]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/arm64/arm64/machdep.c
Add initial testcases for bin/ls
[FreeBSD/FreeBSD.git] / sys / arm64 / arm64 / machdep.c
1 /*-
2  * Copyright (c) 2014 Andrew Turner
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27
28 #include "opt_platform.h"
29 #include "opt_ddb.h"
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/cons.h>
39 #include <sys/cpu.h>
40 #include <sys/efi.h>
41 #include <sys/exec.h>
42 #include <sys/imgact.h>
43 #include <sys/kdb.h> 
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/linker.h>
47 #include <sys/msgbuf.h>
48 #include <sys/pcpu.h>
49 #include <sys/proc.h>
50 #include <sys/ptrace.h>
51 #include <sys/reboot.h>
52 #include <sys/rwlock.h>
53 #include <sys/sched.h>
54 #include <sys/signalvar.h>
55 #include <sys/syscallsubr.h>
56 #include <sys/sysent.h>
57 #include <sys/sysproto.h>
58 #include <sys/ucontext.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_pager.h>
67
68 #include <machine/armreg.h>
69 #include <machine/cpu.h>
70 #include <machine/debug_monitor.h>
71 #include <machine/kdb.h>
72 #include <machine/devmap.h>
73 #include <machine/machdep.h>
74 #include <machine/metadata.h>
75 #include <machine/pcb.h>
76 #include <machine/reg.h>
77 #include <machine/vmparam.h>
78
79 #ifdef VFP
80 #include <machine/vfp.h>
81 #endif
82
83 #ifdef FDT
84 #include <dev/fdt/fdt_common.h>
85 #include <dev/ofw/openfirm.h>
86 #endif
87
88 struct pcpu __pcpu[MAXCPU];
89
90 static struct trapframe proc0_tf;
91
92 vm_paddr_t phys_avail[PHYS_AVAIL_SIZE + 2];
93 vm_paddr_t dump_avail[PHYS_AVAIL_SIZE + 2];
94
95 int early_boot = 1;
96 int cold = 1;
97 long realmem = 0;
98 long Maxmem = 0;
99
100 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
101 vm_paddr_t physmap[PHYSMAP_SIZE];
102 u_int physmap_idx;
103
104 struct kva_md_info kmi;
105
106 int64_t dcache_line_size;       /* The minimum D cache line size */
107 int64_t icache_line_size;       /* The minimum I cache line size */
108 int64_t idcache_line_size;      /* The minimum cache line size */
109
110 static void
111 cpu_startup(void *dummy)
112 {
113
114         identify_cpu();
115
116         vm_ksubmap_init(&kmi);
117         bufinit();
118         vm_pager_bufferinit();
119 }
120
121 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
122
123 int
124 cpu_idle_wakeup(int cpu)
125 {
126
127         return (0);
128 }
129
130 void
131 bzero(void *buf, size_t len)
132 {
133         uint8_t *p;
134
135         p = buf;
136         while(len-- > 0)
137                 *p++ = 0;
138 }
139
140 int
141 fill_regs(struct thread *td, struct reg *regs)
142 {
143         struct trapframe *frame;
144
145         frame = td->td_frame;
146         regs->sp = frame->tf_sp;
147         regs->lr = frame->tf_lr;
148         regs->elr = frame->tf_elr;
149         regs->spsr = frame->tf_spsr;
150
151         memcpy(regs->x, frame->tf_x, sizeof(regs->x));
152
153         return (0);
154 }
155
156 int
157 set_regs(struct thread *td, struct reg *regs)
158 {
159         struct trapframe *frame;
160
161         frame = td->td_frame;
162         frame->tf_sp = regs->sp;
163         frame->tf_lr = regs->lr;
164         frame->tf_elr = regs->elr;
165         frame->tf_spsr = regs->spsr;
166
167         memcpy(frame->tf_x, regs->x, sizeof(frame->tf_x));
168
169         return (0);
170 }
171
172 int
173 fill_fpregs(struct thread *td, struct fpreg *regs)
174 {
175 #ifdef VFP
176         struct pcb *pcb;
177
178         pcb = td->td_pcb;
179         if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
180                 /*
181                  * If we have just been running VFP instructions we will
182                  * need to save the state to memcpy it below.
