]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/arm/ti/cpsw/if_cpsw.c
Merge head
[FreeBSD/FreeBSD.git] / sys / arm / ti / cpsw / if_cpsw.c
1 /*-
2  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 /*
28  * TI Common Platform Ethernet Switch (CPSW) Driver
29  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
30  *
31  * This controller is documented in the AM335x Technical Reference
32  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
33  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
34  *
35  * It is basically a single Ethernet port (port 0) wired internally to
36  * a 3-port store-and-forward switch connected to two independent
37  * "sliver" controllers (port 1 and port 2).  You can operate the
38  * controller in a variety of different ways by suitably configuring
39  * the slivers and the Address Lookup Engine (ALE) that routes packets
40  * between the ports.
41  *
42  * This code was developed and tested on a BeagleBone with
43  * an AM335x SoC.
44  */
45
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/endian.h>
52 #include <sys/mbuf.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/kernel.h>
56 #include <sys/module.h>
57 #include <sys/socket.h>
58 #include <sys/sysctl.h>
59
60 #include <net/ethernet.h>
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/if_vlan_var.h>
69
70 #include <netinet/in_systm.h>
71 #include <netinet/in.h>
72 #include <netinet/ip.h>
73
74 #include <sys/sockio.h>
75 #include <sys/bus.h>
76 #include <machine/bus.h>
77 #include <sys/rman.h>
78 #include <machine/resource.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <dev/fdt/fdt_common.h>
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86
87 #include "if_cpswreg.h"
88 #include "if_cpswvar.h"
89  
90 #include <arm/ti/ti_scm.h>
91
92 #include "miibus_if.h"
93
94 /* Device probe/attach/detach. */
95 static int cpsw_probe(device_t);
96 static void cpsw_init_slots(struct cpsw_softc *);
97 static int cpsw_attach(device_t);
98 static void cpsw_free_slot(struct cpsw_softc *, struct cpsw_slot *);
99 static int cpsw_detach(device_t);
100
101 /* Device Init/shutdown. */
102 static void cpsw_init(void *);
103 static void cpsw_init_locked(void *);
104 static int cpsw_shutdown(device_t);
105 static void cpsw_shutdown_locked(struct cpsw_softc *);
106
107 /* Device Suspend/Resume. */
108 static int cpsw_suspend(device_t);
109 static int cpsw_resume(device_t);
110
111 /* Ioctl. */
112 static int cpsw_ioctl(struct ifnet *, u_long command, caddr_t data);
113
114 static int cpsw_miibus_readreg(device_t, int phy, int reg);
115 static int cpsw_miibus_writereg(device_t, int phy, int reg, int value);
116
117 /* Send/Receive packets. */
118 static void cpsw_intr_rx(void *arg);
119 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
120 static void cpsw_rx_enqueue(struct cpsw_softc *);
121 static void cpsw_start(struct ifnet *);
122 static void cpsw_tx_enqueue(struct cpsw_softc *);
123 static int cpsw_tx_dequeue(struct cpsw_softc *);
124
125 /* Misc interrupts and watchdog. */
126 static void cpsw_intr_rx_thresh(void *);
127 static void cpsw_intr_misc(void *);
128 static void cpsw_tick(void *);
129 static void cpsw_ifmedia_sts(struct ifnet *, struct ifmediareq *);
130 static int cpsw_ifmedia_upd(struct ifnet *);
131 static void cpsw_tx_watchdog(struct cpsw_softc *);
132
133 /* ALE support */
134 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
135 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t idx, uint32_t *ale_entry);
136 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t portmap, uint8_t *mac);
137 static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
138 static void cpsw_ale_dump_table(struct cpsw_softc *);
139
140 /* Statistics and sysctls. */
141 static void cpsw_add_sysctls(struct cpsw_softc *);
142 static void cpsw_stats_collect(struct cpsw_softc *);
143 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
144
145 /*
146  * Arbitrary limit on number of segments in an mbuf to be transmitted.
147  * Packets with more segments than this will be defragmented before
148  * they are queued.
149  */
150 #define CPSW_TXFRAGS 8
151
152
153 /*
154  * TODO: The CPSW subsystem (CPSW_SS) can drive two independent PHYs
155  * as separate Ethernet ports.  To properly support this, we should
156  * break this into two separate devices: a CPSW_SS device that owns
157  * the interrupts and actually talks to the CPSW hardware, and a
158  * separate CPSW Ethernet child device for each Ethernet port.  The RX
159  * interrupt, for example, would be part of CPSW_SS; it would receive
160  * a packet, note the input port, and then dispatch it to the child
161  * device's interface queue.  Similarly for transmit.
162  *
163  * It's not clear to me whether the device tree should be restructured
164  * with a cpsw_ss node and two child nodes.  That would allow specifying
165  * MAC addresses for each port, for example, but might be overkill.
166  *
167  * Unfortunately, I don't have hardware right now that supports two
168  * Ethernet ports via CPSW.
169  */
170
171 static device_method_t cpsw_methods[] = {
172         /* Device interface */
173         DEVMETHOD(device_probe,         cpsw_probe),
174         DEVMETHOD(device_attach,        cpsw_attach),
175         DEVMETHOD(device_detach,        cpsw_detach),
176         DEVMETHOD(device_shutdown,      cpsw_shutdown),
177         DEVMETHOD(device_suspend,       cpsw_suspend),
178         DEVMETHOD(device_resume,        cpsw_resume),
179         /* MII interface */
180         DEVMETHOD(miibus_readreg,       cpsw_miibus_readreg),
181         DEVMETHOD(miibus_writereg,      cpsw_miibus_writereg),
182         { 0, 0 }
183 };
184
185 static driver_t cpsw_driver = {
186         "cpsw",
187         cpsw_methods,
188         sizeof(struct cpsw_softc),
189 };
190
191 static devclass_t cpsw_devclass;
192
193 DRIVER_MODULE(cpsw, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
194 DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
195 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
196 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
197
198 static struct resource_spec res_spec[] = {
199         { SYS_RES_MEMORY, 0, RF_ACTIVE },
200         { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
201         { SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
202         { SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
203         { SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
204         { -1, 0 }
205 };
206
207 /* Number of entries here must match size of stats
208  * array in struct cpsw_softc. */
209 static struct cpsw_stat {
210         int     reg;
211         char *oid;
212 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
213         {0x00, "GoodRxFrames"},
214         {0x04, "BroadcastRxFrames"},
215         {0x08, "MulticastRxFrames"},
216         {0x0C, "PauseRxFrames"},
217         {0x10, "RxCrcErrors"},
218         {0x14, "RxAlignErrors"},
219         {0x18, "OversizeRxFrames"},
220         {0x1c, "RxJabbers"},
221         {0x20, "ShortRxFrames"},
222         {0x24, "RxFragments"},
223         {0x30, "RxOctets"},
224         {0x34, "GoodTxFrames"},
225         {0x38, "BroadcastTxFrames"},
226         {0x3c, "MulticastTxFrames"},
227         {0x40, "PauseTxFrames"},
228         {0x44, "DeferredTxFrames"},
229         {0x48, "CollisionsTxFrames"},
230         {0x4c, "SingleCollisionTxFrames"},
231         {0x50, "MultipleCollisionTxFrames"},
232         {0x54, "ExcessiveCollisions"},
233         {0x58, "LateCollisions"},
234         {0x5c, "TxUnderrun"},
235         {0x60, "CarrierSenseErrors"},
236         {0x64, "TxOctets"},
237         {0x68, "RxTx64OctetFrames"},
238         {0x6c, "RxTx65to127OctetFrames"},
239         {0x70, "RxTx128to255OctetFrames"},
240         {0x74, "RxTx256to511OctetFrames"},
241         {0x78, "RxTx512to1024OctetFrames"},
242         {0x7c, "RxTx1024upOctetFrames"},
243         {0x80, "NetOctets"},
244         {0x84, "RxStartOfFrameOverruns"},
245         {0x88, "RxMiddleOfFrameOverruns"},
246         {0x8c, "RxDmaOverruns"}
247 };
248
249 /*
250  * Basic debug support.
251  */
252
253 #define IF_DEBUG(sc)  if (sc->cpsw_if_flags & IFF_DEBUG)
254
255 static void
256 cpsw_debugf_head(const char *funcname)
257 {
258         int t = (int)(time_second % (24 * 60 * 60));
259
260         printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
261 }
262
263 #include <machine/stdarg.h>
264 static void
265 cpsw_debugf(const char *fmt, ...)
