]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/arm64/arm64/pmap.c
Introduce pmap_store(), and use it to replace pmap_load_store() in places
[FreeBSD/FreeBSD.git] / sys / arm64 / arm64 / pmap.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  * Copyright (c) 2014 Andrew Turner
13  * All rights reserved.
14  * Copyright (c) 2014-2016 The FreeBSD Foundation
15  * All rights reserved.
16  *
17  * This code is derived from software contributed to Berkeley by
18  * the Systems Programming Group of the University of Utah Computer
19  * Science Department and William Jolitz of UUNET Technologies Inc.
20  *
21  * This software was developed by Andrew Turner under sponsorship from
22  * the FreeBSD Foundation.
23  *
24  * Redistribution and use in source and binary forms, with or without
25  * modification, are permitted provided that the following conditions
26  * are met:
27  * 1. Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  * 2. Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in the
31  *    documentation and/or other materials provided with the distribution.
32  * 3. All advertising materials mentioning features or use of this software
33  *    must display the following acknowledgement:
34  *      This product includes software developed by the University of
35  *      California, Berkeley and its contributors.
36  * 4. Neither the name of the University nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
53  */
54 /*-
55  * Copyright (c) 2003 Networks Associates Technology, Inc.
56  * All rights reserved.
57  *
58  * This software was developed for the FreeBSD Project by Jake Burkholder,
59  * Safeport Network Services, and Network Associates Laboratories, the
60  * Security Research Division of Network Associates, Inc. under
61  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
62  * CHATS research program.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88
89 /*
90  *      Manages physical address maps.
91  *
92  *      Since the information managed by this module is
93  *      also stored by the logical address mapping module,
94  *      this module may throw away valid virtual-to-physical
95  *      mappings at almost any time.  However, invalidations
96  *      of virtual-to-physical mappings must be done as
97  *      requested.
98  *
99  *      In order to cope with hardware architectures which
100  *      make virtual-to-physical map invalidates expensive,
101  *      this module may delay invalidate or reduced protection
102  *      operations until such time as they are actually
103  *      necessary.  This module is given full information as
104  *      to which processors are currently using which maps,
105  *      and to when physical maps must be made correct.
106  */
107
108 #include "opt_vm.h"
109
110 #include <sys/param.h>
111 #include <sys/bitstring.h>
112 #include <sys/bus.h>
113 #include <sys/systm.h>
114 #include <sys/kernel.h>
115 #include <sys/ktr.h>
116 #include <sys/lock.h>
117 #include <sys/malloc.h>
118 #include <sys/mman.h>
119 #include <sys/msgbuf.h>
120 #include <sys/mutex.h>
121 #include <sys/proc.h>
122 #include <sys/rwlock.h>
123 #include <sys/sx.h>
124 #include <sys/vmem.h>
125 #include <sys/vmmeter.h>
126 #include <sys/sched.h>
127 #include <sys/sysctl.h>
128 #include <sys/_unrhdr.h>
129 #include <sys/smp.h>
130
131 #include <vm/vm.h>
132 #include <vm/vm_param.h>
133 #include <vm/vm_kern.h>
134 #include <vm/vm_page.h>
135 #include <vm/vm_map.h>
136 #include <vm/vm_object.h>
137 #include <vm/vm_extern.h>
138 #include <vm/vm_pageout.h>
139 #include <vm/vm_pager.h>
140 #include <vm/vm_phys.h>
141 #include <vm/vm_radix.h>
142 #include <vm/vm_reserv.h>
143 #include <vm/uma.h>
144
145 #include <machine/machdep.h>
146 #include <machine/md_var.h>
147 #include <machine/pcb.h>
148
149 #include <arm/include/physmem.h>
150
151 #define NL0PG           (PAGE_SIZE/(sizeof (pd_entry_t)))
152 #define NL1PG           (PAGE_SIZE/(sizeof (pd_entry_t)))
153 #define NL2PG           (PAGE_SIZE/(sizeof (pd_entry_t)))
154 #define NL3PG           (PAGE_SIZE/(sizeof (pt_entry_t)))
155
156 #define NUL0E           L0_ENTRIES
157 #define NUL1E           (NUL0E * NL1PG)
158 #define NUL2E           (NUL1E * NL2PG)
159
160 #if !defined(DIAGNOSTIC)
161 #ifdef __GNUC_GNU_INLINE__
162 #define PMAP_INLINE     __attribute__((__gnu_inline__)) inline
163 #else
164 #define PMAP_INLINE     extern inline
165 #endif
166 #else
167 #define PMAP_INLINE
168 #endif
169
170 /*
171  * These are configured by the mair_el1 register. This is set up in locore.S
172  */
173 #define DEVICE_MEMORY   0
174 #define UNCACHED_MEMORY 1
175 #define CACHED_MEMORY   2
176
177
178 #ifdef PV_STATS
179 #define PV_STAT(x)      do { x ; } while (0)
180 #else
181 #define PV_STAT(x)      do { } while (0)
182 #endif
183
184 #define pmap_l2_pindex(v)       ((v) >> L2_SHIFT)
185 #define pa_to_pvh(pa)           (&pv_table[pmap_l2_pindex(pa)])
186
187 #define NPV_LIST_LOCKS  MAXCPU
188
189 #define PHYS_TO_PV_LIST_LOCK(pa)        \
190                         (&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
191
192 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)  do {    \
193         struct rwlock **_lockp = (lockp);               \
194         struct rwlock *_new_lock;                       \
195                                                         \
196         _new_lock = PHYS_TO_PV_LIST_LOCK(pa);           \
197         if (_new_lock != *_lockp) {                     \
198                 if (*_lockp != NULL)                    \
199                         rw_wunlock(*_lockp);            \
200                 *_lockp = _new_lock;                    \
201                 rw_wlock(*_lockp);                      \
202         }                                               \
203 } while (0)
204
205 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)        \
206                         CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
207
208 #define RELEASE_PV_LIST_LOCK(lockp)             do {    \
209         struct rwlock **_lockp = (lockp);               \
210                                                         \
211         if (*_lockp != NULL) {                          \
212                 rw_wunlock(*_lockp);                    \
213                 *_lockp = NULL;                         \
214         }                                               \
215 } while (0)
216
217 #define VM_PAGE_TO_PV_LIST_LOCK(m)      \
218                         PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
219
220 /*
221  * The presence of this flag indicates that the mapping is writeable.
222  * If the ATTR_AP_RO bit is also set, then the mapping is clean, otherwise it is
223  * dirty.  This flag may only be set on managed mappings.
224  */
225 static pt_entry_t ATTR_SW_DBM;
226
227 struct pmap kernel_pmap_store;
228
229 /* Used for mapping ACPI memory before VM is initialized */
230 #define PMAP_PREINIT_MAPPING_COUNT      32
231 #define PMAP_PREINIT_MAPPING_SIZE       (PMAP_PREINIT_MAPPING_COUNT * L2_SIZE)
232 static vm_offset_t preinit_map_va;      /* Start VA of pre-init mapping space */
233 static int vm_initialized = 0;          /* No need to use pre-init maps when set */
234
235 /*
236  * Reserve a few L2 blocks starting from 'preinit_map_va' pointer.
237  * Always map entire L2 block for simplicity.
238  * VA of L2 block = preinit_map_va + i * L2_SIZE
239  */
240 static struct pmap_preinit_mapping {
241         vm_paddr_t      pa;
242         vm_offset_t     va;
243         vm_size_t       size;
244 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
245
246 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
247 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
248 vm_offset_t kernel_vm_end = 0;
249
250 /*
251  * Data for the pv entry allocation mechanism.
252  */
253 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
254 static struct mtx pv_chunks_mutex;
255 static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
256 static struct md_page *pv_table;
257 static struct md_page pv_dummy;
258
259 vm_paddr_t dmap_phys_base;      /* The start of the dmap region */
260 vm_paddr_t dmap_phys_max;       /* The limit of the dmap region */
261 vm_offset_t dmap_max_addr;      /* The virtual address limit of the dmap */
262
263 /* This code assumes all L1 DMAP entries will be used */
264 CTASSERT((DMAP_MIN_ADDRESS  & ~L0_OFFSET) == DMAP_MIN_ADDRESS);
265 CTASSERT((DMAP_MAX_ADDRESS  & ~L0_OFFSET) == DMAP_MAX_ADDRESS);
266
267 #define DMAP_TABLES     ((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
268 extern pt_entry_t pagetable_dmap[];
269
270 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
271 static vm_paddr_t physmap[PHYSMAP_SIZE];
272 static u_int physmap_idx;
273
274 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
275
276 static int superpages_enabled = 1;
277 SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
278     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0,
279     "Are large page mappings enabled?");
280
281 /*
282  * Internal flags for pmap_enter()'s helper functions.
283  */
284 #define PMAP_ENTER_NORECLAIM    0x1000000       /* Don't reclaim PV entries. */
285 #define PMAP_ENTER_NOREPLACE    0x2000000       /* Don't replace mappings. */
286
287 static void     free_pv_chunk(struct pv_chunk *pc);
288 static void     free_pv_entry(pmap_t pmap, pv_entry_t pv);
289 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
290 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
291 static void     pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
292 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
293                     vm_offset_t va);
294
295 static int pmap_change_attr(vm_offset_t va, vm_size_t size, int mode);
296 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
297 static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va);
298 static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2,
299     vm_offset_t va, struct rwlock **lockp);
300 static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
301 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
302     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
303 static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
304     u_int flags, vm_page_t m, struct rwlock **lockp);
305 static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
306     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp);
307 static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
308     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp);
309 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
310     vm_page_t m, struct rwlock **lockp);
311
312 static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
313                 struct rwlock **lockp);
314
315 static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
316     struct spglist *free);
317 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
318 static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
319
320 /*
321  * These load the old table data and store the new value.
322  * They need to be atomic as the System MMU may write to the table at
323  * the same time as the CPU.
324  */
325 #define pmap_clear(table)               atomic_store_64(table, 0)
326 #define pmap_clear_bits(table, bits)    atomic_clear_64(table, bits)
327 #define pmap_load(table)                (*table)
328 #define pmap_load_clear(table)          atomic_swap_64(table, 0)
329 #define pmap_load_store(table, entry)   atomic_swap_64(table, entry)
330 #define pmap_set_bits(table, bits)      atomic_set_64(table, bits)
331 #define pmap_store(table, entry)        atomic_store_64(table, entry)
332
333 /********************/
334 /* Inline functions */
335 /********************/
336
337 static __inline void
338 pagecopy(void *s, void *d)
339 {
340
341         memcpy(d, s, PAGE_SIZE);
342 }
343
344 static __inline pd_entry_t *
345 pmap_l0(pmap_t pmap, vm_offset_t va)
346 {
347
348         return (&pmap->pm_l0[pmap_l0_index(va)]);
349 }
350
351 static __inline pd_entry_t *
352 pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
353 {
354         pd_entry_t *l1;
355
356         l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
357         return (&l1[pmap_l1_index(va)]);
358 }
359
360 static __inline pd_entry_t *
361 pmap_l1(pmap_t pmap, vm_offset_t va)
362 {
363         pd_entry_t *l0;
364
365         l0 = pmap_l0(pmap, va);
366         if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE)
367                 return (NULL);
368
369         return (pmap_l0_to_l1(l0, va));
370 }
371
372 static __inline pd_entry_t *
373 pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
374 {
375         pd_entry_t *l2;
376
377         l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
378         return (&l2[pmap_l2_index(va)]);
379 }
380
381 static __inline pd_entry_t *
382 pmap_l2(pmap_t pmap, vm_offset_t va)
383 {
384         pd_entry_t *l1;
385
386         l1 = pmap_l1(pmap, va);
387         if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
388                 return (NULL);
389
390         return (pmap_l1_to_l2(l1, va));
391 }
392
393 static __inline pt_entry_t *
394 pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
395 {
396         pt_entry_t *l3;
397
398         l3 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l2) & ~ATTR_MASK);
399         return (&l3[pmap_l3_index(va)]);
400 }
401
402 /*
403  * Returns the lowest valid pde for a given virtual address.
404  * The next level may or may not point to a valid page or block.
405  */
406 static __inline pd_entry_t *
407 pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
408 {
409         pd_entry_t *l0, *l1, *l2, desc;
410
411         l0 = pmap_l0(pmap, va);
412         desc = pmap_load(l0) & ATTR_DESCR_MASK;
413         if (desc != L0_TABLE) {
414                 *level = -1;
415                 return (NULL);
416         }
417
418         l1 = pmap_l0_to_l1(l0, va);
419         desc = pmap_load(l1) & ATTR_DESCR_MASK;
420         if (desc != L1_TABLE) {
421                 *level = 0;
422                 return (l0);
423         }
424
425         l2 = pmap_l1_to_l2(l1, va);
426         desc = pmap_load(l2) & ATTR_DESCR_MASK;
427         if (desc != L2_TABLE) {
428                 *level = 1;
429                 return (l1);
430         }
431
432         *level = 2;
433         return (l2);
434 }
435
436 /*
437  * Returns the lowest valid pte block or table entry for a given virtual
438  * address. If there are no valid entries return NULL and set the level to
439  * the first invalid level.
440  */
441 static __inline pt_entry_t *
442 pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
443 {
444         pd_entry_t *l1, *l2, desc;
445         pt_entry_t *l3;
446
447         l1 = pmap_l1(pmap, va);
448         if (l1 == NULL) {
449                 *level = 0;
450                 return (NULL);
451         }
452         desc = pmap_load(l1) & ATTR_DESCR_MASK;
453         if (desc == L1_BLOCK) {
454                 *level = 1;
455                 return (l1);
456         }
457
458         if (desc != L1_TABLE) {
459                 *level = 1;
460                 return (NULL);
461         }
462
463         l2 = pmap_l1_to_l2(l1, va);
464         desc = pmap_load(l2) & ATTR_DESCR_MASK;
465         if (desc == L2_BLOCK) {
466                 *level = 2;
467                 return (l2);
468         }
469
470         if (desc != L2_TABLE) {
471                 *level = 2;
472                 return (NULL);
473         }
474
475         *level = 3;
476         l3 = pmap_l2_to_l3(l2, va);
477         if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE)
478                 return (NULL);
479
480         return (l3);
481 }
482
483 bool
484 pmap_ps_enabled(pmap_t pmap __unused)
485 {
486
487         return (superpages_enabled != 0);
488 }
489
490 bool
491 pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1,
492     pd_entry_t **l2, pt_entry_t **l3)
493 {
494         pd_entry_t *l0p, *l1p, *l2p;
495
496         if (pmap->pm_l0 == NULL)
497                 return (false);
498
499         l0p = pmap_l0(pmap, va);
500         *l0 = l0p;
501
502         if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE)
503                 return (false);
504
505         l1p = pmap_l0_to_l1(l0p, va);
506         *l1 = l1p;
507
508         if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
509                 *l2 = NULL;
510                 *l3 = NULL;
511                 return (true);
512         }
513
514         if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
515                 return (false);
516
517         l2p = pmap_l1_to_l2(l1p, va);
518         *l2 = l2p;
519
520         if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
521                 *l3 = NULL;
522                 return (true);
523         }
524
525         if ((pmap_load(l2p) & ATTR_DESCR_MASK) != L2_TABLE)
526                 return (false);
527
528         *l3 = pmap_l2_to_l3(l2p, va);
529
530         return (true);
531 }
532
533 static __inline int
534 pmap_l3_valid(pt_entry_t l3)
535 {
536
537         return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
538 }
539
540
541 CTASSERT(L1_BLOCK == L2_BLOCK);
542
543 /*
544  * Checks if the PTE is dirty.
