetch %s\n",
812             (mode & CPU_CONFIG_IC_PREF) ? "enabled" : "disabled",
813             (mode & CPU_CONFIG_DC_PREF) ? "enabled" : "disabled");
814
815         switch (d) {
816         case MV_DEV_88F6281:
817         case MV_DEV_88F6282:
818                 mode = read_cpu_ctrl(CPU_L2_CONFIG) & CPU_L2_CONFIG_MODE;
819                 printf("  256KB 4-way set-associative %s unified L2 cache\n",
820                     mode ? "write-through" : "write-back");
821                 break;
822         case MV_DEV_MV78100:
823                 mode = read_cpu_ctrl(CPU_CONTROL);
824                 size = mode & CPU_CONTROL_L2_SIZE;
825                 mode = mode & CPU_CONTROL_L2_MODE;
826                 printf("  %s set-associative %s unified L2 cache\n",
827                     size ? "256KB 4-way" : "512KB 8-way",
828                     mode ? "write-through" : "write-back");
829                 break;
830         default:
831                 break;
832         }
833 }
834
835 #ifdef KDB
836 static void
837 mv_enter_debugger(void *dummy)
838 {
839
840         if (boothowto & RB_KDB)
841                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
842 }
843 SYSINIT(mv_enter_debugger, SI_SUB_CPU, SI_ORDER_ANY, mv_enter_debugger, NULL);
844 #endif
845
846 int
847 soc_decode_win(void)
848 {
849         uint32_t dev, rev;
850         int mask, err;
851
852         mask = 0;
853         TUNABLE_INT_FETCH("hw.pm-disable-mask", &mask);
854
855         if (mask != 0)
856                 pm_disable_device(mask);
857
858         /* Retrieve data about physical addresses from device tree. */
859         if ((err = win_cpu_from_dt()) != 0)
860                 return (err);
861
862         /* Retrieve our ID: some windows facilities vary between SoC models */
863         soc_id(&dev, &rev);
864
865         if (soc_family == MV_SOC_ARMADA_XP)
866                 if ((err = decode_win_sdram_fixup()) != 0)
867                         return(err);
868
869
870         decode_win_cpu_setup();
871         if (MV_DUMP_WIN)
872                 soc_dump_decode_win();
873
874         eth_port = 0;
875         usb_port = 0;
876         if ((err = fdt_win_setup()) != 0)
877                 return (err);
878
879         return (0);
880 }
881
882 /**************************************************************************
883  * Decode windows registers accessors
884  **************************************************************************/
885 WIN_REG_IDX_RD(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE)
886 WIN_REG_IDX_RD(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE)
887 WIN_REG_IDX_RD(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE)
888 WIN_REG_IDX_RD(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE)
889 WIN_REG_IDX_WR(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE)
890 WIN_REG_IDX_WR(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE)
891 WIN_REG_IDX_WR(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE)
892 WIN_REG_IDX_WR(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE)
893
894 WIN_REG_IDX_RD(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE)
895 WIN_REG_IDX_RD(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE)
896 WIN_REG_IDX_RD(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE)
897 WIN_REG_IDX_RD(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE)
898 WIN_REG_IDX_WR(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE)
899 WIN_REG_IDX_WR(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE)
900 WIN_REG_IDX_WR(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE)
901 WIN_REG_IDX_WR(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE)
902
903 static uint32_t
904 win_cpu_cr_read(int i)
905 {
906
907         if (soc_decode_win_spec->cr_read != NULL)
908                 return (soc_decode_win_spec->cr_read(i));
909         return (-1);
910 }
911
912 static uint32_t
913 win_cpu_br_read(int i)
914 {
915
916         if (soc_decode_win_spec->br_read != NULL)
917                 return (soc_decode_win_spec->br_read(i));
918         return (-1);
919 }
920
921 static uint32_t
922 win_cpu_remap_l_read(int i)
923 {
924
925         if (soc_decode_win_spec->remap_l_read != NULL)
926                 return (soc_decode_win_spec->remap_l_read(i));
927         return (-1);
928 }
929
930 static uint32_t
931 win_cpu_remap_h_read(int i)
932 {
933
934         if (soc_decode_win_spec->remap_h_read != NULL)
935                 return soc_decode_win_spec->remap_h_read(i);
936         return (-1);
937 }
938
939 static void
940 win_cpu_cr_write(int i, uint32_t val)
941 {
942
943         if (soc_decode_win_spec->cr_write != NULL)
944                 soc_decode_win_spec->cr_write(i, val);
945 }
946
947 static void
948 win_cpu_br_write(int i, uint32_t val)
949 {
950
951         if (soc_decode_win_spec->br_write != NULL)
952                 soc_decode_win_spec->br_write(i, val);
953 }
954
955 static void
956 win_cpu_remap_l_write(int i, uint32_t val)
957 {
958
959         if (soc_decode_win_spec->remap_l_write != NULL)
960                 soc_decode_win_spec->remap_l_write(i, val);
961 }
962
963 static void
964 win_cpu_remap_h_write(int i, uint32_t val)
965 {
966
967         if (soc_decode_win_spec->remap_h_write != NULL)
968                 soc_decode_win_spec->remap_h_write(i, val);
969 }
970
971 WIN_REG_BASE_IDX_RD(win_cesa, cr, MV_WIN_CESA_CTRL)
972 WIN_REG_BASE_IDX_RD(win_cesa, br, MV_WIN_CESA_BASE)
973 WIN_REG_BASE_IDX_WR(win_cesa, cr, MV_WIN_CESA_CTRL)
974 WIN_REG_BASE_IDX_WR(win_cesa, br, MV_WIN_CESA_BASE)
975
976 WIN_REG_BASE_IDX_RD(win_usb, cr, MV_WIN_USB_CTRL)
977 WIN_REG_BASE_IDX_RD(win_usb, br, MV_WIN_USB_BASE)
978 WIN_REG_BASE_IDX_WR(win_usb, cr, MV_WIN_USB_CTRL)
979 WIN_REG_BASE_IDX_WR(win_usb, br, MV_WIN_USB_BASE)
980
981 WIN_REG_BASE_IDX_RD(win_usb3, cr, MV_WIN_USB3_CTRL)
982 WIN_REG_BASE_IDX_RD(win_usb3, br, MV_WIN_USB3_BASE)
983 WIN_REG_BASE_IDX_WR(win_usb3, cr, MV_WIN_USB3_CTRL)
984 WIN_REG_BASE_IDX_WR(win_usb3, br, MV_WIN_USB3_BASE)
985
986 WIN_REG_BASE_IDX_RD(win_eth, br, MV_WIN_ETH_BASE)
987 WIN_REG_BASE_IDX_RD(win_eth, sz, MV_WIN_ETH_SIZE)
988 WIN_REG_BASE_IDX_RD(win_eth, har, MV_WIN_ETH_REMAP)
989 WIN_REG_BASE_IDX_WR(win_eth, br, MV_WIN_ETH_BASE)
990 WIN_REG_BASE_IDX_WR(win_eth, sz, MV_WIN_ETH_SIZE)
991 WIN_REG_BASE_IDX_WR(win_eth, har, MV_WIN_ETH_REMAP)
992
993 WIN_REG_BASE_IDX_RD2(win_xor, br, MV_WIN_XOR_BASE)
994 WIN_REG_BASE_IDX_RD2(win_xor, sz, MV_WIN_XOR_SIZE)
995 WIN_REG_BASE_IDX_RD2(win_xor, har, MV_WIN_XOR_REMAP)
996 WIN_REG_BASE_IDX_RD2(win_xor, ctrl, MV_WIN_XOR_CTRL)
997 WIN_REG_BASE_IDX_WR2(win_xor, br, MV_WIN_XOR_BASE)
998 WIN_REG_BASE_IDX_WR2(win_xor, sz, MV_WIN_XOR_SIZE)
999 WIN_REG_BASE_IDX_WR2(win_xor, har, MV_WIN_XOR_REMAP)
1000 WIN_REG_BASE_IDX_WR2(win_xor, ctrl, MV_WIN_XOR_CTRL)
1001
1002 WIN_REG_BASE_RD(win_eth, bare, 0x290)
1003 WIN_REG_BASE_RD(win_eth, epap, 0x294)
1004 WIN_REG_BASE_WR(win_eth, bare, 0x290)
1005 WIN_REG_BASE_WR(win_eth, epap, 0x294)
1006
1007 WIN_REG_BASE_IDX_RD(win_pcie, cr, MV_WIN_PCIE_CTRL);
1008 WIN_REG_BASE_IDX_RD(win_pcie, br, MV_WIN_PCIE_BASE);
1009 WIN_REG_BASE_IDX_RD(win_pcie, remap, MV_WIN_PCIE_REMAP);
1010 WIN_REG_BASE_IDX_WR(win_pcie, cr, MV_WIN_PCIE_CTRL);
1011 WIN_REG_BASE_IDX_WR(win_pcie, br, MV_WIN_PCIE_BASE);
1012 WIN_REG_BASE_IDX_WR(win_pcie, remap, MV_WIN_PCIE_REMAP);
1013 WIN_REG_BASE_IDX_RD(pcie_bar, br, MV_PCIE_BAR_BASE);
1014 WIN_REG_BASE_IDX_RD(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
1015 WIN_REG_BASE_IDX_RD(pcie_bar, cr, MV_PCIE_BAR_CTRL);
1016 WIN_REG_BASE_IDX_WR(pcie_bar, br, MV_PCIE_BAR_BASE);
1017 WIN_REG_BASE_IDX_WR(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
1018 WIN_REG_BASE_IDX_WR(pcie_bar, cr, MV_PCIE_BAR_CTRL);
1019
1020 WIN_REG_BASE_IDX_RD(win_idma, br, MV_WIN_IDMA_BASE)
1021 WIN_REG_BASE_IDX_RD(win_idma, sz, MV_WIN_IDMA_SIZE)
1022 WIN_REG_BASE_IDX_RD(win_idma, har, MV_WIN_IDMA_REMAP)
1023 WIN_REG_BASE_IDX_RD(win_idma, cap, MV_WIN_IDMA_CAP)
1024 WIN_REG_BASE_IDX_WR(win_idma, br, MV_WIN_IDMA_BASE)
1025 WIN_REG_BASE_IDX_WR(win_idma, sz, MV_WIN_IDMA_SIZE)
1026 WIN_REG_BASE_IDX_WR(win_idma, har, MV_WIN_IDMA_REMAP)