266 {
267         va_list ap;
268
269         va_start(ap, fmt);
270         vprintf(fmt, ap);
271         va_end(ap);
272         printf("\n");
273
274 }
275
276 #define CPSW_DEBUGF(a) do {                                     \
277         IF_DEBUG(sc) {                                          \
278                 cpsw_debugf_head(__func__);                     \
279                 cpsw_debugf a;                                  \
280         }                                                       \
281 } while (0)
282
283
284 /*
285  * Locking macros
286  */
287 #define CPSW_TX_LOCK(sc) do {                                   \
288                 mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);                \
289                 mtx_lock(&(sc)->tx.lock);                               \
290 } while (0)
291
292 #define CPSW_TX_UNLOCK(sc)      mtx_unlock(&(sc)->tx.lock)
293 #define CPSW_TX_LOCK_ASSERT(sc) mtx_assert(&(sc)->tx.lock, MA_OWNED)
294
295 #define CPSW_RX_LOCK(sc) do {                                   \
296                 mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);                \
297                 mtx_lock(&(sc)->rx.lock);                               \
298 } while (0)
299
300 #define CPSW_RX_UNLOCK(sc)              mtx_unlock(&(sc)->rx.lock)
301 #define CPSW_RX_LOCK_ASSERT(sc) mtx_assert(&(sc)->rx.lock, MA_OWNED)
302
303 #define CPSW_GLOBAL_LOCK(sc) do {                                       \
304                 if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) !=      \
305                     (mtx_owned(&(sc)->rx.lock) ? 1 : 0)) {              \
306                         panic("cpsw deadlock possibility detection!");  \
307                 }                                                       \
308                 mtx_lock(&(sc)->tx.lock);                               \
309                 mtx_lock(&(sc)->rx.lock);                               \
310 } while (0)
311
312 #define CPSW_GLOBAL_UNLOCK(sc) do {                                     \
313                 CPSW_RX_UNLOCK(sc);                             \
314                 CPSW_TX_UNLOCK(sc);                             \
315 } while (0)
316
317 #define CPSW_GLOBAL_LOCK_ASSERT(sc) do {                                \
318                 CPSW_TX_LOCK_ASSERT(sc);                                \
319                 CPSW_RX_LOCK_ASSERT(sc);                                \
320 } while (0)
321
322 /*
323  * Read/Write macros
324  */
325 #define cpsw_read_4(sc, reg)            bus_read_4(sc->res[0], reg)
326 #define cpsw_write_4(sc, reg, val)      bus_write_4(sc->res[0], reg, val)
327
328 #define cpsw_cpdma_bd_offset(i) (CPSW_CPPI_RAM_OFFSET + ((i)*16))
329
330 #define cpsw_cpdma_bd_paddr(sc, slot)                           \
331         BUS_SPACE_PHYSADDR(sc->res[0], slot->bd_offset)
332 #define cpsw_cpdma_read_bd(sc, slot, val)                               \
333         bus_read_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
334 #define cpsw_cpdma_write_bd(sc, slot, val)                              \
335         bus_write_region_4(sc->res[0], slot->bd_offset, (uint32_t *) val, 4)
336 #define cpsw_cpdma_write_bd_next(sc, slot, next_slot)                   \
337         cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
338 #define cpsw_cpdma_read_bd_flags(sc, slot)              \
339         bus_read_2(sc->res[0], slot->bd_offset + 14)
340 #define cpsw_write_hdp_slot(sc, queue, slot)                            \
341         cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
342 #define CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
343 #define cpsw_read_cp(sc, queue)                         \
344         cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET) 
345 #define cpsw_write_cp(sc, queue, val)                           \
346         cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
347 #define cpsw_write_cp_slot(sc, queue, slot)             \
348         cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
349
350 #if 0
351 /* XXX temporary function versions for debugging. */
352 static void
353 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
354 {
355         uint32_t reg = queue->hdp_offset;
356         uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
357         CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
358         cpsw_write_4(sc, reg, v);
359 }
360
361 static void
362 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
363 {
364         uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
365         CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
366         cpsw_write_cp(sc, queue, v);
367 }
368 #endif
369
370 /*
371  * Expanded dump routines for verbose debugging.
372  */
373 static void
374 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
375 {
376         static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
377             "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
378             "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
379             "Port0"};
380         struct cpsw_cpdma_bd bd;
381         const char *sep;
382         int i;
383
384         cpsw_cpdma_read_bd(sc, slot, &bd);
385         printf("BD Addr: 0x%08x   Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
386         printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
387         printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
388         printf("  Flags: ");
389         sep = "";
390         for (i = 0; i < 16; ++i) {
391                 if (bd.flags & (1 << (15 - i))) {
392                         printf("%s%s", sep, flags[i]);
393                         sep = ",";
394                 }
395         }
396         printf("\n");
397         if (slot->mbuf) {
398                 printf("  Ether:  %14D\n",
399                     (char *)(slot->mbuf->m_hdr.mh_data), " ");
400                 printf("  Packet: %16D\n",
401                     (char *)(slot->mbuf->m_hdr.mh_data) + 14, " ");
402         }
403 }
404
405 #define CPSW_DUMP_SLOT(cs, slot) do {                           \
406         IF_DEBUG(sc) {                                          \
407                 cpsw_dump_slot(sc, slot);                       \
408         }                                                       \
409 } while (0)
410
411
412 static void
413 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
414 {
415         struct cpsw_slot *slot;
416         int i = 0;
417         int others = 0;
418
419         STAILQ_FOREACH(slot, q, next) {
420                 if (i > 4)
421                         ++others;
422                 else
423                         cpsw_dump_slot(sc, slot);
424                 ++i;
425         }
426         if (others)
427                 printf(" ... and %d more.\n", others);
428         printf("\n");
429 }
430
431 #define CPSW_DUMP_QUEUE(sc, q) do {                             \
432         IF_DEBUG(sc) {                                          \
433                 cpsw_dump_queue(sc, q);                         \
434         }                                                       \
435 } while (0)
436
437
438 /*
439  *
440  * Device Probe, Attach, Detach.
441  *
442  */
443
444 static int
445 cpsw_probe(device_t dev)
446 {
447
448         if (!ofw_bus_status_okay(dev))
449                 return (ENXIO);
450
451         if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
452                 return (ENXIO);
453
454         device_set_desc(dev, "3-port Switch Ethernet Subsystem");
455         return (BUS_PROBE_DEFAULT);
456 }
457
458
459 static void
460 cpsw_init_slots(struct cpsw_softc *sc)
461 {
462         struct cpsw_slot *slot;
463         int i;
464
465         STAILQ_INIT(&sc->avail);
466
467         /* Put the slot descriptors onto the global avail list. */
468         for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); i++) {
469                 slot = &sc->_slots[i];
470                 slot->bd_offset = cpsw_cpdma_bd_offset(i);
471                 STAILQ_INSERT_TAIL(&sc->avail, slot, next);
472         }
473 }
474
475 /*
476  * bind an interrupt, add the relevant info to sc->interrupts
477  */
478 static int
479 cpsw_attach_interrupt(struct cpsw_softc *sc, struct resource *res, driver_intr_t *handler, const char *description)
480 {
481         void **pcookie;
482         int error;
483
484         sc->interrupts[sc->interrupt_count].res = res;
485         sc->interrupts[sc->interrupt_count].description = description;
486         pcookie = &sc->interrupts[sc->interrupt_count].ih_cookie;
487
488         error = bus_setup_intr(sc->dev, res, INTR_TYPE_NET | INTR_MPSAFE,
489             NULL, *handler, sc, pcookie);
490         if (error)
491                 device_printf(sc->dev,
492                     "could not setup %s\n", description);
493         else
494                 ++sc->interrupt_count;
495         return (error);
496 }
497
498 /*
499  * teardown everything in sc->interrupts.