545  */
546 static inline int
547 pmap_pte_dirty(pt_entry_t pte)
548 {
549
550         KASSERT((pte & ATTR_SW_MANAGED) != 0, ("pte %#lx is unmanaged", pte));
551         KASSERT((pte & (ATTR_AP_RW_BIT | ATTR_SW_DBM)) != 0,
552             ("pte %#lx is writeable and missing ATTR_SW_DBM", pte));
553
554         return ((pte & (ATTR_AP_RW_BIT | ATTR_SW_DBM)) ==
555             (ATTR_AP(ATTR_AP_RW) | ATTR_SW_DBM));
556 }
557
558 static __inline void
559 pmap_resident_count_inc(pmap_t pmap, int count)
560 {
561
562         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
563         pmap->pm_stats.resident_count += count;
564 }
565
566 static __inline void
567 pmap_resident_count_dec(pmap_t pmap, int count)
568 {
569
570         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
571         KASSERT(pmap->pm_stats.resident_count >= count,
572             ("pmap %p resident count underflow %ld %d", pmap,
573             pmap->pm_stats.resident_count, count));
574         pmap->pm_stats.resident_count -= count;
575 }
576
577 static pt_entry_t *
578 pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot,
579     u_int *l2_slot)
580 {
581         pt_entry_t *l2;
582         pd_entry_t *l1;
583
584         l1 = (pd_entry_t *)l1pt;
585         *l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK;
586
587         /* Check locore has used a table L1 map */
588         KASSERT((l1[*l1_slot] & ATTR_DESCR_MASK) == L1_TABLE,
589            ("Invalid bootstrap L1 table"));
590         /* Find the address of the L2 table */
591         l2 = (pt_entry_t *)init_pt_va;
592         *l2_slot = pmap_l2_index(va);
593
594         return (l2);
595 }
596
597 static vm_paddr_t
598 pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
599 {
600         u_int l1_slot, l2_slot;
601         pt_entry_t *l2;
602
603         l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot);
604
605         return ((l2[l2_slot] & ~ATTR_MASK) + (va & L2_OFFSET));
606 }
607
608 static vm_offset_t
609 pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa,
610     vm_offset_t freemempos)
611 {
612         pt_entry_t *l2;
613         vm_offset_t va;
614         vm_paddr_t l2_pa, pa;
615         u_int l1_slot, l2_slot, prev_l1_slot;
616         int i;
617
618         dmap_phys_base = min_pa & ~L1_OFFSET;
619         dmap_phys_max = 0;
620         dmap_max_addr = 0;
621         l2 = NULL;
622         prev_l1_slot = -1;
623
624 #define DMAP_TABLES     ((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
625         memset(pagetable_dmap, 0, PAGE_SIZE * DMAP_TABLES);
626
627         for (i = 0; i < (physmap_idx * 2); i += 2) {
628                 pa = physmap[i] & ~L2_OFFSET;
629                 va = pa - dmap_phys_base + DMAP_MIN_ADDRESS;
630
631                 /* Create L2 mappings at the start of the region */
632                 if ((pa & L1_OFFSET) != 0) {
633                         l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
634                         if (l1_slot != prev_l1_slot) {
635                                 prev_l1_slot = l1_slot;
636                                 l2 = (pt_entry_t *)freemempos;
637                                 l2_pa = pmap_early_vtophys(kern_l1,
638                                     (vm_offset_t)l2);
639                                 freemempos += PAGE_SIZE;
640
641                                 pmap_store(&pagetable_dmap[l1_slot],
642                                     (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
643
644                                 memset(l2, 0, PAGE_SIZE);
645                         }
646                         KASSERT(l2 != NULL,
647                             ("pmap_bootstrap_dmap: NULL l2 map"));
648                         for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
649                             pa += L2_SIZE, va += L2_SIZE) {
650                                 /*
651                                  * We are on a boundary, stop to
652                                  * create a level 1 block
653                                  */
654                                 if ((pa & L1_OFFSET) == 0)
655                                         break;
656
657                                 l2_slot = pmap_l2_index(va);
658                                 KASSERT(l2_slot != 0, ("..."));
659                                 pmap_store(&l2[l2_slot],
660                                     (pa & ~L2_OFFSET) | ATTR_DEFAULT | ATTR_XN |
661                                     ATTR_IDX(CACHED_MEMORY) | L2_BLOCK);
662                         }
663                         KASSERT(va == (pa - dmap_phys_base + DMAP_MIN_ADDRESS),
664                             ("..."));
665                 }
666
667                 for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1] &&
668                     (physmap[i + 1] - pa) >= L1_SIZE;
669                     pa += L1_SIZE, va += L1_SIZE) {
670                         l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
671                         pmap_store(&pagetable_dmap[l1_slot],
672                             (pa & ~L1_OFFSET) | ATTR_DEFAULT | ATTR_XN |
673                             ATTR_IDX(CACHED_MEMORY) | L1_BLOCK);
674                 }
675
676                 /* Create L2 mappings at the end of the region */
677                 if (pa < physmap[i + 1]) {
678                         l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
679                         if (l1_slot != prev_l1_slot) {
680                                 prev_l1_slot = l1_slot;
681                                 l2 = (pt_entry_t *)freemempos;
682                                 l2_pa = pmap_early_vtophys(kern_l1,
683                                     (vm_offset_t)l2);
684                                 freemempos += PAGE_SIZE;
685
686                                 pmap_store(&pagetable_dmap[l1_slot],
687                                     (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
688
689                                 memset(l2, 0, PAGE_SIZE);
690                         }
691                         KASSERT(l2 != NULL,
692                             ("pmap_bootstrap_dmap: NULL l2 map"));
693                         for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
694                             pa += L2_SIZE, va += L2_SIZE) {
695                                 l2_slot = pmap_l2_index(va);
696                                 pmap_store(&l2[l2_slot],
697                                     (pa & ~L2_OFFSET) | ATTR_DEFAULT | ATTR_XN |
698                                     ATTR_IDX(CACHED_MEMORY) | L2_BLOCK);
699                         }
700                 }
701
702                 if (pa > dmap_phys_max) {
703                         dmap_phys_max = pa;
704                         dmap_max_addr = va;
705                 }
706         }
707
708         cpu_tlb_flushID();
709
710         return (freemempos);
711 }
712
713 static vm_offset_t
714 pmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start)
715 {
716         vm_offset_t l2pt;
717         vm_paddr_t pa;
718         pd_entry_t *l1;
719         u_int l1_slot;
720
721         KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
722
723         l1 = (pd_entry_t *)l1pt;
724         l1_slot = pmap_l1_index(va);
725         l2pt = l2_start;
726
727         for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) {
728                 KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
729
730                 pa = pmap_early_vtophys(l1pt, l2pt);
731                 pmap_store(&l1[l1_slot],
732                     (pa & ~Ln_TABLE_MASK) | L1_TABLE);
733                 l2pt += PAGE_SIZE;
734         }
735
736         /* Clean the L2 page table */
737         memset((void *)l2_start, 0, l2pt - l2_start);
738
739         return l2pt;
740 }
741
742 static vm_offset_t
743 pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
744 {
745         vm_offset_t l3pt;
746         vm_paddr_t pa;
747         pd_entry_t *l2;
748         u_int l2_slot;
749
750         KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
751
752         l2 = pmap_l2(kernel_pmap, va);
753         l2 = (pd_entry_t *)rounddown2((uintptr_t)l2, PAGE_SIZE);
754         l2_slot = pmap_l2_index(va);
755         l3pt = l3_start;
756
757         for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
758                 KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));
759
760                 pa = pmap_early_vtophys(l1pt, l3pt);
761                 pmap_store(&l2[l2_slot],
762                     (pa & ~Ln_TABLE_MASK) | L2_TABLE);
763                 l3pt += PAGE_SIZE;
764         }
765
766         /* Clean the L2 page table */
767         memset((void *)l3_start, 0, l3pt - l3_start);
768
769         return l3pt;
770 }
771
772 /*
773  *      Bootstrap the system enough to run with virtual memory.
774  */
775 void
776 pmap_bootstrap(vm_offset_t l0pt, vm_offset_t l1pt, vm_paddr_t kernstart,
777     vm_size_t kernlen)
778 {
779         u_int l1_slot, l2_slot;
780         pt_entry_t *l2;
781         vm_offset_t va, freemempos;
782         vm_offset_t dpcpu, msgbufpv;
783         vm_paddr_t start_pa, pa, min_pa;
784         uint64_t kern_delta;
785         int i;
786
787 #ifdef notyet
788         /* Determine whether the hardware implements DBM management. */
789         uint64_t reg = READ_SPECIALREG(ID_AA64MMFR1_EL1);
790         ATTR_SW_DBM = ID_AA64MMFR1_HAFDBS(reg) == ID_AA64MMFR1_HAFDBS_AF_DBS ?
791             ATTR_DBM : _ATTR_SW_DBM;
792 #else
793         ATTR_SW_DBM = _ATTR_SW_DBM;
794 #endif
795
796         kern_delta = KERNBASE - kernstart;
797
798         printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
799         printf("%lx\n", l1pt);
800         printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK);
801
802         /* Set this early so we can use the pagetable walking functions */
803         kernel_pmap_store.pm_l0 = (pd_entry_t *)l0pt;
804         PMAP_LOCK_INIT(kernel_pmap);
805
806         /* Assume the address we were loaded to is a valid physical address */
807         min_pa = KERNBASE - kern_delta;
808
809         physmap_idx = arm_physmem_avail(physmap, nitems(physmap));
810         physmap_idx /= 2;
811
812         /*
813          * Find the minimum physical address. physmap is sorted,
814          * but may contain empty ranges.
815          */
816         for (i = 0; i < (physmap_idx * 2); i += 2) {
817                 if (physmap[i] == physmap[i + 1])
818                         continue;
819                 if (physmap[i] <= min_pa)
820                         min_pa = physmap[i];
821         }
822
823         freemempos = KERNBASE + kernlen;
824         freemempos = roundup2(freemempos, PAGE_SIZE);
825
826         /* Create a direct map region early so we can use it for pa -> va */
827         freemempos = pmap_bootstrap_dmap(l1pt, min_pa, freemempos);
828
829         va = KERNBASE;
830         start_pa = pa = KERNBASE - kern_delta;
831
832         /*
833          * Read the page table to find out what is already mapped.
834          * This assumes we have mapped a block of memory from KERNBASE
835          * using a single L1 entry.
836          */
837         l2 = pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot);
838
839         /* Sanity check the index, KERNBASE should be the first VA */
840         KASSERT(l2_slot == 0, ("The L2 index is non-zero"));
841
842         /* Find how many pages we have mapped */
843         for (; l2_slot < Ln_ENTRIES; l2_slot++) {
844                 if ((l2[l2_slot] & ATTR_DESCR_MASK) == 0)
845                         break;
846
847                 /* Check locore used L2 blocks */
848                 KASSERT((l2[l2_slot] & ATTR_DESCR_MASK) == L2_BLOCK,
849                     ("Invalid bootstrap L2 table"));
850                 KASSERT((l2[l2_slot] & ~ATTR_MASK) == pa,
851                     ("Incorrect PA in L2 table"));
852
853                 va += L2_SIZE;
854                 pa += L2_SIZE;
855         }
856
857         va = roundup2(va, L1_SIZE);
858
859         /* Create the l2 tables up to VM_MAX_KERNEL_ADDRESS */
860         freemempos = pmap_bootstrap_l2(l1pt, va, freemempos);
861         /* And the l3 tables for the early devmap */
862         freemempos = pmap_bootstrap_l3(l1pt,
863             VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE), freemempos);
864
865         cpu_tlb_flushID();
866
867 #define alloc_pages(var, np)                                            \
868         (var) = freemempos;                                             \
869         freemempos += (np * PAGE_SIZE);                                 \
870         memset((char *)(var), 0, ((np) * PAGE_SIZE));
871
872         /* Allocate dynamic per-cpu area. */
873         alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
874         dpcpu_init((void *)dpcpu, 0);
875
876         /* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
877         alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
878         msgbufp = (void *)msgbufpv;
879
880         /* Reserve some VA space for early BIOS/ACPI mapping */
881         preinit_map_va = roundup2(freemempos, L2_SIZE);
882
883         virtual_avail = preinit_map_va + PMAP_PREINIT_MAPPING_SIZE;
884         virtual_avail = roundup2(virtual_avail, L1_SIZE);
885         virtual_end = VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE);
886         kernel_vm_end = virtual_avail;
887
888         pa = pmap_early_vtophys(l1pt, freemempos);
889
890         arm_physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC);
891
892         cpu_tlb_flushID();
893 }
894
895 /*
896  *      Initialize a vm_page's machine-dependent fields.
897  */
898 void
899 pmap_page_init(vm_page_t m)
900 {
901
902         TAILQ_INIT(&m->md.pv_list);
903         m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
904 }
905
906 /*
907  *      Initialize the pmap module.
908  *      Called by vm_init, to initialize any structures that the pmap
909  *      system needs to map virtual memory.
910  */
911 void
912 pmap_init(void)
913 {
914         vm_size_t s;
915         int i, pv_npg;
916
917         /*
918          * Are large page mappings enabled?
919          */
920         TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
921         if (superpages_enabled) {
922                 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
923                     ("pmap_init: can't assign to pagesizes[1]"));
924                 pagesizes[1] = L2_SIZE;
925         }
926
927         /*
928          * Initialize the pv chunk list mutex.
929          */
930         mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
931
932         /*
933          * Initialize the pool of pv list locks.
934          */
935         for (i = 0; i < NPV_LIST_LOCKS; i++)
936                 rw_init(&pv_list_locks[i], "pmap pv list");
937
938         /*
939          * Calculate the size of the pv head table for superpages.
940          */
941         pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE);
942
943         /*
944          * Allocate memory for the pv head table for superpages.
945          */
946         s = (vm_size_t)(pv_npg * sizeof(struct md_page));
947         s = round_page(s);
948         pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
949         for (i = 0; i < pv_npg; i++)
950                 TAILQ_INIT(&pv_table[i].pv_list);
951         TAILQ_INIT(&pv_dummy.pv_list);
952
953         vm_initialized = 1;
954 }
955
956 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD, 0,
957     "2MB page mapping counters");
958
959 static u_long pmap_l2_demotions;
960 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
961     &pmap_l2_demotions, 0, "2MB page demotions");
962
963 static u_long pmap_l2_mappings;
964 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
965     &pmap_l2_mappings, 0, "2MB page mappings");
966
967 static u_long pmap_l2_p_failures;
968 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
969     &pmap_l2_p_failures, 0, "2MB page promotion failures");
970
971 static u_long pmap_l2_promotions;
972 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
973     &pmap_l2_promotions, 0, "2MB page promotions");
974
975 /*
976  * Invalidate a single TLB entry.
977  */
978 static __inline void
979 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
980 {
981
982         sched_pin();
983         __asm __volatile(
984             "dsb  ishst         \n"
985             "tlbi vaae1is, %0   \n"
986             "dsb  ish           \n"
987             "isb                \n"
988             : : "r"(va >> PAGE_SHIFT));
989         sched_unpin();
990 }
991
992 static __inline void
993 pmap_invalidate_range_nopin(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
994 {
995         vm_offset_t addr;
996
997         dsb(ishst);
998         for (addr = sva; addr < eva; addr += PAGE_SIZE) {
999                 __asm __volatile(
1000                     "tlbi vaae1is, %0" : : "r"(addr >> PAGE_SHIFT));
1001         }
1002         __asm __volatile(
1003             "dsb  ish   \n"
1004             "isb        \n");
1005 }
1006
1007 static __inline void
1008 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1009 {
1010
1011         sched_pin();
1012         pmap_invalidate_range_nopin(pmap, sva, eva);
1013         sched_unpin();
1014 }
1015
1016 static __inline void
1017 pmap_invalidate_all(pmap_t pmap)
1018 {
1019
1020         sched_pin();
1021         __asm __volatile(
1022             "dsb  ishst         \n"
1023             "tlbi vmalle1is     \n"
1024             "dsb  ish           \n"
1025             "isb                \n");
1026         sched_unpin();
1027 }
1028
1029 /*
1030  *      Routine:        pmap_extract
1031  *      Function:
1032  *              Extract the physical page address associated
1033  *              with the given map/virtual_address pair.
1034  */
1035 vm_paddr_t
1036 pmap_extract(pmap_t pmap, vm_offset_t va)
1037 {
1038         pt_entry_t *pte, tpte;
1039         vm_paddr_t pa;
1040         int lvl;
1041
1042         pa = 0;
1043         PMAP_LOCK(pmap);
1044         /*
1045          * Find the block or page map for this virtual address. pmap_pte
1046          * will return either a valid block/page entry, or NULL.
1047          */
1048         pte = pmap_pte(pmap, va, &lvl);
1049         if (pte != NULL) {
1050                 tpte = pmap_load(pte);
1051                 pa = tpte & ~ATTR_MASK;
1052                 switch(lvl) {
1053                 case 1:
1054                         KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1055                             ("pmap_extract: Invalid L1 pte found: %lx",
1056                             tpte & ATTR_DESCR_MASK));
1057                         pa |= (va & L1_OFFSET);
1058                         break;
1059                 case 2:
1060                         KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1061                             ("pmap_extract: Invalid L2 pte found: %lx",
1062                             tpte & ATTR_DESCR_MASK));
1063                         pa |= (va & L2_OFFSET);
1064                         break;
1065                 case 3:
1066                         KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1067                             ("pmap_extract: Invalid L3 pte found: %lx",
1068                             tpte & ATTR_DESCR_MASK));
1069                         pa |= (va & L3_OFFSET);
1070                         break;
1071                 }
1072         }
1073         PMAP_UNLOCK(pmap);
1074         return (pa);
1075 }
1076
1077 /*
1078  *      Routine:        pmap_extract_and_hold
1079  *      Function:
1080  *              Atomically extract and hold the physical page
1081  *              with the given pmap and virtual address pair
1082  *              if that mapping permits the given protection.