1027 WIN_REG_BASE_IDX_WR(win_idma, cap, MV_WIN_IDMA_CAP)
1028 WIN_REG_BASE_RD(win_idma, bare, 0xa80)
1029 WIN_REG_BASE_WR(win_idma, bare, 0xa80)
1030
1031 WIN_REG_BASE_IDX_RD(win_sata, cr, MV_WIN_SATA_CTRL);
1032 WIN_REG_BASE_IDX_RD(win_sata, br, MV_WIN_SATA_BASE);
1033 WIN_REG_BASE_IDX_WR(win_sata, cr, MV_WIN_SATA_CTRL);
1034 WIN_REG_BASE_IDX_WR(win_sata, br, MV_WIN_SATA_BASE);
1035
1036 WIN_REG_BASE_IDX_RD(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X);
1037 WIN_REG_BASE_IDX_WR(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X);
1038 WIN_REG_BASE_IDX_RD(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X);
1039 WIN_REG_BASE_IDX_RD(win_sata_armada38x, br, MV_WIN_SATA_BASE_ARMADA38X);
1040 WIN_REG_BASE_IDX_WR(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X);
1041 WIN_REG_BASE_IDX_WR(win_sata_armada38x, br, MV_WIN_SATA_BASE_ARMADA38X);
1042
1043 WIN_REG_BASE_IDX_RD(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
1044 WIN_REG_BASE_IDX_RD(win_sdhci, br, MV_WIN_SDHCI_BASE);
1045 WIN_REG_BASE_IDX_WR(win_sdhci, cr, MV_WIN_SDHCI_CTRL);
1046 WIN_REG_BASE_IDX_WR(win_sdhci, br, MV_WIN_SDHCI_BASE);
1047
1048 #ifndef SOC_MV_DOVE
1049 WIN_REG_IDX_RD(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
1050 WIN_REG_IDX_RD(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
1051 WIN_REG_IDX_WR(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
1052 WIN_REG_IDX_WR(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
1053
1054 WIN_REG_IDX_RD(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7)
1055 WIN_REG_IDX_RD(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7)
1056 WIN_REG_IDX_WR(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7)
1057 WIN_REG_IDX_WR(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7)
1058
1059 static inline uint32_t
1060 ddr_br_read(int i)
1061 {
1062
1063         if (soc_decode_win_spec->ddr_br_read != NULL)
1064                 return (soc_decode_win_spec->ddr_br_read(i));
1065         return (-1);
1066 }
1067
1068 static inline uint32_t
1069 ddr_sz_read(int i)
1070 {
1071
1072         if (soc_decode_win_spec->ddr_sz_read != NULL)
1073                 return (soc_decode_win_spec->ddr_sz_read(i));
1074         return (-1);
1075 }
1076
1077 static inline void
1078 ddr_br_write(int i, uint32_t val)
1079 {
1080
1081         if (soc_decode_win_spec->ddr_br_write != NULL)
1082                 soc_decode_win_spec->ddr_br_write(i, val);
1083 }
1084
1085 static inline void
1086 ddr_sz_write(int i, uint32_t val)
1087 {
1088
1089         if (soc_decode_win_spec->ddr_sz_write != NULL)
1090                 soc_decode_win_spec->ddr_sz_write(i, val);
1091 }
1092 #else
1093 /*
1094  * On 88F6781 (Dove) SoC DDR Controller is accessed through
1095  * single MBUS <-> AXI bridge. In this case we provide emulated
1096  * ddr_br_read() and ddr_sz_read() functions to keep compatibility
1097  * with common decoding windows setup code.
1098  */
1099
1100 static inline uint32_t ddr_br_read(int i)
1101 {
1102         uint32_t mmap;
1103
1104         /* Read Memory Address Map Register for CS i */
1105         mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
1106
1107         /* Return CS i base address */
1108         return (mmap & 0xFF000000);
1109 }
1110
1111 static inline uint32_t ddr_sz_read(int i)
1112 {
1113         uint32_t mmap, size;
1114
1115         /* Read Memory Address Map Register for CS i */
1116         mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
1117
1118         /* Extract size of CS space in 64kB units */
1119         size = (1 << ((mmap >> 16) & 0x0F));
1120
1121         /* Return CS size and enable/disable status */
1122         return (((size - 1) << 16) | (mmap & 0x01));
1123 }
1124 #endif
1125
1126 /**************************************************************************
1127  * Decode windows helper routines
1128  **************************************************************************/
1129 void
1130 soc_dump_decode_win(void)
1131 {
1132         int i;
1133
1134         for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) {
1135                 printf("CPU window#%d: c 0x%08x, b 0x%08x", i,
1136                     win_cpu_cr_read(i),
1137                     win_cpu_br_read(i));
1138
1139                 if (win_cpu_can_remap(i))
1140                         printf(", rl 0x%08x, rh 0x%08x",
1141                             win_cpu_remap_l_read(i),
1142                             win_cpu_remap_h_read(i));
1143
1144                 printf("\n");
1145         }
1146         printf("Internal regs base: 0x%08x\n",
1147             bus_space_read_4(fdtbus_bs_tag, MV_INTREGS_BASE, 0));
1148
1149         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1150                 printf("DDR CS#%d: b 0x%08x, s 0x%08x\n", i,
1151                     ddr_br_read(i), ddr_sz_read(i));
1152 }
1153
1154 /**************************************************************************
1155  * CPU windows routines
1156  **************************************************************************/
1157 int
1158 win_cpu_can_remap(int i)
1159 {
1160         uint32_t dev, rev;
1161
1162         soc_id(&dev, &rev);
1163
1164         /* Depending on the SoC certain windows have remap capability */
1165         if ((dev == MV_DEV_88F5182 && i < 2) ||
1166             (dev == MV_DEV_88F5281 && i < 4) ||
1167             (dev == MV_DEV_88F6281 && i < 4) ||
1168             (dev == MV_DEV_88F6282 && i < 4) ||
1169             (dev == MV_DEV_88F6828 && i < 20) ||
1170             (dev == MV_DEV_88F6820 && i < 20) ||
1171             (dev == MV_DEV_88F6810 && i < 20) ||
1172             (dev == MV_DEV_88RC8180 && i < 2) ||
1173             (dev == MV_DEV_88F6781 && i < 4) ||
1174             (dev == MV_DEV_MV78100_Z0 && i < 8) ||
1175             ((dev & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY && i < 8))
1176                 return (1);
1177
1178         return (0);
1179 }
1180
1181 /* XXX This should check for overlapping remap fields too.. */
1182 int
1183 decode_win_overlap(int win, int win_no, const struct decode_win *wintab)
1184 {
1185         const struct decode_win *tab;
1186         int i;
1187
1188         tab = wintab;
1189
1190         for (i = 0; i < win_no; i++, tab++) {
1191                 if (i == win)
1192                         /* Skip self */
1193                         continue;
1194
1195                 if ((tab->base + tab->size - 1) < (wintab + win)->base)
1196                         continue;
1197
1198                 else if (((wintab + win)->base + (wintab + win)->size - 1) <
1199                     tab->base)
1200                         continue;
1201                 else
1202                         return (i);
1203         }
1204
1205         return (-1);
1206 }
1207
1208 static int
1209 decode_win_cpu_valid(void)
1210 {
1211         int i, j, rv;
1212         uint32_t b, e, s;
1213
1214         if (cpu_wins_no > soc_decode_win_spec->mv_win_cpu_max) {
1215                 printf("CPU windows: too many entries: %d\n", cpu_wins_no);
1216                 return (0);
1217         }
1218
1219         rv = 1;
1220         for (i = 0; i < cpu_wins_no; i++) {
1221
1222                 if (cpu_wins[i].target == 0) {
1223                         printf("CPU window#%d: DDR target window is not "
1224                             "supposed to be reprogrammed!\n", i);
1225                         rv = 0;
1226                 }
1227
1228                 if (cpu_wins[i].remap != ~0 && win_cpu_can_remap(i) != 1) {
1229                         printf("CPU window#%d: not capable of remapping, but "
1230                             "val 0x%08x defined\n", i, cpu_wins[i].remap);
1231                         rv = 0;
1232                 }
1233
1234                 s = cpu_wins[i].size;
1235                 b = cpu_wins[i].base;
1236                 e = b + s - 1;
1237                 if (s > (0xFFFFFFFF - b + 1)) {
1238                         /*
1239                          * XXX this boundary check should account for 64bit
1240                          * and remapping..
