]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/arm/ti/cpsw/if_cpsw.c
Import lib9p 9d5aee77bcc1bf0e79b0a3bfefff5fdf2146283c.
[FreeBSD/FreeBSD.git] / sys / arm / ti / cpsw / if_cpsw.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51
52 #include "opt_cpsw.h"
53
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/mbuf.h>
59 #include <sys/module.h>
60 #include <sys/mutex.h>
61 #include <sys/rman.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 #include <machine/stdarg.h>
69
70 #include <net/ethernet.h>
71 #include <net/bpf.h>
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76
77 #include <dev/extres/syscon/syscon.h>
78 #include "syscon_if.h"
79 #include <arm/ti/am335x/am335x_scm.h>
80
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86
87 #include <dev/fdt/fdt_common.h>
88
89 #ifdef CPSW_ETHERSWITCH
90 #include <dev/etherswitch/etherswitch.h>
91 #include "etherswitch_if.h"
92 #endif
93
94 #include "if_cpswreg.h"
95 #include "if_cpswvar.h"
96
97 #include "miibus_if.h"
98
99 /* Device probe/attach/detach. */
100 static int cpsw_probe(device_t);
101 static int cpsw_attach(device_t);
102 static int cpsw_detach(device_t);
103 static int cpswp_probe(device_t);
104 static int cpswp_attach(device_t);
105 static int cpswp_detach(device_t);
106
107 static phandle_t cpsw_get_node(device_t, device_t);
108
109 /* Device Init/shutdown. */
110 static int cpsw_shutdown(device_t);
111 static void cpswp_init(void *);
112 static void cpswp_init_locked(void *);
113 static void cpswp_stop_locked(struct cpswp_softc *);
114
115 /* Device Suspend/Resume. */
116 static int cpsw_suspend(device_t);
117 static int cpsw_resume(device_t);
118
119 /* Ioctl. */
120 static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
121
122 static int cpswp_miibus_readreg(device_t, int phy, int reg);
123 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
124 static void cpswp_miibus_statchg(device_t);
125
126 /* Send/Receive packets. */
127 static void cpsw_intr_rx(void *arg);
128 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
129 static void cpsw_rx_enqueue(struct cpsw_softc *);
130 static void cpswp_start(struct ifnet *);
131 static void cpsw_intr_tx(void *);
132 static void cpswp_tx_enqueue(struct cpswp_softc *);
133 static int cpsw_tx_dequeue(struct cpsw_softc *);
134
135 /* Misc interrupts and watchdog. */
136 static void cpsw_intr_rx_thresh(void *);
137 static void cpsw_intr_misc(void *);
138 static void cpswp_tick(void *);
139 static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
140 static int cpswp_ifmedia_upd(struct ifnet *);
141 static void cpsw_tx_watchdog(void *);
142
143 /* ALE support */
144 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
145 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
146 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
147 static void cpsw_ale_dump_table(struct cpsw_softc *);
148 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
149         int);
150 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
151
152 /* Statistics and sysctls. */
153 static void cpsw_add_sysctls(struct cpsw_softc *);
154 static void cpsw_stats_collect(struct cpsw_softc *);
155 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
156
157 #ifdef CPSW_ETHERSWITCH
158 static etherswitch_info_t *cpsw_getinfo(device_t);
159 static int cpsw_getport(device_t, etherswitch_port_t *);
160 static int cpsw_setport(device_t, etherswitch_port_t *);
161 static int cpsw_getconf(device_t, etherswitch_conf_t *);
162 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
163 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
164 static int cpsw_readreg(device_t, int);
165 static int cpsw_writereg(device_t, int, int);
166 static int cpsw_readphy(device_t, int, int);
167 static int cpsw_writephy(device_t, int, int, int);
168 #endif
169
170 /*
171  * Arbitrary limit on number of segments in an mbuf to be transmitted.
172  * Packets with more segments than this will be defragmented before
173  * they are queued.
174  */
175 #define CPSW_TXFRAGS            16
176
177 /* Shared resources. */
178 static device_method_t cpsw_methods[] = {
179         /* Device interface */
180         DEVMETHOD(device_probe,         cpsw_probe),
181         DEVMETHOD(device_attach,        cpsw_attach),
182         DEVMETHOD(device_detach,        cpsw_detach),
183         DEVMETHOD(device_shutdown,      cpsw_shutdown),
184         DEVMETHOD(device_suspend,       cpsw_suspend),
185         DEVMETHOD(device_resume,        cpsw_resume),
186         /* Bus interface */
187         DEVMETHOD(bus_add_child,        device_add_child_ordered),
188         /* OFW methods */
189         DEVMETHOD(ofw_bus_get_node,     cpsw_get_node),
190 #ifdef CPSW_ETHERSWITCH
191         /* etherswitch interface */
192         DEVMETHOD(etherswitch_getinfo,  cpsw_getinfo),
193         DEVMETHOD(etherswitch_readreg,  cpsw_readreg),
194         DEVMETHOD(etherswitch_writereg, cpsw_writereg),
195         DEVMETHOD(etherswitch_readphyreg,       cpsw_readphy),
196         DEVMETHOD(etherswitch_writephyreg,      cpsw_writephy),
197         DEVMETHOD(etherswitch_getport,  cpsw_getport),
198         DEVMETHOD(etherswitch_setport,  cpsw_setport),
199         DEVMETHOD(etherswitch_getvgroup,        cpsw_getvgroup),
200         DEVMETHOD(etherswitch_setvgroup,        cpsw_setvgroup),
201         DEVMETHOD(etherswitch_getconf,  cpsw_getconf),
202 #endif
203         DEVMETHOD_END
204 };
205
206 static driver_t cpsw_driver = {
207         "cpswss",
208         cpsw_methods,
209         sizeof(struct cpsw_softc),
210 };
211
212 static devclass_t cpsw_devclass;
213
214 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
215
216 /* Port/Slave resources. */
217 static device_method_t cpswp_methods[] = {
218         /* Device interface */
219         DEVMETHOD(device_probe,         cpswp_probe),
220         DEVMETHOD(device_attach,        cpswp_attach),
221         DEVMETHOD(device_detach,        cpswp_detach),
222         /* MII interface */
223         DEVMETHOD(miibus_readreg,       cpswp_miibus_readreg),
224         DEVMETHOD(miibus_writereg,      cpswp_miibus_writereg),
225         DEVMETHOD(miibus_statchg,       cpswp_miibus_statchg),
226         DEVMETHOD_END
227 };
228
229 static driver_t cpswp_driver = {
230         "cpsw",
231         cpswp_methods,
232         sizeof(struct cpswp_softc),
233 };
234
235 static devclass_t cpswp_devclass;
236
237 #ifdef CPSW_ETHERSWITCH
238 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, etherswitch_devclass, 0, 0);
239 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
240 #endif
241
242 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
243 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
244 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
245 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
246
247 #ifdef CPSW_ETHERSWITCH
248 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
249 #endif
250
251 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
252
253 static struct resource_spec irq_res_spec[] = {
254         { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
255         { SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
256         { SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
257         { SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
258         { -1, 0 }
259 };
260
261 static struct {
262         void (*cb)(void *);
263 } cpsw_intr_cb[] = {
264         { cpsw_intr_rx_thresh },
265         { cpsw_intr_rx },
266         { cpsw_intr_tx },
267         { cpsw_intr_misc },
268 };
269
270 /* Number of entries here must match size of stats
271  * array in struct cpswp_softc. */
272 static struct cpsw_stat {
273         int     reg;
274         char *oid;
275 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
276         {0x00, "GoodRxFrames"},
277         {0x04, "BroadcastRxFrames"},
278         {0x08, "MulticastRxFrames"},
279         {0x0C, "PauseRxFrames"},
280         {0x10, "RxCrcErrors"},
281         {0x14, "RxAlignErrors"},
282         {0x18, "OversizeRxFrames"},
283         {0x1c, "RxJabbers"},
284         {0x20, "ShortRxFrames"},
285         {0x24, "RxFragments"},
286         {0x30, "RxOctets"},
287         {0x34, "GoodTxFrames"},
288         {0x38, "BroadcastTxFrames"},
289         {0x3c, "MulticastTxFrames"},
290         {0x40, "PauseTxFrames"},
291         {0x44, "DeferredTxFrames"},
292         {0x48, "CollisionsTxFrames"},
293         {0x4c, "SingleCollisionTxFrames"},
294         {0x50, "MultipleCollisionTxFrames"},
295         {0x54, "ExcessiveCollisions"},
296         {0x58, "LateCollisions"},
297         {0x5c, "TxUnderrun"},
298         {0x60, "CarrierSenseErrors"},
299         {0x64, "TxOctets"},
300         {0x68, "RxTx64OctetFrames"},
301         {0x6c, "RxTx65to127OctetFrames"},
302         {0x70, "RxTx128to255OctetFrames"},
303         {0x74, "RxTx256to511OctetFrames"},
304         {0x78, "RxTx512to1024OctetFrames"},
305         {0x7c, "RxTx1024upOctetFrames"},
306         {0x80, "NetOctets"},
307         {0x84, "RxStartOfFrameOverruns"},
308         {0x88, "RxMiddleOfFrameOverruns"},
309         {0x8c, "RxDmaOverruns"}
310 };
311
312 /*
313  * Basic debug support.
314  */
315
316 static void
317 cpsw_debugf_head(const char *funcname)
318 {
319         int t = (int)(time_second % (24 * 60 * 60));
320
321         printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
322 }
323
324 static void
325 cpsw_debugf(const char *fmt, ...)
326 {
327         va_list ap;
328
329         va_start(ap, fmt);
330         vprintf(fmt, ap);
331         va_end(ap);
332         printf("\n");
333
334 }
335
336 #define CPSW_DEBUGF(_sc, a) do {                                        \
337         if ((_sc)->debug) {                                             \
338                 cpsw_debugf_head(__func__);                             \
339                 cpsw_debugf a;                                          \
340         }                                                               \
341 } while (0)
342
343 /*
344  * Locking macros
345  */
346 #define CPSW_TX_LOCK(sc) do {                                           \
347                 mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);                \
348                 mtx_lock(&(sc)->tx.lock);                               \
349 } while (0)
350
351 #define CPSW_TX_UNLOCK(sc)      mtx_unlock(&(sc)->tx.lock)
352 #define CPSW_TX_LOCK_ASSERT(sc) mtx_assert(&(sc)->tx.lock, MA_OWNED)
353
354 #define CPSW_RX_LOCK(sc) do {                                           \
355                 mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);                \
356                 mtx_lock(&(sc)->rx.lock);                               \
357 } while (0)
358
359 #define CPSW_RX_UNLOCK(sc)              mtx_unlock(&(sc)->rx.lock)
360 #define CPSW_RX_LOCK_ASSERT(sc) mtx_assert(&(sc)->rx.lock, MA_OWNED)
361
362 #define CPSW_PORT_LOCK(_sc) do {                                        \
363                 mtx_assert(&(_sc)->lock, MA_NOTOWNED);                  \
364                 mtx_lock(&(_sc)->lock);                                 \
365 } while (0)
366
367 #define CPSW_PORT_UNLOCK(_sc)   mtx_unlock(&(_sc)->lock)
368 #define CPSW_PORT_LOCK_ASSERT(_sc)      mtx_assert(&(_sc)->lock, MA_OWNED)
369
370 /*
371  * Read/Write macros
372  */
373 #define cpsw_read_4(_sc, _reg)          bus_read_4((_sc)->mem_res, (_reg))
374 #define cpsw_write_4(_sc, _reg, _val)                                   \
375         bus_write_4((_sc)->mem_res, (_reg), (_val))
376
377 #define cpsw_cpdma_bd_offset(i) (CPSW_CPPI_RAM_OFFSET + ((i)*16))
378
379 #define cpsw_cpdma_bd_paddr(sc, slot)                                   \
380         BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
381 #define cpsw_cpdma_read_bd(sc, slot, val)                               \
382         bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
383 #define cpsw_cpdma_write_bd(sc, slot, val)                              \
384         bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
385 #define cpsw_cpdma_write_bd_next(sc, slot, next_slot)                   \
386         cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
387 #define cpsw_cpdma_write_bd_flags(sc, slot, val)                        \
388         bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
389 #define cpsw_cpdma_read_bd_flags(sc, slot)                              \
390         bus_read_2(sc->mem_res, slot->bd_offset + 14)
391 #define cpsw_write_hdp_slot(sc, queue, slot)                            \
392         cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
393 #define CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
394 #define cpsw_read_cp(sc, queue)                                         \
395         cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET) 
396 #define cpsw_write_cp(sc, queue, val)                                   \
397         cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
398 #define cpsw_write_cp_slot(sc, queue, slot)                             \
399         cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
400
401 #if 0
402 /* XXX temporary function versions for debugging. */
403 static void
404 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
405 {
406         uint32_t reg = queue->hdp_offset;
407         uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
408         CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
409         cpsw_write_4(sc, reg, v);
410 }
411
412 static void
413 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
414 {
415         uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
416         CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
417         cpsw_write_cp(sc, queue, v);
418 }
419 #endif
420
421 /*
422  * Expanded dump routines for verbose debugging.