1083  */
1084 vm_page_t
1085 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1086 {
1087         pt_entry_t *pte, tpte;
1088         vm_offset_t off;
1089         vm_paddr_t pa;
1090         vm_page_t m;
1091         int lvl;
1092
1093         pa = 0;
1094         m = NULL;
1095         PMAP_LOCK(pmap);
1096 retry:
1097         pte = pmap_pte(pmap, va, &lvl);
1098         if (pte != NULL) {
1099                 tpte = pmap_load(pte);
1100
1101                 KASSERT(lvl > 0 && lvl <= 3,
1102                     ("pmap_extract_and_hold: Invalid level %d", lvl));
1103                 CTASSERT(L1_BLOCK == L2_BLOCK);
1104                 KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) ||
1105                     (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK),
1106                     ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl,
1107                      tpte & ATTR_DESCR_MASK));
1108                 if (((tpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) ||
1109                     ((prot & VM_PROT_WRITE) == 0)) {
1110                         switch(lvl) {
1111                         case 1:
1112                                 off = va & L1_OFFSET;
1113                                 break;
1114                         case 2:
1115                                 off = va & L2_OFFSET;
1116                                 break;
1117                         case 3:
1118                         default:
1119                                 off = 0;
1120                         }
1121                         if (vm_page_pa_tryrelock(pmap,
1122                             (tpte & ~ATTR_MASK) | off, &pa))
1123                                 goto retry;
1124                         m = PHYS_TO_VM_PAGE((tpte & ~ATTR_MASK) | off);
1125                         vm_page_wire(m);
1126                 }
1127         }
1128         PA_UNLOCK_COND(pa);
1129         PMAP_UNLOCK(pmap);
1130         return (m);
1131 }
1132
1133 vm_paddr_t
1134 pmap_kextract(vm_offset_t va)
1135 {
1136         pt_entry_t *pte, tpte;
1137         vm_paddr_t pa;
1138         int lvl;
1139
1140         if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1141                 pa = DMAP_TO_PHYS(va);
1142         } else {
1143                 pa = 0;
1144                 pte = pmap_pte(kernel_pmap, va, &lvl);
1145                 if (pte != NULL) {
1146                         tpte = pmap_load(pte);
1147                         pa = tpte & ~ATTR_MASK;
1148                         switch(lvl) {
1149                         case 1:
1150                                 KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1151                                     ("pmap_kextract: Invalid L1 pte found: %lx",
1152                                     tpte & ATTR_DESCR_MASK));
1153                                 pa |= (va & L1_OFFSET);
1154                                 break;
1155                         case 2:
1156                                 KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1157                                     ("pmap_kextract: Invalid L2 pte found: %lx",
1158                                     tpte & ATTR_DESCR_MASK));
1159                                 pa |= (va & L2_OFFSET);
1160                                 break;
1161                         case 3:
1162                                 KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1163                                     ("pmap_kextract: Invalid L3 pte found: %lx",
1164                                     tpte & ATTR_DESCR_MASK));
1165                                 pa |= (va & L3_OFFSET);
1166                                 break;
1167                         }
1168                 }
1169         }
1170         return (pa);
1171 }
1172
1173 /***************************************************
1174  * Low level mapping routines.....
1175  ***************************************************/
1176
1177 void
1178 pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
1179 {
1180         pd_entry_t *pde;
1181         pt_entry_t *pte, attr;
1182         vm_offset_t va;
1183         int lvl;
1184
1185         KASSERT((pa & L3_OFFSET) == 0,
1186            ("pmap_kenter: Invalid physical address"));
1187         KASSERT((sva & L3_OFFSET) == 0,
1188            ("pmap_kenter: Invalid virtual address"));
1189         KASSERT((size & PAGE_MASK) == 0,
1190             ("pmap_kenter: Mapping is not page-sized"));
1191
1192         attr = ATTR_DEFAULT | ATTR_IDX(mode) | L3_PAGE;
1193         if (mode == DEVICE_MEMORY)
1194                 attr |= ATTR_XN;
1195
1196         va = sva;
1197         while (size != 0) {
1198                 pde = pmap_pde(kernel_pmap, va, &lvl);
1199                 KASSERT(pde != NULL,
1200                     ("pmap_kenter: Invalid page entry, va: 0x%lx", va));
1201                 KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl));
1202
1203                 pte = pmap_l2_to_l3(pde, va);
1204                 pmap_load_store(pte, (pa & ~L3_OFFSET) | attr);
1205
1206                 va += PAGE_SIZE;
1207                 pa += PAGE_SIZE;
1208                 size -= PAGE_SIZE;
1209         }
1210         pmap_invalidate_range(kernel_pmap, sva, va);
1211 }
1212
1213 void
1214 pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
1215 {
1216
1217         pmap_kenter(sva, size, pa, DEVICE_MEMORY);
1218 }
1219
1220 /*
1221  * Remove a page from the kernel pagetables.
1222  */
1223 PMAP_INLINE void
1224 pmap_kremove(vm_offset_t va)
1225 {
1226         pt_entry_t *pte;
1227         int lvl;
1228
1229         pte = pmap_pte(kernel_pmap, va, &lvl);
1230         KASSERT(pte != NULL, ("pmap_kremove: Invalid address"));
1231         KASSERT(lvl == 3, ("pmap_kremove: Invalid pte level %d", lvl));
1232
1233         pmap_clear(pte);
1234         pmap_invalidate_page(kernel_pmap, va);
1235 }
1236
1237 void
1238 pmap_kremove_device(vm_offset_t sva, vm_size_t size)
1239 {
1240         pt_entry_t *pte;
1241         vm_offset_t va;
1242         int lvl;
1243
1244         KASSERT((sva & L3_OFFSET) == 0,
1245            ("pmap_kremove_device: Invalid virtual address"));
1246         KASSERT((size & PAGE_MASK) == 0,
1247             ("pmap_kremove_device: Mapping is not page-sized"));
1248
1249         va = sva;
1250         while (size != 0) {
1251                 pte = pmap_pte(kernel_pmap, va, &lvl);
1252                 KASSERT(pte != NULL, ("Invalid page table, va: 0x%lx", va));
1253                 KASSERT(lvl == 3,
1254                     ("Invalid device pagetable level: %d != 3", lvl));
1255                 pmap_clear(pte);
1256
1257                 va += PAGE_SIZE;
1258                 size -= PAGE_SIZE;
1259         }
1260         pmap_invalidate_range(kernel_pmap, sva, va);
1261 }
1262
1263 /*
1264  *      Used to map a range of physical addresses into kernel
1265  *      virtual address space.
1266  *
1267  *      The value passed in '*virt' is a suggested virtual address for
1268  *      the mapping. Architectures which can support a direct-mapped
1269  *      physical to virtual region can return the appropriate address
1270  *      within that region, leaving '*virt' unchanged. Other
1271  *      architectures should map the pages starting at '*virt' and
1272  *      update '*virt' with the first usable address after the mapped
1273  *      region.
1274  */
1275 vm_offset_t
1276 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1277 {
1278         return PHYS_TO_DMAP(start);
1279 }
1280
1281
1282 /*
1283  * Add a list of wired pages to the kva
1284  * this routine is only used for temporary
1285  * kernel mappings that do not need to have
1286  * page modification or references recorded.
1287  * Note that old mappings are simply written
1288  * over.  The page *must* be wired.
1289  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1290  */
1291 void
1292 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1293 {
1294         pd_entry_t *pde;
1295         pt_entry_t *pte, pa;
1296         vm_offset_t va;
1297         vm_page_t m;
1298         int i, lvl;
1299
1300         va = sva;
1301         for (i = 0; i < count; i++) {
1302                 pde = pmap_pde(kernel_pmap, va, &lvl);
1303                 KASSERT(pde != NULL,
1304                     ("pmap_qenter: Invalid page entry, va: 0x%lx", va));
1305                 KASSERT(lvl == 2,
1306                     ("pmap_qenter: Invalid level %d", lvl));
1307
1308                 m = ma[i];
1309                 pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_AP(ATTR_AP_RW) |
1310                     ATTR_IDX(m->md.pv_memattr) | L3_PAGE;
1311                 if (m->md.pv_memattr == DEVICE_MEMORY)
1312                         pa |= ATTR_XN;
1313                 pte = pmap_l2_to_l3(pde, va);
1314                 pmap_load_store(pte, pa);
1315
1316                 va += L3_SIZE;
1317         }
1318         pmap_invalidate_range(kernel_pmap, sva, va);
1319 }
1320
1321 /*
1322  * This routine tears out page mappings from the
1323  * kernel -- it is meant only for temporary mappings.
1324  */
1325 void
1326 pmap_qremove(vm_offset_t sva, int count)
1327 {
1328         pt_entry_t *pte;
1329         vm_offset_t va;
1330         int lvl;
1331
1332         KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1333
1334         va = sva;
1335         while (count-- > 0) {
1336                 pte = pmap_pte(kernel_pmap, va, &lvl);
1337                 KASSERT(lvl == 3,
1338                     ("Invalid device pagetable level: %d != 3", lvl));
1339                 if (pte != NULL) {
1340                         pmap_clear(pte);
1341                 }
1342
1343                 va += PAGE_SIZE;
1344         }
1345         pmap_invalidate_range(kernel_pmap, sva, va);
1346 }
1347
1348 /***************************************************
1349  * Page table page management routines.....
1350  ***************************************************/
1351 /*
1352  * Schedule the specified unused page table page to be freed.  Specifically,
1353  * add the page to the specified list of pages that will be released to the
1354  * physical memory manager after the TLB has been updated.
1355  */
1356 static __inline void
1357 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1358     boolean_t set_PG_ZERO)
1359 {
1360
1361         if (set_PG_ZERO)
1362                 m->flags |= PG_ZERO;
1363         else
1364                 m->flags &= ~PG_ZERO;
1365         SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1366 }
1367
1368 /*
1369  * Decrements a page table page's wire count, which is used to record the
1370  * number of valid page table entries within the page.  If the wire count
1371  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1372  * page table page was unmapped and FALSE otherwise.
1373  */
1374 static inline boolean_t
1375 pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1376 {
1377
1378         --m->wire_count;
1379         if (m->wire_count == 0) {
1380                 _pmap_unwire_l3(pmap, va, m, free);
1381                 return (TRUE);
1382         } else
1383                 return (FALSE);
1384 }
1385
1386 static void
1387 _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1388 {
1389
1390         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1391         /*
1392          * unmap the page table page
1393          */
1394         if (m->pindex >= (NUL2E + NUL1E)) {
1395                 /* l1 page */
1396                 pd_entry_t *l0;
1397
1398                 l0 = pmap_l0(pmap, va);
1399                 pmap_clear(l0);
1400         } else if (m->pindex >= NUL2E) {
1401                 /* l2 page */
1402                 pd_entry_t *l1;
1403
1404                 l1 = pmap_l1(pmap, va);
1405                 pmap_clear(l1);
1406         } else {
1407                 /* l3 page */
1408                 pd_entry_t *l2;
1409
1410                 l2 = pmap_l2(pmap, va);
1411                 pmap_clear(l2);
1412         }
1413         pmap_resident_count_dec(pmap, 1);
1414         if (m->pindex < NUL2E) {
1415                 /* We just released an l3, unhold the matching l2 */
1416                 pd_entry_t *l1, tl1;
1417                 vm_page_t l2pg;
1418
1419                 l1 = pmap_l1(pmap, va);
1420                 tl1 = pmap_load(l1);
1421                 l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1422                 pmap_unwire_l3(pmap, va, l2pg, free);
1423         } else if (m->pindex < (NUL2E + NUL1E)) {
1424                 /* We just released an l2, unhold the matching l1 */
1425                 pd_entry_t *l0, tl0;
1426                 vm_page_t l1pg;
1427
1428                 l0 = pmap_l0(pmap, va);
1429                 tl0 = pmap_load(l0);
1430                 l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1431                 pmap_unwire_l3(pmap, va, l1pg, free);
1432         }
1433         pmap_invalidate_page(pmap, va);
1434
1435         /*
1436          * Put page on a list so that it is released after
1437          * *ALL* TLB shootdown is done
1438          */
1439         pmap_add_delayed_free_list(m, free, TRUE);
1440 }
1441
1442 /*
1443  * After removing a page table entry, this routine is used to
1444  * conditionally free the page, and manage the hold/wire counts.
1445  */
1446 static int
1447 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1448     struct spglist *free)
1449 {
1450         vm_page_t mpte;
1451
1452         if (va >= VM_MAXUSER_ADDRESS)
1453                 return (0);
1454         KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1455         mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK);
1456         return (pmap_unwire_l3(pmap, va, mpte, free));
1457 }
1458
1459 void
1460 pmap_pinit0(pmap_t pmap)
1461 {
1462
1463         PMAP_LOCK_INIT(pmap);
1464         bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1465         pmap->pm_l0 = kernel_pmap->pm_l0;
1466         pmap->pm_root.rt_root = 0;
1467 }
1468
1469 int
1470 pmap_pinit(pmap_t pmap)
1471 {
1472         vm_paddr_t l0phys;
1473         vm_page_t l0pt;
1474
1475         /*
1476          * allocate the l0 page
1477          */
1478         while ((l0pt = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
1479             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1480                 vm_wait(NULL);
1481
1482         l0phys = VM_PAGE_TO_PHYS(l0pt);
1483         pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(l0phys);
1484
1485         if ((l0pt->flags & PG_ZERO) == 0)
1486                 pagezero(pmap->pm_l0);
1487
1488         pmap->pm_root.rt_root = 0;
1489         bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1490
1491         return (1);
1492 }
1493
1494 /*
1495  * This routine is called if the desired page table page does not exist.
1496  *
1497  * If page table page allocation fails, this routine may sleep before
1498  * returning NULL.  It sleeps only if a lock pointer was given.
1499  *
1500  * Note: If a page allocation fails at page table level two or three,
1501  * one or two pages may be held during the wait, only to be released
1502  * afterwards.  This conservative approach is easily argued to avoid
1503  * race conditions.
1504  */
1505 static vm_page_t
1506 _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1507 {
1508         vm_page_t m, l1pg, l2pg;
1509
1510         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1511
1512         /*
1513          * Allocate a page table page.
1514          */
1515         if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1516             VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1517                 if (lockp != NULL) {
1518                         RELEASE_PV_LIST_LOCK(lockp);
1519                         PMAP_UNLOCK(pmap);
1520                         vm_wait(NULL);
1521                         PMAP_LOCK(pmap);
1522                 }
1523
1524                 /*
1525                  * Indicate the need to retry.  While waiting, the page table
1526                  * page may have been allocated.
1527                  */
1528                 return (NULL);
1529         }
1530         if ((m->flags & PG_ZERO) == 0)
1531                 pmap_zero_page(m);
1532
1533         /*
1534          * Map the pagetable page into the process address space, if
1535          * it isn't already there.
