]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/arm64/arm64/machdep.c
Stop including fdt_common.h in the arm64 code. We don't use anything from
[FreeBSD/FreeBSD.git] / sys / arm64 / arm64 / machdep.c
1 /*-
2  * Copyright (c) 2014 Andrew Turner
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27
28 #include "opt_platform.h"
29 #include "opt_ddb.h"
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/cons.h>
39 #include <sys/cpu.h>
40 #include <sys/efi.h>
41 #include <sys/exec.h>
42 #include <sys/imgact.h>
43 #include <sys/kdb.h> 
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/linker.h>
47 #include <sys/msgbuf.h>
48 #include <sys/pcpu.h>
49 #include <sys/proc.h>
50 #include <sys/ptrace.h>
51 #include <sys/reboot.h>
52 #include <sys/rwlock.h>
53 #include <sys/sched.h>
54 #include <sys/signalvar.h>
55 #include <sys/syscallsubr.h>
56 #include <sys/sysent.h>
57 #include <sys/sysproto.h>
58 #include <sys/ucontext.h>
59 #include <sys/vdso.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68
69 #include <machine/armreg.h>
70 #include <machine/cpu.h>
71 #include <machine/debug_monitor.h>
72 #include <machine/kdb.h>
73 #include <machine/devmap.h>
74 #include <machine/machdep.h>
75 #include <machine/metadata.h>
76 #include <machine/md_var.h>
77 #include <machine/pcb.h>
78 #include <machine/reg.h>
79 #include <machine/vmparam.h>
80
81 #ifdef VFP
82 #include <machine/vfp.h>
83 #endif
84
85 #ifdef FDT
86 #include <dev/ofw/openfirm.h>
87 #endif
88
89 struct pcpu __pcpu[MAXCPU];
90
91 static struct trapframe proc0_tf;
92
93 vm_paddr_t phys_avail[PHYS_AVAIL_SIZE + 2];
94 vm_paddr_t dump_avail[PHYS_AVAIL_SIZE + 2];
95
96 int early_boot = 1;
97 int cold = 1;
98 long realmem = 0;
99 long Maxmem = 0;
100
101 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
102 vm_paddr_t physmap[PHYSMAP_SIZE];
103 u_int physmap_idx;
104
105 struct kva_md_info kmi;
106
107 int64_t dcache_line_size;       /* The minimum D cache line size */
108 int64_t icache_line_size;       /* The minimum I cache line size */
109 int64_t idcache_line_size;      /* The minimum cache line size */
110
111 static void
112 cpu_startup(void *dummy)
113 {
114
115         identify_cpu();
116
117         vm_ksubmap_init(&kmi);
118         bufinit();
119         vm_pager_bufferinit();
120 }
121
122 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
123
124 int
125 cpu_idle_wakeup(int cpu)
126 {
127
128         return (0);
129 }
130
131 void
132 bzero(void *buf, size_t len)
133 {
134         uint8_t *p;
135
136         p = buf;
137         while(len-- > 0)
138                 *p++ = 0;
139 }
140
141 int
142 fill_regs(struct thread *td, struct reg *regs)
143 {
144         struct trapframe *frame;
145
146         frame = td->td_frame;
147         regs->sp = frame->tf_sp;
148         regs->lr = frame->tf_lr;
149         regs->elr = frame->tf_elr;
150         regs->spsr = frame->tf_spsr;
151
152         memcpy(regs->x, frame->tf_x, sizeof(regs->x));
153
154         return (0);
155 }
156
157 int
158 set_regs(struct thread *td, struct reg *regs)
159 {
160         struct trapframe *frame;
161
162         frame = td->td_frame;
163         frame->tf_sp = regs->sp;
164         frame->tf_lr = regs->lr;
165         frame->tf_elr = regs->elr;
166         frame->tf_spsr = regs->spsr;
167
168         memcpy(frame->tf_x, regs->x, sizeof(frame->tf_x));
169
170         return (0);
171 }
172
173 int
174 fill_fpregs(struct thread *td, struct fpreg *regs)
175 {
176 #ifdef VFP
177         struct pcb *pcb;
178
179         pcb = td->td_pcb;
180         if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
181                 /*
182                  * If we have just been running VFP instructions we will
183                  * need to save the state to memcpy it below.