423  */
424 static void
425 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
426 {
427         static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
428             "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
429             "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
430             "Port0"};
431         struct cpsw_cpdma_bd bd;
432         const char *sep;
433         int i;
434
435         cpsw_cpdma_read_bd(sc, slot, &bd);
436         printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
437             cpsw_cpdma_bd_paddr(sc, slot), bd.next);
438         printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
439         printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
440         printf("  Flags: ");
441         sep = "";
442         for (i = 0; i < 16; ++i) {
443                 if (bd.flags & (1 << (15 - i))) {
444                         printf("%s%s", sep, flags[i]);
445                         sep = ",";
446                 }
447         }
448         printf("\n");
449         if (slot->mbuf) {
450                 printf("  Ether:  %14D\n",
451                     (char *)(slot->mbuf->m_data), " ");
452                 printf("  Packet: %16D\n",
453                     (char *)(slot->mbuf->m_data) + 14, " ");
454         }
455 }
456
457 #define CPSW_DUMP_SLOT(cs, slot) do {                           \
458         IF_DEBUG(sc) {                                          \
459                 cpsw_dump_slot(sc, slot);                       \
460         }                                                       \
461 } while (0)
462
463 static void
464 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
465 {
466         struct cpsw_slot *slot;
467         int i = 0;
468         int others = 0;
469
470         STAILQ_FOREACH(slot, q, next) {
471                 if (i > CPSW_TXFRAGS)
472                         ++others;
473                 else
474                         cpsw_dump_slot(sc, slot);
475                 ++i;
476         }
477         if (others)
478                 printf(" ... and %d more.\n", others);
479         printf("\n");
480 }
481
482 #define CPSW_DUMP_QUEUE(sc, q) do {                             \
483         IF_DEBUG(sc) {                                          \
484                 cpsw_dump_queue(sc, q);                         \
485         }                                                       \
486 } while (0)
487
488 static void
489 cpsw_init_slots(struct cpsw_softc *sc)
490 {
491         struct cpsw_slot *slot;
492         int i;
493
494         STAILQ_INIT(&sc->avail);
495
496         /* Put the slot descriptors onto the global avail list. */
497         for (i = 0; i < nitems(sc->_slots); i++) {
498                 slot = &sc->_slots[i];
499                 slot->bd_offset = cpsw_cpdma_bd_offset(i);
500                 STAILQ_INSERT_TAIL(&sc->avail, slot, next);
501         }
502 }
503
504 static int
505 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
506 {
507         const int max_slots = nitems(sc->_slots);
508         struct cpsw_slot *slot;
509         int i;
510
511         if (requested < 0)
512                 requested = max_slots;
513
514         for (i = 0; i < requested; ++i) {
515                 slot = STAILQ_FIRST(&sc->avail);
516                 if (slot == NULL)
517                         return (0);
518                 if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
519                         device_printf(sc->dev, "failed to create dmamap\n");
520                         return (ENOMEM);
521                 }
522                 STAILQ_REMOVE_HEAD(&sc->avail, next);
523                 STAILQ_INSERT_TAIL(&queue->avail, slot, next);
524                 ++queue->avail_queue_len;
525                 ++queue->queue_slots;
526         }
527         return (0);
528 }
529
530 static void
531 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
532 {
533         int error;
534
535         if (slot->dmamap) {
536                 if (slot->mbuf)
537                         bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
538                 error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
539                 KASSERT(error == 0, ("Mapping still active"));
540                 slot->dmamap = NULL;
541         }
542         if (slot->mbuf) {
543                 m_freem(slot->mbuf);
544                 slot->mbuf = NULL;
545         }
546 }
547
548 static void
549 cpsw_reset(struct cpsw_softc *sc)
550 {
551         int i;
552
553         callout_stop(&sc->watchdog.callout);
554
555         /* Reset RMII/RGMII wrapper. */
556         cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
557         while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
558                 ;
559
560         /* Disable TX and RX interrupts for all cores. */
561         for (i = 0; i < 3; ++i) {
562                 cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
563                 cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
564                 cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
565                 cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
566         }
567
568         /* Reset CPSW subsystem. */
569         cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
570         while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
571                 ;
572
573         /* Reset Sliver port 1 and 2 */
574         for (i = 0; i < 2; i++) {
575                 /* Reset */
576                 cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
577                 while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
578                         ;
579         }
580
581         /* Reset DMA controller. */
582         cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
583         while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
584                 ;
585
586         /* Disable TX & RX DMA */
587         cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
588         cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
589
590         /* Clear all queues. */
591         for (i = 0; i < 8; i++) {
592                 cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
593                 cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
594                 cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
595                 cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
596         }
597
598         /* Clear all interrupt Masks */
599         cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
600         cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
601 }
602
603 static void
604 cpsw_init(struct cpsw_softc *sc)
605 {
606         struct cpsw_slot *slot;
607         uint32_t reg;
608
609         /* Disable the interrupt pacing. */
610         reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
611         reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
612         cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
613
614         /* Clear ALE */
615         cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
616
617         /* Enable ALE */
618         reg = CPSW_ALE_CTL_ENABLE;
619         if (sc->dualemac)
620                 reg |= CPSW_ALE_CTL_VLAN_AWARE;
621         cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
622
623         /* Set Host Port Mapping. */
624         cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
625         cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
626
627         /* Initialize ALE: set host port to forwarding(3). */
628         cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
629             ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
630
631         cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
632
633         /* Enable statistics for ports 0, 1 and 2 */
634         cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
635
636         /* Turn off flow control. */
637         cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
638
639         /* Make IP hdr aligned with 4 */
640         cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
641
642         /* Initialize RX Buffer Descriptors */
643         cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
644         cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
645
646         /* Enable TX & RX DMA */
647         cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
648         cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
649
650         /* Enable Interrupts for core 0 */
651         cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
652         cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
653         cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
654         cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
655
656         /* Enable host Error Interrupt */
657         cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
658
659         /* Enable interrupts for RX and TX on Channel 0 */
660         cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
661             CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
662         cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
663
664         /* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
665         /* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
666         cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
667
668         /* Select MII in GMII_SEL, Internal Delay mode */
669         //ti_scm_reg_write_4(0x650, 0);
670
671         /* Initialize active queues. */
672         slot = STAILQ_FIRST(&sc->tx.active);
673         if (slot != NULL)
674                 cpsw_write_hdp_slot(sc, &sc->tx, slot);
675         slot = STAILQ_FIRST(&sc->rx.active);
676         if (slot != NULL)
677                 cpsw_write_hdp_slot(sc, &sc->rx, slot);
678         cpsw_rx_enqueue(sc);
679         cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
680         cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
681
682         /* Activate network interface. */
683         sc->rx.running = 1;
684         sc->tx.running = 1;
685         sc->watchdog.timer = 0;
686         callout_init(&sc->watchdog.callout, 0);
687         callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
688 }
689
690 /*
691  *
692  * Device Probe, Attach, Detach.