1536          */
1537
1538         if (ptepindex >= (NUL2E + NUL1E)) {
1539                 pd_entry_t *l0;
1540                 vm_pindex_t l0index;
1541
1542                 l0index = ptepindex - (NUL2E + NUL1E);
1543                 l0 = &pmap->pm_l0[l0index];
1544                 pmap_store(l0, VM_PAGE_TO_PHYS(m) | L0_TABLE);
1545         } else if (ptepindex >= NUL2E) {
1546                 vm_pindex_t l0index, l1index;
1547                 pd_entry_t *l0, *l1;
1548                 pd_entry_t tl0;
1549
1550                 l1index = ptepindex - NUL2E;
1551                 l0index = l1index >> L0_ENTRIES_SHIFT;
1552
1553                 l0 = &pmap->pm_l0[l0index];
1554                 tl0 = pmap_load(l0);
1555                 if (tl0 == 0) {
1556                         /* recurse for allocating page dir */
1557                         if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index,
1558                             lockp) == NULL) {
1559                                 vm_page_unwire_noq(m);
1560                                 vm_page_free_zero(m);
1561                                 return (NULL);
1562                         }
1563                 } else {
1564                         l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1565                         l1pg->wire_count++;
1566                 }
1567
1568                 l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
1569                 l1 = &l1[ptepindex & Ln_ADDR_MASK];
1570                 pmap_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE);
1571         } else {
1572                 vm_pindex_t l0index, l1index;
1573                 pd_entry_t *l0, *l1, *l2;
1574                 pd_entry_t tl0, tl1;
1575
1576                 l1index = ptepindex >> Ln_ENTRIES_SHIFT;
1577                 l0index = l1index >> L0_ENTRIES_SHIFT;
1578
1579                 l0 = &pmap->pm_l0[l0index];
1580                 tl0 = pmap_load(l0);
1581                 if (tl0 == 0) {
1582                         /* recurse for allocating page dir */
1583                         if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1584                             lockp) == NULL) {
1585                                 vm_page_unwire_noq(m);
1586                                 vm_page_free_zero(m);
1587                                 return (NULL);
1588                         }
1589                         tl0 = pmap_load(l0);
1590                         l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1591                         l1 = &l1[l1index & Ln_ADDR_MASK];
1592                 } else {
1593                         l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1594                         l1 = &l1[l1index & Ln_ADDR_MASK];
1595                         tl1 = pmap_load(l1);
1596                         if (tl1 == 0) {
1597                                 /* recurse for allocating page dir */
1598                                 if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1599                                     lockp) == NULL) {
1600                                         vm_page_unwire_noq(m);
1601                                         vm_page_free_zero(m);
1602                                         return (NULL);
1603                                 }
1604                         } else {
1605                                 l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1606                                 l2pg->wire_count++;
1607                         }
1608                 }
1609
1610                 l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
1611                 l2 = &l2[ptepindex & Ln_ADDR_MASK];
1612                 pmap_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE);
1613         }
1614
1615         pmap_resident_count_inc(pmap, 1);
1616
1617         return (m);
1618 }
1619
1620 static vm_page_t
1621 pmap_alloc_l2(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1622 {
1623         pd_entry_t *l1;
1624         vm_page_t l2pg;
1625         vm_pindex_t l2pindex;
1626
1627 retry:
1628         l1 = pmap_l1(pmap, va);
1629         if (l1 != NULL && (pmap_load(l1) & ATTR_DESCR_MASK) == L1_TABLE) {
1630                 /* Add a reference to the L2 page. */
1631                 l2pg = PHYS_TO_VM_PAGE(pmap_load(l1) & ~ATTR_MASK);
1632                 l2pg->wire_count++;
1633         } else {
1634                 /* Allocate a L2 page. */
1635                 l2pindex = pmap_l2_pindex(va) >> Ln_ENTRIES_SHIFT;
1636                 l2pg = _pmap_alloc_l3(pmap, NUL2E + l2pindex, lockp);
1637                 if (l2pg == NULL && lockp != NULL)
1638                         goto retry;
1639         }
1640         return (l2pg);
1641 }
1642
1643 static vm_page_t
1644 pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1645 {
1646         vm_pindex_t ptepindex;
1647         pd_entry_t *pde, tpde;
1648 #ifdef INVARIANTS
1649         pt_entry_t *pte;
1650 #endif
1651         vm_page_t m;
1652         int lvl;
1653
1654         /*
1655          * Calculate pagetable page index
1656          */
1657         ptepindex = pmap_l2_pindex(va);
1658 retry:
1659         /*
1660          * Get the page directory entry
1661          */
1662         pde = pmap_pde(pmap, va, &lvl);
1663
1664         /*
1665          * If the page table page is mapped, we just increment the hold count,
1666          * and activate it. If we get a level 2 pde it will point to a level 3
1667          * table.
1668          */
1669         switch (lvl) {
1670         case -1:
1671                 break;
1672         case 0:
1673 #ifdef INVARIANTS
1674                 pte = pmap_l0_to_l1(pde, va);
1675                 KASSERT(pmap_load(pte) == 0,
1676                     ("pmap_alloc_l3: TODO: l0 superpages"));
1677 #endif
1678                 break;
1679         case 1:
1680 #ifdef INVARIANTS
1681                 pte = pmap_l1_to_l2(pde, va);
1682                 KASSERT(pmap_load(pte) == 0,
1683                     ("pmap_alloc_l3: TODO: l1 superpages"));
1684 #endif
1685                 break;
1686         case 2:
1687                 tpde = pmap_load(pde);
1688                 if (tpde != 0) {
1689                         m = PHYS_TO_VM_PAGE(tpde & ~ATTR_MASK);
1690                         m->wire_count++;
1691                         return (m);
1692                 }
1693                 break;
1694         default:
1695                 panic("pmap_alloc_l3: Invalid level %d", lvl);
1696         }
1697
1698         /*
1699          * Here if the pte page isn't mapped, or if it has been deallocated.
1700          */
1701         m = _pmap_alloc_l3(pmap, ptepindex, lockp);
1702         if (m == NULL && lockp != NULL)
1703                 goto retry;
1704
1705         return (m);
1706 }
1707
1708 /***************************************************
1709  * Pmap allocation/deallocation routines.
1710  ***************************************************/
1711
1712 /*
1713  * Release any resources held by the given physical map.
1714  * Called when a pmap initialized by pmap_pinit is being released.
1715  * Should only be called if the map contains no valid mappings.
1716  */
1717 void
1718 pmap_release(pmap_t pmap)
1719 {
1720         vm_page_t m;
1721
1722         KASSERT(pmap->pm_stats.resident_count == 0,
1723             ("pmap_release: pmap resident count %ld != 0",
1724             pmap->pm_stats.resident_count));
1725         KASSERT(vm_radix_is_empty(&pmap->pm_root),
1726             ("pmap_release: pmap has reserved page table page(s)"));
1727
1728         m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_l0));
1729
1730         vm_page_unwire_noq(m);
1731         vm_page_free_zero(m);
1732 }
1733
1734 static int
1735 kvm_size(SYSCTL_HANDLER_ARGS)
1736 {
1737         unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
1738
1739         return sysctl_handle_long(oidp, &ksize, 0, req);
1740 }
1741 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1742     0, 0, kvm_size, "LU", "Size of KVM");
1743
1744 static int
1745 kvm_free(SYSCTL_HANDLER_ARGS)
1746 {
1747         unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1748
1749         return sysctl_handle_long(oidp, &kfree, 0, req);
1750 }
1751 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1752     0, 0, kvm_free, "LU", "Amount of KVM free");
1753
1754 /*
1755  * grow the number of kernel page table entries, if needed
1756  */
1757 void
1758 pmap_growkernel(vm_offset_t addr)
1759 {
1760         vm_paddr_t paddr;
1761         vm_page_t nkpg;
1762         pd_entry_t *l0, *l1, *l2;
1763
1764         mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1765
1766         addr = roundup2(addr, L2_SIZE);
1767         if (addr - 1 >= vm_map_max(kernel_map))
1768                 addr = vm_map_max(kernel_map);
1769         while (kernel_vm_end < addr) {
1770                 l0 = pmap_l0(kernel_pmap, kernel_vm_end);
1771                 KASSERT(pmap_load(l0) != 0,
1772                     ("pmap_growkernel: No level 0 kernel entry"));
1773
1774                 l1 = pmap_l0_to_l1(l0, kernel_vm_end);
1775                 if (pmap_load(l1) == 0) {
1776                         /* We need a new PDP entry */
1777                         nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT,
1778                             VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1779                             VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1780                         if (nkpg == NULL)
1781                                 panic("pmap_growkernel: no memory to grow kernel");
1782                         if ((nkpg->flags & PG_ZERO) == 0)
1783                                 pmap_zero_page(nkpg);
1784                         paddr = VM_PAGE_TO_PHYS(nkpg);
1785                         pmap_store(l1, paddr | L1_TABLE);
1786                         continue; /* try again */
1787                 }
1788                 l2 = pmap_l1_to_l2(l1, kernel_vm_end);
1789                 if ((pmap_load(l2) & ATTR_AF) != 0) {
1790                         kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1791                         if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1792                                 kernel_vm_end = vm_map_max(kernel_map);
1793                                 break;
1794                         }
1795                         continue;
1796                 }
1797
1798                 nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT,
1799                     VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1800                     VM_ALLOC_ZERO);
1801                 if (nkpg == NULL)
1802                         panic("pmap_growkernel: no memory to grow kernel");
1803                 if ((nkpg->flags & PG_ZERO) == 0)
1804                         pmap_zero_page(nkpg);
1805                 paddr = VM_PAGE_TO_PHYS(nkpg);
1806                 pmap_load_store(l2, paddr | L2_TABLE);
1807                 pmap_invalidate_page(kernel_pmap, kernel_vm_end);
1808
1809                 kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1810                 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1811                         kernel_vm_end = vm_map_max(kernel_map);
1812                         break;
1813                 }
1814         }
1815 }
1816
1817
1818 /***************************************************
1819  * page management routines.
1820  ***************************************************/
1821
1822 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1823 CTASSERT(_NPCM == 3);
1824 CTASSERT(_NPCPV == 168);
1825
1826 static __inline struct pv_chunk *
1827 pv_to_chunk(pv_entry_t pv)
1828 {
1829
1830         return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1831 }
1832
1833 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1834
1835 #define PC_FREE0        0xfffffffffffffffful
1836 #define PC_FREE1        0xfffffffffffffffful
1837 #define PC_FREE2        0x000000fffffffffful
1838
1839 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
1840
1841 #if 0
1842 #ifdef PV_STATS
1843 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1844
1845 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1846         "Current number of pv entry chunks");
1847 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1848         "Current number of pv entry chunks allocated");
1849 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1850         "Current number of pv entry chunks frees");
1851 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1852         "Number of times tried to get a chunk page but failed.");
1853
1854 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
1855 static int pv_entry_spare;
1856
1857 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1858         "Current number of pv entry frees");
1859 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1860         "Current number of pv entry allocs");
1861 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1862         "Current number of pv entries");
1863 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1864         "Current number of spare pv entries");
1865 #endif
1866 #endif /* 0 */
1867
1868 /*
1869  * We are in a serious low memory condition.  Resort to
1870  * drastic measures to free some pages so we can allocate
1871  * another pv entry chunk.
1872  *
1873  * Returns NULL if PV entries were reclaimed from the specified pmap.
1874  *
1875  * We do not, however, unmap 2mpages because subsequent accesses will
1876  * allocate per-page pv entries until repromotion occurs, thereby
1877  * exacerbating the shortage of free pv entries.
1878  */
1879 static vm_page_t
1880 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1881 {
1882         struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1883         struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1884         struct md_page *pvh;
1885         pd_entry_t *pde;
1886         pmap_t next_pmap, pmap;
1887         pt_entry_t *pte, tpte;
1888         pv_entry_t pv;
1889         vm_offset_t va;
1890         vm_page_t m, m_pc;
1891         struct spglist free;
1892         uint64_t inuse;
1893         int bit, field, freed, lvl;
1894         static int active_reclaims = 0;
1895
1896         PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1897         KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1898
1899         pmap = NULL;
1900         m_pc = NULL;
1901         SLIST_INIT(&free);
1902         bzero(&pc_marker_b, sizeof(pc_marker_b));
1903         bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1904         pc_marker = (struct pv_chunk *)&pc_marker_b;
1905         pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1906
1907         mtx_lock(&pv_chunks_mutex);
1908         active_reclaims++;
1909         TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1910         TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1911         while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1912             SLIST_EMPTY(&free)) {
1913                 next_pmap = pc->pc_pmap;
1914                 if (next_pmap == NULL) {
1915                         /*
1916                          * The next chunk is a marker.  However, it is
1917                          * not our marker, so active_reclaims must be
1918                          * > 1.  Consequently, the next_chunk code
1919                          * will not rotate the pv_chunks list.
1920                          */
1921                         goto next_chunk;
1922                 }
1923                 mtx_unlock(&pv_chunks_mutex);
1924
1925                 /*
1926                  * A pv_chunk can only be removed from the pc_lru list
1927                  * when both pv_chunks_mutex is owned and the
1928                  * corresponding pmap is locked.
1929                  */
1930                 if (pmap != next_pmap) {
1931                         if (pmap != NULL && pmap != locked_pmap)
1932                                 PMAP_UNLOCK(pmap);
1933                         pmap = next_pmap;
1934                         /* Avoid deadlock and lock recursion. */
1935                         if (pmap > locked_pmap) {
1936                                 RELEASE_PV_LIST_LOCK(lockp);
1937                                 PMAP_LOCK(pmap);
1938                                 mtx_lock(&pv_chunks_mutex);
1939                                 continue;
1940                         } else if (pmap != locked_pmap) {
1941                                 if (PMAP_TRYLOCK(pmap)) {
1942                                         mtx_lock(&pv_chunks_mutex);
1943                                         continue;
1944                                 } else {
1945                                         pmap = NULL; /* pmap is not locked */
1946                                         mtx_lock(&pv_chunks_mutex);
1947                                         pc = TAILQ_NEXT(pc_marker, pc_lru);
1948                                         if (pc == NULL ||
1949                                             pc->pc_pmap != next_pmap)
1950                                                 continue;
1951                                         goto next_chunk;
1952                                 }
1953                         }
1954                 }
1955
1956                 /*
1957                  * Destroy every non-wired, 4 KB page mapping in the chunk.
1958                  */
1959                 freed = 0;
1960                 for (field = 0; field < _NPCM; field++) {
1961                         for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1962                             inuse != 0; inuse &= ~(1UL << bit)) {
1963                                 bit = ffsl(inuse) - 1;
1964                                 pv = &pc->pc_pventry[field * 64 + bit];
1965                                 va = pv->pv_va;
1966                                 pde = pmap_pde(pmap, va, &lvl);
1967                                 if (lvl != 2)
1968                                         continue;
1969                                 pte = pmap_l2_to_l3(pde, va);
1970                                 tpte = pmap_load(pte);
1971                                 if ((tpte & ATTR_SW_WIRED) != 0)
1972                                         continue;
1973                                 tpte = pmap_load_clear(pte);
1974                                 pmap_invalidate_page(pmap, va);
1975                                 m = PHYS_TO_VM_PAGE(tpte & ~ATTR_MASK);
1976                                 if (pmap_pte_dirty(tpte))
1977                                         vm_page_dirty(m);
1978                                 if ((tpte & ATTR_AF) != 0)
1979                                         vm_page_aflag_set(m, PGA_REFERENCED);
1980                                 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1981                                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
1982                                 m->md.pv_gen++;
1983                                 if (TAILQ_EMPTY(&m->md.pv_list) &&
1984                                     (m->flags & PG_FICTITIOUS) == 0) {
1985                                         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1986                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
1987                                                 vm_page_aflag_clear(m,
1988                                                     PGA_WRITEABLE);
1989                                         }
1990                                 }
1991                                 pc->pc_map[field] |= 1UL << bit;
1992                                 pmap_unuse_pt(pmap, va, pmap_load(pde), &free);
1993                                 freed++;
1994                         }
1995                 }
1996                 if (freed == 0) {
1997                         mtx_lock(&pv_chunks_mutex);
1998                         goto next_chunk;
1999                 }
2000                 /* Every freed mapping is for a 4 KB page. */
2001                 pmap_resident_count_dec(pmap, freed);
2002                 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
2003                 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
2004                 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
2005                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2006                 if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
2007                     pc->pc_map[2] == PC_FREE2) {
2008                         PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2009                         PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2010                         PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2011                         /* Entire chunk is free; return it. */
2012                         m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2013                         dump_drop_page(m_pc->phys_addr);
2014                         mtx_lock(&pv_chunks_mutex);
2015                         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2016                         break;
2017                 }
2018                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2019                 mtx_lock(&pv_chunks_mutex);
2020                 /* One freed pv entry in locked_pmap is sufficient. */
2021                 if (pmap == locked_pmap)
2022                         break;
2023
2024 next_chunk:
2025                 TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2026                 TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
2027                 if (active_reclaims == 1 && pmap != NULL) {
2028                         /*
2029                          * Rotate the pv chunks list so that we do not
2030                          * scan the same pv chunks that could not be
2031                          * freed (because they contained a wired
2032                          * and/or superpage mapping) on every
2033                          * invocation of reclaim_pv_chunk().
2034                          */
2035                         while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
2036                                 MPASS(pc->pc_pmap != NULL);
2037                                 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2038                                 TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2039                         }
2040                 }
2041         }
2042         TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2043         TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
2044         active_reclaims--;
2045         mtx_unlock(&pv_chunks_mutex);
2046         if (pmap != NULL && pmap != locked_pmap)
2047                 PMAP_UNLOCK(pmap);
2048         if (m_pc == NULL && !SLIST_EMPTY(&free)) {
2049                 m_pc = SLIST_FIRST(&free);
2050                 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2051                 /* Recycle a freed page table page. */
2052                 m_pc->wire_count = 1;
2053         }
2054         vm_page_free_pages_toq(&free, true);
2055         return (m_pc);
2056 }
2057
2058 /*
2059  * free the pv_entry back to the free list
2060  */
2061 static void
2062 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2063 {
2064         struct pv_chunk *pc;
2065         int idx, field, bit;
2066
2067         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2068         PV_STAT(atomic_add_long(&pv_entry_frees, 1));
2069         PV_STAT(atomic_add_int(&pv_entry_spare, 1));
2070         PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
2071         pc = pv_to_chunk(pv);
2072         idx = pv - &pc->pc_pventry[0];
2073         field = idx / 64;
2074         bit = idx % 64;
2075         pc->pc_map[field] |= 1ul << bit;
2076         if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
2077             pc->pc_map[2] != PC_FREE2) {
2078                 /* 98% of the time, pc is already at the head of the list. */
2079                 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
2080                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2081                         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2082                 }
2083                 return;
2084         }
2085         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2086         free_pv_chunk(pc);
2087 }
2088
2089 static void
2090 free_pv_chunk(struct pv_chunk *pc)
2091 {
2092         vm_page_t m;
2093
2094         mtx_lock(&pv_chunks_mutex);
2095         TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2096         mtx_unlock(&pv_chunks_mutex);
2097         PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2098         PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2099         PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2100         /* entire chunk is free, return it */
2101         m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2102         dump_drop_page(m->phys_addr);
2103         vm_page_unwire_noq(m);
2104         vm_page_free(m);
2105 }
2106
2107 /*
2108  * Returns a new PV entry, allocating a new PV chunk from the system when
2109  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
2110  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
2111  * returned.