500  */
501 static void
502 cpsw_detach_interrupts(struct cpsw_softc *sc)
503 {
504         int error;
505         int i;
506
507         for (i = 0; i < sizeof(sc->interrupts) / sizeof(sc->interrupts[0]); ++i) {
508                 if (!sc->interrupts[i].ih_cookie)
509                         continue;
510                 error = bus_teardown_intr(sc->dev,
511                     sc->interrupts[i].res, sc->interrupts[i].ih_cookie);
512                 if (error)
513                         device_printf(sc->dev, "could not release %s\n",
514                             sc->interrupts[i].description);
515                 sc->interrupts[i].ih_cookie = NULL;
516         }
517 }
518
519 static int
520 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
521 {
522         const int max_slots = sizeof(sc->_slots) / sizeof(sc->_slots[0]);
523         struct cpsw_slot *slot;
524         int i;
525
526         if (requested < 0)
527                 requested = max_slots;
528
529         for (i = 0; i < requested; ++i) {
530                 slot = STAILQ_FIRST(&sc->avail);
531                 if (slot == NULL)
532                         return (0);
533                 if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
534                         if_printf(sc->ifp, "failed to create dmamap\n");
535                         return (ENOMEM);
536                 }
537                 STAILQ_REMOVE_HEAD(&sc->avail, next);
538                 STAILQ_INSERT_TAIL(&queue->avail, slot, next);
539                 ++queue->avail_queue_len;
540                 ++queue->queue_slots;
541         }
542         return (0);
543 }
544
545 static int
546 cpsw_attach(device_t dev)
547 {
548         bus_dma_segment_t segs[1];
549         struct cpsw_softc *sc = device_get_softc(dev);
550         struct mii_softc *miisc;
551         struct ifnet *ifp;
552         void *phy_sc;
553         int error, phy, nsegs;
554         uint32_t reg;
555
556         CPSW_DEBUGF((""));
557
558         getbinuptime(&sc->attach_uptime);
559         sc->dev = dev;
560         sc->node = ofw_bus_get_node(dev);
561
562         /* Get phy address from fdt */
563         if (fdt_get_phyaddr(sc->node, sc->dev, &phy, &phy_sc) != 0) {
564                 device_printf(dev, "failed to get PHY address from FDT\n");
565                 return (ENXIO);
566         }
567         /* Initialize mutexes */
568         mtx_init(&sc->tx.lock, device_get_nameunit(dev),
569             "cpsw TX lock", MTX_DEF);
570         mtx_init(&sc->rx.lock, device_get_nameunit(dev),
571             "cpsw RX lock", MTX_DEF);
572
573         /* Allocate IO and IRQ resources */
574         error = bus_alloc_resources(dev, res_spec, sc->res);
575         if (error) {
576                 device_printf(dev, "could not allocate resources\n");
577                 cpsw_detach(dev);
578                 return (ENXIO);
579         }
580
581         reg = cpsw_read_4(sc, CPSW_SS_IDVER);
582         device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
583                 reg & 0xFF, (reg >> 11) & 0x1F);
584
585         cpsw_add_sysctls(sc);
586
587         /* Allocate a busdma tag and DMA safe memory for mbufs. */
588         error = bus_dma_tag_create(
589                 bus_get_dma_tag(sc->dev),       /* parent */
590                 1, 0,                           /* alignment, boundary */
591                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
592                 BUS_SPACE_MAXADDR,              /* highaddr */
593                 NULL, NULL,                     /* filtfunc, filtfuncarg */
594                 MCLBYTES, CPSW_TXFRAGS,         /* maxsize, nsegments */
595                 MCLBYTES, 0,                    /* maxsegsz, flags */
596                 NULL, NULL,                     /* lockfunc, lockfuncarg */
597                 &sc->mbuf_dtag);                /* dmatag */
598         if (error) {
599                 device_printf(dev, "bus_dma_tag_create failed\n");
600                 cpsw_detach(dev);
601                 return (error);
602         }
603
604         /* Allocate network interface */
605         ifp = sc->ifp = if_alloc(IFT_ETHER);
606         if (ifp == NULL) {
607                 device_printf(dev, "if_alloc() failed\n");
608                 cpsw_detach(dev);
609                 return (ENOMEM);
610         }
611
612         /* Allocate the null mbuf and pre-sync it. */
613         sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
614         memset(sc->null_mbuf->m_hdr.mh_data, 0, sc->null_mbuf->m_ext.ext_size);
615         bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
616         bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
617             sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
618         bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
619             BUS_DMASYNC_PREWRITE);
620         sc->null_mbuf_paddr = segs[0].ds_addr;
621
622         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
623         ifp->if_softc = sc;
624         ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
625         ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
626         ifp->if_capenable = ifp->if_capabilities;
627
628         ifp->if_init = cpsw_init;
629         ifp->if_start = cpsw_start;
630         ifp->if_ioctl = cpsw_ioctl;
631
632         cpsw_init_slots(sc);
633
634         /* Allocate slots to TX and RX queues. */
635         STAILQ_INIT(&sc->rx.avail);
636         STAILQ_INIT(&sc->rx.active);
637         STAILQ_INIT(&sc->tx.avail);
638         STAILQ_INIT(&sc->tx.active);
639         // For now:  128 slots to TX, rest to RX.
640         // XXX TODO: start with 32/64 and grow dynamically based on demand.
641         if (cpsw_add_slots(sc, &sc->tx, 128) || cpsw_add_slots(sc, &sc->rx, -1)) {
642                 device_printf(dev, "failed to allocate dmamaps\n");
643                 cpsw_detach(dev);
644                 return (ENOMEM);
645         }
646         device_printf(dev, "Initial queue size TX=%d RX=%d\n",
647             sc->tx.queue_slots, sc->rx.queue_slots);
648
649         ifp->if_snd.ifq_drv_maxlen = sc->tx.queue_slots;
650         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
651         IFQ_SET_READY(&ifp->if_snd);
652
653         sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
654         sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
655
656         /* Get high part of MAC address from control module (mac_id0_hi) */
657         /* TODO: Get MAC ID1 as well as MAC ID0. */
658         ti_scm_reg_read_4(0x634, &reg);
659         sc->mac_addr[0] = reg & 0xFF;
660         sc->mac_addr[1] = (reg >>  8) & 0xFF;
661         sc->mac_addr[2] = (reg >> 16) & 0xFF;
662         sc->mac_addr[3] = (reg >> 24) & 0xFF;
663
664         /* Get low part of MAC address from control module (mac_id0_lo) */
665         ti_scm_reg_read_4(0x630, &reg);
666         sc->mac_addr[4] = reg & 0xFF;
667         sc->mac_addr[5] = (reg >>  8) & 0xFF;
668
669         ether_ifattach(ifp, sc->mac_addr);
670         callout_init(&sc->watchdog.callout, 0);
671
672         /* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
673         /* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
674         cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
675
676         /* Clear ALE */
677         cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 30);
678
679         /* Attach PHY(s) */
680         error = mii_attach(dev, &sc->miibus, ifp, cpsw_ifmedia_upd,
681             cpsw_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
682         if (error) {
683                 device_printf(dev, "attaching PHYs failed\n");
684                 cpsw_detach(dev);
685                 return (error);
686         }
687         sc->mii = device_get_softc(sc->miibus);
688
689         /* Tell the MAC where to find the PHY so autoneg works */
690         miisc = LIST_FIRST(&sc->mii->mii_phys);
691
692         /* Select PHY and enable interrupts */
693         cpsw_write_4(sc, MDIOUSERPHYSEL0, 1 << 6 | (miisc->mii_phy & 0x1F));
694         
695         /* Note: We don't use sc->res[3] (TX interrupt) */
696         if (cpsw_attach_interrupt(sc, sc->res[1],
697                 cpsw_intr_rx_thresh, "CPSW RX threshold interrupt") ||
698             cpsw_attach_interrupt(sc, sc->res[2],
699                 cpsw_intr_rx, "CPSW RX interrupt") ||
700             cpsw_attach_interrupt(sc, sc->res[4],
701                 cpsw_intr_misc, "CPSW misc interrupt")) {
702                 cpsw_detach(dev);
703                 return (ENXIO);
704         }
705
706         return (0);
707 }
708
709 static void
710 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
711 {
712         int error;
713
714         if (slot->dmamap) {
715                 error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
716                 KASSERT(error == 0, ("Mapping still active"));
717                 slot->dmamap = NULL;
718         }
719         if (slot->mbuf) {
720                 m_freem(slot->mbuf);
721                 slot->mbuf = NULL;
722         }
723 }
724
725 static int
726 cpsw_detach(device_t dev)
727 {
728         struct cpsw_softc *sc = device_get_softc(dev);
729         int error, i;
730
731         CPSW_DEBUGF((""));
732
733         /* Stop controller and free TX queue */
734         if (device_is_attached(dev)) {
735                 ether_ifdetach(sc->ifp);
736                 CPSW_GLOBAL_LOCK(sc);
737                 cpsw_shutdown_locked(sc);
738                 CPSW_GLOBAL_UNLOCK(sc);
739                 callout_drain(&sc->watchdog.callout);
740         }
741
742         bus_generic_detach(dev);
743         device_delete_child(dev, sc->miibus);
744
745         /* Stop and release all interrupts */
746         cpsw_detach_interrupts(sc);
747
748         /* Free dmamaps and mbufs */
749         for (i = 0; i < sizeof(sc->_slots) / sizeof(sc->_slots[0]); ++i) {
750                 cpsw_free_slot(sc, &sc->_slots[i]);
751         }
752
753         /* Free DMA tag */
754         error = bus_dma_tag_destroy(sc->mbuf_dtag);
755         KASSERT(error == 0, ("Unable to destroy DMA tag"));
756
757         /* Free IO memory handler */
758         bus_release_resources(dev, res_spec, sc->res);
759
760         /* Destroy mutexes */
761         mtx_destroy(&sc->rx.lock);
762         mtx_destroy(&sc->tx.lock);
763
764         return (0);
765 }
766
767 /*
768  *
769  * Init/Shutdown.