184                  */
185                 vfp_save_state(td, pcb);
186
187                 memcpy(regs->fp_q, pcb->pcb_vfp, sizeof(regs->fp_q));
188                 regs->fp_cr = pcb->pcb_fpcr;
189                 regs->fp_sr = pcb->pcb_fpsr;
190         } else
191 #endif
192                 memset(regs->fp_q, 0, sizeof(regs->fp_q));
193         return (0);
194 }
195
196 int
197 set_fpregs(struct thread *td, struct fpreg *regs)
198 {
199 #ifdef VFP
200         struct pcb *pcb;
201
202         pcb = td->td_pcb;
203         memcpy(pcb->pcb_vfp, regs->fp_q, sizeof(regs->fp_q));
204         pcb->pcb_fpcr = regs->fp_cr;
205         pcb->pcb_fpsr = regs->fp_sr;
206 #endif
207         return (0);
208 }
209
210 int
211 fill_dbregs(struct thread *td, struct dbreg *regs)
212 {
213
214         panic("ARM64TODO: fill_dbregs");
215 }
216
217 int
218 set_dbregs(struct thread *td, struct dbreg *regs)
219 {
220
221         panic("ARM64TODO: set_dbregs");
222 }
223
224 int
225 ptrace_set_pc(struct thread *td, u_long addr)
226 {
227
228         panic("ARM64TODO: ptrace_set_pc");
229         return (0);
230 }
231
232 int
233 ptrace_single_step(struct thread *td)
234 {
235
236         /* TODO; */
237         return (0);
238 }
239
240 int
241 ptrace_clear_single_step(struct thread *td)
242 {
243
244         /* TODO; */
245         return (0);
246 }
247
248 void
249 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
250 {
251         struct trapframe *tf = td->td_frame;
252
253         memset(tf, 0, sizeof(struct trapframe));
254
255         /*
256          * We need to set x0 for init as it doesn't call
257          * cpu_set_syscall_retval to copy the value. We also
258          * need to set td_retval for the cases where we do.
259          */
260         tf->tf_x[0] = td->td_retval[0] = stack;
261         tf->tf_sp = STACKALIGN(stack);
262         tf->tf_lr = imgp->entry_addr;
263         tf->tf_elr = imgp->entry_addr;
264 }
265
266 /* Sanity check these are the same size, they will be memcpy'd to and fro */
267 CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
268     sizeof((struct gpregs *)0)->gp_x);
269 CTASSERT(sizeof(((struct trapframe *)0)->tf_x) ==
270     sizeof((struct reg *)0)->x);
271
272 int
273 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
274 {
275         struct trapframe *tf = td->td_frame;
276
277         if (clear_ret & GET_MC_CLEAR_RET) {
278                 mcp->mc_gpregs.gp_x[0] = 0;
279                 mcp->mc_gpregs.gp_spsr = tf->tf_spsr & ~PSR_C;
280         } else {
281                 mcp->mc_gpregs.gp_x[0] = tf->tf_x[0];
282                 mcp->mc_gpregs.gp_spsr = tf->tf_spsr;
283         }
284
285         memcpy(&mcp->mc_gpregs.gp_x[1], &tf->tf_x[1],
286             sizeof(mcp->mc_gpregs.gp_x[1]) * (nitems(mcp->mc_gpregs.gp_x) - 1));
287
288         mcp->mc_gpregs.gp_sp = tf->tf_sp;
289         mcp->mc_gpregs.gp_lr = tf->tf_lr;
290         mcp->mc_gpregs.gp_elr = tf->tf_elr;
291
292         return (0);
293 }
294
295 int
296 set_mcontext(struct thread *td, mcontext_t *mcp)
297 {
298         struct trapframe *tf = td->td_frame;
299
300         memcpy(tf->tf_x, mcp->mc_gpregs.gp_x, sizeof(tf->tf_x));
301
302         tf->tf_sp = mcp->mc_gpregs.gp_sp;
303         tf->tf_lr = mcp->mc_gpregs.gp_lr;
304         tf->tf_elr = mcp->mc_gpregs.gp_elr;
305         tf->tf_spsr = mcp->mc_gpregs.gp_spsr;
306
307         return (0);
308 }
309
310 static void
311 get_fpcontext(struct thread *td, mcontext_t *mcp)
312 {
313 #ifdef VFP
314         struct pcb *curpcb;
315
316         critical_enter();
317
318         curpcb = curthread->td_pcb;
319
320         if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
321                 /*
322                  * If we have just been running VFP instructions we will
323                  * need to save the state to memcpy it below.