2112  *
2113  * The given PV list lock may be released.
2114  */
2115 static pv_entry_t
2116 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
2117 {
2118         int bit, field;
2119         pv_entry_t pv;
2120         struct pv_chunk *pc;
2121         vm_page_t m;
2122
2123         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2124         PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
2125 retry:
2126         pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2127         if (pc != NULL) {
2128                 for (field = 0; field < _NPCM; field++) {
2129                         if (pc->pc_map[field]) {
2130                                 bit = ffsl(pc->pc_map[field]) - 1;
2131                                 break;
2132                         }
2133                 }
2134                 if (field < _NPCM) {
2135                         pv = &pc->pc_pventry[field * 64 + bit];
2136                         pc->pc_map[field] &= ~(1ul << bit);
2137                         /* If this was the last item, move it to tail */
2138                         if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
2139                             pc->pc_map[2] == 0) {
2140                                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2141                                 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
2142                                     pc_list);
2143                         }
2144                         PV_STAT(atomic_add_long(&pv_entry_count, 1));
2145                         PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
2146                         return (pv);
2147                 }
2148         }
2149         /* No free items, allocate another chunk */
2150         m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2151             VM_ALLOC_WIRED);
2152         if (m == NULL) {
2153                 if (lockp == NULL) {
2154                         PV_STAT(pc_chunk_tryfail++);
2155                         return (NULL);
2156                 }
2157                 m = reclaim_pv_chunk(pmap, lockp);
2158                 if (m == NULL)
2159                         goto retry;
2160         }
2161         PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2162         PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2163         dump_add_page(m->phys_addr);
2164         pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2165         pc->pc_pmap = pmap;
2166         pc->pc_map[0] = PC_FREE0 & ~1ul;        /* preallocated bit 0 */
2167         pc->pc_map[1] = PC_FREE1;
2168         pc->pc_map[2] = PC_FREE2;
2169         mtx_lock(&pv_chunks_mutex);
2170         TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2171         mtx_unlock(&pv_chunks_mutex);
2172         pv = &pc->pc_pventry[0];
2173         TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2174         PV_STAT(atomic_add_long(&pv_entry_count, 1));
2175         PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
2176         return (pv);
2177 }
2178
2179 /*
2180  * Ensure that the number of spare PV entries in the specified pmap meets or
2181  * exceeds the given count, "needed".
2182  *
2183  * The given PV list lock may be released.
2184  */
2185 static void
2186 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
2187 {
2188         struct pch new_tail;
2189         struct pv_chunk *pc;
2190         vm_page_t m;
2191         int avail, free;
2192         bool reclaimed;
2193
2194         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2195         KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
2196
2197         /*
2198          * Newly allocated PV chunks must be stored in a private list until
2199          * the required number of PV chunks have been allocated.  Otherwise,
2200          * reclaim_pv_chunk() could recycle one of these chunks.  In
2201          * contrast, these chunks must be added to the pmap upon allocation.
2202          */
2203         TAILQ_INIT(&new_tail);
2204 retry:
2205         avail = 0;
2206         TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
2207                 bit_count((bitstr_t *)pc->pc_map, 0,
2208                     sizeof(pc->pc_map) * NBBY, &free);
2209                 if (free == 0)
2210                         break;
2211                 avail += free;
2212                 if (avail >= needed)
2213                         break;
2214         }
2215         for (reclaimed = false; avail < needed; avail += _NPCPV) {
2216                 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2217                     VM_ALLOC_WIRED);
2218                 if (m == NULL) {
2219                         m = reclaim_pv_chunk(pmap, lockp);
2220                         if (m == NULL)
2221                                 goto retry;
2222                         reclaimed = true;
2223                 }
2224                 PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2225                 PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2226                 dump_add_page(m->phys_addr);
2227                 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2228                 pc->pc_pmap = pmap;
2229                 pc->pc_map[0] = PC_FREE0;
2230                 pc->pc_map[1] = PC_FREE1;
2231                 pc->pc_map[2] = PC_FREE2;
2232                 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2233                 TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2234                 PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
2235
2236                 /*
2237                  * The reclaim might have freed a chunk from the current pmap.
2238                  * If that chunk contained available entries, we need to
2239                  * re-count the number of available entries.
2240                  */
2241                 if (reclaimed)
2242                         goto retry;
2243         }
2244         if (!TAILQ_EMPTY(&new_tail)) {
2245                 mtx_lock(&pv_chunks_mutex);
2246                 TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2247                 mtx_unlock(&pv_chunks_mutex);
2248         }
2249 }
2250
2251 /*
2252  * First find and then remove the pv entry for the specified pmap and virtual
2253  * address from the specified pv list.  Returns the pv entry if found and NULL
2254  * otherwise.  This operation can be performed on pv lists for either 4KB or
2255  * 2MB page mappings.
2256  */
2257 static __inline pv_entry_t
2258 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2259 {
2260         pv_entry_t pv;
2261
2262         TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2263                 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2264                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2265                         pvh->pv_gen++;
2266                         break;
2267                 }
2268         }
2269         return (pv);
2270 }
2271
2272 /*
2273  * After demotion from a 2MB page mapping to 512 4KB page mappings,
2274  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2275  * entries for each of the 4KB page mappings.
2276  */
2277 static void
2278 pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2279     struct rwlock **lockp)
2280 {
2281         struct md_page *pvh;
2282         struct pv_chunk *pc;
2283         pv_entry_t pv;
2284         vm_offset_t va_last;
2285         vm_page_t m;
2286         int bit, field;
2287
2288         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2289         KASSERT((va & L2_OFFSET) == 0,
2290             ("pmap_pv_demote_l2: va is not 2mpage aligned"));
2291         KASSERT((pa & L2_OFFSET) == 0,
2292             ("pmap_pv_demote_l2: pa is not 2mpage aligned"));
2293         CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2294
2295         /*
2296          * Transfer the 2mpage's pv entry for this mapping to the first
2297          * page's pv list.  Once this transfer begins, the pv list lock
2298          * must not be released until the last pv entry is reinstantiated.
2299          */
2300         pvh = pa_to_pvh(pa);
2301         pv = pmap_pvh_remove(pvh, pmap, va);
2302         KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
2303         m = PHYS_TO_VM_PAGE(pa);
2304         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2305         m->md.pv_gen++;
2306         /* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */
2307         PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
2308         va_last = va + L2_SIZE - PAGE_SIZE;
2309         for (;;) {
2310                 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2311                 KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
2312                     pc->pc_map[2] != 0, ("pmap_pv_demote_l2: missing spare"));
2313                 for (field = 0; field < _NPCM; field++) {
2314                         while (pc->pc_map[field]) {
2315                                 bit = ffsl(pc->pc_map[field]) - 1;
2316                                 pc->pc_map[field] &= ~(1ul << bit);
2317                                 pv = &pc->pc_pventry[field * 64 + bit];
2318                                 va += PAGE_SIZE;
2319                                 pv->pv_va = va;
2320                                 m++;
2321                                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2322                             ("pmap_pv_demote_l2: page %p is not managed", m));
2323                                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2324                                 m->md.pv_gen++;
2325                                 if (va == va_last)
2326                                         goto out;
2327                         }
2328                 }
2329                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2330                 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2331         }
2332 out:
2333         if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
2334                 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2335                 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2336         }
2337         PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
2338         PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1));
2339 }
2340
2341 /*
2342  * First find and then destroy the pv entry for the specified pmap and virtual
2343  * address.  This operation can be performed on pv lists for either 4KB or 2MB
2344  * page mappings.
2345  */
2346 static void
2347 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2348 {
2349         pv_entry_t pv;
2350
2351         pv = pmap_pvh_remove(pvh, pmap, va);
2352         KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2353         free_pv_entry(pmap, pv);
2354 }
2355
2356 /*
2357  * Conditionally create the PV entry for a 4KB page mapping if the required
2358  * memory can be allocated without resorting to reclamation.
2359  */
2360 static boolean_t
2361 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
2362     struct rwlock **lockp)
2363 {
2364         pv_entry_t pv;
2365
2366         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2367         /* Pass NULL instead of the lock pointer to disable reclamation. */
2368         if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
2369                 pv->pv_va = va;
2370                 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2371                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2372                 m->md.pv_gen++;
2373                 return (TRUE);
2374         } else
2375                 return (FALSE);
2376 }
2377
2378 /*
2379  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
2380  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
2381  * false if the PV entry cannot be allocated without resorting to reclamation.
2382  */
2383 static bool
2384 pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
2385     struct rwlock **lockp)
2386 {
2387         struct md_page *pvh;
2388         pv_entry_t pv;
2389         vm_paddr_t pa;
2390
2391         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2392         /* Pass NULL instead of the lock pointer to disable reclamation. */
2393         if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
2394             NULL : lockp)) == NULL)
2395                 return (false);
2396         pv->pv_va = va;
2397         pa = l2e & ~ATTR_MASK;
2398         CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2399         pvh = pa_to_pvh(pa);
2400         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2401         pvh->pv_gen++;
2402         return (true);
2403 }
2404
2405 static void
2406 pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
2407 {
2408         pt_entry_t newl2, oldl2;
2409         vm_page_t ml3;
2410         vm_paddr_t ml3pa;
2411
2412         KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
2413         KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
2414         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2415
2416         ml3 = pmap_remove_pt_page(pmap, va);
2417         if (ml3 == NULL)
2418                 panic("pmap_remove_kernel_l2: Missing pt page");
2419
2420         ml3pa = VM_PAGE_TO_PHYS(ml3);
2421         newl2 = ml3pa | L2_TABLE;
2422
2423         /*
2424          * If this page table page was unmapped by a promotion, then it
2425          * contains valid mappings.  Zero it to invalidate those mappings.
2426          */
2427         if (ml3->valid != 0)
2428                 pagezero((void *)PHYS_TO_DMAP(ml3pa));
2429
2430         /*
2431          * Demote the mapping.  The caller must have already invalidated the
2432          * mapping (i.e., the "break" in break-before-make).
2433          */
2434         oldl2 = pmap_load_store(l2, newl2);
2435         KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
2436             __func__, l2, oldl2));
2437 }
2438
2439 /*
2440  * pmap_remove_l2: Do the things to unmap a level 2 superpage.
2441  */
2442 static int
2443 pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
2444     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
2445 {
2446         struct md_page *pvh;
2447         pt_entry_t old_l2;
2448         vm_offset_t eva, va;
2449         vm_page_t m, ml3;
2450
2451         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2452         KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
2453         old_l2 = pmap_load_clear(l2);
2454         KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
2455             ("pmap_remove_l2: L2e %lx is not a block mapping", old_l2));
2456
2457         /*
2458          * Since a promotion must break the 4KB page mappings before making
2459          * the 2MB page mapping, a pmap_invalidate_page() suffices.
2460          */
2461         pmap_invalidate_page(pmap, sva);
2462
2463         if (old_l2 & ATTR_SW_WIRED)
2464                 pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
2465         pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
2466         if (old_l2 & ATTR_SW_MANAGED) {
2467                 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, old_l2 & ~ATTR_MASK);
2468                 pvh = pa_to_pvh(old_l2 & ~ATTR_MASK);
2469                 pmap_pvh_free(pvh, pmap, sva);
2470                 eva = sva + L2_SIZE;
2471                 for (va = sva, m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK);
2472                     va < eva; va += PAGE_SIZE, m++) {
2473                         if (pmap_pte_dirty(old_l2))
2474                                 vm_page_dirty(m);
2475                         if (old_l2 & ATTR_AF)
2476                                 vm_page_aflag_set(m, PGA_REFERENCED);
2477                         if (TAILQ_EMPTY(&m->md.pv_list) &&
2478                             TAILQ_EMPTY(&pvh->pv_list))
2479                                 vm_page_aflag_clear(m, PGA_WRITEABLE);
2480                 }
2481         }
2482         if (pmap == kernel_pmap) {
2483                 pmap_remove_kernel_l2(pmap, l2, sva);
2484         } else {
2485                 ml3 = pmap_remove_pt_page(pmap, sva);
2486                 if (ml3 != NULL) {
2487                         KASSERT(ml3->valid == VM_PAGE_BITS_ALL,
2488                             ("pmap_remove_l2: l3 page not promoted"));
2489                         pmap_resident_count_dec(pmap, 1);
2490                         KASSERT(ml3->wire_count == NL3PG,
2491                             ("pmap_remove_l2: l3 page wire count error"));
2492                         ml3->wire_count = 0;
2493                         pmap_add_delayed_free_list(ml3, free, FALSE);
2494                 }
2495         }
2496         return (pmap_unuse_pt(pmap, sva, l1e, free));
2497 }
2498
2499 /*
2500  * pmap_remove_l3: do the things to unmap a page in a process
2501  */
2502 static int __unused
2503 pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
2504     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
2505 {
2506         struct md_page *pvh;
2507         pt_entry_t old_l3;
2508         vm_page_t m;
2509
2510         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2511         old_l3 = pmap_load_clear(l3);
2512         pmap_invalidate_page(pmap, va);
2513         if (old_l3 & ATTR_SW_WIRED)
2514                 pmap->pm_stats.wired_count -= 1;
2515         pmap_resident_count_dec(pmap, 1);
2516         if (old_l3 & ATTR_SW_MANAGED) {
2517                 m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2518                 if (pmap_pte_dirty(old_l3))
2519                         vm_page_dirty(m);
2520                 if (old_l3 & ATTR_AF)
2521                         vm_page_aflag_set(m, PGA_REFERENCED);
2522                 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2523                 pmap_pvh_free(&m->md, pmap, va);
2524                 if (TAILQ_EMPTY(&m->md.pv_list) &&
2525                     (m->flags & PG_FICTITIOUS) == 0) {
2526                         pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2527                         if (TAILQ_EMPTY(&pvh->pv_list))
2528                                 vm_page_aflag_clear(m, PGA_WRITEABLE);
2529                 }
2530         }
2531         return (pmap_unuse_pt(pmap, va, l2e, free));
2532 }
2533
2534 /*
2535  * Remove the specified range of addresses from the L3 page table that is
2536  * identified by the given L2 entry.
2537  */
2538 static void
2539 pmap_remove_l3_range(pmap_t pmap, pd_entry_t l2e, vm_offset_t sva,
2540     vm_offset_t eva, struct spglist *free, struct rwlock **lockp)
2541 {
2542         struct md_page *pvh;
2543         struct rwlock *new_lock;
2544         pt_entry_t *l3, old_l3;
2545         vm_offset_t va;
2546         vm_page_t m;
2547
2548         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2549         KASSERT(rounddown2(sva, L2_SIZE) + L2_SIZE == roundup2(eva, L2_SIZE),
2550             ("pmap_remove_l3_range: range crosses an L3 page table boundary"));
2551         va = eva;
2552         for (l3 = pmap_l2_to_l3(&l2e, sva); sva != eva; l3++, sva += L3_SIZE) {
2553                 if (!pmap_l3_valid(pmap_load(l3))) {
2554                         if (va != eva) {
2555                                 pmap_invalidate_range(pmap, va, sva);
2556                                 va = eva;
2557                         }
2558                         continue;
2559                 }
2560                 old_l3 = pmap_load_clear(l3);
2561                 if ((old_l3 & ATTR_SW_WIRED) != 0)
2562                         pmap->pm_stats.wired_count--;
2563                 pmap_resident_count_dec(pmap, 1);
2564                 if ((old_l3 & ATTR_SW_MANAGED) != 0) {
2565                         m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2566                         if (pmap_pte_dirty(old_l3))
2567                                 vm_page_dirty(m);
2568                         if ((old_l3 & ATTR_AF) != 0)
2569                                 vm_page_aflag_set(m, PGA_REFERENCED);
2570                         new_lock = PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m));
2571                         if (new_lock != *lockp) {
2572                                 if (*lockp != NULL) {
2573                                         /*
2574                                          * Pending TLB invalidations must be
2575                                          * performed before the PV list lock is
2576                                          * released.  Otherwise, a concurrent
2577                                          * pmap_remove_all() on a physical page
2578                                          * could return while a stale TLB entry
2579                                          * still provides access to that page. 