183                  */
184                 vfp_save_state(td, pcb);
185
186                 memcpy(regs->fp_q, pcb->pcb_vfp, sizeof(regs->fp_q));
187                 regs->fp_cr = pcb->pcb_fpcr;
188                 regs->fp_sr = pcb->pcb_fpsr;
189         } else
190 #endif
191                 memset(regs->fp_q, 0, sizeof(regs->fp_q));
192         return (0);
193 }
194
195 int
196 set_fpregs(struct thread *td, struct fpreg *regs)
197 {
198 #ifdef VFP
199         struct pcb *pcb;
200
201         pcb = td->td_pcb;
202         memcpy(pcb->pcb_vfp, regs->fp_q, sizeof(regs->fp_q));
203         pcb->pcb_fpcr = regs->fp_cr;
204         pcb->pcb_fpsr = regs->fp_sr;
205 #endif
206         return (0);
207 }
208
209 int
210 fill_dbregs(struct thread *td, struct dbreg *regs)
211 {
212
213         panic("ARM64TODO: fill_dbregs");
214 }
215
216 int
217 set_dbregs(struct thread *td, struct dbreg *regs)
218 {
219
220         panic("ARM64TODO: set_dbregs");
221 }
222
223 int
224 ptrace_set_pc(struct thread *td, u_long addr)
225 {
226
227         panic("ARM64TODO: ptrace_set_pc");
228         return (0);
229 }
230
231 int
232 ptrace_single_step(struct thread *td)
233 {
234
235         /* TODO; */
236         return (0);
237 }
238
239 int
240 ptrace_clear_single_step(struct thread *td)
241 {
242
243         /* TODO; */
244         return (0);
245 }
246
247 void
248 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
249 {
250         struct trapframe *tf = td->td_frame;
251
252         memset(tf, 0, sizeof(struct trapframe));
253
254         tf->tf_sp = stack;
255         tf->tf_lr = imgp->entry_addr;
256         tf->tf_elr = imgp->entry_addr;
257 }
258
259 /* Sanity check these are the same size, they will be memcpy'd to and fro */
260 CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
261     sizeof((struct gpregs *)0)->gp_x);
262 CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
263     sizeof((struct reg *)0)->x);
264
265 int
266 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
267 {
268         struct trapframe *tf = td->td_frame;
269
270         if (clear_ret & GET_MC_CLEAR_RET) {
271                 mcp->mc_gpregs.gp_x[0] = 0;
272                 mcp->mc_gpregs.gp_spsr = tf->tf_spsr & ~PSR_C;
273         } else {
274                 mcp->mc_gpregs.gp_x[0] = tf->tf_x[0];
275                 mcp->mc_gpregs.gp_spsr = tf->tf_spsr;
276         }
277
278         memcpy(&mcp->mc_gpregs.gp_x[1], &tf->tf_x[1],
279             sizeof(mcp->mc_gpregs.gp_x[1]) * (nitems(mcp->mc_gpregs.gp_x) - 1));
280
281         mcp->mc_gpregs.gp_sp = tf->tf_sp;
282         mcp->mc_gpregs.gp_lr = tf->tf_lr;
283         mcp->mc_gpregs.gp_elr = tf->tf_elr;
284
285         return (0);
286 }
287
288 int
289 set_mcontext(struct thread *td, mcontext_t *mcp)
290 {
291         struct trapframe *tf = td->td_frame;
292
293         memcpy(tf->tf_x, mcp->mc_gpregs.gp_x, sizeof(tf->tf_x));
294
295         tf->tf_sp = mcp->mc_gpregs.gp_sp;
296         tf->tf_lr = mcp->mc_gpregs.gp_lr;
297         tf->tf_elr = mcp->mc_gpregs.gp_elr;
298         tf->tf_spsr = mcp->mc_gpregs.gp_spsr;
299
300         return (0);
301 }
302
303 static void
304 get_fpcontext(struct thread *td, mcontext_t *mcp)
305 {
306 #ifdef VFP
307         struct pcb *curpcb;
308
309         critical_enter();
310
311         curpcb = curthread->td_pcb;
312
313         if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
314                 /*
315                  * If we have just been running VFP instructions we will
316                  * need to save the state to memcpy it below.