693  *
694  */
695
696 static int
697 cpsw_probe(device_t dev)
698 {
699
700         if (!ofw_bus_status_okay(dev))
701                 return (ENXIO);
702
703         if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
704                 return (ENXIO);
705
706         device_set_desc(dev, "3-port Switch Ethernet Subsystem");
707         return (BUS_PROBE_DEFAULT);
708 }
709
710 static int
711 cpsw_intr_attach(struct cpsw_softc *sc)
712 {
713         int i;
714
715         for (i = 0; i < CPSW_INTR_COUNT; i++) {
716                 if (bus_setup_intr(sc->dev, sc->irq_res[i],
717                     INTR_TYPE_NET | INTR_MPSAFE, NULL,
718                     cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
719                         return (-1);
720                 }
721         }
722
723         return (0);
724 }
725
726 static void
727 cpsw_intr_detach(struct cpsw_softc *sc)
728 {
729         int i;
730
731         for (i = 0; i < CPSW_INTR_COUNT; i++) {
732                 if (sc->ih_cookie[i]) {
733                         bus_teardown_intr(sc->dev, sc->irq_res[i],
734                             sc->ih_cookie[i]);
735                 }
736         }
737 }
738
739 static int
740 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
741 {
742         char *name;
743         int len, phy, vlan;
744         pcell_t phy_id[3], vlan_id;
745         phandle_t child;
746         unsigned long mdio_child_addr;
747
748         /* Find any slave with phy-handle/phy_id */
749         phy = -1;
750         vlan = -1;
751         for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
752                 if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
753                         continue;
754                 if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
755                         OF_prop_free(name);
756                         continue;
757                 }
758                 OF_prop_free(name);
759
760                 if (mdio_child_addr != slave_mdio_addr[port] &&
761                     mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
762                         continue;
763
764                 if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
765                         /* Users with old DTB will have phy_id instead */
766                         phy = -1;
767                         len = OF_getproplen(child, "phy_id");
768                         if (len / sizeof(pcell_t) == 2) {
769                                 /* Get phy address from fdt */
770                                 if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
771                                         phy = phy_id[1];
772                         }
773                 }
774
775                 len = OF_getproplen(child, "dual_emac_res_vlan");
776                 if (len / sizeof(pcell_t) == 1) {
777                         /* Get phy address from fdt */
778                         if (OF_getencprop(child, "dual_emac_res_vlan",
779                             &vlan_id, len) > 0) {
780                                 vlan = vlan_id;
781                         }
782                 }
783
784                 break;
785         }
786         if (phy == -1)
787                 return (ENXIO);
788         sc->port[port].phy = phy;
789         sc->port[port].vlan = vlan;
790
791         return (0);
792 }
793
794 static int
795 cpsw_attach(device_t dev)
796 {
797         int error, i;
798         struct cpsw_softc *sc;
799         uint32_t reg;
800
801         sc = device_get_softc(dev);
802         sc->dev = dev;
803         sc->node = ofw_bus_get_node(dev);
804         getbinuptime(&sc->attach_uptime);
805
806         if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
807             sizeof(sc->active_slave)) <= 0) {
808                 sc->active_slave = 0;
809         }
810         if (sc->active_slave > 1)
811                 sc->active_slave = 1;
812
813         if (OF_hasprop(sc->node, "dual_emac"))
814                 sc->dualemac = 1;
815
816         for (i = 0; i < CPSW_PORTS; i++) {
817                 if (!sc->dualemac && i != sc->active_slave)
818                         continue;
819                 if (cpsw_get_fdt_data(sc, i) != 0) {
820                         device_printf(dev,
821                             "failed to get PHY address from FDT\n");
822                         return (ENXIO);
823                 }
824         }
825
826         /* Initialize mutexes */
827         mtx_init(&sc->tx.lock, device_get_nameunit(dev),
828             "cpsw TX lock", MTX_DEF);
829         mtx_init(&sc->rx.lock, device_get_nameunit(dev),
830             "cpsw RX lock", MTX_DEF);
831
832         /* Allocate IRQ resources */
833         error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
834         if (error) {
835                 device_printf(dev, "could not allocate IRQ resources\n");
836                 cpsw_detach(dev);
837                 return (ENXIO);
838         }
839
840         sc->mem_rid = 0;
841         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 
842             &sc->mem_rid, RF_ACTIVE);
843         if (sc->mem_res == NULL) {
844                 device_printf(sc->dev, "failed to allocate memory resource\n");
845                 cpsw_detach(dev);
846                 return (ENXIO);
847         }
848
849         reg = cpsw_read_4(sc, CPSW_SS_IDVER);
850         device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
851                 reg & 0xFF, (reg >> 11) & 0x1F);
852
853         cpsw_add_sysctls(sc);
854
855         /* Allocate a busdma tag and DMA safe memory for mbufs. */
856         error = bus_dma_tag_create(
857                 bus_get_dma_tag(sc->dev),       /* parent */
858                 1, 0,                           /* alignment, boundary */
859                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
860                 BUS_SPACE_MAXADDR,              /* highaddr */
861                 NULL, NULL,                     /* filtfunc, filtfuncarg */
862                 MCLBYTES, CPSW_TXFRAGS,         /* maxsize, nsegments */
863                 MCLBYTES, 0,                    /* maxsegsz, flags */
864                 NULL, NULL,                     /* lockfunc, lockfuncarg */
865                 &sc->mbuf_dtag);                /* dmatag */
866         if (error) {
867                 device_printf(dev, "bus_dma_tag_create failed\n");
868                 cpsw_detach(dev);
869                 return (error);
870         }
871
872         /* Allocate a NULL buffer for padding. */
873         sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
874
875         cpsw_init_slots(sc);
876
877         /* Allocate slots to TX and RX queues. */
878         STAILQ_INIT(&sc->rx.avail);
879         STAILQ_INIT(&sc->rx.active);
880         STAILQ_INIT(&sc->tx.avail);
881         STAILQ_INIT(&sc->tx.active);
882         // For now:  128 slots to TX, rest to RX.
883         // XXX TODO: start with 32/64 and grow dynamically based on demand.
884         if (cpsw_add_slots(sc, &sc->tx, 128) ||
885             cpsw_add_slots(sc, &sc->rx, -1)) {
886                 device_printf(dev, "failed to allocate dmamaps\n");
887                 cpsw_detach(dev);
888                 return (ENOMEM);
889         }
890         device_printf(dev, "Initial queue size TX=%d RX=%d\n",
891             sc->tx.queue_slots, sc->rx.queue_slots);
892
893         sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
894         sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
895
896         if (cpsw_intr_attach(sc) == -1) {
897                 device_printf(dev, "failed to setup interrupts\n");
898                 cpsw_detach(dev);
899                 return (ENXIO);
900         }
901
902 #ifdef CPSW_ETHERSWITCH
903         for (i = 0; i < CPSW_VLANS; i++)
904                 cpsw_vgroups[i].vid = -1;
905 #endif
906
907         /* Reset the controller. */
908         cpsw_reset(sc);
909         cpsw_init(sc);
910
911         for (i = 0; i < CPSW_PORTS; i++) {
912                 if (!sc->dualemac && i != sc->active_slave)
913                         continue;
914                 sc->port[i].dev = device_add_child(dev, "cpsw", i);
915                 if (sc->port[i].dev == NULL) {
916                         cpsw_detach(dev);
917                         return (ENXIO);
918                 }
919         }
920         bus_generic_probe(dev);
921         bus_generic_attach(dev);
922
923         return (0);
924 }
925
926 static int
927 cpsw_detach(device_t dev)
928 {
929         struct cpsw_softc *sc;
930         int error, i;
931
932         bus_generic_detach(dev);
933         sc = device_get_softc(dev);
934
935         for (i = 0; i < CPSW_PORTS; i++) {
936                 if (sc->port[i].dev)
937                         device_delete_child(dev, sc->port[i].dev);
938         }
939
940         if (device_is_attached(dev)) {
941                 callout_stop(&sc->watchdog.callout);
942                 callout_drain(&sc->watchdog.callout);
943         }
944
945         /* Stop and release all interrupts */
946         cpsw_intr_detach(sc);
947
948         /* Free dmamaps and mbufs */
949         for (i = 0; i < nitems(sc->_slots); ++i)
950                 cpsw_free_slot(sc, &sc->_slots[i]);
951
952         /* Free null padding buffer. */
953         if (sc->nullpad)
954                 free(sc->nullpad, M_DEVBUF);
955
956         /* Free DMA tag */
957         if (sc->mbuf_dtag) {
958                 error = bus_dma_tag_destroy(sc->mbuf_dtag);
959                 KASSERT(error == 0, ("Unable to destroy DMA tag"));
960         }
961
962         /* Free IO memory handler */
963         if (sc->mem_res != NULL)
964                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
965         bus_release_resources(dev, irq_res_spec, sc->irq_res);
966
967         /* Destroy mutexes */
968         mtx_destroy(&sc->rx.lock);
969         mtx_destroy(&sc->tx.lock);
970
971         /* Detach the switch device, if present. */
972         error = bus_generic_detach(dev);
973         if (error != 0)
974                 return (error);
975         
976         return (device_delete_children(dev));
977 }
978
979 static phandle_t
980 cpsw_get_node(device_t bus, device_t dev)
981 {
982
983         /* Share controller node with port device. */
984         return (ofw_bus_get_node(bus));
985 }
986
987 static int
988 cpswp_probe(device_t dev)
989 {
990
991         if (device_get_unit(dev) > 1) {
992                 device_printf(dev, "Only two ports are supported.\n");
993                 return (ENXIO);
994         }
995         device_set_desc(dev, "Ethernet Switch Port");
996
997         return (BUS_PROBE_DEFAULT);
998 }
999
1000 static int
1001 cpswp_attach(device_t dev)
1002 {
1003         int error;
1004         struct ifnet *ifp;
1005         struct cpswp_softc *sc;
1006         uint32_t reg;
1007         uint8_t mac_addr[ETHER_ADDR_LEN];
1008         phandle_t opp_table;
1009         struct syscon *syscon;
1010
1011         sc = device_get_softc(dev);
1012         sc->dev = dev;
1013         sc->pdev = device_get_parent(dev);
1014         sc->swsc = device_get_softc(sc->pdev);
1015         sc->unit = device_get_unit(dev);
1016         sc->phy = sc->swsc->port[sc->unit].phy;
1017         sc->vlan = sc->swsc->port[sc->unit].vlan;
1018         if (sc->swsc->dualemac && sc->vlan == -1)
1019                 sc->vlan = sc->unit + 1;
1020
1021         if (sc->unit == 0) {
1022                 sc->physel = MDIOUSERPHYSEL0;
1023                 sc->phyaccess = MDIOUSERACCESS0;
1024         } else {
1025                 sc->physel = MDIOUSERPHYSEL1;
1026                 sc->phyaccess = MDIOUSERACCESS1;
1027         }
1028
1029         mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1030             MTX_DEF);
1031
1032         /* Allocate network interface */
1033         ifp = sc->ifp = if_alloc(IFT_ETHER);
1034         if (ifp == NULL) {
1035                 cpswp_detach(dev);
1036                 return (ENXIO);
1037         }
1038
1039         if_initname(ifp, device_get_name(sc->dev), sc->unit);
1040         ifp->if_softc = sc;
1041         ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1042         ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1043         ifp->if_capenable = ifp->if_capabilities;
1044
1045         ifp->if_init = cpswp_init;
1046         ifp->if_start = cpswp_start;
1047         ifp->if_ioctl = cpswp_ioctl;
1048
1049         ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1050         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1051         IFQ_SET_READY(&ifp->if_snd);
1052
1053         /* FIXME: For now; Go and kidnap syscon from opp-table */
1054         /* ti,cpsw actually have an optional syscon reference but only for am33xx?? */
1055         opp_table = OF_finddevice("/opp-table");
1056         if (opp_table == -1) {
1057                 device_printf(dev, "Cant find /opp-table\n");
1058                 cpswp_detach(dev);
1059                 return (ENXIO);
1060         }
1061         if (!OF_hasprop(opp_table, "syscon")) {
1062                 device_printf(dev, "/opp-table doesnt have required syscon property\n");
1063                 cpswp_detach(dev);
1064                 return (ENXIO);
1065         }
1066         if (syscon_get_by_ofw_property(dev, opp_table, "syscon", &syscon) != 0) {
1067                 device_printf(dev, "Failed to get syscon\n");
1068                 cpswp_detach(dev);
1069                 return (ENXIO);
1070         }
1071
1072         /* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1073         reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_HI + sc->unit * 8);
1074         mac_addr[0] = reg & 0xFF;
1075         mac_addr[1] = (reg >>  8) & 0xFF;
1076         mac_addr[2] = (reg >> 16) & 0xFF;
1077         mac_addr[3] = (reg >> 24) & 0xFF;
1078
1079         /* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1080         reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_LO + sc->unit * 8);
1081         mac_addr[4] = reg & 0xFF;
1082         mac_addr[5] = (reg >>  8) & 0xFF;
1083
1084         error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1085             cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1086         if (error) {
1087                 device_printf(dev, "attaching PHYs failed\n");
1088                 cpswp_detach(dev);
1089                 return (error);
1090         }
1091         sc->mii = device_get_softc(sc->miibus);
1092
1093         /* Select PHY and enable interrupts */
1094         cpsw_write_4(sc->swsc, sc->physel,
1095             MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1096
1097         ether_ifattach(sc->ifp, mac_addr);
1098         callout_init(&sc->mii_callout, 0);
1099
1100         return (0);
1101 }
1102
1103 static int
1104 cpswp_detach(device_t dev)
1105 {
1106         struct cpswp_softc *sc;
1107
1108         sc = device_get_softc(dev);
1109         CPSW_DEBUGF(sc->swsc, (""));
1110         if (device_is_attached(dev)) {
1111                 ether_ifdetach(sc->ifp);
1112                 CPSW_PORT_LOCK(sc);
1113                 cpswp_stop_locked(sc);
1114                 CPSW_PORT_UNLOCK(sc);
1115                 callout_drain(&sc->mii_callout);
1116         }
1117
1118         bus_generic_detach(dev);
1119
1120         if_free(sc->ifp);
1121         mtx_destroy(&sc->lock);
1122
1123         return (0);
1124 }
1125
1126 /*
1127  *
1128  * Init/Shutdown.