2580                                          */
2581                                         if (va != eva) {
2582                                                 pmap_invalidate_range(pmap, va,
2583                                                     sva);
2584                                                 va = eva;
2585                                         }
2586                                         rw_wunlock(*lockp);
2587                                 }
2588                                 *lockp = new_lock;
2589                                 rw_wlock(*lockp);
2590                         }
2591                         pmap_pvh_free(&m->md, pmap, sva);
2592                         if (TAILQ_EMPTY(&m->md.pv_list) &&
2593                             (m->flags & PG_FICTITIOUS) == 0) {
2594                                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2595                                 if (TAILQ_EMPTY(&pvh->pv_list))
2596                                         vm_page_aflag_clear(m, PGA_WRITEABLE);
2597                         }
2598                 }
2599                 if (va == eva)
2600                         va = sva;
2601                 if (pmap_unuse_pt(pmap, sva, l2e, free)) {
2602                         sva += L3_SIZE;
2603                         break;
2604                 }
2605         }
2606         if (va != eva)
2607                 pmap_invalidate_range(pmap, va, sva);
2608 }
2609
2610 /*
2611  *      Remove the given range of addresses from the specified map.
2612  *
2613  *      It is assumed that the start and end are properly
2614  *      rounded to the page size.
2615  */
2616 void
2617 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2618 {
2619         struct rwlock *lock;
2620         vm_offset_t va_next;
2621         pd_entry_t *l0, *l1, *l2;
2622         pt_entry_t l3_paddr;
2623         struct spglist free;
2624
2625         /*
2626          * Perform an unsynchronized read.  This is, however, safe.
2627          */
2628         if (pmap->pm_stats.resident_count == 0)
2629                 return;
2630
2631         SLIST_INIT(&free);
2632
2633         PMAP_LOCK(pmap);
2634
2635         lock = NULL;
2636         for (; sva < eva; sva = va_next) {
2637
2638                 if (pmap->pm_stats.resident_count == 0)
2639                         break;
2640
2641                 l0 = pmap_l0(pmap, sva);
2642                 if (pmap_load(l0) == 0) {
2643                         va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2644                         if (va_next < sva)
2645                                 va_next = eva;
2646                         continue;
2647                 }
2648
2649                 l1 = pmap_l0_to_l1(l0, sva);
2650                 if (pmap_load(l1) == 0) {
2651                         va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2652                         if (va_next < sva)
2653                                 va_next = eva;
2654                         continue;
2655                 }
2656
2657                 /*
2658                  * Calculate index for next page table.
2659                  */
2660                 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2661                 if (va_next < sva)
2662                         va_next = eva;
2663
2664                 l2 = pmap_l1_to_l2(l1, sva);
2665                 if (l2 == NULL)
2666                         continue;
2667
2668                 l3_paddr = pmap_load(l2);
2669
2670                 if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) {
2671                         if (sva + L2_SIZE == va_next && eva >= va_next) {
2672                                 pmap_remove_l2(pmap, l2, sva, pmap_load(l1),
2673                                     &free, &lock);
2674                                 continue;
2675                         } else if (pmap_demote_l2_locked(pmap, l2, sva,
2676                             &lock) == NULL)
2677                                 continue;
2678                         l3_paddr = pmap_load(l2);
2679                 }
2680
2681                 /*
2682                  * Weed out invalid mappings.
2683                  */
2684                 if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
2685                         continue;
2686
2687                 /*
2688                  * Limit our scan to either the end of the va represented
2689                  * by the current page table page, or to the end of the
2690                  * range being removed.
2691                  */
2692                 if (va_next > eva)
2693                         va_next = eva;
2694
2695                 pmap_remove_l3_range(pmap, l3_paddr, sva, va_next, &free,
2696                     &lock);
2697         }
2698         if (lock != NULL)
2699                 rw_wunlock(lock);
2700         PMAP_UNLOCK(pmap);
2701         vm_page_free_pages_toq(&free, true);
2702 }
2703
2704 /*
2705  *      Routine:        pmap_remove_all
2706  *      Function:
2707  *              Removes this physical page from
2708  *              all physical maps in which it resides.
2709  *              Reflects back modify bits to the pager.
2710  *
2711  *      Notes:
2712  *              Original versions of this routine were very
2713  *              inefficient because they iteratively called
2714  *              pmap_remove (slow...)
2715  */
2716
2717 void
2718 pmap_remove_all(vm_page_t m)
2719 {
2720         struct md_page *pvh;
2721         pv_entry_t pv;
2722         pmap_t pmap;
2723         struct rwlock *lock;
2724         pd_entry_t *pde, tpde;
2725         pt_entry_t *pte, tpte;
2726         vm_offset_t va;
2727         struct spglist free;
2728         int lvl, pvh_gen, md_gen;
2729
2730         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2731             ("pmap_remove_all: page %p is not managed", m));
2732         SLIST_INIT(&free);
2733         lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2734         pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2735             pa_to_pvh(VM_PAGE_TO_PHYS(m));
2736 retry:
2737         rw_wlock(lock);
2738         while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2739                 pmap = PV_PMAP(pv);
2740                 if (!PMAP_TRYLOCK(pmap)) {
2741                         pvh_gen = pvh->pv_gen;
2742                         rw_wunlock(lock);
2743                         PMAP_LOCK(pmap);
2744                         rw_wlock(lock);
2745                         if (pvh_gen != pvh->pv_gen) {
2746                                 rw_wunlock(lock);
2747                                 PMAP_UNLOCK(pmap);
2748                                 goto retry;
2749                         }
2750                 }
2751                 va = pv->pv_va;
2752                 pte = pmap_pte(pmap, va, &lvl);
2753                 KASSERT(pte != NULL,
2754                     ("pmap_remove_all: no page table entry found"));
2755                 KASSERT(lvl == 2,
2756                     ("pmap_remove_all: invalid pte level %d", lvl));
2757
2758                 pmap_demote_l2_locked(pmap, pte, va, &lock);
2759                 PMAP_UNLOCK(pmap);
2760         }
2761         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2762                 pmap = PV_PMAP(pv);
2763                 if (!PMAP_TRYLOCK(pmap)) {
2764                         pvh_gen = pvh->pv_gen;
2765                         md_gen = m->md.pv_gen;
2766                         rw_wunlock(lock);
2767                         PMAP_LOCK(pmap);
2768                         rw_wlock(lock);
2769                         if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2770                                 rw_wunlock(lock);
2771                                 PMAP_UNLOCK(pmap);
2772                                 goto retry;
2773                         }
2774                 }
2775                 pmap_resident_count_dec(pmap, 1);
2776
2777                 pde = pmap_pde(pmap, pv->pv_va, &lvl);
2778                 KASSERT(pde != NULL,
2779                     ("pmap_remove_all: no page directory entry found"));
2780                 KASSERT(lvl == 2,
2781                     ("pmap_remove_all: invalid pde level %d", lvl));
2782                 tpde = pmap_load(pde);
2783
2784                 pte = pmap_l2_to_l3(pde, pv->pv_va);
2785                 tpte = pmap_load_clear(pte);
2786                 pmap_invalidate_page(pmap, pv->pv_va);
2787                 if (tpte & ATTR_SW_WIRED)
2788                         pmap->pm_stats.wired_count--;
2789                 if ((tpte & ATTR_AF) != 0)
2790                         vm_page_aflag_set(m, PGA_REFERENCED);
2791
2792                 /*
2793                  * Update the vm_page_t clean and reference bits.
2794                  */
2795                 if (pmap_pte_dirty(tpte))
2796                         vm_page_dirty(m);
2797                 pmap_unuse_pt(pmap, pv->pv_va, tpde, &free);
2798                 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2799                 m->md.pv_gen++;
2800                 free_pv_entry(pmap, pv);
2801                 PMAP_UNLOCK(pmap);
2802         }
2803         vm_page_aflag_clear(m, PGA_WRITEABLE);
2804         rw_wunlock(lock);
2805         vm_page_free_pages_toq(&free, true);
2806 }
2807
2808 /*
2809  * pmap_protect_l2: do the things to protect a 2MB page in a pmap
2810  */
2811 static void
2812 pmap_protect_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pt_entry_t mask,
2813     pt_entry_t nbits)
2814 {
2815         pd_entry_t old_l2;
2816         vm_page_t m, mt;
2817
2818         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2819         KASSERT((sva & L2_OFFSET) == 0,
2820             ("pmap_protect_l2: sva is not 2mpage aligned"));
2821         old_l2 = pmap_load(l2);
2822         KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
2823             ("pmap_protect_l2: L2e %lx is not a block mapping", old_l2));
2824
2825         /*
2826          * Return if the L2 entry already has the desired access restrictions
2827          * in place.
2828          */
2829 retry:
2830         if ((old_l2 & mask) == nbits)
2831                 return;
2832
2833         /*
2834          * When a dirty read/write superpage mapping is write protected,
2835          * update the dirty field of each of the superpage's constituent 4KB
2836          * pages.
2837          */
2838         if ((old_l2 & ATTR_SW_MANAGED) != 0 &&
2839             (nbits & ATTR_AP(ATTR_AP_RO)) != 0 && pmap_pte_dirty(old_l2)) {
2840                 m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK);
2841                 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
2842                         vm_page_dirty(mt);
2843         }
2844
2845         if (!atomic_fcmpset_64(l2, &old_l2, (old_l2 & ~mask) | nbits))
2846                 goto retry;
2847
2848         /*
2849          * Since a promotion must break the 4KB page mappings before making
2850          * the 2MB page mapping, a pmap_invalidate_page() suffices.
2851          */
2852         pmap_invalidate_page(pmap, sva);
2853 }
2854
2855 /*
2856  *      Set the physical protection on the
2857  *      specified range of this map as requested.
2858  */
2859 void
2860 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2861 {
2862         vm_offset_t va, va_next;
2863         pd_entry_t *l0, *l1, *l2;
2864         pt_entry_t *l3p, l3, mask, nbits;
2865
2866         KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
2867         if (prot == VM_PROT_NONE) {
2868                 pmap_remove(pmap, sva, eva);
2869                 return;
2870         }
2871
2872         mask = nbits = 0;
2873         if ((prot & VM_PROT_WRITE) == 0) {
2874                 mask |= ATTR_AP_RW_BIT | ATTR_SW_DBM;
2875                 nbits |= ATTR_AP(ATTR_AP_RO);
2876         }
2877         if ((prot & VM_PROT_EXECUTE) == 0) {
2878                 mask |= ATTR_XN;
2879                 nbits |= ATTR_XN;
2880         }
2881         if (mask == 0)
2882                 return;
2883
2884         PMAP_LOCK(pmap);
2885         for (; sva < eva; sva = va_next) {
2886
2887                 l0 = pmap_l0(pmap, sva);
2888                 if (pmap_load(l0) == 0) {
2889                         va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2890                         if (va_next < sva)
2891                                 va_next = eva;
2892                         continue;
2893                 }
2894
2895                 l1 = pmap_l0_to_l1(l0, sva);
2896                 if (pmap_load(l1) == 0) {
2897                         va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2898                         if (va_next < sva)
2899                                 va_next = eva;
2900                         continue;
2901                 }
2902
2903                 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2904                 if (va_next < sva)
2905                         va_next = eva;
2906
2907                 l2 = pmap_l1_to_l2(l1, sva);
2908                 if (pmap_load(l2) == 0)
2909                         continue;
2910
2911                 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
2912                         if (sva + L2_SIZE == va_next && eva >= va_next) {
2913                                 pmap_protect_l2(pmap, l2, sva, mask, nbits);
2914                                 continue;
2915                         } else if (pmap_demote_l2(pmap, l2, sva) == NULL)
2916                                 continue;
2917                 }
2918                 KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
2919                     ("pmap_protect: Invalid L2 entry after demotion"));
2920
2921                 if (va_next > eva)
2922                         va_next = eva;
2923
2924                 va = va_next;
2925                 for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
2926                     sva += L3_SIZE) {
2927                         l3 = pmap_load(l3p);
2928 retry:
2929                         /*
2930                          * Go to the next L3 entry if the current one is
2931                          * invalid or already has the desired access
2932                          * restrictions in place.  (The latter case occurs
2933                          * frequently.  For example, in a "buildworld"
2934                          * workload, almost 1 out of 4 L3 entries already
2935                          * have the desired restrictions.)
2936                          */
2937                         if (!pmap_l3_valid(l3) || (l3 & mask) == nbits) {
2938                                 if (va != va_next) {
2939                                         pmap_invalidate_range(pmap, va, sva);
2940                                         va = va_next;
2941                                 }
2942                                 continue;
2943                         }
2944
2945                         /*
2946                          * When a dirty read/write mapping is write protected,
2947                          * update the page's dirty field.
2948                          */
2949                         if ((l3 & ATTR_SW_MANAGED) != 0 &&
2950                             (nbits & ATTR_AP(ATTR_AP_RO)) != 0 &&
2951                             pmap_pte_dirty(l3))
2952                                 vm_page_dirty(PHYS_TO_VM_PAGE(l3 & ~ATTR_MASK));
2953
2954                         if (!atomic_fcmpset_64(l3p, &l3, (l3 & ~mask) | nbits))
2955                                 goto retry;
2956                         if (va == va_next)
2957                                 va = sva;
2958                 }
2959                 if (va != va_next)
2960                         pmap_invalidate_range(pmap, va, sva);
2961         }
2962         PMAP_UNLOCK(pmap);
2963 }
2964
2965 /*
2966  * Inserts the specified page table page into the specified pmap's collection
2967  * of idle page table pages.  Each of a pmap's page table pages is responsible
2968  * for mapping a distinct range of virtual addresses.  The pmap's collection is
2969  * ordered by this virtual address range.
2970  *
2971  * If "promoted" is false, then the page table page "mpte" must be zero filled.
2972  */
2973 static __inline int
2974 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
2975 {
2976
2977         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2978         mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
2979         return (vm_radix_insert(&pmap->pm_root, mpte));
2980 }
2981
2982 /*
2983  * Removes the page table page mapping the specified virtual address from the
2984  * specified pmap's collection of idle page table pages, and returns it.
2985  * Otherwise, returns NULL if there is no page table page corresponding to the
2986  * specified virtual address.
2987  */
2988 static __inline vm_page_t
2989 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
2990 {
2991
2992         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2993         return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
2994 }
2995
2996 /*
2997  * Performs a break-before-make update of a pmap entry. This is needed when
2998  * either promoting or demoting pages to ensure the TLB doesn't get into an
2999  * inconsistent state.
3000  */
3001 static void
3002 pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte,
3003     vm_offset_t va, vm_size_t size)
3004 {
3005         register_t intr;
3006
3007         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3008
3009         /*
3010          * Ensure we don't get switched out with the page table in an
3011          * inconsistent state. We also need to ensure no interrupts fire
3012          * as they may make use of an address we are about to invalidate.
3013          */
3014         intr = intr_disable();
3015         critical_enter();
3016
3017         /* Clear the old mapping */
3018         pmap_clear(pte);
3019         pmap_invalidate_range_nopin(pmap, va, va + size);
3020
3021         /* Create the new mapping */
3022         pmap_store(pte, newpte);
3023         dsb(ishst);
3024
3025         critical_exit();
3026         intr_restore(intr);
3027 }
3028
3029 #if VM_NRESERVLEVEL > 0
3030 /*
3031  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
3032  * replace the many pv entries for the 4KB page mappings by a single pv entry
3033  * for the 2MB page mapping.
3034  */
3035 static void
3036 pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3037     struct rwlock **lockp)
3038 {
3039         struct md_page *pvh;
3040         pv_entry_t pv;
3041         vm_offset_t va_last;
3042         vm_page_t m;
3043
3044         KASSERT((pa & L2_OFFSET) == 0,
3045             ("pmap_pv_promote_l2: pa is not 2mpage aligned"));
3046         CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3047
3048         /*
3049          * Transfer the first page's pv entry for this mapping to the 2mpage's
3050          * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
3051          * a transfer avoids the possibility that get_pv_entry() calls
3052          * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
3053          * mappings that is being promoted.
3054          */
3055         m = PHYS_TO_VM_PAGE(pa);
3056         va = va & ~L2_OFFSET;
3057         pv = pmap_pvh_remove(&m->md, pmap, va);
3058         KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found"));
3059         pvh = pa_to_pvh(pa);
3060         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3061         pvh->pv_gen++;
3062         /* Free the remaining NPTEPG - 1 pv entries. */
3063         va_last = va + L2_SIZE - PAGE_SIZE;
3064         do {
3065                 m++;
3066                 va += PAGE_SIZE;
3067                 pmap_pvh_free(&m->md, pmap, va);
3068         } while (va < va_last);
3069 }
3070
3071 /*
3072  * Tries to promote the 512, contiguous 4KB page mappings that are within a
3073  * single level 2 table entry to a single 2MB page mapping.  For promotion
3074  * to occur, two conditions must be met: (1) the 4KB page mappings must map
3075  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
3076  * identical characteristics.