324                  */
325                 vfp_save_state(td, curpcb);
326
327                 memcpy(mcp->mc_fpregs.fp_q, curpcb->pcb_vfp,
328                     sizeof(mcp->mc_fpregs));
329                 mcp->mc_fpregs.fp_cr = curpcb->pcb_fpcr;
330                 mcp->mc_fpregs.fp_sr = curpcb->pcb_fpsr;
331                 mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags;
332                 mcp->mc_flags |= _MC_FP_VALID;
333         }
334
335         critical_exit();
336 #endif
337 }
338
339 static void
340 set_fpcontext(struct thread *td, mcontext_t *mcp)
341 {
342 #ifdef VFP
343         struct pcb *curpcb;
344
345         critical_enter();
346
347         if ((mcp->mc_flags & _MC_FP_VALID) != 0) {
348                 curpcb = curthread->td_pcb;
349
350                 /*
351                  * Discard any vfp state for the current thread, we
352                  * are about to override it.
353                  */
354                 vfp_discard(td);
355
356                 memcpy(curpcb->pcb_vfp, mcp->mc_fpregs.fp_q,
357                     sizeof(mcp->mc_fpregs));
358                 curpcb->pcb_fpcr = mcp->mc_fpregs.fp_cr;
359                 curpcb->pcb_fpsr = mcp->mc_fpregs.fp_sr;
360                 curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags;
361         }
362
363         critical_exit();
364 #endif
365 }
366
367 void
368 cpu_idle(int busy)
369 {
370
371         spinlock_enter();
372         if (!busy)
373                 cpu_idleclock();
374         if (!sched_runnable())
375                 __asm __volatile(
376                     "dsb sy \n"
377                     "wfi    \n");
378         if (!busy)
379                 cpu_activeclock();
380         spinlock_exit();
381 }
382
383 void
384 cpu_halt(void)
385 {
386
387         /* We should have shutdown by now, if not enter a low power sleep */
388         intr_disable();
389         while (1) {
390                 __asm __volatile("wfi");
391         }
392 }
393
394 /*
395  * Flush the D-cache for non-DMA I/O so that the I-cache can
396  * be made coherent later.