770  *
771  */
772
773 static void
774 cpsw_reset(struct cpsw_softc *sc)
775 {
776         int i;
777
778         /* Reset RMII/RGMII wrapper. */
779         cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
780         while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
781                 ;
782
783         /* Disable TX and RX interrupts for all cores. */
784         for (i = 0; i < 3; ++i) {
785                 cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
786                 cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
787                 cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
788                 cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
789         }
790
791         /* Reset CPSW subsystem. */
792         cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
793         while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
794                 ;
795
796         /* Reset Sliver port 1 and 2 */
797         for (i = 0; i < 2; i++) {
798                 /* Reset */
799                 cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
800                 while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
801                         ;
802         }
803
804         /* Reset DMA controller. */
805         cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
806         while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
807                 ;
808
809         /* Disable TX & RX DMA */
810         cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
811         cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
812
813         /* Clear all queues. */
814         for (i = 0; i < 8; i++) {
815                 cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
816                 cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
817                 cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
818                 cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
819         }
820
821         /* Clear all interrupt Masks */
822         cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
823         cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
824 }
825
826 static void
827 cpsw_init(void *arg)
828 {
829         struct cpsw_softc *sc = arg;
830
831         CPSW_DEBUGF((""));
832         CPSW_GLOBAL_LOCK(sc);
833         cpsw_init_locked(arg);
834         CPSW_GLOBAL_UNLOCK(sc);
835 }
836
837 static void
838 cpsw_init_locked(void *arg)
839 {
840         struct ifnet *ifp;
841         struct cpsw_softc *sc = arg;
842         struct cpsw_slot *slot;
843         uint32_t i;
844
845         CPSW_DEBUGF((""));
846         ifp = sc->ifp;
847         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
848                 return;
849
850         getbinuptime(&sc->init_uptime);
851
852         /* Reset the controller. */
853         cpsw_reset(sc);
854
855         /* Enable ALE */
856         cpsw_write_4(sc, CPSW_ALE_CONTROL, 1 << 31 | 1 << 4);
857
858         /* Init Sliver port 1 and 2 */
859         for (i = 0; i < 2; i++) {
860                 /* Set Slave Mapping */
861                 cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
862                 cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i + 1), 0x33221100);
863                 cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
864                 /* Set MACCONTROL for ports 0,1: IFCTL_B(16), IFCTL_A(15),
865                    GMII_EN(5), FULLDUPLEX(1) */
866                 /* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
867                 /* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
868                 cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), 1 << 15 | 1 << 5 | 1);
869         }
870
871         /* Set Host Port Mapping */
872         cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
873         cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
874
875         /* Initialize ALE: all ports set to forwarding(3), initialize addrs */
876         for (i = 0; i < 3; i++)
877                 cpsw_write_4(sc, CPSW_ALE_PORTCTL(i), 3);
878         cpsw_ale_update_addresses(sc, 1);
879
880         cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
881
882         /* Enable statistics for ports 0, 1 and 2 */
883         cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
884
885         /* Experiment:  Turn off flow control */
886         /* This seems to fix the watchdog resets that have plagued
887            earlier versions of this driver; I'm not yet sure if there
888            are negative effects yet. */
889         cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
890
891         /* Make IP hdr aligned with 4 */
892         cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
893
894         /* Initialize RX Buffer Descriptors */
895         cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
896
897         /* Enable TX & RX DMA */
898         cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
899         cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
900
901         /* Enable Interrupts for core 0 */
902         cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
903         cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
904         cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x3F);
905
906         /* Enable host Error Interrupt */
907         cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
908
909         /* Enable interrupts for RX Channel 0 */
910         cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
911
912         /* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
913         /* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
914         cpsw_write_4(sc, MDIOCONTROL, 1 << 30 | 1 << 18 | 0xFF);
915
916         /* Select MII in GMII_SEL, Internal Delay mode */
917         //ti_scm_reg_write_4(0x650, 0);
918
919         /* Initialize active queues. */
920         slot = STAILQ_FIRST(&sc->tx.active);
921         if (slot != NULL)
922                 cpsw_write_hdp_slot(sc, &sc->tx, slot);
923         slot = STAILQ_FIRST(&sc->rx.active);
924         if (slot != NULL)
925                 cpsw_write_hdp_slot(sc, &sc->rx, slot);
926         cpsw_rx_enqueue(sc);
927
928         /* Activate network interface */
929         sc->rx.running = 1;
930         sc->tx.running = 1;
931         sc->watchdog.timer = 0;
932         callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
933         sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
934         sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
935
936 }
937
938 static int
939 cpsw_shutdown(device_t dev)
940 {
941         struct cpsw_softc *sc = device_get_softc(dev);
942
943         CPSW_DEBUGF((""));
944         CPSW_GLOBAL_LOCK(sc);
945         cpsw_shutdown_locked(sc);
946         CPSW_GLOBAL_UNLOCK(sc);
947         return (0);
948 }
949
950 static void
951 cpsw_rx_teardown_locked(struct cpsw_softc *sc)
952 {
953         struct mbuf *received, *next;
954         int i = 0;
955
956         CPSW_DEBUGF(("starting RX teardown"));
957         cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
958         for (;;) {
959                 received = cpsw_rx_dequeue(sc);
960                 CPSW_GLOBAL_UNLOCK(sc);
961                 while (received != NULL) {
962                         next = received->m_nextpkt;
963                         received->m_nextpkt = NULL;
964                         (*sc->ifp->if_input)(sc->ifp, received);
965                         received = next;
966                 }
967                 CPSW_GLOBAL_LOCK(sc);
968                 if (!sc->rx.running) {
969                         CPSW_DEBUGF(("finished RX teardown (%d retries)", i));
970                         return;
971                 }
972                 if (++i > 10) {
973                         if_printf(sc->ifp, "Unable to cleanly shutdown receiver\n");
974                         return;
975                 }
976                 DELAY(10);
977         }
978 }
979
980 static void
981 cpsw_tx_teardown_locked(struct cpsw_softc *sc)
982 {
983         int i = 0;
984
985         CPSW_DEBUGF(("starting TX teardown"));
986         cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
987         cpsw_tx_dequeue(sc);
988         while (sc->tx.running && ++i < 10) {
989                 DELAY(10);
990                 cpsw_tx_dequeue(sc);
991         }
992         if (sc->tx.running)
993                 if_printf(sc->ifp, "Unable to cleanly shutdown transmitter\n");
994         CPSW_DEBUGF(("finished TX teardown (%d retries, %d idle buffers)",
995             i, sc->tx.active_queue_len));
996 }
997
998 static void
999 cpsw_shutdown_locked(struct cpsw_softc *sc)
1000 {
1001         struct ifnet *ifp;
1002
1003         CPSW_DEBUGF((""));
1004         CPSW_GLOBAL_LOCK_ASSERT(sc);
1005         ifp = sc->ifp;
1006
1007         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1008                 return;
1009
1010         /* Disable interface */
1011         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1012         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1013
1014         /* Stop ticker */
1015         callout_stop(&sc->watchdog.callout);
1016
1017         /* Tear down the RX/TX queues. */
1018         cpsw_rx_teardown_locked(sc);
1019         cpsw_tx_teardown_locked(sc);
1020
1021         /* Capture stats before we reset controller. */
1022         cpsw_stats_collect(sc);
1023
1024         cpsw_reset(sc);
1025 }
1026
1027 /*
1028  *  Suspend/Resume.
1029  */
1030
1031 static int
1032 cpsw_suspend(device_t dev)
1033 {
1034         struct cpsw_softc *sc = device_get_softc(dev);
1035
1036         CPSW_DEBUGF((""));
1037         CPSW_GLOBAL_LOCK(sc);
1038         cpsw_shutdown_locked(sc);
1039         CPSW_GLOBAL_UNLOCK(sc);
1040         return (0);
1041 }
1042
1043 static int
1044 cpsw_resume(device_t dev)
1045 {
1046         struct cpsw_softc *sc = device_get_softc(dev);
1047
1048         CPSW_DEBUGF(("UNIMPLEMENTED"));
1049         return (0);
1050 }
1051
1052 /*
1053  *
1054  *  IOCTL
1055  *
1056  */
1057
1058 static void
1059 cpsw_set_promisc(struct cpsw_softc *sc, int set)
1060 {
1061         /*
1062          * Enabling promiscuous mode requires two bits of work: First,
1063          * ALE_BYPASS needs to be enabled.  That disables the ALE
1064          * forwarding logic and causes every packet to be sent to the
1065          * host port.  That makes us promiscuous wrt received packets.
1066          *
1067          * With ALE forwarding disabled, the transmitter needs to set
1068          * an explicit output port on every packet to route it to the
1069          * correct egress.  This should be doable for systems such as
1070          * BeagleBone where only one egress port is actually wired to
1071          * a PHY.  If you have both egress ports wired up, life gets a
1072          * lot more interesting.
1073          *
1074          * Hmmm.... NetBSD driver uses ALE_BYPASS always and doesn't
1075          * seem to set explicit egress ports.  Does that mean they
1076          * are always promiscuous?