1241                          */
1242                         printf("CPU window#%d: no space for size 0x%08x at "
1243                             "0x%08x\n", i, s, b);
1244                         rv = 0;
1245                         continue;
1246                 }
1247
1248                 if (b != rounddown2(b, s)) {
1249                         printf("CPU window#%d: address 0x%08x is not aligned "
1250                             "to 0x%08x\n", i, b, s);
1251                         rv = 0;
1252                         continue;
1253                 }
1254
1255                 j = decode_win_overlap(i, cpu_wins_no, &cpu_wins[0]);
1256                 if (j >= 0) {
1257                         printf("CPU window#%d: (0x%08x - 0x%08x) overlaps "
1258                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
1259                             cpu_wins[j].base,
1260                             cpu_wins[j].base + cpu_wins[j].size - 1);
1261                         rv = 0;
1262                 }
1263         }
1264
1265         return (rv);
1266 }
1267
1268 int
1269 decode_win_cpu_set(int target, int attr, vm_paddr_t base, uint32_t size,
1270     vm_paddr_t remap)
1271 {
1272         uint32_t br, cr;
1273         int win, i;
1274
1275         if (remap == ~0) {
1276                 win = soc_decode_win_spec->mv_win_cpu_max - 1;
1277                 i = -1;
1278         } else {
1279                 win = 0;
1280                 i = 1;
1281         }
1282
1283         while ((win >= 0) && (win < soc_decode_win_spec->mv_win_cpu_max)) {
1284                 cr = win_cpu_cr_read(win);
1285                 if ((cr & MV_WIN_CPU_ENABLE_BIT) == 0)
1286                         break;
1287                 if ((cr & ((0xff << MV_WIN_CPU_ATTR_SHIFT) |
1288                     (0x1f << MV_WIN_CPU_TARGET_SHIFT))) ==
1289                     ((attr << MV_WIN_CPU_ATTR_SHIFT) |
1290                     (target << MV_WIN_CPU_TARGET_SHIFT)))
1291                         break;
1292                 win += i;
1293         }
1294         if ((win < 0) || (win >= soc_decode_win_spec->mv_win_cpu_max) ||
1295             ((remap != ~0) && (win_cpu_can_remap(win) == 0)))
1296                 return (-1);
1297
1298         br = base & 0xffff0000;
1299         win_cpu_br_write(win, br);
1300
1301         if (win_cpu_can_remap(win)) {
1302                 if (remap != ~0) {
1303                         win_cpu_remap_l_write(win, remap & 0xffff0000);
1304                         win_cpu_remap_h_write(win, 0);
1305                 } else {
1306                         /*
1307                          * Remap function is not used for a given window
1308                          * (capable of remapping) - set remap field with the
1309                          * same value as base.
1310                          */
1311                         win_cpu_remap_l_write(win, base & 0xffff0000);
1312                         win_cpu_remap_h_write(win, 0);
1313                 }
1314         }
1315
1316         cr = ((size - 1) & 0xffff0000) | (attr << MV_WIN_CPU_ATTR_SHIFT) |
1317             (target << MV_WIN_CPU_TARGET_SHIFT) | MV_WIN_CPU_ENABLE_BIT;
1318         win_cpu_cr_write(win, cr);
1319
1320         return (0);
1321 }
1322
1323 static void
1324 decode_win_cpu_setup(void)
1325 {
1326         int i;
1327
1328         /* Disable all CPU windows */
1329         for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) {
1330                 win_cpu_cr_write(i, 0);
1331                 win_cpu_br_write(i, 0);
1332                 if (win_cpu_can_remap(i)) {
1333                         win_cpu_remap_l_write(i, 0);
1334                         win_cpu_remap_h_write(i, 0);
1335                 }
1336         }
1337
1338         for (i = 0; i < cpu_wins_no; i++)
1339                 if (cpu_wins[i].target > 0)
1340                         decode_win_cpu_set(cpu_wins[i].target,
1341                             cpu_wins[i].attr, cpu_wins[i].base,
1342                             cpu_wins[i].size, cpu_wins[i].remap);
1343
1344 }
1345
1346 static int
1347 decode_win_sdram_fixup(void)
1348 {
1349         struct mem_region mr[FDT_MEM_REGIONS];
1350         uint8_t window_valid[MV_WIN_DDR_MAX];
1351         int mr_cnt, err, i, j;
1352         uint32_t valid_win_num = 0;
1353
1354         /* Grab physical memory regions information from device tree. */
1355         err = fdt_get_mem_regions(mr, &mr_cnt, NULL);
1356         if (err != 0)
1357                 return (err);
1358
1359         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1360                 window_valid[i] = 0;
1361
1362         /* Try to match entries from device tree with settings from u-boot */
1363         for (i = 0; i < mr_cnt; i++) {
1364                 for (j = 0; j < MV_WIN_DDR_MAX; j++) {
1365                         if (ddr_is_active(j) &&
1366                             (ddr_base(j) == mr[i].mr_start) &&
1367                             (ddr_size(j) == mr[i].mr_size)) {
1368                                 window_valid[j] = 1;
1369                                 valid_win_num++;
1370                         }
1371                 }
1372         }
1373
1374         if (mr_cnt != valid_win_num)
1375                 return (EINVAL);
1376
1377         /* Destroy windows without corresponding device tree entry */
1378         for (j = 0; j < MV_WIN_DDR_MAX; j++) {
1379                 if (ddr_is_active(j) && (window_valid[j] != 1)) {
1380                         printf("Disabling SDRAM decoding window: %d\n", j);
1381                         ddr_disable(j);
1382                 }
1383         }
1384
1385         return (0);
1386 }
1387 /*
1388  * Check if we're able to cover all active DDR banks.
1389  */
1390 static int
1391 decode_win_can_cover_ddr(int max)
1392 {
1393         int i, c;
1394
1395         c = 0;
1396         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1397                 if (ddr_is_active(i))
1398                         c++;
1399
1400         if (c > max) {
1401                 printf("Unable to cover all active DDR banks: "
1402                     "%d, available windows: %d\n", c, max);
1403                 return (0);
1404         }
1405
1406         return (1);
1407 }
1408
1409 /**************************************************************************
1410  * DDR windows routines
1411  **************************************************************************/
1412 int
1413 ddr_is_active(int i)
1414 {
1415
1416         if (ddr_sz_read(i) & 0x1)
1417                 return (1);
1418
1419         return (0);
1420 }
1421
1422 void
1423 ddr_disable(int i)
1424 {
1425
1426         ddr_sz_write(i, 0);
1427         ddr_br_write(i, 0);
1428 }
1429
1430 uint32_t
1431 ddr_base(int i)
1432 {
1433
1434         return (ddr_br_read(i) & 0xff000000);
1435 }
1436
1437 uint32_t
1438 ddr_size(int i)
1439 {
1440
1441         return ((ddr_sz_read(i) | 0x00ffffff) + 1);
1442 }
1443
1444 uint32_t
1445 ddr_attr(int i)
1446 {
1447         uint32_t dev, rev, attr;
1448
1449         soc_id(&dev, &rev);
1450         if (dev == MV_DEV_88RC8180)
1451                 return ((ddr_sz_read(i) & 0xf0) >> 4);
1452         if (dev == MV_DEV_88F6781)
1453                 return (0);
1454
1455         attr = (i == 0 ? 0xe :
1456             (i == 1 ? 0xd :
1457             (i == 2 ? 0xb :
1458             (i == 3 ? 0x7 : 0xff))));
1459         if (platform_io_coherent)
1460                 attr |= 0x10;
1461
1462         return (attr);
1463 }
1464
1465 uint32_t
1466 ddr_target(int i)
1467 {
1468         uint32_t dev, rev;
1469
1470         soc_id(&dev, &rev);
1471         if (dev == MV_DEV_88RC8180) {
1472                 i = (ddr_sz_read(i) & 0xf0) >> 4;
1473                 return (i == 0xe ? 0xc :
1474                     (i == 0xd ? 0xd :
1475                     (i == 0xb ? 0xe :
1476                     (i == 0x7 ? 0xf : 0xc))));
1477         }
1478
1479         /*
1480          * On SOCs other than 88RC8180 Mbus unit ID for
1481          * DDR SDRAM controller is always 0x0.
1482          */
1483         return (0);
1484 }
1485
1486 /**************************************************************************
1487  * CESA windows routines
1488  **************************************************************************/
1489 static int
1490 decode_win_cesa_valid(void)
1491 {
1492
1493         return (decode_win_can_cover_ddr(MV_WIN_CESA_MAX));
1494 }
1495
1496 static void
1497 decode_win_cesa_dump(u_long base)
1498 {
1499         int i;
1500
1501         for (i = 0; i < MV_WIN_CESA_MAX; i++)
1502                 printf("CESA window#%d: c 0x%08x, b 0x%08x\n", i,
1503                     win_cesa_cr_read(base, i), win_cesa_br_read(base, i));
1504 }
1505
1506 /*
1507  * Set CESA decode windows.
1508  */
1509 static void
1510 decode_win_cesa_setup(u_long base)
1511 {
1512         uint32_t br, cr;
1513         uint64_t size;
1514         int i, j;
1515
1516         for (i = 0; i < MV_WIN_CESA_MAX; i++) {
1517                 win_cesa_cr_write(base, i, 0);
1518                 win_cesa_br_write(base, i, 0);
1519         }
1520
1521         /* Only access to active DRAM banks is required */
1522         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1523                 if (ddr_is_active(i)) {
1524                         br = ddr_base(i);
1525
1526                         size = ddr_size(i);
1527                         /*
1528                          * Armada 38x SoC's equipped with 4GB DRAM
1529                          * suffer freeze during CESA operation, if
1530                          * MBUS window opened at given DRAM CS reaches
1531                          * end of the address space. Apply a workaround
1532                          * by setting the window size to the closest possible
1533                          * value, i.e. divide it by 2.
1534                          */
1535                         if ((soc_family == MV_SOC_ARMADA_38X) &&
1536                             (size + ddr_base(i) == 0x100000000ULL))
1537                                 size /= 2;
1538
1539                         cr = (((size - 1) & 0xffff0000) |
1540                             (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1541                             (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1542                             IO_WIN_ENA_MASK);
1543
1544                         /* Set the first free CESA window */
1545                         for (j = 0; j < MV_WIN_CESA_MAX; j++) {
1546                                 if (win_cesa_cr_read(base, j) & 0x1)
1547                                         continue;
1548
1549                                 win_cesa_br_write(base, j, br);
1550                                 win_cesa_cr_write(base, j, cr);
1551                                 break;
1552                         }
1553                 }
1554         }
1555 }
1556
1557 static void
1558 decode_win_a38x_cesa_setup(u_long base)
1559 {
1560         decode_win_cesa_setup(base);
1561         decode_win_cesa_setup(base + MV_WIN_CESA_OFFSET);
1562 }
1563
1564 static void
1565 decode_win_a38x_cesa_dump(u_long base)
1566 {
1567         decode_win_cesa_dump(base);
1568         decode_win_cesa_dump(base + MV_WIN_CESA_OFFSET);
1569 }
1570
1571 /**************************************************************************
1572  * USB windows routines
1573  **************************************************************************/
1574 static int
1575 decode_win_usb_valid(void)
1576 {
1577
1578         return (decode_win_can_cover_ddr(MV_WIN_USB_MAX));
1579 }
1580
1581 static void
1582 decode_win_usb_dump(u_long base)
1583 {
1584         int i;
1585
1586         if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port - 1)))
1587                 return;
1588
1589         for (i = 0; i < MV_WIN_USB_MAX; i++)
1590                 printf("USB window#%d: c 0x%08x, b 0x%08x\n", i,
1591                     win_usb_cr_read(base, i), win_usb_br_read(base, i));
1592 }
1593
1594 /*
1595  * Set USB decode windows.