1129  *
1130  */
1131
1132 static int
1133 cpsw_ports_down(struct cpsw_softc *sc)
1134 {
1135         struct cpswp_softc *psc;
1136         struct ifnet *ifp1, *ifp2;
1137
1138         if (!sc->dualemac)
1139                 return (1);
1140         psc = device_get_softc(sc->port[0].dev);
1141         ifp1 = psc->ifp;
1142         psc = device_get_softc(sc->port[1].dev);
1143         ifp2 = psc->ifp;
1144         if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1145                 return (1);
1146
1147         return (0);
1148 }
1149
1150 static void
1151 cpswp_init(void *arg)
1152 {
1153         struct cpswp_softc *sc = arg;
1154
1155         CPSW_DEBUGF(sc->swsc, (""));
1156         CPSW_PORT_LOCK(sc);
1157         cpswp_init_locked(arg);
1158         CPSW_PORT_UNLOCK(sc);
1159 }
1160
1161 static void
1162 cpswp_init_locked(void *arg)
1163 {
1164 #ifdef CPSW_ETHERSWITCH
1165         int i;
1166 #endif
1167         struct cpswp_softc *sc = arg;
1168         struct ifnet *ifp;
1169         uint32_t reg;
1170
1171         CPSW_DEBUGF(sc->swsc, (""));
1172         CPSW_PORT_LOCK_ASSERT(sc);
1173         ifp = sc->ifp;
1174         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1175                 return;
1176
1177         getbinuptime(&sc->init_uptime);
1178
1179         if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1180                 /* Reset the controller. */
1181                 cpsw_reset(sc->swsc);
1182                 cpsw_init(sc->swsc);
1183         }
1184
1185         /* Set Slave Mapping. */
1186         cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1187         cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1188             0x33221100);
1189         cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1190         /* Enable MAC RX/TX modules. */
1191         /* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1192         /* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1193         reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1194         reg |= CPSW_SL_MACTL_GMII_ENABLE;
1195         cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1196
1197         /* Initialize ALE: set port to forwarding, initialize addrs */
1198         cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1199             ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1200         cpswp_ale_update_addresses(sc, 1);
1201
1202         if (sc->swsc->dualemac) {
1203                 /* Set Port VID. */
1204                 cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1205                     sc->vlan & 0xfff);
1206                 cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1207                     (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1208                     (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1209                     (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1210 #ifdef CPSW_ETHERSWITCH
1211                 for (i = 0; i < CPSW_VLANS; i++) {
1212                         if (cpsw_vgroups[i].vid != -1)
1213                                 continue;
1214                         cpsw_vgroups[i].vid = sc->vlan;
1215                         break;
1216                 }
1217 #endif
1218         }
1219
1220         mii_mediachg(sc->mii);
1221         callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1222         ifp->if_drv_flags |= IFF_DRV_RUNNING;
1223         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1224 }
1225
1226 static int
1227 cpsw_shutdown(device_t dev)
1228 {
1229         struct cpsw_softc *sc;
1230         struct cpswp_softc *psc;
1231         int i;
1232
1233         sc = device_get_softc(dev);
1234         CPSW_DEBUGF(sc, (""));
1235         for (i = 0; i < CPSW_PORTS; i++) {
1236                 if (!sc->dualemac && i != sc->active_slave)
1237                         continue;
1238                 psc = device_get_softc(sc->port[i].dev);
1239                 CPSW_PORT_LOCK(psc);
1240                 cpswp_stop_locked(psc);
1241                 CPSW_PORT_UNLOCK(psc);
1242         }
1243
1244         return (0);
1245 }
1246
1247 static void
1248 cpsw_rx_teardown(struct cpsw_softc *sc)
1249 {
1250         int i = 0;
1251
1252         CPSW_RX_LOCK(sc);
1253         CPSW_DEBUGF(sc, ("starting RX teardown"));
1254         sc->rx.teardown = 1;
1255         cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1256         CPSW_RX_UNLOCK(sc);
1257         while (sc->rx.running) {
1258                 if (++i > 10) {
1259                         device_printf(sc->dev,
1260                             "Unable to cleanly shutdown receiver\n");
1261                         return;
1262                 }
1263                 DELAY(200);
1264         }
1265         if (!sc->rx.running)
1266                 CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1267 }
1268
1269 static void
1270 cpsw_tx_teardown(struct cpsw_softc *sc)
1271 {
1272         int i = 0;
1273
1274         CPSW_TX_LOCK(sc);
1275         CPSW_DEBUGF(sc, ("starting TX teardown"));
1276         /* Start the TX queue teardown if queue is not empty. */
1277         if (STAILQ_FIRST(&sc->tx.active) != NULL)
1278                 cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1279         else
1280                 sc->tx.teardown = 1;
1281         cpsw_tx_dequeue(sc);
1282         while (sc->tx.running && ++i < 10) {
1283                 DELAY(200);
1284                 cpsw_tx_dequeue(sc);
1285         }
1286         if (sc->tx.running) {
1287                 device_printf(sc->dev,
1288                     "Unable to cleanly shutdown transmitter\n");
1289         }
1290         CPSW_DEBUGF(sc,
1291             ("finished TX teardown (%d retries, %d idle buffers)", i,
1292              sc->tx.active_queue_len));
1293         CPSW_TX_UNLOCK(sc);
1294 }
1295
1296 static void
1297 cpswp_stop_locked(struct cpswp_softc *sc)
1298 {
1299         struct ifnet *ifp;
1300         uint32_t reg;
1301
1302         ifp = sc->ifp;
1303         CPSW_DEBUGF(sc->swsc, (""));
1304         CPSW_PORT_LOCK_ASSERT(sc);
1305
1306         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1307                 return;
1308
1309         /* Disable interface */
1310         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1311         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1312
1313         /* Stop ticker */
1314         callout_stop(&sc->mii_callout);
1315
1316         /* Tear down the RX/TX queues. */
1317         if (cpsw_ports_down(sc->swsc)) {
1318                 cpsw_rx_teardown(sc->swsc);
1319                 cpsw_tx_teardown(sc->swsc);
1320         }
1321
1322         /* Stop MAC RX/TX modules. */
1323         reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1324         reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1325         cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1326
1327         if (cpsw_ports_down(sc->swsc)) {
1328                 /* Capture stats before we reset controller. */
1329                 cpsw_stats_collect(sc->swsc);
1330
1331                 cpsw_reset(sc->swsc);
1332                 cpsw_init(sc->swsc);
1333         }
1334 }
1335
1336 /*
1337  *  Suspend/Resume.
1338  */
1339
1340 static int
1341 cpsw_suspend(device_t dev)
1342 {
1343         struct cpsw_softc *sc;
1344         struct cpswp_softc *psc;
1345         int i;
1346
1347         sc = device_get_softc(dev);
1348         CPSW_DEBUGF(sc, (""));
1349         for (i = 0; i < CPSW_PORTS; i++) {
1350                 if (!sc->dualemac && i != sc->active_slave)
1351                         continue;
1352                 psc = device_get_softc(sc->port[i].dev);
1353                 CPSW_PORT_LOCK(psc);
1354                 cpswp_stop_locked(psc);
1355                 CPSW_PORT_UNLOCK(psc);
1356         }
1357
1358         return (0);
1359 }
1360
1361 static int
1362 cpsw_resume(device_t dev)
1363 {
1364         struct cpsw_softc *sc;
1365
1366         sc  = device_get_softc(dev);
1367         CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1368
1369         return (0);
1370 }
1371
1372 /*
1373  *
1374  *  IOCTL
1375  *
1376  */
1377
1378 static void
1379 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1380 {
1381         uint32_t reg;
1382
1383         /*
1384          * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1385          * That disables the ALE forwarding logic and causes every
1386          * packet to be sent only to the host port.  In bypass mode,
1387          * the ALE processes host port transmit packets the same as in
1388          * normal mode.
1389          */
1390         reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1391         reg &= ~CPSW_ALE_CTL_BYPASS;
1392         if (set)
1393                 reg |= CPSW_ALE_CTL_BYPASS;
1394         cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1395 }
1396
1397 static void
1398 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1399 {
1400         if (set) {
1401                 printf("All-multicast mode unimplemented\n");
1402         }
1403 }
1404
1405 static int
1406 cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1407 {
1408         struct cpswp_softc *sc;
1409         struct ifreq *ifr;
1410         int error;
1411         uint32_t changed;
1412
1413         error = 0;
1414         sc = ifp->if_softc;
1415         ifr = (struct ifreq *)data;
1416
1417         switch (command) {
1418         case SIOCSIFCAP:
1419                 changed = ifp->if_capenable ^ ifr->ifr_reqcap;
1420                 if (changed & IFCAP_HWCSUM) {
1421                         if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1422                                 ifp->if_capenable |= IFCAP_HWCSUM;
1423                         else
1424                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
1425                 }
1426                 error = 0;
1427                 break;
1428         case SIOCSIFFLAGS:
1429                 CPSW_PORT_LOCK(sc);
1430                 if (ifp->if_flags & IFF_UP) {
1431                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1432                                 changed = ifp->if_flags ^ sc->if_flags;
1433                                 CPSW_DEBUGF(sc->swsc,
1434                                     ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1435                                     changed));
1436                                 if (changed & IFF_PROMISC)
1437                                         cpsw_set_promisc(sc,
1438                                             ifp->if_flags & IFF_PROMISC);
1439                                 if (changed & IFF_ALLMULTI)
1440                                         cpsw_set_allmulti(sc,
1441                                             ifp->if_flags & IFF_ALLMULTI);
1442                         } else {
1443                                 CPSW_DEBUGF(sc->swsc,
1444                                     ("SIOCSIFFLAGS: starting up"));
1445                                 cpswp_init_locked(sc);
1446                         }
1447                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1448                         CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1449                         cpswp_stop_locked(sc);
1450                 }
1451
1452                 sc->if_flags = ifp->if_flags;
1453                 CPSW_PORT_UNLOCK(sc);
1454                 break;
1455         case SIOCADDMULTI:
1456                 cpswp_ale_update_addresses(sc, 0);
1457                 break;
1458         case SIOCDELMULTI:
1459                 /* Ugh.  DELMULTI doesn't provide the specific address
1460                    being removed, so the best we can do is remove
1461                    everything and rebuild it all. */
1462                 cpswp_ale_update_addresses(sc, 1);
1463                 break;
1464         case SIOCGIFMEDIA:
1465         case SIOCSIFMEDIA:
1466                 error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1467                 break;
1468         default:
1469                 error = ether_ioctl(ifp, command, data);
1470         }
1471         return (error);
1472 }
1473
1474 /*
1475  *
1476  * MIIBUS
1477  *
1478  */
1479 static int
1480 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1481 {
1482         uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1483
1484         while (--retries) {
1485                 r = cpsw_read_4(sc, reg);
1486                 if ((r & MDIO_PHYACCESS_GO) == 0)
1487                         return (1);
1488                 DELAY(CPSW_MIIBUS_DELAY);
1489         }
1490
1491         return (0);
1492 }
1493
1494 static int
1495 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1496 {
1497         struct cpswp_softc *sc;
1498         uint32_t cmd, r;
1499
1500         sc = device_get_softc(dev);
1501         if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1502                 device_printf(dev, "MDIO not ready to read\n");
1503                 return (0);
1504         }
1505
1506         /* Set GO, reg, phy */
1507         cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1508         cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1509
1510         if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1511                 device_printf(dev, "MDIO timed out during read\n");
1512                 return (0);
1513         }
1514
1515         r = cpsw_read_4(sc->swsc, sc->phyaccess);
1516         if ((r & MDIO_PHYACCESS_ACK) == 0) {
1517                 device_printf(dev, "Failed to read from PHY.\n");
1518                 r = 0;
1519         }
1520         return (r & 0xFFFF);
1521 }
1522
1523 static int
1524 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1525 {
1526         struct cpswp_softc *sc;
1527         uint32_t cmd;
1528
1529         sc = device_get_softc(dev);
1530         if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1531                 device_printf(dev, "MDIO not ready to write\n");
1532                 return (0);
1533         }
1534
1535         /* Set GO, WRITE, reg, phy, and value */
1536         cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1537             (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1538         cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1539
1540         if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1541                 device_printf(dev, "MDIO timed out during write\n");
1542                 return (0);
1543         }
1544
1545         return (0);
1546 }
1547
1548 static void
1549 cpswp_miibus_statchg(device_t dev)
1550 {
1551         struct cpswp_softc *sc;
1552         uint32_t mac_control, reg;
1553
1554         sc = device_get_softc(dev);
1555         CPSW_DEBUGF(sc->swsc, (""));
1556
1557         reg = CPSW_SL_MACCONTROL(sc->unit);
1558         mac_control = cpsw_read_4(sc->swsc, reg);
1559         mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1560             CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1561
1562         switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1563         case IFM_1000_SX:
1564         case IFM_1000_LX:
1565         case IFM_1000_CX:
1566         case IFM_1000_T:
1567                 mac_control |= CPSW_SL_MACTL_GIG;
1568                 break;
1569
1570         case IFM_100_TX:
1571                 mac_control |= CPSW_SL_MACTL_IFCTL_A;
1572                 break;
1573         }
1574         if (sc->mii->mii_media_active & IFM_FDX)
1575                 mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1576
1577         cpsw_write_4(sc->swsc, reg, mac_control);
1578 }
1579
1580 /*
1581  *
1582  * Transmit/Receive Packets.