1077          */
1078         if (set) {
1079                 printf("Promiscuous mode unimplemented\n");
1080         }
1081 }
1082
1083 static void
1084 cpsw_set_allmulti(struct cpsw_softc *sc, int set)
1085 {
1086         if (set) {
1087                 printf("All-multicast mode unimplemented\n");
1088         }
1089 }
1090
1091 static int
1092 cpsw_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1093 {
1094         struct cpsw_softc *sc = ifp->if_softc;
1095         struct ifreq *ifr = (struct ifreq *)data;
1096         int error;
1097         uint32_t changed;
1098
1099         error = 0;
1100
1101         switch (command) {
1102         case SIOCSIFFLAGS:
1103                 CPSW_GLOBAL_LOCK(sc);
1104                 if (ifp->if_flags & IFF_UP) {
1105                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1106                                 changed = ifp->if_flags ^ sc->cpsw_if_flags;
1107                                 CPSW_DEBUGF(("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)", changed));
1108                                 if (changed & IFF_PROMISC)
1109                                         cpsw_set_promisc(sc,
1110                                             ifp->if_flags & IFF_PROMISC);
1111                                 if (changed & IFF_ALLMULTI)
1112                                         cpsw_set_allmulti(sc,
1113                                             ifp->if_flags & IFF_ALLMULTI);
1114                         } else {
1115                                 CPSW_DEBUGF(("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
1116                                 cpsw_init_locked(sc);
1117                         }
1118                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1119                         CPSW_DEBUGF(("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
1120                         cpsw_shutdown_locked(sc);
1121                 }
1122
1123                 sc->cpsw_if_flags = ifp->if_flags;
1124                 CPSW_GLOBAL_UNLOCK(sc);
1125                 break;
1126         case SIOCADDMULTI:
1127                 cpsw_ale_update_addresses(sc, 0);
1128                 break;
1129         case SIOCDELMULTI:
1130                 /* Ugh.  DELMULTI doesn't provide the specific address
1131                    being removed, so the best we can do is remove
1132                    everything and rebuild it all. */
1133                 cpsw_ale_update_addresses(sc, 1);
1134                 break;
1135         case SIOCGIFMEDIA:
1136         case SIOCSIFMEDIA:
1137                 error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1138                 break;
1139         default:
1140                 error = ether_ioctl(ifp, command, data);
1141         }
1142         return (error);
1143 }
1144
1145 /*
1146  *
1147  * MIIBUS
1148  *
1149  */
1150 static int
1151 cpsw_miibus_ready(struct cpsw_softc *sc)
1152 {
1153         uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1154
1155         while (--retries) {
1156                 r = cpsw_read_4(sc, MDIOUSERACCESS0);
1157                 if ((r & 1 << 31) == 0)
1158                         return 1;
1159                 DELAY(CPSW_MIIBUS_DELAY);
1160         }
1161         return 0;
1162 }
1163
1164 static int
1165 cpsw_miibus_readreg(device_t dev, int phy, int reg)
1166 {
1167         struct cpsw_softc *sc = device_get_softc(dev);
1168         uint32_t cmd, r;
1169
1170         if (!cpsw_miibus_ready(sc)) {
1171                 device_printf(dev, "MDIO not ready to read\n");
1172                 return 0;
1173         }
1174
1175         /* Set GO, reg, phy */
1176         cmd = 1 << 31 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1177         cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1178
1179         if (!cpsw_miibus_ready(sc)) {
1180                 device_printf(dev, "MDIO timed out during read\n");
1181                 return 0;
1182         }
1183
1184         r = cpsw_read_4(sc, MDIOUSERACCESS0);
1185         if((r & 1 << 29) == 0) {
1186                 device_printf(dev, "Failed to read from PHY.\n");
1187                 r = 0;
1188         }
1189         return (r & 0xFFFF);
1190 }
1191
1192 static int
1193 cpsw_miibus_writereg(device_t dev, int phy, int reg, int value)
1194 {
1195         struct cpsw_softc *sc = device_get_softc(dev);
1196         uint32_t cmd;
1197
1198         if (!cpsw_miibus_ready(sc)) {
1199                 device_printf(dev, "MDIO not ready to write\n");
1200                 return 0;
1201         }
1202
1203         /* Set GO, WRITE, reg, phy, and value */
1204         cmd = 3 << 30 | (reg & 0x1F) << 21 | (phy & 0x1F) << 16
1205             | (value & 0xFFFF);
1206         cpsw_write_4(sc, MDIOUSERACCESS0, cmd);
1207
1208         if (!cpsw_miibus_ready(sc)) {
1209                 device_printf(dev, "MDIO timed out during write\n");
1210                 return 0;
1211         }
1212
1213         if((cpsw_read_4(sc, MDIOUSERACCESS0) & (1 << 29)) == 0)
1214                 device_printf(dev, "Failed to write to PHY.\n");
1215
1216         return 0;
1217 }
1218
1219 /*
1220  *
1221  * Transmit/Receive Packets.
1222  *
1223  */
1224
1225
1226 static void
1227 cpsw_intr_rx(void *arg)
1228 {
1229         struct cpsw_softc *sc = arg;
1230         struct mbuf *received, *next;
1231
1232         CPSW_RX_LOCK(sc);
1233         received = cpsw_rx_dequeue(sc);
1234         cpsw_rx_enqueue(sc);
1235         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1236         CPSW_RX_UNLOCK(sc);
1237         
1238         while (received != NULL) {
1239                 next = received->m_nextpkt;
1240                 received->m_nextpkt = NULL;
1241                 (*sc->ifp->if_input)(sc->ifp, received);
1242                 received = next;
1243         }
1244 }
1245
1246 static struct mbuf *
1247 cpsw_rx_dequeue(struct cpsw_softc *sc)
1248 {
1249         struct cpsw_cpdma_bd bd;
1250         struct cpsw_slot *slot;
1251         struct ifnet *ifp;
1252         struct mbuf *mb_head, *mb_tail;
1253         int removed = 0;
1254
1255         ifp = sc->ifp;
1256         mb_head = mb_tail = NULL;
1257
1258         /* Pull completed packets off hardware RX queue. */
1259         while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1260                 cpsw_cpdma_read_bd(sc, slot, &bd);
1261                 if (bd.flags & CPDMA_BD_OWNER)
1262                         break; /* Still in use by hardware */
1263
1264                 CPSW_DEBUGF(("Removing received packet from RX queue"));
1265                 ++removed;
1266                 STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1267                 STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1268
1269                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1270                 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1271
1272                 if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1273                         CPSW_DEBUGF(("RX teardown in progress"));
1274                         m_freem(slot->mbuf);
1275                         slot->mbuf = NULL;
1276                         cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1277                         sc->rx.running = 0;
1278                         break;
1279                 }
1280
1281                 cpsw_write_cp_slot(sc, &sc->rx, slot);
1282
1283                 /* Set up mbuf */
1284                 /* TODO: track SOP/EOP bits to assemble a full mbuf
1285                    out of received fragments. */
1286                 slot->mbuf->m_hdr.mh_data += bd.bufoff;
1287                 slot->mbuf->m_hdr.mh_len = bd.pktlen - 4;
1288                 slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1289                 slot->mbuf->m_flags |= M_PKTHDR;
1290                 slot->mbuf->m_pkthdr.rcvif = ifp;
1291                 slot->mbuf->m_nextpkt = NULL;
1292
1293                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1294                         /* check for valid CRC by looking into pkt_err[5:4] */
1295                         if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1296                                 slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1297                                 slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1298                                 slot->mbuf->m_pkthdr.csum_data = 0xffff;
1299                         }
1300                 }
1301
1302                 /* Add mbuf to packet list to be returned. */
1303                 if (mb_tail) {
1304                         mb_tail->m_nextpkt = slot->mbuf;
1305                 } else {
1306                         mb_head = slot->mbuf;
1307                 }
1308                 mb_tail = slot->mbuf;
1309                 slot->mbuf = NULL;
1310         }
1311
1312         if (removed != 0) {
1313                 sc->rx.queue_removes += removed;
1314                 sc->rx.active_queue_len -= removed;
1315                 sc->rx.avail_queue_len += removed;
1316                 if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1317                         sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1318         }
1319         return (mb_head);
1320 }
1321
1322 static void
1323 cpsw_rx_enqueue(struct cpsw_softc *sc)
1324 {
1325         bus_dma_segment_t seg[1];
1326         struct cpsw_cpdma_bd bd;
1327         struct ifnet *ifp = sc->ifp;
1328         struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1329         struct cpsw_slot *slot, *prev_slot = NULL;
1330         struct cpsw_slot *last_old_slot, *first_new_slot;
1331         int error, nsegs, added = 0;
1332
1333         /* Register new mbufs with hardware. */
1334         while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1335                 if (slot->mbuf == NULL) {
1336                         slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1337                         if (slot->mbuf == NULL) {
1338                                 if_printf(sc->ifp, "Unable to fill RX queue\n");
1339                                 break;
1340                         }
1341                         slot->mbuf->m_len =
1342                             slot->mbuf->m_pkthdr.len =
1343                             slot->mbuf->m_ext.ext_size;
1344                 }
1345
1346                 error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1347                     slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1348
1349                 KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1350                 KASSERT(error == 0, ("DMA error (error=%d)", error));
1351                 if (error != 0 || nsegs != 1) {
1352                         if_printf(ifp,
1353                             "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1354                             __func__, nsegs, error);
1355                         bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1356                         m_freem(slot->mbuf);
1357                         slot->mbuf = NULL;
1358                         break;
1359                 }
1360
1361                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1362
1363                 /* Create and submit new rx descriptor*/
1364                 bd.next = 0;
1365                 bd.bufptr = seg->ds_addr;
1366                 bd.bufoff = 0;
1367                 bd.buflen = MCLBYTES - 1;
1368                 bd.pktlen = bd.buflen;
1369                 bd.flags = CPDMA_BD_OWNER;
1370                 cpsw_cpdma_write_bd(sc, slot, &bd);
1371                 ++added;
1372
1373                 if (prev_slot != NULL)
1374                         cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1375                 prev_slot = slot;
1376                 STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1377                 sc->rx.avail_queue_len--;
1378                 STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1379         }
1380
1381         if (added == 0)
1382                 return;
1383