1596  */
1597 static void
1598 decode_win_usb_setup(u_long base)
1599 {
1600         uint32_t br, cr;
1601         int i, j;
1602
1603         if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port)))
1604                 return;
1605
1606         usb_port++;
1607
1608         for (i = 0; i < MV_WIN_USB_MAX; i++) {
1609                 win_usb_cr_write(base, i, 0);
1610                 win_usb_br_write(base, i, 0);
1611         }
1612
1613         /* Only access to active DRAM banks is required */
1614         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1615                 if (ddr_is_active(i)) {
1616                         br = ddr_base(i);
1617                         /*
1618                          * XXX for 6281 we should handle Mbus write
1619                          * burst limit field in the ctrl reg
1620                          */
1621                         cr = (((ddr_size(i) - 1) & 0xffff0000) |
1622                             (ddr_attr(i) << 8) |
1623                             (ddr_target(i) << 4) | 1);
1624
1625                         /* Set the first free USB window */
1626                         for (j = 0; j < MV_WIN_USB_MAX; j++) {
1627                                 if (win_usb_cr_read(base, j) & 0x1)
1628                                         continue;
1629
1630                                 win_usb_br_write(base, j, br);
1631                                 win_usb_cr_write(base, j, cr);
1632                                 break;
1633                         }
1634                 }
1635         }
1636 }
1637
1638 /**************************************************************************
1639  * USB3 windows routines
1640  **************************************************************************/
1641 static int
1642 decode_win_usb3_valid(void)
1643 {
1644
1645         return (decode_win_can_cover_ddr(MV_WIN_USB3_MAX));
1646 }
1647
1648 static void
1649 decode_win_usb3_dump(u_long base)
1650 {
1651         int i;
1652
1653         for (i = 0; i < MV_WIN_USB3_MAX; i++)
1654                 printf("USB3.0 window#%d: c 0x%08x, b 0x%08x\n", i,
1655                     win_usb3_cr_read(base, i), win_usb3_br_read(base, i));
1656 }
1657
1658 /*
1659  * Set USB3 decode windows
1660  */
1661 static void
1662 decode_win_usb3_setup(u_long base)
1663 {
1664         uint32_t br, cr;
1665         int i, j;
1666
1667         for (i = 0; i < MV_WIN_USB3_MAX; i++) {
1668                 win_usb3_cr_write(base, i, 0);
1669                 win_usb3_br_write(base, i, 0);
1670         }
1671
1672         /* Only access to active DRAM banks is required */
1673         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1674                 if (ddr_is_active(i)) {
1675                         br = ddr_base(i);
1676                         cr = (((ddr_size(i) - 1) &
1677                             (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
1678                             (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1679                             (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1680                             IO_WIN_ENA_MASK);
1681
1682                         /* Set the first free USB3.0 window */
1683                         for (j = 0; j < MV_WIN_USB3_MAX; j++) {
1684                                 if (win_usb3_cr_read(base, j) & IO_WIN_ENA_MASK)
1685                                         continue;
1686
1687                                 win_usb3_br_write(base, j, br);
1688                                 win_usb3_cr_write(base, j, cr);
1689                                 break;
1690                         }
1691                 }
1692         }
1693 }
1694
1695
1696 /**************************************************************************
1697  * ETH windows routines
1698  **************************************************************************/
1699
1700 static int
1701 win_eth_can_remap(int i)
1702 {
1703
1704         /* ETH encode windows 0-3 have remap capability */
1705         if (i < 4)
1706                 return (1);
1707
1708         return (0);
1709 }
1710
1711 static int
1712 eth_bare_read(uint32_t base, int i)
1713 {
1714         uint32_t v;
1715
1716         v = win_eth_bare_read(base);
1717         v &= (1 << i);
1718
1719         return (v >> i);
1720 }
1721
1722 static void
1723 eth_bare_write(uint32_t base, int i, int val)
1724 {
1725         uint32_t v;
1726
1727         v = win_eth_bare_read(base);
1728         v &= ~(1 << i);
1729         v |= (val << i);
1730         win_eth_bare_write(base, v);
1731 }
1732
1733 static void
1734 eth_epap_write(uint32_t base, int i, int val)
1735 {
1736         uint32_t v;
1737
1738         v = win_eth_epap_read(base);
1739         v &= ~(0x3 << (i * 2));
1740         v |= (val << (i * 2));
1741         win_eth_epap_write(base, v);
1742 }
1743
1744 static void
1745 decode_win_eth_dump(u_long base)
1746 {
1747         int i;
1748
1749         if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port - 1)))
1750                 return;
1751
1752         for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1753                 printf("ETH window#%d: b 0x%08x, s 0x%08x", i,
1754                     win_eth_br_read(base, i),
1755                     win_eth_sz_read(base, i));
1756
1757                 if (win_eth_can_remap(i))
1758                         printf(", ha 0x%08x",
1759                             win_eth_har_read(base, i));
1760
1761                 printf("\n");
1762         }
1763         printf("ETH windows: bare 0x%08x, epap 0x%08x\n",
1764             win_eth_bare_read(base),
1765             win_eth_epap_read(base));
1766 }
1767
1768 #define MV_WIN_ETH_DDR_TRGT(n)  ddr_target(n)
1769
1770 static void
1771 decode_win_eth_setup(u_long base)
1772 {
1773         uint32_t br, sz;
1774         int i, j;
1775
1776         if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port)))
1777                 return;
1778
1779         eth_port++;
1780
1781         /* Disable, clear and revoke protection for all ETH windows */
1782         for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1783
1784                 eth_bare_write(base, i, 1);
1785                 eth_epap_write(base, i, 0);
1786                 win_eth_br_write(base, i, 0);
1787                 win_eth_sz_write(base, i, 0);
1788                 if (win_eth_can_remap(i))
1789                         win_eth_har_write(base, i, 0);
1790         }
1791
1792         /* Only access to active DRAM banks is required */
1793         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1794                 if (ddr_is_active(i)) {
1795
1796                         br = ddr_base(i) | (ddr_attr(i) << 8) | MV_WIN_ETH_DDR_TRGT(i);
1797                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1798
1799                         /* Set the first free ETH window */
1800                         for (j = 0; j < MV_WIN_ETH_MAX; j++) {
1801                                 if (eth_bare_read(base, j) == 0)
1802                                         continue;
1803
1804                                 win_eth_br_write(base, j, br);
1805                                 win_eth_sz_write(base, j, sz);
1806
1807                                 /* XXX remapping ETH windows not supported */
1808
1809                                 /* Set protection RW */
1810                                 eth_epap_write(base, j, 0x3);
1811
1812                                 /* Enable window */
1813                                 eth_bare_write(base, j, 0);
1814                                 break;
1815                         }
1816                 }
1817 }
1818
1819 static void
1820 decode_win_neta_dump(u_long base)
1821 {
1822
1823         decode_win_eth_dump(base + MV_WIN_NETA_OFFSET);
1824 }
1825
1826 static void
1827 decode_win_neta_setup(u_long base)
1828 {
1829
1830         decode_win_eth_setup(base + MV_WIN_NETA_OFFSET);
1831 }
1832
1833 static int
1834 decode_win_eth_valid(void)
1835 {
1836
1837         return (decode_win_can_cover_ddr(MV_WIN_ETH_MAX));
1838 }
1839
1840 /**************************************************************************
1841  * PCIE windows routines
1842  **************************************************************************/
1843 static void
1844 decode_win_pcie_dump(u_long base)
1845 {
1846         int i;
1847
1848         printf("PCIE windows base 0x%08lx\n", base);
1849         for (i = 0; i < MV_WIN_PCIE_MAX; i++)
1850                 printf("PCIE window#%d: cr 0x%08x br 0x%08x remap 0x%08x\n",
1851                     i, win_pcie_cr_read(base, i),
1852                     win_pcie_br_read(base, i), win_pcie_remap_read(base, i));
1853
1854         for (i = 0; i < MV_PCIE_BAR_MAX; i++)
1855                 printf("PCIE bar#%d: cr 0x%08x br 0x%08x brh 0x%08x\n",
1856                     i, pcie_bar_cr_read(base, i),
1857                     pcie_bar_br_read(base, i), pcie_bar_brh_read(base, i));
1858 }
1859
1860 void
1861 decode_win_pcie_setup(u_long base)
1862 {
1863         uint32_t size = 0, ddrbase = ~0;
1864         uint32_t cr, br;
1865         int i, j;
1866
1867         for (i = 0; i < MV_PCIE_BAR_MAX; i++) {
1868                 pcie_bar_br_write(base, i,
1869                     MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1870                 if (i < 3)
1871                         pcie_bar_brh_write(base, i, 0);
1872                 if (i > 0)
1873                         pcie_bar_cr_write(base, i, 0);
1874         }
1875
1876         for (i = 0; i < MV_WIN_PCIE_MAX; i++) {
1877                 win_pcie_cr_write(base, i, 0);
1878                 win_pcie_br_write(base, i, 0);
1879                 win_pcie_remap_write(base, i, 0);
1880         }
1881
1882         /* On End-Point only set BAR size to 1MB regardless of DDR size */
1883         if ((bus_space_read_4(fdtbus_bs_tag, base, MV_PCIE_CONTROL)
1884             & MV_PCIE_ROOT_CMPLX) == 0) {
1885                 pcie_bar_cr_write(base, 1, 0xf0000 | 1);
1886                 return;
1887         }
1888
1889         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1890                 if (ddr_is_active(i)) {
1891                         /* Map DDR to BAR 1 */
1892                         cr = (ddr_size(i) - 1) & 0xffff0000;
1893                         size += ddr_size(i) & 0xffff0000;
1894                         cr |= (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1895                         br = ddr_base(i);
1896                         if (br < ddrbase)
1897                                 ddrbase = br;
1898
1899                         /* Use the first available PCIE window */
1900                         for (j = 0; j < MV_WIN_PCIE_MAX; j++) {
1901                                 if (win_pcie_cr_read(base, j) != 0)
1902                                         continue;
1903
1904                                 win_pcie_br_write(base, j, br);
1905                                 win_pcie_cr_write(base, j, cr);
1906                                 break;
1907                         }
1908                 }
1909         }
1910
1911         /*
1912          * Upper 16 bits in BAR register is interpreted as BAR size
1913          * (in 64 kB units) plus 64kB, so subtract 0x10000
1914          * form value passed to register to get correct value.