397  */
398 void
399 cpu_flush_dcache(void *ptr, size_t len)
400 {
401
402         /* ARM64TODO TBD */
403 }
404
405 /* Get current clock frequency for the given CPU ID. */
406 int
407 cpu_est_clockrate(int cpu_id, uint64_t *rate)
408 {
409
410         panic("ARM64TODO: cpu_est_clockrate");
411 }
412
413 void
414 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
415 {
416
417         pcpu->pc_acpi_id = 0xffffffff;
418 }
419
420 void
421 spinlock_enter(void)
422 {
423         struct thread *td;
424         register_t daif;
425
426         td = curthread;
427         if (td->td_md.md_spinlock_count == 0) {
428                 daif = intr_disable();
429                 td->td_md.md_spinlock_count = 1;
430                 td->td_md.md_saved_daif = daif;
431         } else
432                 td->td_md.md_spinlock_count++;
433         critical_enter();
434 }
435
436 void
437 spinlock_exit(void)
438 {
439         struct thread *td;
440         register_t daif;
441
442         td = curthread;
443         critical_exit();
444         daif = td->td_md.md_saved_daif;
445         td->td_md.md_spinlock_count--;
446         if (td->td_md.md_spinlock_count == 0)
447                 intr_restore(daif);
448 }
449
450 #ifndef _SYS_SYSPROTO_H_
451 struct sigreturn_args {
452         ucontext_t *ucp;
453 };
454 #endif
455
456 int
457 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
458 {
459         ucontext_t uc;
460         uint32_t spsr;
461
462         if (uap == NULL)
463                 return (EFAULT);
464         if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
465                 return (EFAULT);
466
467         spsr = uc.uc_mcontext.mc_gpregs.gp_spsr;
468         if ((spsr & PSR_M_MASK) != PSR_M_EL0t ||
469             (spsr & (PSR_F | PSR_I | PSR_A | PSR_D)) != 0)
470                 return (EINVAL); 
471
472         set_mcontext(td, &uc.uc_mcontext);
473         set_fpcontext(td, &uc.uc_mcontext);
474
475         /* Restore signal mask. */
476         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
477
478         return (EJUSTRETURN);
479 }
480
481 /*
482  * Construct a PCB from a trapframe. This is called from kdb_trap() where
483  * we want to start a backtrace from the function that caused us to enter
484  * the debugger. We have the context in the trapframe, but base the trace
485  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
486  * enough for a backtrace.
487  */
488 void
489 makectx(struct trapframe *tf, struct pcb *pcb)
490 {
491         int i;
492
493         for (i = 0; i < PCB_LR; i++)
494                 pcb->pcb_x[i] = tf->tf_x[i];
495
496         pcb->pcb_x[PCB_LR] = tf->tf_lr;
497         pcb->pcb_pc = tf->tf_elr;
498         pcb->pcb_sp = tf->tf_sp;
499 }
500
501 void
502 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
503 {
504         struct thread *td;
505         struct proc *p;
506         struct trapframe *tf;
507         struct sigframe *fp, frame;
508         struct sigacts *psp;
509         struct sysentvec *sysent;
510         int code, onstack, sig;
511
512         td = curthread;
513         p = td->td_proc;
514         PROC_LOCK_ASSERT(p, MA_OWNED);
515
516         sig = ksi->ksi_signo;
517         code = ksi->ksi_code;
518         psp = p->p_sigacts;
519         mtx_assert(&psp->ps_mtx, MA_OWNED);
520
521         tf = td->td_frame;
522         onstack = sigonstack(tf->tf_sp);
523
524         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
525             catcher, sig);
526
527         /* Allocate and validate space for the signal handler context. */
528         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack &&
529             SIGISMEMBER(psp->ps_sigonstack, sig)) {
530                 fp = (struct sigframe *)(td->td_sigstk.ss_sp +
531                     td->td_sigstk.ss_size);
532 #if defined(COMPAT_43)
533                 td->td_sigstk.ss_flags |= SS_ONSTACK;
534 #endif
535         } else {
536                 fp = (struct sigframe *)td->td_frame->tf_sp;
537         }
538
539         /* Make room, keeping the stack aligned */
540         fp--;
541         fp = (struct sigframe *)STACKALIGN(fp);