317                  */
318                 vfp_save_state(td, curpcb);
319
320                 memcpy(mcp->mc_fpregs.fp_q, curpcb->pcb_vfp,
321                     sizeof(mcp->mc_fpregs));
322                 mcp->mc_fpregs.fp_cr = curpcb->pcb_fpcr;
323                 mcp->mc_fpregs.fp_sr = curpcb->pcb_fpsr;
324                 mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags;
325                 mcp->mc_flags |= _MC_FP_VALID;
326         }
327
328         critical_exit();
329 #endif
330 }
331
332 static void
333 set_fpcontext(struct thread *td, mcontext_t *mcp)
334 {
335 #ifdef VFP
336         struct pcb *curpcb;
337
338         critical_enter();
339
340         if ((mcp->mc_flags & _MC_FP_VALID) != 0) {
341                 curpcb = curthread->td_pcb;
342
343                 /*
344                  * Discard any vfp state for the current thread, we
345                  * are about to override it.
346                  */
347                 vfp_discard(td);
348
349                 memcpy(curpcb->pcb_vfp, mcp->mc_fpregs.fp_q,
350                     sizeof(mcp->mc_fpregs));
351                 curpcb->pcb_fpcr = mcp->mc_fpregs.fp_cr;
352                 curpcb->pcb_fpsr = mcp->mc_fpregs.fp_sr;
353                 curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags;
354         }
355
356         critical_exit();
357 #endif
358 }
359
360 void
361 cpu_idle(int busy)
362 {
363
364         spinlock_enter();
365         if (!busy)
366                 cpu_idleclock();
367         if (!sched_runnable())
368                 __asm __volatile(
369                     "dsb sy \n"
370                     "wfi    \n");
371         if (!busy)
372                 cpu_activeclock();
373         spinlock_exit();
374 }
375
376 void
377 cpu_halt(void)
378 {
379
380         /* We should have shutdown by now, if not enter a low power sleep */
381         intr_disable();
382         while (1) {
383                 __asm __volatile("wfi");
384         }
385 }
386
387 /*
388  * Flush the D-cache for non-DMA I/O so that the I-cache can
389  * be made coherent later.
390  */
391 void
392 cpu_flush_dcache(void *ptr, size_t len)
393 {
394
395         /* ARM64TODO TBD */
396 }
397
398 /* Get current clock frequency for the given CPU ID. */
399 int
400 cpu_est_clockrate(int cpu_id, uint64_t *rate)
401 {
402
403         panic("ARM64TODO: cpu_est_clockrate");
404 }
405
406 void
407 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
408 {
409
410         pcpu->pc_acpi_id = 0xffffffff;
411 }
412
413 void
414 spinlock_enter(void)
415 {
416         struct thread *td;
417         register_t daif;
418
419         td = curthread;
420         if (td->td_md.md_spinlock_count == 0) {
421                 daif = intr_disable();
422                 td->td_md.md_spinlock_count = 1;
423                 td->td_md.md_saved_daif = daif;
424         } else
425                 td->td_md.md_spinlock_count++;
426         critical_enter();
427 }
428
429 void
430 spinlock_exit(void)
431 {
432         struct thread *td;
433         register_t daif;
434
435         td = curthread;
436         critical_exit();
437         daif = td->td_md.md_saved_daif;
438         td->td_md.md_spinlock_count--;
439         if (td->td_md.md_spinlock_count == 0)
440                 intr_restore(daif);
441 }
442
443 #ifndef _SYS_SYSPROTO_H_
444 struct sigreturn_args {
445         ucontext_t *ucp;
446 };
447 #endif
448
449 int
450 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
451 {
452         ucontext_t uc;
453         uint32_t spsr;
454
455         if (uap == NULL)
456                 return (EFAULT);
457         if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
458                 return (EFAULT);
459
460         spsr = uc.uc_mcontext.mc_gpregs.gp_spsr;
461         if ((spsr & PSR_M_MASK) != PSR_M_EL0t ||
462             (spsr & (PSR_F | PSR_I | PSR_A | PSR_D)) != 0)
463                 return (EINVAL); 
464
465         set_mcontext(td, &uc.uc_mcontext);
466         set_fpcontext(td, &uc.uc_mcontext);
467
468         /* Restore signal mask. */
469         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
470
471         return (EJUSTRETURN);
472 }
473
474 /*
475  * Construct a PCB from a trapframe. This is called from kdb_trap() where
476  * we want to start a backtrace from the function that caused us to enter
477  * the debugger. We have the context in the trapframe, but base the trace
478  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
479  * enough for a backtrace.