1583  *
1584  */
1585 static void
1586 cpsw_intr_rx(void *arg)
1587 {
1588         struct cpsw_softc *sc;
1589         struct ifnet *ifp;
1590         struct mbuf *received, *next;
1591
1592         sc = (struct cpsw_softc *)arg;
1593         CPSW_RX_LOCK(sc);
1594         if (sc->rx.teardown) {
1595                 sc->rx.running = 0;
1596                 sc->rx.teardown = 0;
1597                 cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1598         }
1599         received = cpsw_rx_dequeue(sc);
1600         cpsw_rx_enqueue(sc);
1601         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1602         CPSW_RX_UNLOCK(sc);
1603
1604         while (received != NULL) {
1605                 next = received->m_nextpkt;
1606                 received->m_nextpkt = NULL;
1607                 ifp = received->m_pkthdr.rcvif;
1608                 (*ifp->if_input)(ifp, received);
1609                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1610                 received = next;
1611         }
1612 }
1613
1614 static struct mbuf *
1615 cpsw_rx_dequeue(struct cpsw_softc *sc)
1616 {
1617         int nsegs, port, removed;
1618         struct cpsw_cpdma_bd bd;
1619         struct cpsw_slot *last, *slot;
1620         struct cpswp_softc *psc;
1621         struct mbuf *m, *m0, *mb_head, *mb_tail;
1622         uint16_t m0_flags;
1623
1624         nsegs = 0;
1625         m0 = NULL;
1626         last = NULL;
1627         mb_head = NULL;
1628         mb_tail = NULL;
1629         removed = 0;
1630
1631         /* Pull completed packets off hardware RX queue. */
1632         while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1633                 cpsw_cpdma_read_bd(sc, slot, &bd);
1634
1635                 /*
1636                  * Stop on packets still in use by hardware, but do not stop
1637                  * on packets with the teardown complete flag, they will be
1638                  * discarded later.
1639                  */
1640                 if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1641                     CPDMA_BD_OWNER)
1642                         break;
1643
1644                 last = slot;
1645                 ++removed;
1646                 STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1647                 STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1648
1649                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1650                 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1651
1652                 m = slot->mbuf;
1653                 slot->mbuf = NULL;
1654
1655                 if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1656                         CPSW_DEBUGF(sc, ("RX teardown is complete"));
1657                         m_freem(m);
1658                         sc->rx.running = 0;
1659                         sc->rx.teardown = 0;
1660                         break;
1661                 }
1662
1663                 port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1664                 KASSERT(port >= 0 && port <= 1,
1665                     ("patcket received with invalid port: %d", port));
1666                 psc = device_get_softc(sc->port[port].dev);
1667
1668                 /* Set up mbuf */
1669                 m->m_data += bd.bufoff;
1670                 m->m_len = bd.buflen;
1671                 if (bd.flags & CPDMA_BD_SOP) {
1672                         m->m_pkthdr.len = bd.pktlen;
1673                         m->m_pkthdr.rcvif = psc->ifp;
1674                         m->m_flags |= M_PKTHDR;
1675                         m0_flags = bd.flags;
1676                         m0 = m;
1677                 }
1678                 nsegs++;
1679                 m->m_next = NULL;
1680                 m->m_nextpkt = NULL;
1681                 if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1682                         if (m0_flags & CPDMA_BD_PASS_CRC)
1683                                 m_adj(m0, -ETHER_CRC_LEN);
1684                         m0_flags = 0;
1685                         m0 = NULL;
1686                         if (nsegs > sc->rx.longest_chain)
1687                                 sc->rx.longest_chain = nsegs;
1688                         nsegs = 0;
1689                 }
1690
1691                 if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1692                         /* check for valid CRC by looking into pkt_err[5:4] */
1693                         if ((bd.flags &
1694                             (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1695                             CPDMA_BD_SOP) {
1696                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1697                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1698                                 m->m_pkthdr.csum_data = 0xffff;
1699                         }
1700                 }
1701
1702                 if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1703                     (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1704                     (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1705                         cpsw_write_hdp_slot(sc, &sc->rx,
1706                             STAILQ_FIRST(&sc->rx.active));
1707                         sc->rx.queue_restart++;
1708                 }
1709
1710                 /* Add mbuf to packet list to be returned. */
1711                 if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1712                         mb_tail->m_nextpkt = m;
1713                 } else if (mb_tail != NULL) {
1714                         mb_tail->m_next = m;
1715                 } else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1716                         if (bootverbose)
1717                                 printf(
1718                                     "%s: %s: discanding fragment packet w/o header\n",
1719                                     __func__, psc->ifp->if_xname);
1720                         m_freem(m);
1721                         continue;
1722                 } else {
1723                         mb_head = m;
1724                 }
1725                 mb_tail = m;
1726         }
1727
1728         if (removed != 0) {
1729                 cpsw_write_cp_slot(sc, &sc->rx, last);
1730                 sc->rx.queue_removes += removed;
1731                 sc->rx.avail_queue_len += removed;
1732                 sc->rx.active_queue_len -= removed;
1733                 if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1734                         sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1735                 CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1736         }
1737
1738         return (mb_head);
1739 }
1740
1741 static void
1742 cpsw_rx_enqueue(struct cpsw_softc *sc)
1743 {
1744         bus_dma_segment_t seg[1];
1745         struct cpsw_cpdma_bd bd;
1746         struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1747         int error, nsegs, added = 0;
1748
1749         /* Register new mbufs with hardware. */
1750         first_new_slot = NULL;
1751         last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1752         while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1753                 if (first_new_slot == NULL)
1754                         first_new_slot = slot;
1755                 if (slot->mbuf == NULL) {
1756                         slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1757                         if (slot->mbuf == NULL) {
1758                                 device_printf(sc->dev,
1759                                     "Unable to fill RX queue\n");
1760                                 break;
1761                         }
1762                         slot->mbuf->m_len =
1763                             slot->mbuf->m_pkthdr.len =
1764                             slot->mbuf->m_ext.ext_size;
1765                 }
1766
1767                 error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1768                     slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1769
1770                 KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1771                 KASSERT(error == 0, ("DMA error (error=%d)", error));
1772                 if (error != 0 || nsegs != 1) {
1773                         device_printf(sc->dev,
1774                             "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1775                             __func__, nsegs, error);
1776                         bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1777                         m_freem(slot->mbuf);
1778                         slot->mbuf = NULL;
1779                         break;
1780                 }
1781
1782                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1783
1784                 /* Create and submit new rx descriptor. */
1785                 if ((next = STAILQ_NEXT(slot, next)) != NULL)
1786                         bd.next = cpsw_cpdma_bd_paddr(sc, next);
1787                 else
1788                         bd.next = 0;
1789                 bd.bufptr = seg->ds_addr;
1790                 bd.bufoff = 0;
1791                 bd.buflen = MCLBYTES - 1;
1792                 bd.pktlen = bd.buflen;
1793                 bd.flags = CPDMA_BD_OWNER;
1794                 cpsw_cpdma_write_bd(sc, slot, &bd);
1795                 ++added;
1796
1797                 STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1798                 STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1799         }
1800
1801         if (added == 0 || first_new_slot == NULL)
1802                 return;
1803
1804         CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1805
1806         /* Link new entries to hardware RX queue. */
1807         if (last_old_slot == NULL) {
1808                 /* Start a fresh queue. */
1809                 cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1810         } else {
1811                 /* Add buffers to end of current queue. */
1812                 cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1813         }
1814         sc->rx.queue_adds += added;
1815         sc->rx.avail_queue_len -= added;
1816         sc->rx.active_queue_len += added;
1817         cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1818         if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1819                 sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1820 }
1821
1822 static void
1823 cpswp_start(struct ifnet *ifp)
1824 {
1825         struct cpswp_softc *sc;
1826
1827         sc = ifp->if_softc;
1828         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1829             sc->swsc->tx.running == 0) {
1830                 return;
1831         }
1832         CPSW_TX_LOCK(sc->swsc);
1833         cpswp_tx_enqueue(sc);
1834         cpsw_tx_dequeue(sc->swsc);
1835         CPSW_TX_UNLOCK(sc->swsc);
1836 }
1837
1838 static void
1839 cpsw_intr_tx(void *arg)
1840 {
1841         struct cpsw_softc *sc;
1842
1843         sc = (struct cpsw_softc *)arg;
1844         CPSW_TX_LOCK(sc);
1845         if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1846                 cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1847         cpsw_tx_dequeue(sc);
1848         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1849         CPSW_TX_UNLOCK(sc);
1850 }
1851
1852 static void
1853 cpswp_tx_enqueue(struct cpswp_softc *sc)
1854 {
1855         bus_dma_segment_t segs[CPSW_TXFRAGS];
1856         struct cpsw_cpdma_bd bd;
1857         struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1858         struct mbuf *m0;
1859         int error, nsegs, seg, added = 0, padlen;
1860
1861         /* Pull pending packets from IF queue and prep them for DMA. */
1862         last = NULL;
1863         first_new_slot = NULL;
1864         last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1865         while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1866                 IF_DEQUEUE(&sc->ifp->if_snd, m0);
1867                 if (m0 == NULL)
1868                         break;
1869
1870                 slot->mbuf = m0;
1871                 padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1872                 if (padlen < 0)
1873                         padlen = 0;
1874                 else if (padlen > 0)
1875                         m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1876
1877                 /* Create mapping in DMA memory */
1878                 error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1879                     slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1880                 /* If the packet is too fragmented, try to simplify. */
1881                 if (error == EFBIG ||
1882                     (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1883                         bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1884                         m0 = m_defrag(slot->mbuf, M_NOWAIT);
1885                         if (m0 == NULL) {
1886                                 device_printf(sc->dev,
1887                                     "Can't defragment packet; dropping\n");
1888                                 m_freem(slot->mbuf);
1889                         } else {
1890                                 CPSW_DEBUGF(sc->swsc,
1891                                     ("Requeueing defragmented packet"));
1892                                 IF_PREPEND(&sc->ifp->if_snd, m0);
1893                         }
1894                         slot->mbuf = NULL;
1895                         continue;
1896                 }
1897                 if (error != 0) {
1898                         device_printf(sc->dev,