3077  */
3078 static void
3079 pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
3080     struct rwlock **lockp)
3081 {
3082         pt_entry_t *firstl3, *l3, newl2, oldl3, pa;
3083         vm_page_t mpte;
3084         vm_offset_t sva;
3085
3086         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3087
3088         sva = va & ~L2_OFFSET;
3089         firstl3 = pmap_l2_to_l3(l2, sva);
3090         newl2 = pmap_load(firstl3);
3091
3092 setl2:
3093         if (((newl2 & (~ATTR_MASK | ATTR_AF)) & L2_OFFSET) != ATTR_AF) {
3094                 atomic_add_long(&pmap_l2_p_failures, 1);
3095                 CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
3096                     " in pmap %p", va, pmap);
3097                 return;
3098         }
3099
3100         if ((newl2 & (ATTR_AP_RW_BIT | ATTR_SW_DBM)) ==
3101             (ATTR_AP(ATTR_AP_RO) | ATTR_SW_DBM)) {
3102                 if (!atomic_fcmpset_64(l2, &newl2, newl2 & ~ATTR_SW_DBM))
3103                         goto setl2;
3104                 newl2 &= ~ATTR_SW_DBM;
3105         }
3106
3107         pa = newl2 + L2_SIZE - PAGE_SIZE;
3108         for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) {
3109                 oldl3 = pmap_load(l3);
3110 setl3:
3111                 if ((oldl3 & (ATTR_AP_RW_BIT | ATTR_SW_DBM)) ==
3112                     (ATTR_AP(ATTR_AP_RO) | ATTR_SW_DBM)) {
3113                         if (!atomic_fcmpset_64(l3, &oldl3, oldl3 &
3114                             ~ATTR_SW_DBM))
3115                                 goto setl3;
3116                         oldl3 &= ~ATTR_SW_DBM;
3117                 }
3118                 if (oldl3 != pa) {
3119                         atomic_add_long(&pmap_l2_p_failures, 1);
3120                         CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
3121                             " in pmap %p", va, pmap);
3122                         return;
3123                 }
3124                 pa -= PAGE_SIZE;
3125         }
3126
3127         /*
3128          * Save the page table page in its current state until the L2
3129          * mapping the superpage is demoted by pmap_demote_l2() or
3130          * destroyed by pmap_remove_l3().
3131          */
3132         mpte = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
3133         KASSERT(mpte >= vm_page_array &&
3134             mpte < &vm_page_array[vm_page_array_size],
3135             ("pmap_promote_l2: page table page is out of range"));
3136         KASSERT(mpte->pindex == pmap_l2_pindex(va),
3137             ("pmap_promote_l2: page table page's pindex is wrong"));
3138         if (pmap_insert_pt_page(pmap, mpte, true)) {
3139                 atomic_add_long(&pmap_l2_p_failures, 1);
3140                 CTR2(KTR_PMAP,
3141                     "pmap_promote_l2: failure for va %#lx in pmap %p", va,
3142                     pmap);
3143                 return;
3144         }
3145
3146         if ((newl2 & ATTR_SW_MANAGED) != 0)
3147                 pmap_pv_promote_l2(pmap, va, newl2 & ~ATTR_MASK, lockp);
3148
3149         newl2 &= ~ATTR_DESCR_MASK;
3150         newl2 |= L2_BLOCK;
3151
3152         pmap_update_entry(pmap, l2, newl2, sva, L2_SIZE);
3153
3154         atomic_add_long(&pmap_l2_promotions, 1);
3155         CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
3156                     pmap);
3157 }
3158 #endif /* VM_NRESERVLEVEL > 0 */
3159
3160 /*
3161  *      Insert the given physical page (p) at
3162  *      the specified virtual address (v) in the
3163  *      target physical map with the protection requested.
3164  *
3165  *      If specified, the page will be wired down, meaning
3166  *      that the related pte can not be reclaimed.
3167  *
3168  *      NB:  This is the only routine which MAY NOT lazy-evaluate
3169  *      or lose information.  That is, this routine must actually
3170  *      insert this page into the given map NOW.
3171  */
3172 int
3173 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3174     u_int flags, int8_t psind)
3175 {
3176         struct rwlock *lock;
3177         pd_entry_t *pde;
3178         pt_entry_t new_l3, orig_l3;
3179         pt_entry_t *l2, *l3;
3180         pv_entry_t pv;
3181         vm_paddr_t opa, pa;
3182         vm_page_t mpte, om;
3183         boolean_t nosleep;
3184         int lvl, rv;
3185
3186         va = trunc_page(va);
3187         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3188                 VM_OBJECT_ASSERT_LOCKED(m->object);
3189         pa = VM_PAGE_TO_PHYS(m);
3190         new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
3191             L3_PAGE);
3192         if ((prot & VM_PROT_WRITE) == 0)
3193                 new_l3 |= ATTR_AP(ATTR_AP_RO);
3194         if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
3195                 new_l3 |= ATTR_XN;
3196         if ((flags & PMAP_ENTER_WIRED) != 0)
3197                 new_l3 |= ATTR_SW_WIRED;
3198         if (va < VM_MAXUSER_ADDRESS)
3199                 new_l3 |= ATTR_AP(ATTR_AP_USER) | ATTR_PXN;
3200         if ((m->oflags & VPO_UNMANAGED) == 0) {
3201                 new_l3 |= ATTR_SW_MANAGED;
3202                 if ((prot & VM_PROT_WRITE) != 0) {
3203                         new_l3 |= ATTR_SW_DBM;
3204                         if ((flags & VM_PROT_WRITE) == 0)
3205                                 new_l3 |= ATTR_AP(ATTR_AP_RO);
3206                 }
3207         }
3208
3209         CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
3210
3211         lock = NULL;
3212         PMAP_LOCK(pmap);
3213         if (psind == 1) {
3214                 /* Assert the required virtual and physical alignment. */
3215                 KASSERT((va & L2_OFFSET) == 0, ("pmap_enter: va unaligned"));
3216                 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3217                 rv = pmap_enter_l2(pmap, va, (new_l3 & ~L3_PAGE) | L2_BLOCK,
3218                     flags, m, &lock);
3219                 goto out;
3220         }
3221         mpte = NULL;
3222
3223         /*
3224          * In the case that a page table page is not
3225          * resident, we are creating it here.
3226          */
3227 retry:
3228         pde = pmap_pde(pmap, va, &lvl);
3229         if (pde != NULL && lvl == 2) {
3230                 l3 = pmap_l2_to_l3(pde, va);
3231                 if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
3232                         mpte = PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
3233                         mpte->wire_count++;
3234                 }
3235                 goto havel3;
3236         } else if (pde != NULL && lvl == 1) {
3237                 l2 = pmap_l1_to_l2(pde, va);
3238                 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK &&
3239                     (l3 = pmap_demote_l2_locked(pmap, l2, va, &lock)) != NULL) {
3240                         l3 = &l3[pmap_l3_index(va)];
3241                         if (va < VM_MAXUSER_ADDRESS) {
3242                                 mpte = PHYS_TO_VM_PAGE(
3243                                     pmap_load(l2) & ~ATTR_MASK);
3244                                 mpte->wire_count++;
3245                         }
3246                         goto havel3;
3247                 }
3248                 /* We need to allocate an L3 table. */
3249         }
3250         if (va < VM_MAXUSER_ADDRESS) {
3251                 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
3252
3253                 /*
3254                  * We use _pmap_alloc_l3() instead of pmap_alloc_l3() in order
3255                  * to handle the possibility that a superpage mapping for "va"
3256                  * was created while we slept.
3257                  */
3258                 mpte = _pmap_alloc_l3(pmap, pmap_l2_pindex(va),
3259                     nosleep ? NULL : &lock);
3260                 if (mpte == NULL && nosleep) {
3261                         CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
3262                         rv = KERN_RESOURCE_SHORTAGE;
3263                         goto out;
3264                 }
3265                 goto retry;
3266         } else
3267                 panic("pmap_enter: missing L3 table for kernel va %#lx", va);
3268
3269 havel3:
3270         orig_l3 = pmap_load(l3);
3271         opa = orig_l3 & ~ATTR_MASK;
3272         pv = NULL;
3273
3274         /*
3275          * Is the specified virtual address already mapped?
3276          */
3277         if (pmap_l3_valid(orig_l3)) {
3278                 /*
3279                  * Wiring change, just update stats. We don't worry about
3280                  * wiring PT pages as they remain resident as long as there
3281                  * are valid mappings in them. Hence, if a user page is wired,
3282                  * the PT page will be also.
3283                  */
3284                 if ((flags & PMAP_ENTER_WIRED) != 0 &&
3285                     (orig_l3 & ATTR_SW_WIRED) == 0)
3286                         pmap->pm_stats.wired_count++;
3287                 else if ((flags & PMAP_ENTER_WIRED) == 0 &&
3288                     (orig_l3 & ATTR_SW_WIRED) != 0)
3289                         pmap->pm_stats.wired_count--;
3290
3291                 /*
3292                  * Remove the extra PT page reference.
3293                  */
3294                 if (mpte != NULL) {
3295                         mpte->wire_count--;
3296                         KASSERT(mpte->wire_count > 0,
3297                             ("pmap_enter: missing reference to page table page,"
3298                              " va: 0x%lx", va));
3299                 }
3300
3301                 /*
3302                  * Has the physical page changed?
3303                  */
3304                 if (opa == pa) {
3305                         /*
3306                          * No, might be a protection or wiring change.
3307                          */
3308                         if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
3309                             (new_l3 & ATTR_SW_DBM) != 0)
3310                                 vm_page_aflag_set(m, PGA_WRITEABLE);
3311                         goto validate;
3312                 }
3313
3314                 /*
3315                  * The physical page has changed.  Temporarily invalidate
3316                  * the mapping.
3317                  */
3318                 orig_l3 = pmap_load_clear(l3);
3319                 KASSERT((orig_l3 & ~ATTR_MASK) == opa,
3320                     ("pmap_enter: unexpected pa update for %#lx", va));
3321                 if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
3322                         om = PHYS_TO_VM_PAGE(opa);
3323
3324                         /*
3325                          * The pmap lock is sufficient to synchronize with
3326                          * concurrent calls to pmap_page_test_mappings() and
3327                          * pmap_ts_referenced().
3328                          */
3329                         if (pmap_pte_dirty(orig_l3))
3330                                 vm_page_dirty(om);
3331                         if ((orig_l3 & ATTR_AF) != 0)
3332                                 vm_page_aflag_set(om, PGA_REFERENCED);
3333                         CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3334                         pv = pmap_pvh_remove(&om->md, pmap, va);
3335                         if ((m->oflags & VPO_UNMANAGED) != 0)
3336                                 free_pv_entry(pmap, pv);
3337                         if ((om->aflags & PGA_WRITEABLE) != 0 &&
3338                             TAILQ_EMPTY(&om->md.pv_list) &&
3339                             ((om->flags & PG_FICTITIOUS) != 0 ||
3340                             TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3341                                 vm_page_aflag_clear(om, PGA_WRITEABLE);
3342                 }
3343                 pmap_invalidate_page(pmap, va);
3344                 orig_l3 = 0;
3345         } else {
3346                 /*
3347                  * Increment the counters.
3348                  */
3349                 if ((new_l3 & ATTR_SW_WIRED) != 0)
3350                         pmap->pm_stats.wired_count++;
3351                 pmap_resident_count_inc(pmap, 1);
3352         }
3353         /*
3354          * Enter on the PV list if part of our managed memory.
3355          */
3356         if ((m->oflags & VPO_UNMANAGED) == 0) {
3357                 if (pv == NULL) {
3358                         pv = get_pv_entry(pmap, &lock);
3359                         pv->pv_va = va;
3360                 }
3361                 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3362                 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3363                 m->md.pv_gen++;
3364                 if ((new_l3 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
3365                         vm_page_aflag_set(m, PGA_WRITEABLE);
3366         }
3367
3368 validate:
3369         /*
3370          * Sync icache if exec permission and attribute VM_MEMATTR_WRITE_BACK
3371          * is set. Do it now, before the mapping is stored and made
3372          * valid for hardware table walk. If done later, then other can
3373          * access this page before caches are properly synced.
3374          * Don't do it for kernel memory which is mapped with exec
3375          * permission even if the memory isn't going to hold executable
3376          * code. The only time when icache sync is needed is after
3377          * kernel module is loaded and the relocation info is processed.
3378          * And it's done in elf_cpu_load_file().
3379         */
3380         if ((prot & VM_PROT_EXECUTE) &&  pmap != kernel_pmap &&
3381             m->md.pv_memattr == VM_MEMATTR_WRITE_BACK &&
3382             (opa != pa || (orig_l3 & ATTR_XN)))
3383                 cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
3384
3385         /*
3386          * Update the L3 entry
3387          */
3388         if (pmap_l3_valid(orig_l3)) {
3389                 KASSERT(opa == pa, ("pmap_enter: invalid update"));
3390                 if ((orig_l3 & ~ATTR_AF) != (new_l3 & ~ATTR_AF)) {
3391                         /* same PA, different attributes */
3392                         /* XXXMJ need to reload orig_l3 for hardware DBM. */
3393                         pmap_load_store(l3, new_l3);
3394                         pmap_invalidate_page(pmap, va);
3395                         if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
3396                             pmap_pte_dirty(orig_l3))
3397                                 vm_page_dirty(m);
3398                 } else {
3399                         /*
3400                          * orig_l3 == new_l3
3401                          * This can happens if multiple threads simultaneously
3402                          * access not yet mapped page. This bad for performance
3403                          * since this can cause full demotion-NOP-promotion
3404                          * cycle.
3405                          * Another possible reasons are:
3406                          * - VM and pmap memory layout are diverged
3407                          * - tlb flush is missing somewhere and CPU doesn't see
3408                          *   actual mapping.
3409                          */
3410                         CTR4(KTR_PMAP, "%s: already mapped page - "
3411                             "pmap %p va 0x%#lx pte 0x%lx",
3412                             __func__, pmap, va, new_l3);
3413                 }
3414         } else {
3415                 /* New mapping */
3416                 pmap_store(l3, new_l3);
3417                 dsb(ishst);
3418         }
3419
3420 #if VM_NRESERVLEVEL > 0
3421         if (pmap != pmap_kernel() &&
3422             (mpte == NULL || mpte->wire_count == NL3PG) &&
3423             pmap_ps_enabled(pmap) &&
3424             (m->flags & PG_FICTITIOUS) == 0 &&
3425             vm_reserv_level_iffullpop(m) == 0) {
3426                 pmap_promote_l2(pmap, pde, va, &lock);
3427         }
3428 #endif
3429
3430         rv = KERN_SUCCESS;
3431 out:
3432         if (lock != NULL)
3433                 rw_wunlock(lock);
3434         PMAP_UNLOCK(pmap);
3435         return (rv);
3436 }
3437
3438 /*
3439  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3440  * if successful.  Returns false if (1) a page table page cannot be allocated
3441  * without sleeping, (2) a mapping already exists at the specified virtual
3442  * address, or (3) a PV entry cannot be allocated without reclaiming another
3443  * PV entry.
3444  */
3445 static bool
3446 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3447     struct rwlock **lockp)
3448 {
3449         pd_entry_t new_l2;
3450
3451         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3452
3453         new_l2 = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT |
3454             ATTR_IDX(m->md.pv_memattr) | ATTR_AP(ATTR_AP_RO) | L2_BLOCK);
3455         if ((m->oflags & VPO_UNMANAGED) == 0) {
3456                 new_l2 |= ATTR_SW_MANAGED;
3457                 new_l2 &= ~ATTR_AF;
3458         }
3459         if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
3460                 new_l2 |= ATTR_XN;
3461         if (va < VM_MAXUSER_ADDRESS)
3462                 new_l2 |= ATTR_AP(ATTR_AP_USER) | ATTR_PXN;
3463         return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
3464             PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3465             KERN_SUCCESS);
3466 }
3467
3468 /*
3469  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3470  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3471  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3472  * a mapping already exists at the specified virtual address.  Returns
3473  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3474  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3475  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3476  *
3477  * The parameter "m" is only used when creating a managed, writeable mapping.
3478  */
3479 static int
3480 pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
3481     vm_page_t m, struct rwlock **lockp)
3482 {
3483         struct spglist free;
3484         pd_entry_t *l2, old_l2;
3485         vm_page_t l2pg, mt;
3486
3487         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3488
3489         if ((l2pg = pmap_alloc_l2(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3490             NULL : lockp)) == NULL) {
3491                 CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx in pmap %p",
3492                     va, pmap);
3493                 return (KERN_RESOURCE_SHORTAGE);
3494         }
3495
3496         l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
3497         l2 = &l2[pmap_l2_index(va)];
3498         if ((old_l2 = pmap_load(l2)) != 0) {
3499                 KASSERT(l2pg->wire_count > 1,
3500                     ("pmap_enter_l2: l2pg's wire count is too low"));
3501                 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3502                         l2pg->wire_count--;
3503                         CTR2(KTR_PMAP,
3504                             "pmap_enter_l2: failure for va %#lx in pmap %p",
3505                             va, pmap);
3506                         return (KERN_FAILURE);
3507                 }
3508                 SLIST_INIT(&free);
3509                 if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK)
3510                         (void)pmap_remove_l2(pmap, l2, va,
3511                             pmap_load(pmap_l1(pmap, va)), &free, lockp);
3512                 else
3513                         pmap_remove_l3_range(pmap, old_l2, va, va + L2_SIZE,
3514                             &free, lockp);
3515                 vm_page_free_pages_toq(&free, true);
3516                 if (va >= VM_MAXUSER_ADDRESS) {
3517                         /*
3518                          * Both pmap_remove_l2() and pmap_remove_l3_range()
3519                          * will leave the kernel page table page zero filled.