480  */
481 void
482 makectx(struct trapframe *tf, struct pcb *pcb)
483 {
484         int i;
485
486         for (i = 0; i < PCB_LR; i++)
487                 pcb->pcb_x[i] = tf->tf_x[i];
488
489         pcb->pcb_x[PCB_LR] = tf->tf_lr;
490         pcb->pcb_pc = tf->tf_elr;
491         pcb->pcb_sp = tf->tf_sp;
492 }
493
494 void
495 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
496 {
497         struct thread *td;
498         struct proc *p;
499         struct trapframe *tf;
500         struct sigframe *fp, frame;
501         struct sigacts *psp;
502         int code, onstack, sig;
503
504         td = curthread;
505         p = td->td_proc;
506         PROC_LOCK_ASSERT(p, MA_OWNED);
507
508         sig = ksi->ksi_signo;
509         code = ksi->ksi_code;
510         psp = p->p_sigacts;
511         mtx_assert(&psp->ps_mtx, MA_OWNED);
512
513         tf = td->td_frame;
514         onstack = sigonstack(tf->tf_sp);
515
516         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
517             catcher, sig);
518
519         /* Allocate and validate space for the signal handler context. */
520         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack &&
521             SIGISMEMBER(psp->ps_sigonstack, sig)) {
522                 fp = (struct sigframe *)(td->td_sigstk.ss_sp +
523                     td->td_sigstk.ss_size);
524 #if defined(COMPAT_43)
525                 td->td_sigstk.ss_flags |= SS_ONSTACK;
526 #endif
527         } else {
528                 fp = (struct sigframe *)td->td_frame->tf_sp;
529         }
530
531         /* Make room, keeping the stack aligned */
532         fp--;
533         fp = (struct sigframe *)STACKALIGN(fp);
534
535         /* Fill in the frame to copy out */
536         get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
537         get_fpcontext(td, &frame.sf_uc.uc_mcontext);
538         frame.sf_si = ksi->ksi_info;
539         frame.sf_uc.uc_sigmask = *mask;
540         frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
541             ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
542         frame.sf_uc.uc_stack = td->td_sigstk;
543         mtx_unlock(&psp->ps_mtx);
544         PROC_UNLOCK(td->td_proc);
545
546         /* Copy the sigframe out to the user's stack. */
547         if (copyout(&frame, fp, sizeof(*fp)) != 0) {
548                 /* Process has trashed its stack. Kill it. */
549                 CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
550                 PROC_LOCK(p);
551                 sigexit(td, SIGILL);
552         }
553
554         tf->tf_x[0]= sig;
555         tf->tf_x[1] = (register_t)&fp->sf_si;
556         tf->tf_x[2] = (register_t)&fp->sf_uc;
557
558         tf->tf_elr = (register_t)catcher;
559         tf->tf_sp = (register_t)fp;
560         tf->tf_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
561
562         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_elr,
563             tf->tf_sp);
564
565         PROC_LOCK(p);
566         mtx_lock(&psp->ps_mtx);
567 }
568
569 static void
570 init_proc0(vm_offset_t kstack)
571 {
572         struct pcpu *pcpup = &__pcpu[0];
573
574         proc_linkup0(&proc0, &thread0);
575         thread0.td_kstack = kstack;
576         thread0.td_pcb = (struct pcb *)(thread0.td_kstack) - 1;
577         thread0.td_pcb->pcb_fpflags = 0;
578         thread0.td_pcb->pcb_vfpcpu = UINT_MAX;
579         thread0.td_frame = &proc0_tf;
580         pcpup->pc_curpcb = thread0.td_pcb;
581 }
582
583 typedef struct {
584         uint32_t type;
585         uint64_t phys_start;
586         uint64_t virt_start;
587         uint64_t num_pages;
588         uint64_t attr;
589 } EFI_MEMORY_DESCRIPTOR;
590
591 static int
592 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
593     u_int *physmap_idxp)
594 {
595         u_int i, insert_idx, _physmap_idx;
596
597         _physmap_idx = *physmap_idxp;
598
599         if (length == 0)
600                 return (1);
601
602         /*
603          * Find insertion point while checking for overlap.  Start off by
604          * assuming the new entry will be added to the end.