1899                             "%s: Can't setup DMA (error=%d), dropping packet\n",
1900                             __func__, error);
1901                         bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1902                         m_freem(slot->mbuf);
1903                         slot->mbuf = NULL;
1904                         break;
1905                 }
1906
1907                 bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1908                                 BUS_DMASYNC_PREWRITE);
1909
1910                 CPSW_DEBUGF(sc->swsc,
1911                     ("Queueing TX packet: %d segments + %d pad bytes",
1912                     nsegs, padlen));
1913
1914                 if (first_new_slot == NULL)
1915                         first_new_slot = slot;
1916
1917                 /* Link from the previous descriptor. */
1918                 if (last != NULL)
1919                         cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1920
1921                 slot->ifp = sc->ifp;
1922
1923                 /* If there is only one segment, the for() loop
1924                  * gets skipped and the single buffer gets set up
1925                  * as both SOP and EOP. */
1926                 if (nsegs > 1) {
1927                         next = STAILQ_NEXT(slot, next);
1928                         bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1929                 } else
1930                         bd.next = 0;
1931                 /* Start by setting up the first buffer. */
1932                 bd.bufptr = segs[0].ds_addr;
1933                 bd.bufoff = 0;
1934                 bd.buflen = segs[0].ds_len;
1935                 bd.pktlen = m_length(slot->mbuf, NULL);
1936                 bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1937                 if (sc->swsc->dualemac) {
1938                         bd.flags |= CPDMA_BD_TO_PORT;
1939                         bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1940                 }
1941                 for (seg = 1; seg < nsegs; ++seg) {
1942                         /* Save the previous buffer (which isn't EOP) */
1943                         cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1944                         STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1945                         STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1946                         slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1947
1948                         /* Setup next buffer (which isn't SOP) */
1949                         if (nsegs > seg + 1) {
1950                                 next = STAILQ_NEXT(slot, next);
1951                                 bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1952                         } else
1953                                 bd.next = 0;
1954                         bd.bufptr = segs[seg].ds_addr;
1955                         bd.bufoff = 0;
1956                         bd.buflen = segs[seg].ds_len;
1957                         bd.pktlen = 0;
1958                         bd.flags = CPDMA_BD_OWNER;
1959                 }
1960
1961                 /* Save the final buffer. */
1962                 bd.flags |= CPDMA_BD_EOP;
1963                 cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1964                 STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1965                 STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1966
1967                 last = slot;
1968                 added += nsegs;
1969                 if (nsegs > sc->swsc->tx.longest_chain)
1970                         sc->swsc->tx.longest_chain = nsegs;
1971
1972                 BPF_MTAP(sc->ifp, m0);
1973         }
1974
1975         if (first_new_slot == NULL)
1976                 return;
1977
1978         /* Attach the list of new buffers to the hardware TX queue. */
1979         if (last_old_slot != NULL &&
1980             (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1981              CPDMA_BD_EOQ) == 0) {
1982                 /* Add buffers to end of current queue. */
1983                 cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1984                     first_new_slot);
1985         } else {
1986                 /* Start a fresh queue. */
1987                 cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1988         }
1989         sc->swsc->tx.queue_adds += added;
1990         sc->swsc->tx.avail_queue_len -= added;
1991         sc->swsc->tx.active_queue_len += added;
1992         if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1993                 sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1994         }
1995         CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1996 }
1997
1998 static int
1999 cpsw_tx_dequeue(struct cpsw_softc *sc)
2000 {
2001         struct cpsw_slot *slot, *last_removed_slot = NULL;
2002         struct cpsw_cpdma_bd bd;
2003         uint32_t flags, removed = 0;
2004
2005         /* Pull completed buffers off the hardware TX queue. */
2006         slot = STAILQ_FIRST(&sc->tx.active);
2007         while (slot != NULL) {
2008                 flags = cpsw_cpdma_read_bd_flags(sc, slot);
2009
2010                 /* TearDown complete is only marked on the SOP for the packet. */
2011                 if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
2012                     (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
2013                         sc->tx.teardown = 1;
2014                 }
2015
2016                 if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
2017                     (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
2018                         break; /* Hardware is still using this packet. */
2019
2020                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
2021                 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2022                 m_freem(slot->mbuf);
2023                 slot->mbuf = NULL;
2024
2025                 if (slot->ifp) {
2026                         if (sc->tx.teardown == 0)
2027                                 if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2028                         else
2029                                 if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2030                 }
2031
2032                 /* Dequeue any additional buffers used by this packet. */
2033                 while (slot != NULL && slot->mbuf == NULL) {
2034                         STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2035                         STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2036                         ++removed;
2037                         last_removed_slot = slot;
2038                         slot = STAILQ_FIRST(&sc->tx.active);
2039                 }
2040
2041                 cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2042
2043                 /* Restart the TX queue if necessary. */
2044                 cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2045                 if (slot != NULL && bd.next != 0 && (bd.flags &
2046                     (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2047                     (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2048                         cpsw_write_hdp_slot(sc, &sc->tx, slot);
2049                         sc->tx.queue_restart++;
2050                         break;
2051                 }
2052         }
2053
2054         if (removed != 0) {
2055                 sc->tx.queue_removes += removed;
2056                 sc->tx.active_queue_len -= removed;
2057                 sc->tx.avail_queue_len += removed;
2058                 if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2059                         sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2060                 CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2061         }
2062
2063         if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2064                 CPSW_DEBUGF(sc, ("TX teardown is complete"));
2065                 sc->tx.teardown = 0;
2066                 sc->tx.running = 0;
2067         }
2068
2069         return (removed);
2070 }
2071
2072 /*
2073  *
2074  * Miscellaneous interrupts.
2075  *
2076  */
2077
2078 static void
2079 cpsw_intr_rx_thresh(void *arg)
2080 {
2081         struct cpsw_softc *sc;
2082         struct ifnet *ifp;
2083         struct mbuf *received, *next;
2084
2085         sc = (struct cpsw_softc *)arg;
2086         CPSW_RX_LOCK(sc);
2087         received = cpsw_rx_dequeue(sc);
2088         cpsw_rx_enqueue(sc);
2089         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2090         CPSW_RX_UNLOCK(sc);
2091
2092         while (received != NULL) {
2093                 next = received->m_nextpkt;
2094                 received->m_nextpkt = NULL;
2095                 ifp = received->m_pkthdr.rcvif;
2096                 (*ifp->if_input)(ifp, received);
2097                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2098                 received = next;
2099         }
2100 }
2101
2102 static void
2103 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2104 {
2105         uint32_t intstat;
2106         uint32_t dmastat;
2107         int txerr, rxerr, txchan, rxchan;
2108
2109         printf("\n\n");
2110         device_printf(sc->dev,
2111             "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2112         printf("\n\n");
2113         intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2114         device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2115         dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2116         device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2117
2118         txerr = (dmastat >> 20) & 15;
2119         txchan = (dmastat >> 16) & 7;
2120         rxerr = (dmastat >> 12) & 15;
2121         rxchan = (dmastat >> 8) & 7;
2122
2123         switch (txerr) {
2124         case 0: break;
2125         case 1: printf("SOP error on TX channel %d\n", txchan);
2126                 break;
2127         case 2: printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2128                 break;
2129         case 3: printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2130                 break;
2131         case 4: printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2132                 break;
2133         case 5: printf("Zero Buffer Length on TX channel %d\n", txchan);
2134                 break;
2135         case 6: printf("Packet length error on TX channel %d\n", txchan);
2136                 break;
2137         default: printf("Unknown error on TX channel %d\n", txchan);
2138                 break;
2139         }
2140
2141         if (txerr != 0) {
2142                 printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2143                     txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2144                 printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2145                     txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2146                 cpsw_dump_queue(sc, &sc->tx.active);
2147         }
2148
2149         switch (rxerr) {
2150         case 0: break;
2151         case 2: printf("Ownership bit not set on RX channel %d\n", rxchan);
2152                 break;
2153         case 4: printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2154                 break;
2155         case 5: printf("Zero Buffer Length on RX channel %d\n", rxchan);
2156                 break;
2157         case 6: printf("Buffer offset too big on RX channel %d\n", rxchan);
2158                 break;
2159         default: printf("Unknown RX error on RX channel %d\n", rxchan);
2160                 break;
2161         }
2162
2163         if (rxerr != 0) {
2164                 printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2165                     rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2166                 printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2167                     rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2168                 cpsw_dump_queue(sc, &sc->rx.active);
2169         }
2170
2171         printf("\nALE Table\n");
2172         cpsw_ale_dump_table(sc);
2173
2174         // XXX do something useful here??
2175         panic("CPSW HOST ERROR INTERRUPT");
2176
2177         // Suppress this interrupt in the future.
2178         cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2179         printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2180         // The watchdog will probably reset the controller
2181         // in a little while.  It will probably fail again.
2182 }
2183
2184 static void
2185 cpsw_intr_misc(void *arg)
2186 {
2187         struct cpsw_softc *sc = arg;
2188         uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2189
2190         if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2191                 CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2192         if (stat & CPSW_WR_C_MISC_STAT_PEND)
2193                 cpsw_stats_collect(sc);
2194         if (stat & CPSW_WR_C_MISC_HOST_PEND)
2195                 cpsw_intr_misc_host_error(sc);
2196         if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2197                 cpsw_write_4(sc, MDIOLINKINTMASKED,
2198                     cpsw_read_4(sc, MDIOLINKINTMASKED));
2199         }
2200         if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2201                 CPSW_DEBUGF(sc,
2202                     ("MDIO operation completed interrupt unimplemented"));
2203         }
2204         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2205 }
2206
2207 /*
2208  *
2209  * Periodic Checks and Watchdog.