1915          */
1916         size -= 0x10000;
1917         pcie_bar_cr_write(base, 1, size | 1);
1918         pcie_bar_br_write(base, 1, ddrbase |
1919             MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1920         pcie_bar_br_write(base, 0, fdt_immr_pa |
1921             MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1922 }
1923
1924 static int
1925 decode_win_pcie_valid(void)
1926 {
1927
1928         return (decode_win_can_cover_ddr(MV_WIN_PCIE_MAX));
1929 }
1930
1931 /**************************************************************************
1932  * IDMA windows routines
1933  **************************************************************************/
1934 #if defined(SOC_MV_ORION) || defined(SOC_MV_DISCOVERY)
1935 static int
1936 idma_bare_read(u_long base, int i)
1937 {
1938         uint32_t v;
1939
1940         v = win_idma_bare_read(base);
1941         v &= (1 << i);
1942
1943         return (v >> i);
1944 }
1945
1946 static void
1947 idma_bare_write(u_long base, int i, int val)
1948 {
1949         uint32_t v;
1950
1951         v = win_idma_bare_read(base);
1952         v &= ~(1 << i);
1953         v |= (val << i);
1954         win_idma_bare_write(base, v);
1955 }
1956
1957 /*
1958  * Sets channel protection 'val' for window 'w' on channel 'c'
1959  */
1960 static void
1961 idma_cap_write(u_long base, int c, int w, int val)
1962 {
1963         uint32_t v;
1964
1965         v = win_idma_cap_read(base, c);
1966         v &= ~(0x3 << (w * 2));
1967         v |= (val << (w * 2));
1968         win_idma_cap_write(base, c, v);
1969 }
1970
1971 /*
1972  * Set protection 'val' on all channels for window 'w'
1973  */
1974 static void
1975 idma_set_prot(u_long base, int w, int val)
1976 {
1977         int c;
1978
1979         for (c = 0; c < MV_IDMA_CHAN_MAX; c++)
1980                 idma_cap_write(base, c, w, val);
1981 }
1982
1983 static int
1984 win_idma_can_remap(int i)
1985 {
1986
1987         /* IDMA decode windows 0-3 have remap capability */
1988         if (i < 4)
1989                 return (1);
1990
1991         return (0);
1992 }
1993
1994 void
1995 decode_win_idma_setup(u_long base)
1996 {
1997         uint32_t br, sz;
1998         int i, j;
1999
2000         if (pm_is_disabled(CPU_PM_CTRL_IDMA))
2001                 return;
2002         /*
2003          * Disable and clear all IDMA windows, revoke protection for all channels
2004          */
2005         for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
2006
2007                 idma_bare_write(base, i, 1);
2008                 win_idma_br_write(base, i, 0);
2009                 win_idma_sz_write(base, i, 0);
2010                 if (win_idma_can_remap(i) == 1)
2011                         win_idma_har_write(base, i, 0);
2012         }
2013         for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
2014                 win_idma_cap_write(base, i, 0);
2015
2016         /*
2017          * Set up access to all active DRAM banks
2018          */
2019         for (i = 0; i < MV_WIN_DDR_MAX; i++)
2020                 if (ddr_is_active(i)) {
2021                         br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i);
2022                         sz = ((ddr_size(i) - 1) & 0xffff0000);
2023
2024                         /* Place DDR entries in non-remapped windows */
2025                         for (j = 0; j < MV_WIN_IDMA_MAX; j++)
2026                                 if (win_idma_can_remap(j) != 1 &&
2027                                     idma_bare_read(base, j) == 1) {
2028
2029                                         /* Configure window */
2030                                         win_idma_br_write(base, j, br);
2031                                         win_idma_sz_write(base, j, sz);
2032
2033                                         /* Set protection RW on all channels */
2034                                         idma_set_prot(base, j, 0x3);
2035
2036                                         /* Enable window */
2037                                         idma_bare_write(base, j, 0);
2038                                         break;
2039                                 }
2040                 }
2041
2042         /*
2043          * Remaining targets -- from statically defined table
2044          */
2045         for (i = 0; i < idma_wins_no; i++)
2046                 if (idma_wins[i].target > 0) {
2047                         br = (idma_wins[i].base & 0xffff0000) |
2048                             (idma_wins[i].attr << 8) | idma_wins[i].target;
2049                         sz = ((idma_wins[i].size - 1) & 0xffff0000);
2050
2051                         /* Set the first free IDMA window */
2052                         for (j = 0; j < MV_WIN_IDMA_MAX; j++) {
2053                                 if (idma_bare_read(base, j) == 0)
2054                                         continue;
2055
2056                                 /* Configure window */
2057                                 win_idma_br_write(base, j, br);
2058                                 win_idma_sz_write(base, j, sz);
2059                                 if (win_idma_can_remap(j) &&
2060                                     idma_wins[j].remap >= 0)
2061                                         win_idma_har_write(base, j,
2062                                             idma_wins[j].remap);
2063
2064                                 /* Set protection RW on all channels */
2065                                 idma_set_prot(base, j, 0x3);
2066
2067                                 /* Enable window */
2068                                 idma_bare_write(base, j, 0);
2069                                 break;
2070                         }
2071                 }
2072 }
2073
2074 int
2075 decode_win_idma_valid(void)
2076 {
2077         const struct decode_win *wintab;
2078         int c, i, j, rv;
2079         uint32_t b, e, s;
2080
2081         if (idma_wins_no > MV_WIN_IDMA_MAX) {
2082                 printf("IDMA windows: too many entries: %d\n", idma_wins_no);
2083                 return (0);
2084         }
2085         for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
2086                 if (ddr_is_active(i))
2087                         c++;
2088
2089         if (idma_wins_no > (MV_WIN_IDMA_MAX - c)) {
2090                 printf("IDMA windows: too many entries: %d, available: %d\n",
2091                     idma_wins_no, MV_WIN_IDMA_MAX - c);
2092                 return (0);
2093         }
2094
2095         wintab = idma_wins;
2096         rv = 1;
2097         for (i = 0; i < idma_wins_no; i++, wintab++) {
2098
2099                 if (wintab->target == 0) {
2100                         printf("IDMA window#%d: DDR target window is not "
2101                             "supposed to be reprogrammed!\n", i);
2102                         rv = 0;
2103                 }
2104
2105                 if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
2106                         printf("IDMA window#%d: not capable of remapping, but "
2107                             "val 0x%08x defined\n", i, wintab->remap);
2108                         rv = 0;
2109                 }
2110
2111                 s = wintab->size;
2112                 b = wintab->base;
2113                 e = b + s - 1;
2114                 if (s > (0xFFFFFFFF - b + 1)) {
2115                         /* XXX this boundary check should account for 64bit and
2116                          * remapping.. */
2117                         printf("IDMA window#%d: no space for size 0x%08x at "
2118                             "0x%08x\n", i, s, b);
2119                         rv = 0;
2120                         continue;
2121                 }
2122
2123                 j = decode_win_overlap(i, idma_wins_no, &idma_wins[0]);
2124                 if (j >= 0) {
2125                         printf("IDMA window#%d: (0x%08x - 0x%08x) overlaps "
2126                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
2127                             idma_wins[j].base,
2128                             idma_wins[j].base + idma_wins[j].size - 1);
2129                         rv = 0;
2130                 }
2131         }
2132
2133         return (rv);
2134 }
2135
2136 void
2137 decode_win_idma_dump(u_long base)
2138 {
2139         int i;
2140
2141         if (pm_is_disabled(CPU_PM_CTRL_IDMA))
2142                 return;
2143
2144         for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
2145                 printf("IDMA window#%d: b 0x%08x, s 0x%08x", i,
2146                     win_idma_br_read(base, i), win_idma_sz_read(base, i));
2147                 
2148                 if (win_idma_can_remap(i))
2149                         printf(", ha 0x%08x", win_idma_har_read(base, i));
2150
2151                 printf("\n");
2152         }
2153         for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
2154                 printf("IDMA channel#%d: ap 0x%08x\n", i,
2155                     win_idma_cap_read(base, i));
2156         printf("IDMA windows: bare 0x%08x\n", win_idma_bare_read(base));