605          */
606         insert_idx = _physmap_idx;
607         for (i = 0; i <= _physmap_idx; i += 2) {
608                 if (base < physmap[i + 1]) {
609                         if (base + length <= physmap[i]) {
610                                 insert_idx = i;
611                                 break;
612                         }
613                         if (boothowto & RB_VERBOSE)
614                                 printf(
615                     "Overlapping memory regions, ignoring second region\n");
616                         return (1);
617                 }
618         }
619
620         /* See if we can prepend to the next entry. */
621         if (insert_idx <= _physmap_idx &&
622             base + length == physmap[insert_idx]) {
623                 physmap[insert_idx] = base;
624                 return (1);
625         }
626
627         /* See if we can append to the previous entry. */
628         if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
629                 physmap[insert_idx - 1] += length;
630                 return (1);
631         }
632
633         _physmap_idx += 2;
634         *physmap_idxp = _physmap_idx;
635         if (_physmap_idx == PHYSMAP_SIZE) {
636                 printf(
637                 "Too many segments in the physical address map, giving up\n");
638                 return (0);
639         }
640
641         /*
642          * Move the last 'N' entries down to make room for the new
643          * entry if needed.
644          */
645         for (i = _physmap_idx; i > insert_idx; i -= 2) {
646                 physmap[i] = physmap[i - 2];
647                 physmap[i + 1] = physmap[i - 1];
648         }
649
650         /* Insert the new entry. */
651         physmap[insert_idx] = base;
652         physmap[insert_idx + 1] = base + length;
653         return (1);
654 }
655
656 #define efi_next_descriptor(ptr, size) \
657         ((struct efi_md *)(((uint8_t *) ptr) + size))
658
659 static void
660 add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
661     u_int *physmap_idxp)
662 {
663         struct efi_md *map, *p;
664         const char *type;
665         size_t efisz;
666         int ndesc, i;
667
668         static const char *types[] = {
669                 "Reserved",
670                 "LoaderCode",
671                 "LoaderData",
672                 "BootServicesCode",
673                 "BootServicesData",
674                 "RuntimeServicesCode",
675                 "RuntimeServicesData",
676                 "ConventionalMemory",
677                 "UnusableMemory",
678                 "ACPIReclaimMemory",
679                 "ACPIMemoryNVS",
680                 "MemoryMappedIO",
681                 "MemoryMappedIOPortSpace",
682                 "PalCode"
683         };
684
685         /*
686          * Memory map data provided by UEFI via the GetMemoryMap
687          * Boot Services API.
688          */
689         efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
690         map = (struct efi_md *)((uint8_t *)efihdr + efisz); 
691
692         if (efihdr->descriptor_size == 0)
693                 return;
694         ndesc = efihdr->memory_size / efihdr->descriptor_size;
695
696         if (boothowto & RB_VERBOSE)
697                 printf("%23s %12s %12s %8s %4s\n",
698                     "Type", "Physical", "Virtual", "#Pages", "Attr");
699
700         for (i = 0, p = map; i < ndesc; i++,
701             p = efi_next_descriptor(p, efihdr->descriptor_size)) {
702                 if (boothowto & RB_VERBOSE) {
703                         if (p->md_type <= EFI_MD_TYPE_PALCODE)
704                                 type = types[p->md_type];
705                         else
706                                 type = "<INVALID>";
707                         printf("%23s %012lx %12p %08lx ", type, p->md_phys,
708                             p->md_virt, p->md_pages);
709                         if (p->md_attr & EFI_MD_ATTR_UC)
710                                 printf("UC ");
711                         if (p->md_attr & EFI_MD_ATTR_WC)
712                                 printf("WC ");
713                         if (p->md_attr & EFI_MD_ATTR_WT)
714                                 printf("WT ");
715                         if (p->md_attr & EFI_MD_ATTR_WB)
716                                 printf("WB ");
717                         if (p->md_attr & EFI_MD_ATTR_UCE)
718                                 printf("UCE ");
719                         if (p->md_attr & EFI_MD_ATTR_WP)
720                                 printf("WP ");
721                         if (p->md_attr & EFI_MD_ATTR_RP)
722                                 printf("RP ");
723                         if (p->md_attr & EFI_MD_ATTR_XP)
724                                 printf("XP ");
725                         if (p->md_attr & EFI_MD_ATTR_RT)
726                                 printf("RUNTIME");
727                         printf("\n");
728                 }
729
730                 switch (p->md_type) {
731                 case EFI_MD_TYPE_CODE:
732                 case EFI_MD_TYPE_DATA:
733                 case EFI_MD_TYPE_BS_CODE:
734                 case EFI_MD_TYPE_BS_DATA:
735                 case EFI_MD_TYPE_FREE:
736                         /*
737                          * We're allowed to use any entry with these types.