542
543         /* Fill in the frame to copy out */
544         get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
545         get_fpcontext(td, &frame.sf_uc.uc_mcontext);
546         frame.sf_si = ksi->ksi_info;
547         frame.sf_uc.uc_sigmask = *mask;
548         frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
549             ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
550         frame.sf_uc.uc_stack = td->td_sigstk;
551         mtx_unlock(&psp->ps_mtx);
552         PROC_UNLOCK(td->td_proc);
553
554         /* Copy the sigframe out to the user's stack. */
555         if (copyout(&frame, fp, sizeof(*fp)) != 0) {
556                 /* Process has trashed its stack. Kill it. */
557                 CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
558                 PROC_LOCK(p);
559                 sigexit(td, SIGILL);
560         }
561
562         tf->tf_x[0]= sig;
563         tf->tf_x[1] = (register_t)&fp->sf_si;
564         tf->tf_x[2] = (register_t)&fp->sf_uc;
565
566         tf->tf_elr = (register_t)catcher;
567         tf->tf_sp = (register_t)fp;
568         sysent = p->p_sysent;
569         if (sysent->sv_sigcode_base != 0)
570                 tf->tf_lr = (register_t)sysent->sv_sigcode_base;
571         else
572                 tf->tf_lr = (register_t)(sysent->sv_psstrings -
573                     *(sysent->sv_szsigcode));
574
575         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_elr,
576             tf->tf_sp);
577
578         PROC_LOCK(p);
579         mtx_lock(&psp->ps_mtx);
580 }
581
582 static void
583 init_proc0(vm_offset_t kstack)
584 {
585         struct pcpu *pcpup = &__pcpu[0];
586
587         proc_linkup0(&proc0, &thread0);
588         thread0.td_kstack = kstack;
589         thread0.td_pcb = (struct pcb *)(thread0.td_kstack) - 1;
590         thread0.td_pcb->pcb_fpflags = 0;
591         thread0.td_pcb->pcb_vfpcpu = UINT_MAX;
592         thread0.td_frame = &proc0_tf;
593         pcpup->pc_curpcb = thread0.td_pcb;
594 }
595
596 typedef struct {
597         uint32_t type;
598         uint64_t phys_start;
599         uint64_t virt_start;
600         uint64_t num_pages;
601         uint64_t attr;
602 } EFI_MEMORY_DESCRIPTOR;
603
604 static int
605 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
606     u_int *physmap_idxp)
607 {
608         u_int i, insert_idx, _physmap_idx;
609
610         _physmap_idx = *physmap_idxp;
611
612         if (length == 0)
613                 return (1);
614
615         /*
616          * Find insertion point while checking for overlap.  Start off by
617          * assuming the new entry will be added to the end.
618          */
619         insert_idx = _physmap_idx;
620         for (i = 0; i <= _physmap_idx; i += 2) {
621                 if (base < physmap[i + 1]) {
622                         if (base + length <= physmap[i]) {
623                                 insert_idx = i;
624                                 break;
625                         }
626                         if (boothowto & RB_VERBOSE)
627                                 printf(
628                     "Overlapping memory regions, ignoring second region\n");
629                         return (1);
630                 }
631         }
632
633         /* See if we can prepend to the next entry. */
634         if (insert_idx <= _physmap_idx &&
635             base + length == physmap[insert_idx]) {
636                 physmap[insert_idx] = base;
637                 return (1);
638         }
639
640         /* See if we can append to the previous entry. */
641         if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
642                 physmap[insert_idx - 1] += length;
643                 return (1);
644         }
645
646         _physmap_idx += 2;
647         *physmap_idxp = _physmap_idx;
648         if (_physmap_idx == PHYSMAP_SIZE) {
649                 printf(
650                 "Too many segments in the physical address map, giving up\n");
651                 return (0);
652         }
653
654         /*
655          * Move the last 'N' entries down to make room for the new
656          * entry if needed.