2210  *
2211  */
2212
2213 static void
2214 cpswp_tick(void *msc)
2215 {
2216         struct cpswp_softc *sc = msc;
2217
2218         /* Check for media type change */
2219         mii_tick(sc->mii);
2220         if (sc->media_status != sc->mii->mii_media.ifm_media) {
2221                 printf("%s: media type changed (ifm_media=%x)\n", __func__, 
2222                         sc->mii->mii_media.ifm_media);
2223                 cpswp_ifmedia_upd(sc->ifp);
2224         }
2225
2226         /* Schedule another timeout one second from now */
2227         callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2228 }
2229
2230 static void
2231 cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2232 {
2233         struct cpswp_softc *sc;
2234         struct mii_data *mii;
2235
2236         sc = ifp->if_softc;
2237         CPSW_DEBUGF(sc->swsc, (""));
2238         CPSW_PORT_LOCK(sc);
2239
2240         mii = sc->mii;
2241         mii_pollstat(mii);
2242
2243         ifmr->ifm_active = mii->mii_media_active;
2244         ifmr->ifm_status = mii->mii_media_status;
2245         CPSW_PORT_UNLOCK(sc);
2246 }
2247
2248 static int
2249 cpswp_ifmedia_upd(struct ifnet *ifp)
2250 {
2251         struct cpswp_softc *sc;
2252
2253         sc = ifp->if_softc;
2254         CPSW_DEBUGF(sc->swsc, (""));
2255         CPSW_PORT_LOCK(sc);
2256         mii_mediachg(sc->mii);
2257         sc->media_status = sc->mii->mii_media.ifm_media;
2258         CPSW_PORT_UNLOCK(sc);
2259
2260         return (0);
2261 }
2262
2263 static void
2264 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2265 {
2266         struct cpswp_softc *psc;
2267         int i;
2268
2269         cpsw_debugf_head("CPSW watchdog");
2270         device_printf(sc->dev, "watchdog timeout\n");
2271         printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2272             cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2273         printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2274             cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2275         cpsw_dump_queue(sc, &sc->tx.active);
2276         for (i = 0; i < CPSW_PORTS; i++) {
2277                 if (!sc->dualemac && i != sc->active_slave)
2278                         continue;
2279                 psc = device_get_softc(sc->port[i].dev);
2280                 CPSW_PORT_LOCK(psc);
2281                 cpswp_stop_locked(psc);
2282                 CPSW_PORT_UNLOCK(psc);
2283         }
2284 }
2285
2286 static void
2287 cpsw_tx_watchdog(void *msc)
2288 {
2289         struct cpsw_softc *sc;
2290
2291         sc = msc;
2292         CPSW_TX_LOCK(sc);
2293         if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2294                 sc->watchdog.timer = 0; /* Nothing to do. */
2295         } else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2296                 sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2297         } else if (cpsw_tx_dequeue(sc) > 0) {
2298                 sc->watchdog.timer = 0;  /* We just did something. */
2299         } else {
2300                 /* There was something to do but it didn't get done. */
2301                 ++sc->watchdog.timer;
2302                 if (sc->watchdog.timer > 5) {
2303                         sc->watchdog.timer = 0;
2304                         ++sc->watchdog.resets;
2305                         cpsw_tx_watchdog_full_reset(sc);
2306                 }
2307         }
2308         sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2309         CPSW_TX_UNLOCK(sc);
2310
2311         /* Schedule another timeout one second from now */
2312         callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2313 }
2314
2315 /*
2316  *
2317  * ALE support routines.
2318  *
2319  */
2320
2321 static void
2322 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2323 {
2324         cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2325         ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2326         ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2327         ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2328 }
2329
2330 static void
2331 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2332 {
2333         cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2334         cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2335         cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2336         cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2337 }
2338
2339 static void
2340 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2341 {
2342         int i;
2343         uint32_t ale_entry[3];
2344
2345         /* First four entries are link address and broadcast. */
2346         for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2347                 cpsw_ale_read_entry(sc, i, ale_entry);
2348                 if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2349                     ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2350                     ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2351                         ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2352                         cpsw_ale_write_entry(sc, i, ale_entry);
2353                 }
2354         }
2355 }
2356
2357 static int
2358 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2359         uint8_t *mac)
2360 {
2361         int free_index = -1, matching_index = -1, i;
2362         uint32_t ale_entry[3], ale_type;
2363
2364         /* Find a matching entry or a free entry. */
2365         for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2366                 cpsw_ale_read_entry(sc, i, ale_entry);
2367
2368                 /* Entry Type[61:60] is 0 for free entry */ 
2369                 if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2370                         free_index = i;
2371
2372                 if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2373                     (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2374                     (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2375                     (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2376                     (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2377                     (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2378                         matching_index = i;
2379                         break;
2380                 }
2381         }
2382
2383         if (matching_index < 0) {
2384                 if (free_index < 0)
2385                         return (ENOMEM);
2386                 i = free_index;
2387         }
2388
2389         if (vlan != -1)
2390                 ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2391         else
2392                 ale_type = ALE_TYPE_ADDR << 28;
2393
2394         /* Set MAC address */
2395         ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2396         ale_entry[1] = mac[0] << 8 | mac[1];
2397
2398         /* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2399         ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2400
2401         /* Set portmask [68:66] */
2402         ale_entry[2] = (portmap & 7) << 2;
2403
2404         cpsw_ale_write_entry(sc, i, ale_entry);
2405
2406         return 0;
2407 }
2408
2409 static void
2410 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2411         int i;
2412         uint32_t ale_entry[3];
2413         for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2414                 cpsw_ale_read_entry(sc, i, ale_entry);
2415                 switch (ALE_TYPE(ale_entry)) {
2416                 case ALE_TYPE_VLAN:
2417                         printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2418                                 ale_entry[1], ale_entry[0]);
2419                         printf("type: %u ", ALE_TYPE(ale_entry));
2420                         printf("vlan: %u ", ALE_VLAN(ale_entry));
2421                         printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2422                         printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2423                         printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2424                         printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2425                         printf("\n");
2426                         break;
2427                 case ALE_TYPE_ADDR:
2428                 case ALE_TYPE_VLAN_ADDR:
2429                         printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2430                                 ale_entry[1], ale_entry[0]);
2431                         printf("type: %u ", ALE_TYPE(ale_entry));
2432                         printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2433                                 (ale_entry[1] >> 8) & 0xFF,
2434                                 (ale_entry[1] >> 0) & 0xFF,
2435                                 (ale_entry[0] >>24) & 0xFF,
2436                                 (ale_entry[0] >>16) & 0xFF,
2437                                 (ale_entry[0] >> 8) & 0xFF,
2438                                 (ale_entry[0] >> 0) & 0xFF);
2439                         printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2440                         if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2441                                 printf("vlan: %u ", ALE_VLAN(ale_entry));
2442                         printf("port: %u ", ALE_PORTS(ale_entry));
2443                         printf("\n");
2444                         break;
2445                 }
2446         }
2447         printf("\n");
2448 }
2449
2450 static u_int
2451 cpswp_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2452 {
2453         struct cpswp_softc *sc = arg;
2454         uint32_t portmask;
2455
2456         if (sc->swsc->dualemac)
2457                 portmask = 1 << (sc->unit + 1) | 1 << 0;
2458         else
2459                 portmask = 7;
2460
2461         cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan, LLADDR(sdl));
2462
2463         return (1);
2464 }
2465
2466 static int
2467 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2468 {
2469         uint8_t *mac;
2470         uint32_t ale_entry[3], ale_type, portmask;
2471
2472         if (sc->swsc->dualemac) {
2473                 ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2474                 portmask = 1 << (sc->unit + 1) | 1 << 0;
2475         } else {
2476                 ale_type = ALE_TYPE_ADDR << 28;
2477                 portmask = 7;
2478         }
2479
2480         /*
2481          * Route incoming packets for our MAC address to Port 0 (host).
2482          * For simplicity, keep this entry at table index 0 for port 1 and
2483          * at index 2 for port 2 in the ALE.
2484          */
2485         mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2486         ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2487         ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2488         ale_entry[2] = 0; /* port = 0 */
2489         cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2490
2491         /* Set outgoing MAC Address for slave port. */
2492         cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2493             mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2494         cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2495             mac[5] << 8 | mac[4]);
2496
2497         /* Keep the broadcast address at table entry 1 (or 3). */
2498         ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2499         /* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */ 
2500         ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2501         ale_entry[2] = portmask << 2;
2502         cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2503
2504         /* SIOCDELMULTI doesn't specify the particular address
2505            being removed, so we have to remove all and rebuild. */
2506         if (purge)
2507                 cpsw_ale_remove_all_mc_entries(sc->swsc);
2508
2509         /* Set other multicast addrs desired. */
2510         if_foreach_llmaddr(sc->ifp, cpswp_set_maddr, sc);
2511
2512         return (0);
2513 }
2514
2515 static int
2516 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2517         int untag, int mcregflood, int mcunregflood)
2518 {
2519         int free_index, i, matching_index;
2520         uint32_t ale_entry[3];
2521
2522         free_index = matching_index = -1;
2523         /* Find a matching entry or a free entry. */
2524         for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2525                 cpsw_ale_read_entry(sc, i, ale_entry);
2526
2527                 /* Entry Type[61:60] is 0 for free entry */ 
2528                 if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2529                         free_index = i;
2530
2531                 if (ALE_VLAN(ale_entry) == vlan) {
2532                         matching_index = i;
2533                         break;
2534                 }
2535         }
2536
2537         if (matching_index < 0) {
2538                 if (free_index < 0)
2539                         return (-1);
2540                 i = free_index;
2541         }
2542
2543         ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2544             (mcunregflood & 7) << 8 | (ports & 7);
2545         ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2546         ale_entry[2] = 0;
2547         cpsw_ale_write_entry(sc, i, ale_entry);
2548
2549         return (0);
2550 }
2551
2552 /*
2553  *
2554  * Statistics and Sysctls.