738                          */
739                         break;
740                 default:
741                         continue;
742                 }
743
744                 if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
745                     physmap, physmap_idxp))
746                         break;
747         }
748 }
749
750 #ifdef FDT
751 static void
752 try_load_dtb(caddr_t kmdp)
753 {
754         vm_offset_t dtbp;
755
756         dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
757         if (dtbp == (vm_offset_t)NULL) {
758                 printf("ERROR loading DTB\n");
759                 return;
760         }
761
762         if (OF_install(OFW_FDT, 0) == FALSE)
763                 panic("Cannot install FDT");
764
765         if (OF_init((void *)dtbp) != 0)
766                 panic("OF_init failed with the found device tree");
767 }
768 #endif
769
770 static void
771 cache_setup(void)
772 {
773         int dcache_line_shift, icache_line_shift;
774         uint32_t ctr_el0;
775
776         ctr_el0 = READ_SPECIALREG(ctr_el0);
777
778         /* Read the log2 words in each D cache line */
779         dcache_line_shift = CTR_DLINE_SIZE(ctr_el0);
780         /* Get the D cache line size */
781         dcache_line_size = sizeof(int) << dcache_line_shift;
782
783         /* And the same for the I cache */
784         icache_line_shift = CTR_ILINE_SIZE(ctr_el0);
785         icache_line_size = sizeof(int) << icache_line_shift;
786
787         idcache_line_size = MIN(dcache_line_size, icache_line_size);
788 }
789
790 void
791 initarm(struct arm64_bootparams *abp)
792 {
793         struct efi_map_header *efihdr;
794         struct pcpu *pcpup;
795         vm_offset_t lastaddr;
796         caddr_t kmdp;
797         vm_paddr_t mem_len;
798         int i;
799
800         /* Set the module data location */
801         preload_metadata = (caddr_t)(uintptr_t)(abp->modulep);
802
803         /* Find the kernel address */
804         kmdp = preload_search_by_type("elf kernel");
805         if (kmdp == NULL)
806                 kmdp = preload_search_by_type("elf64 kernel");
807
808         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
809         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
810
811 #ifdef FDT
812         try_load_dtb(kmdp);
813 #endif
814
815         /* Find the address to start allocating from */
816         lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
817
818         /* Load the physical memory ranges */
819         physmap_idx = 0;
820         efihdr = (struct efi_map_header *)preload_search_info(kmdp,
821             MODINFO_METADATA | MODINFOMD_EFI_MAP);
822         add_efi_map_entries(efihdr, physmap, &physmap_idx);
823
824         /* Print the memory map */
825         mem_len = 0;
826         for (i = 0; i < physmap_idx; i += 2) {
827                 dump_avail[i] = physmap[i];
828                 dump_avail[i + 1] = physmap[i + 1];
829                 mem_len += physmap[i + 1] - physmap[i];
830         }
831         dump_avail[i] = 0;
832         dump_avail[i + 1] = 0;
833
834         /* Set the pcpu data, this is needed by pmap_bootstrap */
835         pcpup = &__pcpu[0];
836         pcpu_init(pcpup, 0, sizeof(struct pcpu));
837
838         /*
839          * Set the pcpu pointer with a backup in tpidr_el1 to be
840          * loaded when entering the kernel from userland.