657          */
658         for (i = _physmap_idx; i > insert_idx; i -= 2) {
659                 physmap[i] = physmap[i - 2];
660                 physmap[i + 1] = physmap[i - 1];
661         }
662
663         /* Insert the new entry. */
664         physmap[insert_idx] = base;
665         physmap[insert_idx + 1] = base + length;
666         return (1);
667 }
668
669 #define efi_next_descriptor(ptr, size) \
670         ((struct efi_md *)(((uint8_t *) ptr) + size))
671
672 static void
673 add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
674     u_int *physmap_idxp)
675 {
676         struct efi_md *map, *p;
677         const char *type;
678         size_t efisz;
679         int ndesc, i;
680
681         static const char *types[] = {
682                 "Reserved",
683                 "LoaderCode",
684                 "LoaderData",
685                 "BootServicesCode",
686                 "BootServicesData",
687                 "RuntimeServicesCode",
688                 "RuntimeServicesData",
689                 "ConventionalMemory",
690                 "UnusableMemory",
691                 "ACPIReclaimMemory",
692                 "ACPIMemoryNVS",
693                 "MemoryMappedIO",
694                 "MemoryMappedIOPortSpace",
695                 "PalCode"
696         };
697
698         /*
699          * Memory map data provided by UEFI via the GetMemoryMap
700          * Boot Services API.
701          */
702         efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
703         map = (struct efi_md *)((uint8_t *)efihdr + efisz); 
704
705         if (efihdr->descriptor_size == 0)
706                 return;
707         ndesc = efihdr->memory_size / efihdr->descriptor_size;
708
709         if (boothowto & RB_VERBOSE)
710                 printf("%23s %12s %12s %8s %4s\n",
711                     "Type", "Physical", "Virtual", "#Pages", "Attr");
712
713         for (i = 0, p = map; i < ndesc; i++,
714             p = efi_next_descriptor(p, efihdr->descriptor_size)) {
715                 if (boothowto & RB_VERBOSE) {
716                         if (p->md_type <= EFI_MD_TYPE_PALCODE)
717                                 type = types[p->md_type];
718                         else
719                                 type = "<INVALID>";
720                         printf("%23s %012lx %12p %08lx ", type, p->md_phys,
721                             p->md_virt, p->md_pages);
722                         if (p->md_attr & EFI_MD_ATTR_UC)
723                                 printf("UC ");
724                         if (p->md_attr & EFI_MD_ATTR_WC)
725                                 printf("WC ");
726                         if (p->md_attr & EFI_MD_ATTR_WT)
727                                 printf("WT ");
728                         if (p->md_attr & EFI_MD_ATTR_WB)
729                                 printf("WB ");
730                         if (p->md_attr & EFI_MD_ATTR_UCE)
731                                 printf("UCE ");
732                         if (p->md_attr & EFI_MD_ATTR_WP)
733                                 printf("WP ");
734                         if (p->md_attr & EFI_MD_ATTR_RP)
735                                 printf("RP ");
736                         if (p->md_attr & EFI_MD_ATTR_XP)
737                                 printf("XP ");
738                         if (p->md_attr & EFI_MD_ATTR_RT)
739                                 printf("RUNTIME");
740                         printf("\n");
741                 }
742
743                 switch (p->md_type) {
744                 case EFI_MD_TYPE_CODE:
745                 case EFI_MD_TYPE_DATA:
746                 case EFI_MD_TYPE_BS_CODE:
747                 case EFI_MD_TYPE_BS_DATA:
748                 case EFI_MD_TYPE_FREE:
749                         /*
750                          * We're allowed to use any entry with these types.