2157 }
2158 #else
2159
2160 /* Provide dummy functions to satisfy the build for SoCs not equipped with IDMA */
2161 int
2162 decode_win_idma_valid(void)
2163 {
2164
2165         return (1);
2166 }
2167
2168 void
2169 decode_win_idma_setup(u_long base)
2170 {
2171 }
2172
2173 void
2174 decode_win_idma_dump(u_long base)
2175 {
2176 }
2177 #endif
2178
2179 /**************************************************************************
2180  * XOR windows routines
2181  **************************************************************************/
2182 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
2183 static int
2184 xor_ctrl_read(u_long base, int i, int c, int e)
2185 {
2186         uint32_t v;
2187         v = win_xor_ctrl_read(base, c, e);
2188         v &= (1 << i);
2189
2190         return (v >> i);
2191 }
2192
2193 static void
2194 xor_ctrl_write(u_long base, int i, int c, int e, int val)
2195 {
2196         uint32_t v;
2197
2198         v = win_xor_ctrl_read(base, c, e);
2199         v &= ~(1 << i);
2200         v |= (val << i);
2201         win_xor_ctrl_write(base, c, e, v);
2202 }
2203
2204 /*
2205  * Set channel protection 'val' for window 'w' on channel 'c'
2206  */
2207 static void
2208 xor_chan_write(u_long base, int c, int e, int w, int val)
2209 {
2210         uint32_t v;
2211
2212         v = win_xor_ctrl_read(base, c, e);
2213         v &= ~(0x3 << (w * 2 + 16));
2214         v |= (val << (w * 2 + 16));
2215         win_xor_ctrl_write(base, c, e, v);
2216 }
2217
2218 /*
2219  * Set protection 'val' on all channels for window 'w' on engine 'e'
2220  */
2221 static void
2222 xor_set_prot(u_long base, int w, int e, int val)
2223 {
2224         int c;
2225
2226         for (c = 0; c < MV_XOR_CHAN_MAX; c++)
2227                 xor_chan_write(base, c, e, w, val);
2228 }
2229
2230 static int
2231 win_xor_can_remap(int i)
2232 {
2233
2234         /* XOR decode windows 0-3 have remap capability */
2235         if (i < 4)
2236                 return (1);
2237
2238         return (0);
2239 }
2240
2241 static int
2242 xor_max_eng(void)
2243 {
2244         uint32_t dev, rev;
2245
2246         soc_id(&dev, &rev);
2247         switch (dev) {
2248         case MV_DEV_88F6281:
2249         case MV_DEV_88F6282:
2250         case MV_DEV_MV78130:
2251         case MV_DEV_MV78160:
2252         case MV_DEV_MV78230:
2253         case MV_DEV_MV78260:
2254         case MV_DEV_MV78460:
2255                 return (2);
2256         case MV_DEV_MV78100:
2257         case MV_DEV_MV78100_Z0:
2258                 return (1);
2259         default:
2260                 return (0);
2261         }
2262 }
2263
2264 static void
2265 xor_active_dram(u_long base, int c, int e, int *window)
2266 {
2267         uint32_t br, sz;
2268         int i, m, w;
2269
2270         /*
2271          * Set up access to all active DRAM banks
2272          */
2273         m = xor_max_eng();
2274         for (i = 0; i < m; i++)
2275                 if (ddr_is_active(i)) {
2276                         br = ddr_base(i) | (ddr_attr(i) << 8) |
2277                             ddr_target(i);
2278                         sz = ((ddr_size(i) - 1) & 0xffff0000);
2279
2280                         /* Place DDR entries in non-remapped windows */
2281                         for (w = 0; w < MV_WIN_XOR_MAX; w++)
2282                                 if (win_xor_can_remap(w) != 1 &&
2283                                     (xor_ctrl_read(base, w, c, e) == 0) &&
2284                                     w > *window) {
2285                                         /* Configure window */
2286                                         win_xor_br_write(base, w, e, br);
2287                                         win_xor_sz_write(base, w, e, sz);
2288
2289                                         /* Set protection RW on all channels */
2290                                         xor_set_prot(base, w, e, 0x3);
2291
2292                                         /* Enable window */
2293                                         xor_ctrl_write(base, w, c, e, 1);
2294                                         (*window)++;
2295                                         break;
2296                                 }
2297                 }
2298 }
2299
2300 void
2301 decode_win_xor_setup(u_long base)
2302 {
2303         uint32_t br, sz;
2304         int i, j, z, e = 1, m, window;
2305
2306         if (pm_is_disabled(CPU_PM_CTRL_XOR))
2307                 return;
2308
2309         /*
2310          * Disable and clear all XOR windows, revoke protection for all
2311          * channels
2312          */
2313         m = xor_max_eng();
2314         for (j = 0; j < m; j++, e--) {
2315
2316                 /* Number of non-remaped windows */
2317                 window = MV_XOR_NON_REMAP - 1;
2318
2319                 for (i = 0; i < MV_WIN_XOR_MAX; i++) {
2320                         win_xor_br_write(base, i, e, 0);
2321                         win_xor_sz_write(base, i, e, 0);
2322                 }
2323
2324                 if (win_xor_can_remap(i) == 1)
2325                         win_xor_har_write(base, i, e, 0);
2326
2327                 for (i = 0; i < MV_XOR_CHAN_MAX; i++) {
2328                         win_xor_ctrl_write(base, i, e, 0);
2329                         xor_active_dram(base, i, e, &window);
2330                 }
2331
2332                 /*
2333                  * Remaining targets -- from a statically defined table
2334                  */
2335                 for (i = 0; i < xor_wins_no; i++)
2336                         if (xor_wins[i].target > 0) {
2337                                 br = (xor_wins[i].base & 0xffff0000) |
2338                                     (xor_wins[i].attr << 8) |
2339                                     xor_wins[i].target;
2340                                 sz = ((xor_wins[i].size - 1) & 0xffff0000);
2341
2342                                 /* Set the first free XOR window */
2343                                 for (z = 0; z < MV_WIN_XOR_MAX; z++) {
2344                                         if (xor_ctrl_read(base, z, 0, e) &&
2345                                             xor_ctrl_read(base, z, 1, e))
2346                                                 continue;
2347
2348                                         /* Configure window */
2349                                         win_xor_br_write(base, z, e, br);
2350                                         win_xor_sz_write(base, z, e, sz);
2351                                         if (win_xor_can_remap(z) &&
2352                                             xor_wins[z].remap >= 0)
2353                                                 win_xor_har_write(base, z, e,
2354                                                     xor_wins[z].remap);
2355
2356                                         /* Set protection RW on all channels */
2357                                         xor_set_prot(base, z, e, 0x3);
2358
2359                                         /* Enable window */
2360                                         xor_ctrl_write(base, z, 0, e, 1);
2361                                         xor_ctrl_write(base, z, 1, e, 1);
2362                                         break;
2363                                 }
2364                         }
2365         }
2366 }
2367
2368 int
2369 decode_win_xor_valid(void)
2370 {
2371         const struct decode_win *wintab;
2372         int c, i, j, rv;
2373         uint32_t b, e, s;
2374
2375         if (xor_wins_no > MV_WIN_XOR_MAX) {
2376                 printf("XOR windows: too many entries: %d\n", xor_wins_no);
2377                 return (0);
2378         }
2379         for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
2380                 if (ddr_is_active(i))
2381                         c++;
2382
2383         if (xor_wins_no > (MV_WIN_XOR_MAX - c)) {
2384                 printf("XOR windows: too many entries: %d, available: %d\n",
2385                     xor_wins_no, MV_WIN_IDMA_MAX - c);
2386                 return (0);
2387         }
2388
2389         wintab = xor_wins;
2390         rv = 1;
2391         for (i = 0; i < xor_wins_no; i++, wintab++) {
2392
2393                 if (wintab->target == 0) {
2394                         printf("XOR window#%d: DDR target window is not "
2395                             "supposed to be reprogrammed!\n", i);
2396                         rv = 0;
2397                 }
2398
2399                 if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
2400                         printf("XOR window#%d: not capable of remapping, but "
2401                             "val 0x%08x defined\n", i, wintab->remap);
2402                         rv = 0;
2403                 }
2404
2405                 s = wintab->size;
2406                 b = wintab->base;
2407                 e = b + s - 1;
2408                 if (s > (0xFFFFFFFF - b + 1)) {
2409                         /*
2410                          * XXX this boundary check should account for 64bit
2411                          * and remapping..