841          */
842         __asm __volatile(
843             "mov x18, %0 \n"
844             "msr tpidr_el1, %0" :: "r"(pcpup));
845
846         PCPU_SET(curthread, &thread0);
847
848         /* Do basic tuning, hz etc */
849         init_param1();
850
851         cache_setup();
852
853         /* Bootstrap enough of pmap  to enter the kernel proper */
854         pmap_bootstrap(abp->kern_l1pt, KERNBASE - abp->kern_delta,
855             lastaddr - KERNBASE);
856
857         arm_devmap_bootstrap(0, NULL);
858
859         cninit();
860
861         init_proc0(abp->kern_stack);
862         msgbufinit(msgbufp, msgbufsize);
863         mutex_init();
864         init_param2(physmem);
865
866         dbg_monitor_init();
867         kdb_init();
868
869         early_boot = 0;
870 }
871
872 #ifdef DDB
873 #include <ddb/ddb.h>
874
875 DB_SHOW_COMMAND(specialregs, db_show_spregs)
876 {
877 #define PRINT_REG(reg)  \
878     db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg))
879
880         PRINT_REG(actlr_el1);
881         PRINT_REG(afsr0_el1);
882         PRINT_REG(afsr1_el1);
883         PRINT_REG(aidr_el1);
884         PRINT_REG(amair_el1);
885         PRINT_REG(ccsidr_el1);
886         PRINT_REG(clidr_el1);
887         PRINT_REG(contextidr_el1);
888         PRINT_REG(cpacr_el1);
889         PRINT_REG(csselr_el1);
890         PRINT_REG(ctr_el0);
891         PRINT_REG(currentel);
892         PRINT_REG(daif);
893         PRINT_REG(dczid_el0);
894         PRINT_REG(elr_el1);
895         PRINT_REG(esr_el1);
896         PRINT_REG(far_el1);
897 #if 0
898         /* ARM64TODO: Enable VFP before reading floating-point registers */
899         PRINT_REG(fpcr);
900         PRINT_REG(fpsr);
901 #endif
902         PRINT_REG(id_aa64afr0_el1);
903         PRINT_REG(id_aa64afr1_el1);
904         PRINT_REG(id_aa64dfr0_el1);
905         PRINT_REG(id_aa64dfr1_el1);
906         PRINT_REG(id_aa64isar0_el1);
907         PRINT_REG(id_aa64isar1_el1);
908         PRINT_REG(id_aa64pfr0_el1);
909         PRINT_REG(id_aa64pfr1_el1);
910         PRINT_REG(id_afr0_el1);
911         PRINT_REG(id_dfr0_el1);
912         PRINT_REG(id_isar0_el1);
913         PRINT_REG(id_isar1_el1);
914         PRINT_REG(id_isar2_el1);
915         PRINT_REG(id_isar3_el1);
916         PRINT_REG(id_isar4_el1);
917         PRINT_REG(id_isar5_el1);
918         PRINT_REG(id_mmfr0_el1);
919         PRINT_REG(id_mmfr1_el1);
920         PRINT_REG(id_mmfr2_el1);
921         PRINT_REG(id_mmfr3_el1);
922 #if 0
923         /* Missing from llvm */
924         PRINT_REG(id_mmfr4_el1);
925 #endif
926         PRINT_REG(id_pfr0_el1);
927         PRINT_REG(id_pfr1_el1);
928         PRINT_REG(isr_el1);
929         PRINT_REG(mair_el1);
930         PRINT_REG(midr_el1);
931         PRINT_REG(mpidr_el1);
932         PRINT_REG(mvfr0_el1);
933         PRINT_REG(mvfr1_el1);
934         PRINT_REG(mvfr2_el1);
935         PRINT_REG(revidr_el1);
936         PRINT_REG(sctlr_el1);
937         PRINT_REG(sp_el0);
938         PRINT_REG(spsel);
939         PRINT_REG(spsr_el1);
940         PRINT_REG(tcr_el1);
941         PRINT_REG(tpidr_el0);
942         PRINT_REG(tpidr_el1);
943         PRINT_REG(tpidrro_el0);
944         PRINT_REG(ttbr0_el1);
945         PRINT_REG(ttbr1_el1);
946         PRINT_REG(vbar_el1);
947 #undef PRINT_REG
948 }
949
950 DB_SHOW_COMMAND(vtop, db_show_vtop)
951 {
952         uint64_t phys;
953
954         if (have_addr) {
955                 phys = arm64_address_translate_s1e1r(addr);
956                 db_printf("Physical address reg: 0x%016lx\n", phys);
957         } else
958                 db_printf("show vtop <virt_addr>\n");
959 }
960 #endif