2555  *
2556  */
2557
2558 #if 0
2559 static void
2560 cpsw_stats_dump(struct cpsw_softc *sc)
2561 {
2562         int i;
2563         uint32_t r;
2564
2565         for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2566                 r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2567                     cpsw_stat_sysctls[i].reg);
2568                 CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2569                     (intmax_t)sc->shadow_stats[i], r,
2570                     (intmax_t)sc->shadow_stats[i] + r));
2571         }
2572 }
2573 #endif
2574
2575 static void
2576 cpsw_stats_collect(struct cpsw_softc *sc)
2577 {
2578         int i;
2579         uint32_t r;
2580
2581         CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2582
2583         for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2584                 r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2585                     cpsw_stat_sysctls[i].reg);
2586                 sc->shadow_stats[i] += r;
2587                 cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2588                     r);
2589         }
2590 }
2591
2592 static int
2593 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2594 {
2595         struct cpsw_softc *sc;
2596         struct cpsw_stat *stat;
2597         uint64_t result;
2598
2599         sc = (struct cpsw_softc *)arg1;
2600         stat = &cpsw_stat_sysctls[oidp->oid_number];
2601         result = sc->shadow_stats[oidp->oid_number];
2602         result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2603         return (sysctl_handle_64(oidp, &result, 0, req));
2604 }
2605
2606 static int
2607 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2608 {
2609         struct cpsw_softc *sc;
2610         struct bintime t;
2611         unsigned result;
2612
2613         sc = (struct cpsw_softc *)arg1;
2614         getbinuptime(&t);
2615         bintime_sub(&t, &sc->attach_uptime);
2616         result = t.sec;
2617         return (sysctl_handle_int(oidp, &result, 0, req));
2618 }
2619
2620 static int
2621 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2622 {
2623         int error;
2624         struct cpsw_softc *sc;
2625         uint32_t ctrl, intr_per_ms;
2626
2627         sc = (struct cpsw_softc *)arg1;
2628         error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2629         if (error != 0 || req->newptr == NULL)
2630                 return (error);
2631
2632         ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2633         ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2634         if (sc->coal_us == 0) {
2635                 /* Disable the interrupt pace hardware. */
2636                 cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2637                 cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2638                 cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2639                 return (0);
2640         }
2641
2642         if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2643                 sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2644         if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2645                 sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2646         intr_per_ms = 1000 / sc->coal_us;
2647         /* Just to make sure... */
2648         if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2649                 intr_per_ms = CPSW_WR_C_IMAX_MAX;
2650         if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2651                 intr_per_ms = CPSW_WR_C_IMAX_MIN;
2652
2653         /* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2654         ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2655
2656         /* Enable the interrupt pace hardware. */
2657         cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2658         cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2659         ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2660         cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2661
2662         return (0);
2663 }
2664
2665 static int
2666 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2667 {
2668         struct cpsw_softc *swsc;
2669         struct cpswp_softc *sc;
2670         struct bintime t;
2671         unsigned result;
2672
2673         swsc = arg1;
2674         sc = device_get_softc(swsc->port[arg2].dev);
2675         if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2676                 getbinuptime(&t);
2677                 bintime_sub(&t, &sc->init_uptime);
2678                 result = t.sec;
2679         } else
2680                 result = 0;
2681         return (sysctl_handle_int(oidp, &result, 0, req));
2682 }
2683
2684 static void
2685 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2686         struct cpsw_queue *queue)
2687 {
2688         struct sysctl_oid_list *parent;
2689
2690         parent = SYSCTL_CHILDREN(node);
2691         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2692             CTLFLAG_RD, &queue->queue_slots, 0,
2693             "Total buffers currently assigned to this queue");
2694         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2695             CTLFLAG_RD, &queue->active_queue_len, 0,
2696             "Buffers currently registered with hardware controller");
2697         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2698             CTLFLAG_RD, &queue->max_active_queue_len, 0,
2699             "Max value of activeBuffers since last driver reset");
2700         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2701             CTLFLAG_RD, &queue->avail_queue_len, 0,
2702             "Buffers allocated to this queue but not currently "
2703             "registered with hardware controller");
2704         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2705             CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2706             "Max value of availBuffers since last driver reset");
2707         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2708             CTLFLAG_RD, &queue->queue_adds, 0,
2709             "Total buffers added to queue");
2710         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2711             CTLFLAG_RD, &queue->queue_removes, 0,
2712             "Total buffers removed from queue");
2713         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2714             CTLFLAG_RD, &queue->queue_restart, 0,
2715             "Total times the queue has been restarted");
2716         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2717             CTLFLAG_RD, &queue->longest_chain, 0,
2718             "Max buffers used for a single packet");
2719 }
2720
2721 static void
2722 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2723         struct cpsw_softc *sc)
2724 {
2725         struct sysctl_oid_list *parent;
2726
2727         parent = SYSCTL_CHILDREN(node);
2728         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2729             CTLFLAG_RD, &sc->watchdog.resets, 0,
2730             "Total number of watchdog resets");
2731 }
2732
2733 static void
2734 cpsw_add_sysctls(struct cpsw_softc *sc)
2735 {
2736         struct sysctl_ctx_list *ctx;
2737         struct sysctl_oid *stats_node, *queue_node, *node;
2738         struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2739         struct sysctl_oid_list *ports_parent, *port_parent;
2740         char port[16];
2741         int i;
2742
2743         ctx = device_get_sysctl_ctx(sc->dev);
2744         parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2745
2746         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2747             CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2748
2749         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2750             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2751             sc, 0, cpsw_stat_attached, "IU",
2752             "Time since driver attach");
2753
2754         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2755             CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
2756             sc, 0, cpsw_intr_coalesce, "IU",
2757             "minimum time between interrupts");
2758
2759         node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2760             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Ports Statistics");
2761         ports_parent = SYSCTL_CHILDREN(node);
2762         for (i = 0; i < CPSW_PORTS; i++) {
2763                 if (!sc->dualemac && i != sc->active_slave)
2764                         continue;
2765                 port[0] = '0' + i;
2766                 port[1] = '\0';
2767                 node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2768                     port, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2769                     "CPSW Port Statistics");
2770                 port_parent = SYSCTL_CHILDREN(node);
2771                 SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2772                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
2773                     cpsw_stat_uptime, "IU", "Seconds since driver init");
2774         }
2775
2776         stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2777             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Statistics");
2778         stats_parent = SYSCTL_CHILDREN(stats_node);
2779         for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2780                 SYSCTL_ADD_PROC(ctx, stats_parent, i,
2781                                 cpsw_stat_sysctls[i].oid,
2782                                 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2783                                 sc, 0, cpsw_stats_sysctl, "IU",
2784                                 cpsw_stat_sysctls[i].oid);
2785         }
2786
2787         queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2788             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Queue Statistics");
2789         queue_parent = SYSCTL_CHILDREN(queue_node);
2790
2791         node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2792             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Statistics");
2793         cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2794
2795         node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2796             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Statistics");
2797         cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2798
2799         node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2800             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Watchdog Statistics");
2801         cpsw_add_watchdog_sysctls(ctx, node, sc);
2802 }
2803
2804 #ifdef CPSW_ETHERSWITCH
2805 static etherswitch_info_t etherswitch_info = {
2806         .es_nports =            CPSW_PORTS + 1,
2807         .es_nvlangroups =       CPSW_VLANS,
2808         .es_name =              "TI Common Platform Ethernet Switch (CPSW)",
2809         .es_vlan_caps =         ETHERSWITCH_VLAN_DOT1Q,
2810 };
2811
2812 static etherswitch_info_t *
2813 cpsw_getinfo(device_t dev)
2814 {
2815         return (&etherswitch_info);
2816 }
2817
2818 static int
2819 cpsw_getport(device_t dev, etherswitch_port_t *p)
2820 {
2821         int err;
2822         struct cpsw_softc *sc;
2823         struct cpswp_softc *psc;
2824         struct ifmediareq *ifmr;
2825         uint32_t reg;
2826
2827         if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2828                 return (ENXIO);
2829
2830         err = 0;
2831         sc = device_get_softc(dev);
2832         if (p->es_port == CPSW_CPU_PORT) {
2833                 p->es_flags |= ETHERSWITCH_PORT_CPU;
2834                 ifmr = &p->es_ifmr;
2835                 ifmr->ifm_current = ifmr->ifm_active =
2836                     IFM_ETHER | IFM_1000_T | IFM_FDX;
2837                 ifmr->ifm_mask = 0;
2838                 ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2839                 ifmr->ifm_count = 0;
2840         } else {
2841                 psc = device_get_softc(sc->port[p->es_port - 1].dev);
2842                 err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2843                     &psc->mii->mii_media, SIOCGIFMEDIA);
2844         }
2845         reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2846         p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2847
2848         reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2849         if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2850                 p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2851         if (reg & ALE_PORTCTL_INGRESS)
2852                 p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2853
2854         return (err);
2855 }
2856
2857 static int
2858 cpsw_setport(device_t dev, etherswitch_port_t *p)
2859 {
2860         struct cpsw_softc *sc;
2861         struct cpswp_softc *psc;
2862         struct ifmedia *ifm;
2863         uint32_t reg;
2864
2865         if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2866                 return (ENXIO);
2867
2868         sc = device_get_softc(dev);
2869         if (p->es_pvid != 0) {
2870                 cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2871                     p->es_pvid & ETHERSWITCH_VID_MASK);
2872         }
2873
2874         reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2875         if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2876                 reg |= ALE_PORTCTL_DROP_UNTAGGED;
2877         else
2878                 reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2879         if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2880                 reg |= ALE_PORTCTL_INGRESS;
2881         else
2882                 reg &= ~ALE_PORTCTL_INGRESS;
2883         cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2884
2885         /* CPU port does not allow media settings. */
2886         if (p->es_port == CPSW_CPU_PORT)
2887                 return (0);
2888
2889         psc = device_get_softc(sc->port[p->es_port - 1].dev);
2890         ifm = &psc->mii->mii_media;
2891
2892         return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2893 }
2894
2895 static int
2896 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2897 {
2898
2899         /* Return the VLAN mode. */
2900         conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2901         conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2902
2903         return (0);
2904 }
2905
2906 static int
2907 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2908 {
2909         int i, vid;
2910         uint32_t ale_entry[3];
2911         struct cpsw_softc *sc;
2912
2913         sc = device_get_softc(dev);
2914
2915         if (vg->es_vlangroup >= CPSW_VLANS)
2916                 return (EINVAL);
2917
2918         vg->es_vid = 0;
2919         vid = cpsw_vgroups[vg->es_vlangroup].vid;
2920         if (vid == -1)
2921                 return (0);
2922
2923         for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2924                 cpsw_ale_read_entry(sc, i, ale_entry);
2925                 if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2926                         continue;
2927                 if (vid != ALE_VLAN(ale_entry))
2928                         continue;
2929
2930                 vg->es_fid = 0;
2931                 vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2932                 vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2933                 vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2934         }
2935
2936         return (0);
2937 }
2938
2939 static void
2940 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2941 {
2942         int i;
2943         uint32_t ale_entry[3];
2944
2945         for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2946                 cpsw_ale_read_entry(sc, i, ale_entry);
2947                 if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2948                         continue;
2949                 if (vlan != ALE_VLAN(ale_entry))
2950                         continue;
2951                 ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2952                 cpsw_ale_write_entry(sc, i, ale_entry);
2953                 break;
2954         }
2955 }
2956
2957 static int
2958 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2959 {
2960         int i;
2961         struct cpsw_softc *sc;
2962
2963         sc = device_get_softc(dev);
2964
2965         for (i = 0; i < CPSW_VLANS; i++) {
2966                 /* Is this Vlan ID in use by another vlangroup ? */
2967                 if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2968                         return (EINVAL);
2969         }
2970
2971         if (vg->es_vid == 0) {
2972                 if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2973                         return (0);
2974                 cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2975                 cpsw_vgroups[vg->es_vlangroup].vid = -1;
2976                 vg->es_untagged_ports = 0;
2977                 vg->es_member_ports = 0;
2978                 vg->es_vid = 0;
2979                 return (0);
2980         }
2981
2982         vg->es_vid &= ETHERSWITCH_VID_MASK;
2983         vg->es_member_ports &= CPSW_PORTS_MASK;
2984         vg->es_untagged_ports &= CPSW_PORTS_MASK;
2985
2986         if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2987             cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2988                 return (EINVAL);
2989
2990         cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2991         cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2992             vg->es_untagged_ports, vg->es_member_ports, 0);
2993
2994         return (0);
2995 }
2996
2997 static int
2998 cpsw_readreg(device_t dev, int addr)
2999 {
3000
3001         /* Not supported. */
3002         return (0);
3003 }
3004
3005 static int
3006 cpsw_writereg(device_t dev, int addr, int value)
3007 {
3008
3009         /* Not supported. */
3010         return (0);
3011 }
3012
3013 static int
3014 cpsw_readphy(device_t dev, int phy, int reg)
3015 {
3016
3017         /* Not supported. */
3018         return (0);
3019 }
3020
3021 static int
3022 cpsw_writephy(device_t dev, int phy, int reg, int data)
3023 {
3024
3025         /* Not supported. */
3026         return (0);
3027 }
3028 #endif