751                          */
752                         break;
753                 default:
754                         continue;
755                 }
756
757                 if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
758                     physmap, physmap_idxp))
759                         break;
760         }
761 }
762
763 #ifdef FDT
764 static void
765 try_load_dtb(caddr_t kmdp)
766 {
767         vm_offset_t dtbp;
768
769         dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
770         if (dtbp == (vm_offset_t)NULL) {
771                 printf("ERROR loading DTB\n");
772                 return;
773         }
774
775         if (OF_install(OFW_FDT, 0) == FALSE)
776                 panic("Cannot install FDT");
777
778         if (OF_init((void *)dtbp) != 0)
779                 panic("OF_init failed with the found device tree");
780 }
781 #endif
782
783 static void
784 cache_setup(void)
785 {
786         int dcache_line_shift, icache_line_shift;
787         uint32_t ctr_el0;
788
789         ctr_el0 = READ_SPECIALREG(ctr_el0);
790
791         /* Read the log2 words in each D cache line */
792         dcache_line_shift = CTR_DLINE_SIZE(ctr_el0);
793         /* Get the D cache line size */
794         dcache_line_size = sizeof(int) << dcache_line_shift;
795
796         /* And the same for the I cache */
797         icache_line_shift = CTR_ILINE_SIZE(ctr_el0);
798         icache_line_size = sizeof(int) << icache_line_shift;
799
800         idcache_line_size = MIN(dcache_line_size, icache_line_size);
801 }
802
803 void
804 initarm(struct arm64_bootparams *abp)
805 {
806         struct efi_map_header *efihdr;
807         struct pcpu *pcpup;
808         vm_offset_t lastaddr;
809         caddr_t kmdp;
810         vm_paddr_t mem_len;
811         int i;
812
813         /* Set the module data location */
814         preload_metadata = (caddr_t)(uintptr_t)(abp->modulep);
815
816         /* Find the kernel address */
817         kmdp = preload_search_by_type("elf kernel");
818         if (kmdp == NULL)
819                 kmdp = preload_search_by_type("elf64 kernel");
820
821         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
822         init_static_kenv(MD_FETCH(kmdp, MODINFOMD_ENVP, char *), 0);
823
824 #ifdef FDT
825         try_load_dtb(kmdp);
826 #endif
827
828         /* Find the address to start allocating from */
829         lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
830
831         /* Load the physical memory ranges */
832         physmap_idx = 0;
833         efihdr = (struct efi_map_header *)preload_search_info(kmdp,
834             MODINFO_METADATA | MODINFOMD_EFI_MAP);
835         add_efi_map_entries(efihdr, physmap, &physmap_idx);
836
837         /* Print the memory map */
838         mem_len = 0;
839         for (i = 0; i < physmap_idx; i += 2) {
840                 dump_avail[i] = physmap[i];
841                 dump_avail[i + 1] = physmap[i + 1];
842                 mem_len += physmap[i + 1] - physmap[i];
843         }
844         dump_avail[i] = 0;
845         dump_avail[i + 1] = 0;
846
847         /* Set the pcpu data, this is needed by pmap_bootstrap */
848         pcpup = &__pcpu[0];
849         pcpu_init(pcpup, 0, sizeof(struct pcpu));
850
851         /*
852          * Set the pcpu pointer with a backup in tpidr_el1 to be
853          * loaded when entering the kernel from userland.
854          */
855         __asm __volatile(
856             "mov x18, %0 \n"
857             "msr tpidr_el1, %0" :: "r"(pcpup));
858
859         PCPU_SET(curthread, &thread0);
860
861         /* Do basic tuning, hz etc */
862         init_param1();
863
864         cache_setup();
865
866         /* Bootstrap enough of pmap  to enter the kernel proper */
867         pmap_bootstrap(abp->kern_l1pt, KERNBASE - abp->kern_delta,
868             lastaddr - KERNBASE);
869
870         arm_devmap_bootstrap(0, NULL);
871
872         cninit();
873
874         init_proc0(abp->kern_stack);
875         msgbufinit(msgbufp, msgbufsize);
876         mutex_init();
877         init_param2(physmem);
878
879         dbg_monitor_init();
880         kdb_init();
881
882         early_boot = 0;
883 }
884
885 uint32_t (*arm_cpu_fill_vdso_timehands)(struct vdso_timehands *,
886     struct timecounter *);
887
888 uint32_t
889 cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
890 {
891
892         return (arm_cpu_fill_vdso_timehands != NULL ?