1384         CPSW_DEBUGF(("Adding %d buffers to RX queue", added));
1385
1386         /* Link new entries to hardware RX queue. */
1387         last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1388         first_new_slot = STAILQ_FIRST(&tmpqueue);
1389         STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
1390         if (first_new_slot == NULL) {
1391                 return;
1392         } else if (last_old_slot == NULL) {
1393                 /* Start a fresh queue. */
1394                 cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1395         } else {
1396                 /* Add buffers to end of current queue. */
1397                 cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1398                 /* If underrun, restart queue. */
1399                 if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1400                         cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1401                 }
1402         }
1403         sc->rx.queue_adds += added;
1404         sc->rx.active_queue_len += added;
1405         if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1406                 sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1407         }
1408 }
1409
1410 static void
1411 cpsw_start(struct ifnet *ifp)
1412 {
1413         struct cpsw_softc *sc = ifp->if_softc;
1414
1415         CPSW_TX_LOCK(sc);
1416         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->tx.running) {
1417                 cpsw_tx_enqueue(sc);
1418                 cpsw_tx_dequeue(sc);
1419         }
1420         CPSW_TX_UNLOCK(sc);
1421 }
1422
1423 static void
1424 cpsw_tx_enqueue(struct cpsw_softc *sc)
1425 {
1426         bus_dma_segment_t segs[CPSW_TXFRAGS];
1427         struct cpsw_cpdma_bd bd;
1428         struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1429         struct cpsw_slot *slot, *prev_slot = NULL;
1430         struct cpsw_slot *last_old_slot, *first_new_slot;
1431         struct mbuf *m0;
1432         int error, nsegs, seg, added = 0, padlen;
1433
1434         /* Pull pending packets from IF queue and prep them for DMA. */
1435         while ((slot = STAILQ_FIRST(&sc->tx.avail)) != NULL) {
1436                 IF_DEQUEUE(&sc->ifp->if_snd, m0);
1437                 if (m0 == NULL)
1438                         break;
1439
1440                 slot->mbuf = m0;
1441                 padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1442                 if (padlen < 0)
1443                         padlen = 0;
1444
1445                 /* Create mapping in DMA memory */
1446                 error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1447                     slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1448                 /* If the packet is too fragmented, try to simplify. */
1449                 if (error == EFBIG ||
1450                     (error == 0 &&
1451                         nsegs + (padlen > 0 ? 1 : 0) > sc->tx.avail_queue_len)) {
1452                         bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1453                         if (padlen > 0) /* May as well add padding. */
1454                                 m_append(slot->mbuf, padlen,
1455                                     sc->null_mbuf->m_hdr.mh_data);
1456                         m0 = m_defrag(slot->mbuf, M_NOWAIT);
1457                         if (m0 == NULL) {
1458                                 if_printf(sc->ifp,
1459                                     "Can't defragment packet; dropping\n");
1460                                 m_freem(slot->mbuf);
1461                         } else {
1462                                 CPSW_DEBUGF(("Requeueing defragmented packet"));
1463                                 IF_PREPEND(&sc->ifp->if_snd, m0);
1464                         }
1465                         slot->mbuf = NULL;
1466                         continue;
1467                 }
1468                 if (error != 0) {
1469                         if_printf(sc->ifp,
1470                             "%s: Can't setup DMA (error=%d), dropping packet\n",
1471                             __func__, error);
1472                         bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1473                         m_freem(slot->mbuf);
1474                         slot->mbuf = NULL;
1475                         break;
1476                 }
1477
1478                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap,
1479                                 BUS_DMASYNC_PREWRITE);
1480
1481
1482                 CPSW_DEBUGF(("Queueing TX packet: %d segments + %d pad bytes",
1483                         nsegs, padlen));
1484
1485                 /* If there is only one segment, the for() loop
1486                  * gets skipped and the single buffer gets set up
1487                  * as both SOP and EOP. */
1488                 /* Start by setting up the first buffer */
1489                 bd.next = 0;
1490                 bd.bufptr = segs[0].ds_addr;
1491                 bd.bufoff = 0;
1492                 bd.buflen = segs[0].ds_len;
1493                 bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1494                 bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1495                 for (seg = 1; seg < nsegs; ++seg) {
1496                         /* Save the previous buffer (which isn't EOP) */
1497                         cpsw_cpdma_write_bd(sc, slot, &bd);
1498                         if (prev_slot != NULL)
1499                                 cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1500                         prev_slot = slot;
1501                         STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1502                         sc->tx.avail_queue_len--;
1503                         STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1504                         ++added;
1505                         slot = STAILQ_FIRST(&sc->tx.avail);
1506
1507                         /* Setup next buffer (which isn't SOP) */
1508                         bd.next = 0;
1509                         bd.bufptr = segs[seg].ds_addr;
1510                         bd.bufoff = 0;
1511                         bd.buflen = segs[seg].ds_len;
1512                         bd.pktlen = 0;
1513                         bd.flags = CPDMA_BD_OWNER;
1514                 }
1515                 /* Save the final buffer. */
1516                 if (padlen <= 0)
1517                         bd.flags |= CPDMA_BD_EOP;
1518                 cpsw_cpdma_write_bd(sc, slot, &bd);
1519                 if (prev_slot != NULL)
1520                         cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1521                 prev_slot = slot;
1522                 STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1523                 sc->tx.avail_queue_len--;
1524                 STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1525                 ++added;
1526
1527                 if (padlen > 0) {
1528                         slot = STAILQ_FIRST(&sc->tx.avail);
1529                         STAILQ_REMOVE_HEAD(&sc->tx.avail, next);
1530                         sc->tx.avail_queue_len--;
1531                         STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1532                         ++added;
1533
1534                         /* Setup buffer of null pad bytes (definitely EOP) */
1535                         cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1536                         prev_slot = slot;
1537                         bd.next = 0;
1538                         bd.bufptr = sc->null_mbuf_paddr;
1539                         bd.bufoff = 0;
1540                         bd.buflen = padlen;
1541                         bd.pktlen = 0;
1542                         bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER;
1543                         cpsw_cpdma_write_bd(sc, slot, &bd);
1544                         ++nsegs;
1545                 }
1546
1547                 if (nsegs > sc->tx.longest_chain)
1548                         sc->tx.longest_chain = nsegs;
1549
1550                 // TODO: Should we defer the BPF tap until
1551                 // after all packets are queued?
1552                 BPF_MTAP(sc->ifp, m0);
1553         }
1554
1555         /* Attach the list of new buffers to the hardware TX queue. */
1556         last_old_slot = STAILQ_LAST(&sc->tx.active, cpsw_slot, next);
1557         first_new_slot = STAILQ_FIRST(&tmpqueue);
1558         STAILQ_CONCAT(&sc->tx.active, &tmpqueue);
1559         if (first_new_slot == NULL) {
1560                 return;
1561         } else if (last_old_slot == NULL) {
1562                 /* Start a fresh queue. */
1563                 cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1564         } else {
1565                 /* Add buffers to end of current queue. */
1566                 cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1567                 /* If underrun, restart queue. */
1568                 if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1569                         cpsw_write_hdp_slot(sc, &sc->tx, first_new_slot);
1570                 }
1571         }
1572         sc->tx.queue_adds += added;
1573         sc->tx.active_queue_len += added;
1574         if (sc->tx.active_queue_len > sc->tx.max_active_queue_len) {
1575                 sc->tx.max_active_queue_len = sc->tx.active_queue_len;
1576         }
1577 }
1578
1579 static int
1580 cpsw_tx_dequeue(struct cpsw_softc *sc)
1581 {
1582         struct cpsw_slot *slot, *last_removed_slot = NULL;
1583         uint32_t flags, removed = 0;
1584
1585         slot = STAILQ_FIRST(&sc->tx.active);
1586         if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
1587                 CPSW_DEBUGF(("TX teardown of an empty queue"));
1588                 cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1589                 sc->tx.running = 0;
1590                 return (0);
1591         }
1592
1593         /* Pull completed buffers off the hardware TX queue. */
1594         while (slot != NULL) {
1595                 flags = cpsw_cpdma_read_bd_flags(sc, slot);
1596                 if (flags & CPDMA_BD_OWNER)
1597                         break; /* Hardware is still using this packet. */
1598
1599                 CPSW_DEBUGF(("TX removing completed packet"));
1600                 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1601                 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1602                 m_freem(slot->mbuf);
1603                 slot->mbuf = NULL;
1604
1605                 /* Dequeue any additional buffers used by this packet. */
1606                 while (slot != NULL && slot->mbuf == NULL) {
1607                         STAILQ_REMOVE_HEAD(&sc->tx.active, next);
1608                         STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
1609                         ++removed;
1610                         last_removed_slot = slot;
1611                         slot = STAILQ_FIRST(&sc->tx.active);
1612                 }
1613
1614                 /* TearDown complete is only marked on the SOP for the packet. */
1615                 if (flags & CPDMA_BD_TDOWNCMPLT) {
1616                         CPSW_DEBUGF(("TX teardown in progress"));
1617                         cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1618                         // TODO: Increment a count of dropped TX packets
1619                         sc->tx.running = 0;
1620                         break;
1621                 }
1622         }
1623
1624         if (removed != 0) {
1625                 cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
1626                 sc->tx.queue_removes += removed;
1627                 sc->tx.active_queue_len -= removed;
1628                 sc->tx.avail_queue_len += removed;
1629                 if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
1630                         sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
1631         }
1632         return (removed);
1633 }
1634
1635 /*
1636  *
1637  * Miscellaneous interrupts.