2412                          */
2413                         printf("XOR window#%d: no space for size 0x%08x at "
2414                             "0x%08x\n", i, s, b);
2415                         rv = 0;
2416                         continue;
2417                 }
2418
2419                 j = decode_win_overlap(i, xor_wins_no, &xor_wins[0]);
2420                 if (j >= 0) {
2421                         printf("XOR window#%d: (0x%08x - 0x%08x) overlaps "
2422                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
2423                             xor_wins[j].base,
2424                             xor_wins[j].base + xor_wins[j].size - 1);
2425                         rv = 0;
2426                 }
2427         }
2428
2429         return (rv);
2430 }
2431
2432 void
2433 decode_win_xor_dump(u_long base)
2434 {
2435         int i, j;
2436         int e = 1;
2437
2438         if (pm_is_disabled(CPU_PM_CTRL_XOR))
2439                 return;
2440
2441         for (j = 0; j < xor_max_eng(); j++, e--) {
2442                 for (i = 0; i < MV_WIN_XOR_MAX; i++) {
2443                         printf("XOR window#%d: b 0x%08x, s 0x%08x", i,
2444                             win_xor_br_read(base, i, e), win_xor_sz_read(base, i, e));
2445
2446                         if (win_xor_can_remap(i))
2447                                 printf(", ha 0x%08x", win_xor_har_read(base, i, e));
2448
2449                         printf("\n");
2450                 }
2451                 for (i = 0; i < MV_XOR_CHAN_MAX; i++)
2452                         printf("XOR control#%d: 0x%08x\n", i,
2453                             win_xor_ctrl_read(base, i, e));
2454         }
2455 }
2456
2457 #else
2458 /* Provide dummy functions to satisfy the build for SoCs not equipped with XOR */
2459 static int
2460 decode_win_xor_valid(void)
2461 {
2462
2463         return (1);
2464 }
2465
2466 static void
2467 decode_win_xor_setup(u_long base)
2468 {
2469 }
2470
2471 static void
2472 decode_win_xor_dump(u_long base)
2473 {
2474 }
2475 #endif
2476
2477 /**************************************************************************
2478  * SATA windows routines
2479  **************************************************************************/
2480 static void
2481 decode_win_sata_setup(u_long base)
2482 {
2483         uint32_t cr, br;
2484         int i, j;
2485
2486         if (pm_is_disabled(CPU_PM_CTRL_SATA))
2487                 return;
2488
2489         for (i = 0; i < MV_WIN_SATA_MAX; i++) {
2490                 win_sata_cr_write(base, i, 0);
2491                 win_sata_br_write(base, i, 0);
2492         }
2493
2494         for (i = 0; i < MV_WIN_DDR_MAX; i++)
2495                 if (ddr_is_active(i)) {
2496                         cr = ((ddr_size(i) - 1) & 0xffff0000) |
2497                             (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
2498                         br = ddr_base(i);
2499
2500                         /* Use the first available SATA window */
2501                         for (j = 0; j < MV_WIN_SATA_MAX; j++) {
2502                                 if ((win_sata_cr_read(base, j) & 1) != 0)
2503                                         continue;
2504
2505                                 win_sata_br_write(base, j, br);
2506                                 win_sata_cr_write(base, j, cr);
2507                                 break;
2508                         }
2509                 }
2510 }
2511
2512 /*
2513  * Configure AHCI decoding windows
2514  */
2515 static void
2516 decode_win_ahci_setup(u_long base)
2517 {
2518         uint32_t br, cr, sz;
2519         int i, j;
2520
2521         for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++) {
2522                 win_sata_armada38x_cr_write(base, i, 0);
2523                 win_sata_armada38x_br_write(base, i, 0);
2524                 win_sata_armada38x_sz_write(base, i, 0);
2525         }
2526
2527         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
2528                 if (ddr_is_active(i)) {
2529                         cr = (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
2530                             (ddr_target(i) << IO_WIN_TGT_SHIFT) |
2531                             IO_WIN_ENA_MASK;
2532                         br = ddr_base(i);
2533                         sz = (ddr_size(i) - 1) &
2534                             (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT);
2535
2536                         /* Use first available SATA window */
2537                         for (j = 0; j < MV_WIN_SATA_MAX_ARMADA38X; j++) {
2538                                 if (win_sata_armada38x_cr_read(base, j) & IO_WIN_ENA_MASK)
2539                                         continue;
2540
2541                                 /* BASE is set to DRAM base (0x00000000) */
2542                                 win_sata_armada38x_br_write(base, j, br);
2543                                 /* CTRL targets DRAM ctrl with 0x0E or 0x0D */
2544                                 win_sata_armada38x_cr_write(base, j, cr);
2545                                 /* SIZE is set to 16MB - max value */
2546                                 win_sata_armada38x_sz_write(base, j, sz);
2547                                 break;
2548                         }
2549                 }
2550         }
2551 }
2552
2553 static void
2554 decode_win_ahci_dump(u_long base)
2555 {
2556         int i;
2557
2558         for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++)
2559                 printf("SATA window#%d: cr 0x%08x, br 0x%08x, sz 0x%08x\n", i,
2560                     win_sata_armada38x_cr_read(base, i), win_sata_br_read(base, i),
2561                     win_sata_armada38x_sz_read(base,i));
2562 }
2563
2564 static int
2565 decode_win_sata_valid(void)
2566 {
2567         uint32_t dev, rev;
2568
2569         soc_id(&dev, &rev);
2570         if (dev == MV_DEV_88F5281)
2571                 return (1);
2572
2573         return (decode_win_can_cover_ddr(MV_WIN_SATA_MAX));
2574 }
2575
2576 static void
2577 decode_win_sdhci_setup(u_long base)
2578 {
2579         uint32_t cr, br;
2580         int i, j;
2581
2582         for (i = 0; i < MV_WIN_SDHCI_MAX; i++) {
2583                 win_sdhci_cr_write(base, i, 0);
2584                 win_sdhci_br_write(base, i, 0);
2585         }
2586
2587         for (i = 0; i < MV_WIN_DDR_MAX; i++)
2588                 if (ddr_is_active(i)) {
2589                         br = ddr_base(i);
2590                         cr = (((ddr_size(i) - 1) &
2591                             (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
2592                             (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
2593                             (ddr_target(i) << IO_WIN_TGT_SHIFT) |
2594                             IO_WIN_ENA_MASK);
2595
2596                         /* Use the first available SDHCI window */
2597                         for (j = 0; j < MV_WIN_SDHCI_MAX; j++) {
2598                                 if (win_sdhci_cr_read(base, j) & IO_WIN_ENA_MASK)
2599                                         continue;
2600
2601                                 win_sdhci_cr_write(base, j, cr);
2602                                 win_sdhci_br_write(base, j, br);
2603                                 break;
2604                         }
2605                 }
2606 }
2607
2608 static void
2609 decode_win_sdhci_dump(u_long base)
2610 {
2611         int i;
2612
2613         for (i = 0; i < MV_WIN_SDHCI_MAX; i++)
2614                 printf("SDHCI window#%d: c 0x%08x, b 0x%08x\n", i,
2615                     win_sdhci_cr_read(base, i), win_sdhci_br_read(base, i));
2616 }
2617
2618 static int
2619 decode_win_sdhci_valid(void)
2620 {
2621
2622         return (decode_win_can_cover_ddr(MV_WIN_SDHCI_MAX));
2623 }
2624
2625 /**************************************************************************
2626  * FDT parsing routines.
2627  **************************************************************************/
2628
2629 static int
2630 fdt_get_ranges(const char *nodename, void *buf, int size, int *tuples,
2631     int *tuplesize)
2632 {
2633         phandle_t node;
2634         pcell_t addr_cells, par_addr_cells, size_cells;
2635         int len, tuple_size, tuples_count;
2636
2637         node = OF_finddevice(nodename);
2638         if (node == -1)
2639                 return (EINVAL);
2640
2641         if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
2642                 return (ENXIO);
2643
2644         par_addr_cells = fdt_parent_addr_cells(node);
2645         if (par_addr_cells > 2)
2646                 return (ERANGE);
2647
2648         tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
2649             size_cells);
2650
2651         /* Note the OF_getprop_alloc() cannot be used at this early stage. */
2652         len = OF_getprop(node, "ranges", buf, size);
2653
2654         /*
2655          * XXX this does not handle the empty 'ranges;' case, which is
2656          * legitimate and should be allowed.
2657          */
2658         tuples_count = len / tuple_size;
2659         if (tuples_count <= 0)
2660                 return (ERANGE);
2661
2662         if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
2663                 return (ERANGE);
2664
2665         *tuples = tuples_count;
2666         *tuplesize = tuple_size;
2667         return (0);
2668 }
2669
2670 static int
2671 win_cpu_from_dt(void)
2672 {
2673         pcell_t ranges[48];
2674         phandle_t node;
2675         int i, entry_size, err, t, tuple_size, tuples;
2676         u_long sram_base, sram_size;
2677
2678         t = 0;
2679         /* Retrieve 'ranges' property of '/localbus' node. */
2680         if ((err = fdt_get_ranges("/localbus", ranges, sizeof(ranges),
2681             &tuples, &tuple_size)) == 0) {
2682                 /*
2683                  * Fill CPU decode windows table.
2684                  */
2685                 bzero((void *)&cpu_win_tbl, sizeof(cpu_win_tbl));
2686
2687                 entry_size = tuple_size / sizeof(pcell_t);
2688                 cpu_wins_no = tuples;
2689
2690                 /* Check range */
2691                 if (tuples > nitems(cpu_win_tbl)) {
2692                         debugf("too many tuples to fit into cpu_win_tbl\n");
2693                         return (ENOMEM);
2694                 }
2695
2696                 for (i = 0, t = 0; t < tuples; i += entry_size, t++) {
2697                         cpu_win_tbl[t].target = 1;
2698                         cpu_win_tbl[t].attr = fdt32_to_cpu(ranges[i + 1]);
2699                         cpu_win_tbl[t].base = fdt32_to_cpu(ranges[i + 2]);
2700                         cpu_win_tbl[t].size = fdt32_to_cpu(ranges[i + 3]);
2701                         cpu_win_tbl[t].remap = ~0;
2702                         debugf("target = 0x%0x attr = 0x%0x base = 0x%0x "
2703                             "size = 0x%0x remap = 0x%0x\n",
2704                             cpu_win_tbl[t].target,
2705                             cpu_win_tbl[t].attr, cpu_win_tbl[t].base,
2706                             cpu_win_tbl[t].size, cpu_win_tbl[t].remap);
2707                 }
2708         }
2709
2710         /*
2711          * Retrieve CESA SRAM data.