893             arm_cpu_fill_vdso_timehands(vdso_th, tc) : 0);
894 }
895
896 #ifdef DDB
897 #include <ddb/ddb.h>
898
899 DB_SHOW_COMMAND(specialregs, db_show_spregs)
900 {
901 #define PRINT_REG(reg)  \
902     db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg))
903
904         PRINT_REG(actlr_el1);
905         PRINT_REG(afsr0_el1);
906         PRINT_REG(afsr1_el1);
907         PRINT_REG(aidr_el1);
908         PRINT_REG(amair_el1);
909         PRINT_REG(ccsidr_el1);
910         PRINT_REG(clidr_el1);
911         PRINT_REG(contextidr_el1);
912         PRINT_REG(cpacr_el1);
913         PRINT_REG(csselr_el1);
914         PRINT_REG(ctr_el0);
915         PRINT_REG(currentel);
916         PRINT_REG(daif);
917         PRINT_REG(dczid_el0);
918         PRINT_REG(elr_el1);
919         PRINT_REG(esr_el1);
920         PRINT_REG(far_el1);
921 #if 0
922         /* ARM64TODO: Enable VFP before reading floating-point registers */
923         PRINT_REG(fpcr);
924         PRINT_REG(fpsr);
925 #endif
926         PRINT_REG(id_aa64afr0_el1);
927         PRINT_REG(id_aa64afr1_el1);
928         PRINT_REG(id_aa64dfr0_el1);
929         PRINT_REG(id_aa64dfr1_el1);
930         PRINT_REG(id_aa64isar0_el1);
931         PRINT_REG(id_aa64isar1_el1);
932         PRINT_REG(id_aa64pfr0_el1);
933         PRINT_REG(id_aa64pfr1_el1);
934         PRINT_REG(id_afr0_el1);
935         PRINT_REG(id_dfr0_el1);
936         PRINT_REG(id_isar0_el1);
937         PRINT_REG(id_isar1_el1);
938         PRINT_REG(id_isar2_el1);
939         PRINT_REG(id_isar3_el1);
940         PRINT_REG(id_isar4_el1);
941         PRINT_REG(id_isar5_el1);
942         PRINT_REG(id_mmfr0_el1);
943         PRINT_REG(id_mmfr1_el1);
944         PRINT_REG(id_mmfr2_el1);
945         PRINT_REG(id_mmfr3_el1);
946 #if 0
947         /* Missing from llvm */
948         PRINT_REG(id_mmfr4_el1);
949 #endif
950         PRINT_REG(id_pfr0_el1);
951         PRINT_REG(id_pfr1_el1);
952         PRINT_REG(isr_el1);
953         PRINT_REG(mair_el1);
954         PRINT_REG(midr_el1);
955         PRINT_REG(mpidr_el1);
956         PRINT_REG(mvfr0_el1);
957         PRINT_REG(mvfr1_el1);
958         PRINT_REG(mvfr2_el1);
959         PRINT_REG(revidr_el1);
960         PRINT_REG(sctlr_el1);
961         PRINT_REG(sp_el0);
962         PRINT_REG(spsel);
963         PRINT_REG(spsr_el1);
964         PRINT_REG(tcr_el1);
965         PRINT_REG(tpidr_el0);
966         PRINT_REG(tpidr_el1);
967         PRINT_REG(tpidrro_el0);
968         PRINT_REG(ttbr0_el1);
969         PRINT_REG(ttbr1_el1);
970         PRINT_REG(vbar_el1);
971 #undef PRINT_REG
972 }
973
974 DB_SHOW_COMMAND(vtop, db_show_vtop)
975 {
976         uint64_t phys;
977
978         if (have_addr) {
979                 phys = arm64_address_translate_s1e1r(addr);
980                 db_printf("Physical address reg: 0x%016lx\n", phys);
981         } else
982                 db_printf("show vtop <virt_addr>\n");
983 }
984 #endif