1638  *
1639  */
1640
1641 static void
1642 cpsw_intr_rx_thresh(void *arg)
1643 {
1644         struct cpsw_softc *sc = arg;
1645         uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
1646
1647         CPSW_DEBUGF(("stat=%x", stat));
1648         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
1649 }
1650
1651 static void
1652 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
1653 {
1654         uint32_t intstat;
1655         uint32_t dmastat;
1656         int txerr, rxerr, txchan, rxchan;
1657
1658         printf("\n\n");
1659         device_printf(sc->dev,
1660             "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
1661         printf("\n\n");
1662         intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
1663         device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
1664         dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
1665         device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
1666
1667         txerr = (dmastat >> 20) & 15;
1668         txchan = (dmastat >> 16) & 7;
1669         rxerr = (dmastat >> 12) & 15;
1670         rxchan = (dmastat >> 8) & 7;
1671
1672         switch (txerr) {
1673         case 0: break;
1674         case 1: printf("SOP error on TX channel %d\n", txchan);
1675                 break;
1676         case 2: printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
1677                 break;
1678         case 3: printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
1679                 break;
1680         case 4: printf("Zero Buffer Pointer on TX channel %d\n", txchan);
1681                 break;
1682         case 5: printf("Zero Buffer Length on TX channel %d\n", txchan);
1683                 break;
1684         case 6: printf("Packet length error on TX channel %d\n", txchan);
1685                 break;
1686         default: printf("Unknown error on TX channel %d\n", txchan);
1687                 break;
1688         }
1689
1690         if (txerr != 0) {
1691                 printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
1692                     txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
1693                 printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
1694                     txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
1695                 cpsw_dump_queue(sc, &sc->tx.active);
1696         }
1697
1698         switch (rxerr) {
1699         case 0: break;
1700         case 2: printf("Ownership bit not set on RX channel %d\n", rxchan);
1701                 break;
1702         case 4: printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
1703                 break;
1704         case 5: printf("Zero Buffer Length on RX channel %d\n", rxchan);
1705                 break;
1706         case 6: printf("Buffer offset too big on RX channel %d\n", rxchan);
1707                 break;
1708         default: printf("Unknown RX error on RX channel %d\n", rxchan);
1709                 break;
1710         }
1711
1712         if (rxerr != 0) {
1713                 printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
1714                     rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
1715                 printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
1716                     rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
1717                 cpsw_dump_queue(sc, &sc->rx.active);
1718         }
1719
1720         printf("\nALE Table\n");
1721         cpsw_ale_dump_table(sc);
1722
1723         // XXX do something useful here??
1724         panic("CPSW HOST ERROR INTERRUPT");
1725
1726         // Suppress this interrupt in the future.
1727         cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
1728         printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
1729         // The watchdog will probably reset the controller
1730         // in a little while.  It will probably fail again.
1731 }
1732
1733 static void
1734 cpsw_intr_misc(void *arg)
1735 {
1736         struct cpsw_softc *sc = arg;
1737         uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
1738
1739         if (stat & 16)
1740                 CPSW_DEBUGF(("Time sync event interrupt unimplemented"));
1741         if (stat & 8)
1742                 cpsw_stats_collect(sc);
1743         if (stat & 4)
1744                 cpsw_intr_misc_host_error(sc);
1745         if (stat & 2)
1746                 CPSW_DEBUGF(("MDIO link change interrupt unimplemented"));
1747         if (stat & 1)
1748                 CPSW_DEBUGF(("MDIO operation completed interrupt unimplemented"));
1749         cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
1750 }
1751
1752 /*
1753  *
1754  * Periodic Checks and Watchdog.
1755  *
1756  */
1757
1758 static void
1759 cpsw_tick(void *msc)
1760 {
1761         struct cpsw_softc *sc = msc;
1762
1763         /* Check for TX timeout */
1764         cpsw_tx_watchdog(sc);
1765
1766         /* Check for media type change */
1767         mii_tick(sc->mii);
1768         if(sc->cpsw_media_status != sc->mii->mii_media.ifm_media) {
1769                 printf("%s: media type changed (ifm_media=%x)\n", __func__, 
1770                         sc->mii->mii_media.ifm_media);
1771                 cpsw_ifmedia_upd(sc->ifp);
1772         }
1773
1774         /* Schedule another timeout one second from now */
1775         callout_reset(&sc->watchdog.callout, hz, cpsw_tick, sc);
1776 }
1777
1778 static void
1779 cpsw_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1780 {
1781         struct cpsw_softc *sc = ifp->if_softc;
1782         struct mii_data *mii;
1783
1784         CPSW_DEBUGF((""));
1785         CPSW_TX_LOCK(sc);
1786
1787         mii = sc->mii;
1788         mii_pollstat(mii);
1789
1790         ifmr->ifm_active = mii->mii_media_active;
1791         ifmr->ifm_status = mii->mii_media_status;
1792
1793         CPSW_TX_UNLOCK(sc);
1794 }
1795
1796 static int
1797 cpsw_ifmedia_upd(struct ifnet *ifp)
1798 {
1799         struct cpsw_softc *sc = ifp->if_softc;
1800
1801         CPSW_DEBUGF((""));
1802         if (ifp->if_flags & IFF_UP) {
1803                 CPSW_GLOBAL_LOCK(sc);
1804                 sc->cpsw_media_status = sc->mii->mii_media.ifm_media;
1805                 mii_mediachg(sc->mii);
1806                 cpsw_init_locked(sc);
1807                 CPSW_GLOBAL_UNLOCK(sc);
1808         }
1809
1810         return (0);
1811 }
1812
1813 static void
1814 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
1815 {
1816         cpsw_debugf_head("CPSW watchdog");
1817         if_printf(sc->ifp, "watchdog timeout\n");
1818         cpsw_shutdown_locked(sc);
1819         cpsw_init_locked(sc);
1820 }
1821
1822 static void
1823 cpsw_tx_watchdog(struct cpsw_softc *sc)
1824 {
1825         struct ifnet *ifp = sc->ifp;
1826
1827         CPSW_GLOBAL_LOCK(sc);
1828         if (sc->tx.active_queue_len == 0 || (ifp->if_flags & IFF_UP) == 0 ||
1829             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !sc->tx.running) {
1830                 sc->watchdog.timer = 0; /* Nothing to do. */
1831         } else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
1832                 sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
1833         } else if (cpsw_tx_dequeue(sc) > 0) {
1834                 sc->watchdog.timer = 0;  /* We just did something. */
1835         } else {
1836                 /* There was something to do but it didn't get done. */
1837                 ++sc->watchdog.timer;
1838                 if (sc->watchdog.timer > 2) {
1839                         sc->watchdog.timer = 0;
1840                         ++ifp->if_oerrors;
1841                         ++sc->watchdog.resets;
1842                         cpsw_tx_watchdog_full_reset(sc);
1843                 }
1844         }
1845         sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
1846         CPSW_GLOBAL_UNLOCK(sc);
1847 }
1848
1849 /*
1850  *
1851  * ALE support routines.