2712          */
2713         if ((node = OF_finddevice("sram")) != -1)
2714                 if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram"))
2715                         goto moveon;
2716
2717         if ((node = OF_finddevice("/")) == -1)
2718                 return (ENXIO);
2719
2720         if ((node = fdt_find_compatible(node, "mrvl,cesa-sram", 0)) == 0)
2721                 /* SRAM block is not always present. */
2722                 return (0);
2723 moveon:
2724         sram_base = sram_size = 0;
2725         if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2726                 return (EINVAL);
2727
2728         /* Check range */
2729         if (t >= nitems(cpu_win_tbl)) {
2730                 debugf("cannot fit CESA tuple into cpu_win_tbl\n");
2731                 return (ENOMEM);
2732         }
2733
2734         cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target;
2735         if (soc_family == MV_SOC_ARMADA_38X)
2736                 cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(0);
2737         else
2738                 cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1);
2739         cpu_win_tbl[t].base = sram_base;
2740         cpu_win_tbl[t].size = sram_size;
2741         cpu_win_tbl[t].remap = ~0;
2742         cpu_wins_no++;
2743         debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2744
2745         /* Check if there is a second CESA node */
2746         while ((node = OF_peer(node)) != 0) {
2747                 if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram")) {
2748                         if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2749                                 return (EINVAL);
2750                         break;
2751                 }
2752         }
2753
2754         if (node == 0)
2755                 return (0);
2756
2757         t++;
2758         if (t >= nitems(cpu_win_tbl)) {
2759                 debugf("cannot fit CESA tuple into cpu_win_tbl\n");
2760                 return (ENOMEM);
2761         }
2762
2763         /* Configure window for CESA1 */
2764         cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target;
2765         cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1);
2766         cpu_win_tbl[t].base = sram_base;
2767         cpu_win_tbl[t].size = sram_size;
2768         cpu_win_tbl[t].remap = ~0;
2769         cpu_wins_no++;
2770         debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2771
2772         return (0);
2773 }
2774
2775 static int
2776 fdt_win_process(phandle_t child)
2777 {
2778         int i, ret;
2779
2780         for (i = 0; soc_nodes[i].compat != NULL; i++) {
2781                 /* Setup only for enabled devices */
2782                 if (ofw_bus_node_status_okay(child) == 0)
2783                         continue;
2784
2785                 if (!ofw_bus_node_is_compatible(child, soc_nodes[i].compat))
2786                         continue;
2787
2788                 ret = fdt_win_process_child(child, &soc_nodes[i], "reg");
2789                 if (ret != 0)
2790                         return (ret);
2791         }
2792
2793         return (0);
2794 }
2795
2796 static int
2797 fdt_win_process_child(phandle_t child, struct soc_node_spec *soc_node,
2798     const char* mimo_reg_source)
2799 {
2800         int addr_cells, size_cells;
2801         pcell_t reg[8];
2802         u_long size, base;
2803
2804         if (fdt_addrsize_cells(OF_parent(child), &addr_cells,
2805             &size_cells))
2806                 return (ENXIO);
2807
2808         if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
2809                 return (ENOMEM);
2810         if (OF_getprop(child, mimo_reg_source, &reg, sizeof(reg)) <= 0)
2811                 return (EINVAL);
2812
2813         if (addr_cells <= 2)
2814                 base = fdt_data_get(&reg[0], addr_cells);
2815         else
2816                 base = fdt_data_get(&reg[addr_cells - 2], 2);
2817         size = fdt_data_get(&reg[addr_cells], size_cells);
2818
2819         if (soc_node->valid_handler != NULL)
2820                 if (!soc_node->valid_handler())
2821                         return (EINVAL);
2822
2823         base = (base & 0x000fffff) | fdt_immr_va;
2824         if (soc_node->decode_handler != NULL)
2825                 soc_node->decode_handler(base);
2826         else
2827                 return (ENXIO);
2828
2829         if (MV_DUMP_WIN && (soc_node->dump_handler != NULL))
2830                 soc_node->dump_handler(base);
2831
2832         return (0);
2833 }
2834
2835 static int
2836 fdt_win_setup(void)
2837 {
2838         phandle_t node, child, sb;
2839         phandle_t child_pci;
2840         int err;
2841
2842         sb = 0;
2843         node = OF_finddevice("/");
2844         if (node == -1)
2845                 panic("fdt_win_setup: no root node");
2846
2847         /* Allow for coherent transactions on the A38x MBUS */
2848         if (ofw_bus_node_is_compatible(node, "marvell,armada380"))
2849                 platform_io_coherent = true;
2850
2851         /*
2852          * Traverse through all children of root and simple-bus nodes.
2853          * For each found device retrieve decode windows data (if applicable).
2854          */
2855         child = OF_child(node);
2856         while (child != 0) {
2857                 /* Lookup for callback and run */
2858                 err = fdt_win_process(child);
2859                 if (err != 0)
2860                         return (err);
2861
2862                 /* Process Marvell Armada-XP/38x PCIe controllers */
2863                 if (ofw_bus_node_is_compatible(child, "marvell,armada-370-pcie")) {
2864                         child_pci = OF_child(child);
2865                         while (child_pci != 0) {
2866                                 err = fdt_win_process_child(child_pci,
2867                                     &soc_nodes[SOC_NODE_PCIE_ENTRY_IDX],
2868                                     "assigned-addresses");
2869                                 if (err != 0)
2870                                         return (err);
2871
2872                                 child_pci = OF_peer(child_pci);
2873                         }
2874                 }
2875
2876                 /*
2877                  * Once done with root-level children let's move down to
2878                  * simple-bus and its children.
2879                  */
2880                 child = OF_peer(child);
2881                 if ((child == 0) && (node == OF_finddevice("/"))) {
2882                         sb = node = fdt_find_compatible(node, "simple-bus", 0);
2883                         if (node == 0)
2884                                 return (ENXIO);
2885                         child = OF_child(node);
2886                 }
2887                 /*
2888                  * Next, move one more level down to internal-regs node (if
2889                  * it is present) and its children. This node also have
2890                  * "simple-bus" compatible.
2891                  */
2892                 if ((child == 0) && (node == sb)) {
2893                         node = fdt_find_compatible(node, "simple-bus", 0);
2894                         if (node == 0)
2895                                 return (0);
2896                         child = OF_child(node);
2897                 }
2898         }
2899
2900         return (0);
2901 }
2902
2903 static void
2904 fdt_fixup_busfreq(phandle_t root)
2905 {
2906         phandle_t sb;
2907         pcell_t freq;
2908
2909         freq = cpu_to_fdt32(get_tclk());
2910
2911         /*
2912          * Fix bus speed in cpu node
2913          */
2914         if ((sb = OF_finddevice("cpu")) != -1)
2915                 if (fdt_is_compatible_strict(sb, "ARM,88VS584"))
2916                         OF_setprop(sb, "bus-frequency", (void *)&freq,
2917                             sizeof(freq));
2918
2919         /*
2920          * This fixup sets the simple-bus bus-frequency property.
2921          */
2922         if ((sb = fdt_find_compatible(root, "simple-bus", 1)) != 0)
2923                 OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq));
2924 }
2925
2926 static void
2927 fdt_fixup_ranges(phandle_t root)
2928 {
2929         phandle_t node;
2930         pcell_t par_addr_cells, addr_cells, size_cells;
2931         pcell_t ranges[3], reg[2], *rangesptr;
2932         int len, tuple_size, tuples_count;
2933         uint32_t base;
2934
2935         /* Fix-up SoC ranges according to real fdt_immr_pa */
2936         if ((node = fdt_find_compatible(root, "simple-bus", 1)) != 0) {
2937                 if (fdt_addrsize_cells(node, &addr_cells, &size_cells) == 0 &&
2938                     ((par_addr_cells = fdt_parent_addr_cells(node)) <= 2)) {
2939                         tuple_size = sizeof(pcell_t) * (par_addr_cells +
2940                            addr_cells + size_cells);
2941                         len = OF_getprop(node, "ranges", ranges,
2942                             sizeof(ranges));
2943                         tuples_count = len / tuple_size;
2944                         /* Unexpected settings are not supported */
2945                         if (tuples_count != 1)
2946                                 goto fixup_failed;
2947
2948                         rangesptr = &ranges[0];
2949                         rangesptr += par_addr_cells;
2950                         base = fdt_data_get((void *)rangesptr, addr_cells);
2951                         *rangesptr = cpu_to_fdt32(fdt_immr_pa);
2952                         if (OF_setprop(node, "ranges", (void *)&ranges[0],
2953                             sizeof(ranges)) < 0)
2954                                 goto fixup_failed;
2955                 }
2956         }
2957
2958         /* Fix-up PCIe reg according to real PCIe registers' PA */
2959         if ((node = fdt_find_compatible(root, "mrvl,pcie", 1)) != 0) {
2960                 if (fdt_addrsize_cells(OF_parent(node), &par_addr_cells,
2961                     &size_cells) == 0) {
2962                         tuple_size = sizeof(pcell_t) * (par_addr_cells +
2963                             size_cells);
2964                         len = OF_getprop(node, "reg", reg, sizeof(reg));
2965                         tuples_count = len / tuple_size;
2966                         /* Unexpected settings are not supported */
2967                         if (tuples_count != 1)
2968                                 goto fixup_failed;
2969
2970                         base = fdt_data_get((void *)&reg[0], par_addr_cells);
2971                         base &= ~0xFF000000;
2972                         base |= fdt_immr_pa;
2973                         reg[0] = cpu_to_fdt32(base);
2974                         if (OF_setprop(node, "reg", (void *)&reg[0],
2975                             sizeof(reg)) < 0)
2976                                 goto fixup_failed;
2977                 }
2978         }
2979         /* Fix-up succeeded. May return and continue */
2980         return;
2981
2982 fixup_failed:
2983         while (1) {
2984                 /*
2985                  * In case of any error while fixing ranges just hang.
2986                  *      1. No message can be displayed yet since console
2987                  *         is not initialized.
2988                  *      2. Going further will cause failure on bus_space_map()
2989                  *         relying on the wrong ranges or data abort when
2990                  *         accessing PCIe registers.
2991                  */
2992         }
2993 }
2994
2995 struct fdt_fixup_entry fdt_fixup_table[] = {
2996         { "mrvl,DB-88F6281", &fdt_fixup_busfreq },
2997         { "mrvl,DB-78460", &fdt_fixup_busfreq },
2998         { "mrvl,DB-78460", &fdt_fixup_ranges },
2999         { NULL, NULL }
3000 };
3001
3002 #if __ARM_ARCH >= 6
3003 uint32_t
3004 get_tclk(void)
3005 {
3006
3007         if (soc_decode_win_spec->get_tclk != NULL)
3008                 return soc_decode_win_spec->get_tclk();
3009         else
3010                 return -1;
3011 }
3012
3013 uint32_t
3014 get_cpu_freq(void)
3015 {
3016
3017         if (soc_decode_win_spec->get_cpu_freq != NULL)
3018                 return soc_decode_win_spec->get_cpu_freq();
3019         else
3020                 return -1;
3021 }
3022 #endif
3023
3024 #ifndef INTRNG
3025 static int
3026 fdt_pic_decode_ic(phandle_t node, pcell_t *intr, int *interrupt, int *trig,
3027     int *pol)
3028 {
3029
3030         if (!ofw_bus_node_is_compatible(node, "mrvl,pic") &&
3031             !ofw_bus_node_is_compatible(node, "mrvl,mpic"))
3032                 return (ENXIO);
3033
3034         *interrupt = fdt32_to_cpu(intr[0]);
3035         *trig = INTR_TRIGGER_CONFORM;
3036         *pol = INTR_POLARITY_CONFORM;
3037
3038         return (0);
3039 }
3040
3041 fdt_pic_decode_t fdt_pic_table[] = {
3042         &fdt_pic_decode_ic,
3043         NULL
3044 };
3045 #endif