1852  *
1853  */
1854
1855 static void
1856 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1857 {
1858         cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
1859         ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
1860         ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
1861         ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
1862 }
1863
1864 static void
1865 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
1866 {
1867         cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
1868         cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
1869         cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
1870         cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
1871 }
1872
1873 static int
1874 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
1875 {
1876         int i;
1877         uint32_t ale_entry[3];
1878
1879         /* First two entries are link address and broadcast. */
1880         for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
1881                 cpsw_ale_read_entry(sc, i, ale_entry);
1882                 if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
1883                     ((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
1884                         ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
1885                         cpsw_ale_write_entry(sc, i, ale_entry);
1886                 }
1887         }
1888         return CPSW_MAX_ALE_ENTRIES;
1889 }
1890
1891 static int
1892 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, uint8_t *mac)
1893 {
1894         int free_index = -1, matching_index = -1, i;
1895         uint32_t ale_entry[3];
1896
1897         /* Find a matching entry or a free entry. */
1898         for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1899                 cpsw_ale_read_entry(sc, i, ale_entry);
1900
1901                 /* Entry Type[61:60] is 0 for free entry */ 
1902                 if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
1903                         free_index = i;
1904                 }
1905
1906                 if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
1907                     (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
1908                     (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
1909                     (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
1910                     (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
1911                     (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
1912                         matching_index = i;
1913                         break;
1914                 }
1915         }
1916
1917         if (matching_index < 0) {
1918                 if (free_index < 0)
1919                         return (ENOMEM);
1920                 i = free_index;
1921         }
1922
1923         /* Set MAC address */
1924         ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1925         ale_entry[1] = mac[0] << 8 | mac[1];
1926
1927         /* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
1928         ale_entry[1] |= 0xd0 << 24;
1929
1930         /* Set portmask [68:66] */
1931         ale_entry[2] = (portmap & 7) << 2;
1932
1933         cpsw_ale_write_entry(sc, i, ale_entry);
1934
1935         return 0;
1936 }
1937
1938 static void
1939 cpsw_ale_dump_table(struct cpsw_softc *sc) {
1940         int i;
1941         uint32_t ale_entry[3];
1942         for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
1943                 cpsw_ale_read_entry(sc, i, ale_entry);
1944                 if (ale_entry[0] || ale_entry[1] || ale_entry[2]) {
1945                         printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[0],
1946                                 ale_entry[1], ale_entry[2]);
1947                         printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
1948                                 (ale_entry[1] >> 8) & 0xFF,
1949                                 (ale_entry[1] >> 0) & 0xFF,
1950                                 (ale_entry[0] >>24) & 0xFF,
1951                                 (ale_entry[0] >>16) & 0xFF,
1952                                 (ale_entry[0] >> 8) & 0xFF,
1953                                 (ale_entry[0] >> 0) & 0xFF);
1954                         printf(((ale_entry[1] >> 8) & 1) ? "mcast " : "ucast ");
1955                         printf("type: %u ", (ale_entry[1] >> 28) & 3);
1956                         printf("port: %u ", (ale_entry[2] >> 2) & 7);
1957                         printf("\n");
1958                 }
1959         }
1960         printf("\n");
1961 }
1962
1963 static int
1964 cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
1965 {
1966         uint8_t *mac;
1967         uint32_t ale_entry[3];
1968         struct ifnet *ifp = sc->ifp;
1969         struct ifmultiaddr *ifma;
1970         int i;
1971
1972         /* Route incoming packets for our MAC address to Port 0 (host). */
1973         /* For simplicity, keep this entry at table index 0 in the ALE. */
1974         if_addr_rlock(ifp);
1975         mac = LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr);
1976         ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
1977         ale_entry[1] = 0x10 << 24 | mac[0] << 8 | mac[1]; /* addr entry + mac */
1978         ale_entry[2] = 0; /* port = 0 */
1979         cpsw_ale_write_entry(sc, 0, ale_entry);
1980
1981         /* Set outgoing MAC Address for Ports 1 and 2. */
1982         for (i = 1; i < 3; ++i) {
1983                 cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i),
1984                     mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
1985                 cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i),
1986                     mac[5] << 8 | mac[4]);
1987         }
1988         if_addr_runlock(ifp);
1989
1990         /* Keep the broadcast address at table entry 1. */
1991         ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
1992         ale_entry[1] = 0xd000ffff; /* FW (3 << 30), Addr entry (1 << 24), upper 16 bits of Mac */ 
1993         ale_entry[2] = 0x0000001c; /* Forward to all ports */
1994         cpsw_ale_write_entry(sc, 1, ale_entry);
1995
1996         /* SIOCDELMULTI doesn't specify the particular address
1997            being removed, so we have to remove all and rebuild. */
1998         if (purge)
1999                 cpsw_ale_remove_all_mc_entries(sc);
2000
2001         /* Set other multicast addrs desired. */
2002         if_maddr_rlock(ifp);
2003         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2004                 if (ifma->ifma_addr->sa_family != AF_LINK)
2005                         continue;
2006                 cpsw_ale_mc_entry_set(sc, 7,
2007                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2008         }
2009         if_maddr_runlock(ifp);
2010
2011         return (0);
2012 }
2013
2014 /*
2015  *
2016  * Statistics and Sysctls.
2017  *
2018  */
2019
2020 #if 0
2021 static void
2022 cpsw_stats_dump(struct cpsw_softc *sc)
2023 {
2024         int i;
2025         uint32_t r;
2026
2027         for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2028                 r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2029                     cpsw_stat_sysctls[i].reg);
2030                 CPSW_DEBUGF(("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2031                              (intmax_t)sc->shadow_stats[i], r,
2032                              (intmax_t)sc->shadow_stats[i] + r));
2033         }
2034 }
2035 #endif
2036
2037 static void
2038 cpsw_stats_collect(struct cpsw_softc *sc)
2039 {
2040         int i;
2041         uint32_t r;
2042
2043         CPSW_DEBUGF(("Controller shadow statistics updated."));
2044
2045         for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2046                 r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2047                     cpsw_stat_sysctls[i].reg);
2048                 sc->shadow_stats[i] += r;
2049                 cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg, r);
2050         }
2051 }
2052
2053 static int
2054 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2055 {
2056         struct cpsw_softc *sc;
2057         struct cpsw_stat *stat;
2058         uint64_t result;
2059
2060         sc = (struct cpsw_softc *)arg1;
2061         stat = &cpsw_stat_sysctls[oidp->oid_number];
2062         result = sc->shadow_stats[oidp->oid_number];
2063         result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2064         return (sysctl_handle_64(oidp, &result, 0, req));
2065 }
2066
2067 static int
2068 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2069 {
2070         struct cpsw_softc *sc;
2071         struct bintime t;
2072         unsigned result;
2073
2074         sc = (struct cpsw_softc *)arg1;
2075         getbinuptime(&t);
2076         bintime_sub(&t, &sc->attach_uptime);
2077         result = t.sec;
2078         return (sysctl_handle_int(oidp, &result, 0, req));
2079 }
2080
2081 static int
2082 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2083 {
2084         struct cpsw_softc *sc;
2085         struct bintime t;
2086         unsigned result;
2087
2088         sc = (struct cpsw_softc *)arg1;
2089         if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2090                 getbinuptime(&t);
2091                 bintime_sub(&t, &sc->init_uptime);
2092                 result = t.sec;
2093         } else
2094                 result = 0;
2095         return (sysctl_handle_int(oidp, &result, 0, req));
2096 }
2097
2098 static void
2099 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_queue *queue)
2100 {
2101         struct sysctl_oid_list *parent;
2102
2103         parent = SYSCTL_CHILDREN(node);
2104         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2105             CTLFLAG_RD, &queue->queue_slots, 0,
2106             "Total buffers currently assigned to this queue");
2107         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2108             CTLFLAG_RD, &queue->active_queue_len, 0,
2109             "Buffers currently registered with hardware controller");
2110         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2111             CTLFLAG_RD, &queue->max_active_queue_len, 0,
2112             "Max value of activeBuffers since last driver reset");
2113         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2114             CTLFLAG_RD, &queue->avail_queue_len, 0,
2115             "Buffers allocated to this queue but not currently "
2116             "registered with hardware controller");
2117         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2118             CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2119             "Max value of availBuffers since last driver reset");
2120         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2121             CTLFLAG_RD, &queue->queue_adds, 0,
2122             "Total buffers added to queue");
2123         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2124             CTLFLAG_RD, &queue->queue_removes, 0,
2125             "Total buffers removed from queue");
2126         SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2127             CTLFLAG_RD, &queue->longest_chain, 0,
2128             "Max buffers used for a single packet");
2129 }
2130
2131 static void
2132 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node, struct cpsw_softc *sc)
2133 {
2134         struct sysctl_oid_list *parent;
2135
2136         parent = SYSCTL_CHILDREN(node);
2137         SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2138             CTLFLAG_RD, &sc->watchdog.resets, 0,
2139             "Total number of watchdog resets");
2140 }
2141
2142 static void
2143 cpsw_add_sysctls(struct cpsw_softc *sc)
2144 {
2145         struct sysctl_ctx_list *ctx;
2146         struct sysctl_oid *stats_node, *queue_node, *node;
2147         struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2148         int i;
2149
2150         ctx = device_get_sysctl_ctx(sc->dev);
2151         parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2152
2153         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2154             CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2155             "Time since driver attach");
2156
2157         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "uptime",
2158             CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_uptime, "IU",
2159             "Seconds since driver init");
2160
2161         stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2162                                      CTLFLAG_RD, NULL, "CPSW Statistics");
2163         stats_parent = SYSCTL_CHILDREN(stats_node);
2164         for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2165                 SYSCTL_ADD_PROC(ctx, stats_parent, i,
2166                                 cpsw_stat_sysctls[i].oid,
2167                                 CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2168                                 cpsw_stats_sysctl, "IU",
2169                                 cpsw_stat_sysctls[i].oid);
2170         }
2171
2172         queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2173             CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2174         queue_parent = SYSCTL_CHILDREN(queue_node);
2175
2176         node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2177             CTLFLAG_RD, NULL, "TX Queue Statistics");
2178         cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2179
2180         node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2181             CTLFLAG_RD, NULL, "RX Queue Statistics");
2182         cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2183
2184         node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2185             CTLFLAG_RD, NULL, "Watchdog Statistics");
2186         cpsw_add_watchdog_sysctls(ctx, node, sc);
2187 }
2188