3520                          * Nonetheless, the TLB could have an intermediate
3521                          * entry for the kernel page table page.
3522                          */
3523                         mt = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
3524                         if (pmap_insert_pt_page(pmap, mt, false))
3525                                 panic("pmap_enter_l2: trie insert failed");
3526                         pmap_clear(l2);
3527                         pmap_invalidate_page(pmap, va);
3528                 } else
3529                         KASSERT(pmap_load(l2) == 0,
3530                             ("pmap_enter_l2: non-zero L2 entry %p", l2));
3531         }
3532
3533         if ((new_l2 & ATTR_SW_MANAGED) != 0) {
3534                 /*
3535                  * Abort this mapping if its PV entry could not be created.
3536                  */
3537                 if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
3538                         SLIST_INIT(&free);
3539                         if (pmap_unwire_l3(pmap, va, l2pg, &free)) {
3540                                 /*
3541                                  * Although "va" is not mapped, the TLB could
3542                                  * nonetheless have intermediate entries that
3543                                  * refer to the freed page table pages.
3544                                  * Invalidate those entries.
3545                                  *
3546                                  * XXX redundant invalidation (See
3547                                  * _pmap_unwire_l3().)
3548                                  */
3549                                 pmap_invalidate_page(pmap, va);
3550                                 vm_page_free_pages_toq(&free, true);
3551                         }
3552                         CTR2(KTR_PMAP,
3553                             "pmap_enter_l2: failure for va %#lx in pmap %p",
3554                             va, pmap);
3555                         return (KERN_RESOURCE_SHORTAGE);
3556                 }
3557                 if ((new_l2 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
3558                         for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3559                                 vm_page_aflag_set(mt, PGA_WRITEABLE);
3560         }
3561
3562         /*
3563          * Increment counters.
3564          */
3565         if ((new_l2 & ATTR_SW_WIRED) != 0)
3566                 pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
3567         pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
3568
3569         /*
3570          * Map the superpage.
3571          */
3572         pmap_store(l2, new_l2);
3573         dsb(ishst);
3574
3575         atomic_add_long(&pmap_l2_mappings, 1);
3576         CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
3577             va, pmap);
3578
3579         return (KERN_SUCCESS);
3580 }
3581
3582 /*
3583  * Maps a sequence of resident pages belonging to the same object.
3584  * The sequence begins with the given page m_start.  This page is
3585  * mapped at the given virtual address start.  Each subsequent page is
3586  * mapped at a virtual address that is offset from start by the same
3587  * amount as the page is offset from m_start within the object.  The
3588  * last page in the sequence is the page with the largest offset from
3589  * m_start that can be mapped at a virtual address less than the given
3590  * virtual address end.  Not every virtual page between start and end
3591  * is mapped; only those for which a resident page exists with the
3592  * corresponding offset from m_start are mapped.
3593  */
3594 void
3595 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3596     vm_page_t m_start, vm_prot_t prot)
3597 {
3598         struct rwlock *lock;
3599         vm_offset_t va;
3600         vm_page_t m, mpte;
3601         vm_pindex_t diff, psize;
3602
3603         VM_OBJECT_ASSERT_LOCKED(m_start->object);
3604
3605         psize = atop(end - start);
3606         mpte = NULL;
3607         m = m_start;
3608         lock = NULL;
3609         PMAP_LOCK(pmap);
3610         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3611                 va = start + ptoa(diff);
3612                 if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
3613                     m->psind == 1 && pmap_ps_enabled(pmap) &&
3614                     pmap_enter_2mpage(pmap, va, m, prot, &lock))
3615                         m = &m[L2_SIZE / PAGE_SIZE - 1];
3616                 else
3617                         mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte,
3618                             &lock);
3619                 m = TAILQ_NEXT(m, listq);
3620         }
3621         if (lock != NULL)
3622                 rw_wunlock(lock);
3623         PMAP_UNLOCK(pmap);
3624 }
3625
3626 /*
3627  * this code makes some *MAJOR* assumptions:
3628  * 1. Current pmap & pmap exists.
3629  * 2. Not wired.
3630  * 3. Read access.
3631  * 4. No page table pages.
3632  * but is *MUCH* faster than pmap_enter...
3633  */
3634
3635 void
3636 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3637 {
3638         struct rwlock *lock;
3639
3640         lock = NULL;
3641         PMAP_LOCK(pmap);
3642         (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
3643         if (lock != NULL)
3644                 rw_wunlock(lock);
3645         PMAP_UNLOCK(pmap);
3646 }
3647
3648 static vm_page_t
3649 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3650     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
3651 {
3652         struct spglist free;
3653         pd_entry_t *pde;
3654         pt_entry_t *l2, *l3, l3_val;
3655         vm_paddr_t pa;
3656         int lvl;
3657
3658         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3659             (m->oflags & VPO_UNMANAGED) != 0,
3660             ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3661         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3662
3663         CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
3664         /*
3665          * In the case that a page table page is not
3666          * resident, we are creating it here.
3667          */
3668         if (va < VM_MAXUSER_ADDRESS) {
3669                 vm_pindex_t l2pindex;
3670
3671                 /*
3672                  * Calculate pagetable page index
3673                  */
3674                 l2pindex = pmap_l2_pindex(va);
3675                 if (mpte && (mpte->pindex == l2pindex)) {
3676                         mpte->wire_count++;
3677                 } else {
3678                         /*
3679                          * Get the l2 entry
3680                          */
3681                         pde = pmap_pde(pmap, va, &lvl);
3682
3683                         /*
3684                          * If the page table page is mapped, we just increment
3685                          * the hold count, and activate it.  Otherwise, we
3686                          * attempt to allocate a page table page.  If this
3687                          * attempt fails, we don't retry.  Instead, we give up.
3688                          */
3689                         if (lvl == 1) {
3690                                 l2 = pmap_l1_to_l2(pde, va);
3691                                 if ((pmap_load(l2) & ATTR_DESCR_MASK) ==
3692                                     L2_BLOCK)
3693                                         return (NULL);
3694                         }
3695                         if (lvl == 2 && pmap_load(pde) != 0) {
3696                                 mpte =
3697                                     PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
3698                                 mpte->wire_count++;
3699                         } else {
3700                                 /*
3701                                  * Pass NULL instead of the PV list lock
3702                                  * pointer, because we don't intend to sleep.
3703                                  */
3704                                 mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
3705                                 if (mpte == NULL)
3706                                         return (mpte);
3707                         }
3708                 }
3709                 l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3710                 l3 = &l3[pmap_l3_index(va)];
3711         } else {
3712                 mpte = NULL;
3713                 pde = pmap_pde(kernel_pmap, va, &lvl);
3714                 KASSERT(pde != NULL,
3715                     ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx",
3716                      va));
3717                 KASSERT(lvl == 2,
3718                     ("pmap_enter_quick_locked: Invalid level %d", lvl));
3719                 l3 = pmap_l2_to_l3(pde, va);
3720         }
3721
3722         /*
3723          * Abort if a mapping already exists.
3724          */
3725         if (pmap_load(l3) != 0) {
3726                 if (mpte != NULL) {
3727                         mpte->wire_count--;
3728                         mpte = NULL;
3729                 }
3730                 return (mpte);
3731         }
3732
3733         /*
3734          * Enter on the PV list if part of our managed memory.
3735          */
3736         if ((m->oflags & VPO_UNMANAGED) == 0 &&
3737             !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3738                 if (mpte != NULL) {
3739                         SLIST_INIT(&free);
3740                         if (pmap_unwire_l3(pmap, va, mpte, &free)) {
3741                                 pmap_invalidate_page(pmap, va);
3742                                 vm_page_free_pages_toq(&free, true);
3743                         }
3744                         mpte = NULL;
3745                 }
3746                 return (mpte);
3747         }
3748
3749         /*
3750          * Increment counters
3751          */
3752         pmap_resident_count_inc(pmap, 1);
3753
3754         pa = VM_PAGE_TO_PHYS(m);
3755         l3_val = pa | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
3756             ATTR_AP(ATTR_AP_RO) | L3_PAGE;
3757         if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
3758                 l3_val |= ATTR_XN;
3759         else if (va < VM_MAXUSER_ADDRESS)
3760                 l3_val |= ATTR_PXN;
3761
3762         /*
3763          * Now validate mapping with RO protection
3764          */
3765         if ((m->oflags & VPO_UNMANAGED) == 0) {
3766                 l3_val |= ATTR_SW_MANAGED;
3767                 l3_val &= ~ATTR_AF;
3768         }
3769
3770         /* Sync icache before the mapping is stored to PTE */
3771         if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
3772             m->md.pv_memattr == VM_MEMATTR_WRITE_BACK)
3773                 cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
3774
3775         pmap_store(l3, l3_val);
3776         dsb(ishst);
3777
3778         return (mpte);
3779 }
3780
3781 /*
3782  * This code maps large physical mmap regions into the
3783  * processor address space.  Note that some shortcuts
3784  * are taken, but the code works.
3785  */
3786 void
3787 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3788     vm_pindex_t pindex, vm_size_t size)
3789 {
3790
3791         VM_OBJECT_ASSERT_WLOCKED(object);
3792         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3793             ("pmap_object_init_pt: non-device object"));
3794 }
3795
3796 /*
3797  *      Clear the wired attribute from the mappings for the specified range of
3798  *      addresses in the given pmap.  Every valid mapping within that range
3799  *      must have the wired attribute set.  In contrast, invalid mappings
3800  *      cannot have the wired attribute set, so they are ignored.
3801  *
3802  *      The wired attribute of the page table entry is not a hardware feature,
3803  *      so there is no need to invalidate any TLB entries.
3804  */
3805 void
3806 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3807 {
3808         vm_offset_t va_next;
3809         pd_entry_t *l0, *l1, *l2;
3810         pt_entry_t *l3;
3811
3812         PMAP_LOCK(pmap);
3813         for (; sva < eva; sva = va_next) {
3814                 l0 = pmap_l0(pmap, sva);
3815                 if (pmap_load(l0) == 0) {
3816                         va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3817                         if (va_next < sva)
3818                                 va_next = eva;
3819                         continue;
3820                 }
3821
3822                 l1 = pmap_l0_to_l1(l0, sva);
3823                 if (pmap_load(l1) == 0) {
3824                         va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3825                         if (va_next < sva)
3826                                 va_next = eva;
3827                         continue;
3828                 }
3829
3830                 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3831                 if (va_next < sva)
3832                         va_next = eva;
3833
3834                 l2 = pmap_l1_to_l2(l1, sva);
3835                 if (pmap_load(l2) == 0)
3836                         continue;
3837
3838                 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
3839                         if ((pmap_load(l2) & ATTR_SW_WIRED) == 0)
3840                                 panic("pmap_unwire: l2 %#jx is missing "
3841                                     "ATTR_SW_WIRED", (uintmax_t)pmap_load(l2));
3842
3843                         /*
3844                          * Are we unwiring the entire large page?  If not,
3845                          * demote the mapping and fall through.
3846                          */
3847                         if (sva + L2_SIZE == va_next && eva >= va_next) {
3848                                 pmap_clear_bits(l2, ATTR_SW_WIRED);
3849                                 pmap->pm_stats.wired_count -= L2_SIZE /
3850                                     PAGE_SIZE;
3851                                 continue;
3852                         } else if (pmap_demote_l2(pmap, l2, sva) == NULL)
3853                                 panic("pmap_unwire: demotion failed");
3854                 }
3855                 KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
3856                     ("pmap_unwire: Invalid l2 entry after demotion"));
3857
3858                 if (va_next > eva)
3859                         va_next = eva;
3860                 for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
3861                     sva += L3_SIZE) {
3862                         if (pmap_load(l3) == 0)
3863                                 continue;
3864                         if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
3865                                 panic("pmap_unwire: l3 %#jx is missing "
3866                                     "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
3867
3868                         /*
3869                          * ATTR_SW_WIRED must be cleared atomically.  Although
3870                          * the pmap lock synchronizes access to ATTR_SW_WIRED,
3871                          * the System MMU may write to the entry concurrently.
3872                          */
3873                         pmap_clear_bits(l3, ATTR_SW_WIRED);
3874                         pmap->pm_stats.wired_count--;
3875                 }
3876         }
3877         PMAP_UNLOCK(pmap);
3878 }
3879
3880 /*
3881  *      Copy the range specified by src_addr/len
3882  *      from the source map to the range dst_addr/len
3883  *      in the destination map.
3884  *
3885  *      This routine is only advisory and need not do anything.
3886  *
3887  *      Because the executable mappings created by this routine are copied,
3888  *      it should not have to flush the instruction cache.
3889  */
3890 void
3891 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3892     vm_offset_t src_addr)
3893 {
3894         struct rwlock *lock;
3895         struct spglist free;
3896         pd_entry_t *l0, *l1, *l2, srcptepaddr;
3897         pt_entry_t *dst_pte, mask, nbits, ptetemp, *src_pte;
3898         vm_offset_t addr, end_addr, va_next;
3899         vm_page_t dst_l2pg, dstmpte, srcmpte;
3900
3901         if (dst_addr != src_addr)
3902                 return;
3903         end_addr = src_addr + len;
3904         lock = NULL;
3905         if (dst_pmap < src_pmap) {
3906                 PMAP_LOCK(dst_pmap);
3907                 PMAP_LOCK(src_pmap);
3908         } else {
3909                 PMAP_LOCK(src_pmap);
3910                 PMAP_LOCK(dst_pmap);
3911         }
3912         for (addr = src_addr; addr < end_addr; addr = va_next) {
3913                 l0 = pmap_l0(src_pmap, addr);
3914                 if (pmap_load(l0) == 0) {
3915                         va_next = (addr + L0_SIZE) & ~L0_OFFSET;
3916                         if (va_next < addr)
3917                                 va_next = end_addr;
3918                         continue;
3919                 }
3920                 l1 = pmap_l0_to_l1(l0, addr);
3921                 if (pmap_load(l1) == 0) {
3922                         va_next = (addr + L1_SIZE) & ~L1_OFFSET;
3923                         if (va_next < addr)
3924                                 va_next = end_addr;
3925                         continue;
3926                 }
3927                 va_next = (addr + L2_SIZE) & ~L2_OFFSET;
3928                 if (va_next < addr)
3929                         va_next = end_addr;
3930                 l2 = pmap_l1_to_l2(l1, addr);
3931                 srcptepaddr = pmap_load(l2);
3932                 if (srcptepaddr == 0)
3933                         continue;
3934                 if ((srcptepaddr & ATTR_DESCR_MASK) == L2_BLOCK) {
3935                         if ((addr & L2_OFFSET) != 0 ||
3936                             addr + L2_SIZE > end_addr)
3937                                 continue;
3938                         dst_l2pg = pmap_alloc_l2(dst_pmap, addr, NULL);
3939                         if (dst_l2pg == NULL)
3940                                 break;
3941                         l2 = (pd_entry_t *)
3942                             PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_l2pg));
3943                         l2 = &l2[pmap_l2_index(addr)];
3944                         if (pmap_load(l2) == 0 &&
3945                             ((srcptepaddr & ATTR_SW_MANAGED) == 0 ||
3946                             pmap_pv_insert_l2(dst_pmap, addr, srcptepaddr,
3947                             PMAP_ENTER_NORECLAIM, &lock))) {
3948                                 mask = ATTR_AF | ATTR_SW_WIRED;
3949                                 nbits = 0;
3950                                 if ((srcptepaddr & ATTR_SW_DBM) != 0)
3951                                         nbits |= ATTR_AP_RW_BIT;
3952                                 pmap_store(l2, (srcptepaddr & ~mask) | nbits);
3953                                 pmap_resident_count_inc(dst_pmap, L2_SIZE /
3954                                     PAGE_SIZE);
3955                                 atomic_add_long(&pmap_l2_mappings, 1);
3956                         } else
3957                                 dst_l2pg->wire_count--;
3958                         continue;
3959                 }
3960                 KASSERT((srcptepaddr & ATTR_DESCR_MASK) == L2_TABLE,
3961                     ("pmap_copy: invalid L2 entry"));
3962                 srcptepaddr &= ~ATTR_MASK;
3963                 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
3964                 KASSERT(srcmpte->wire_count > 0,
3965                     ("pmap_copy: source page table page is unused"));
3966                 if (va_next > end_addr)
3967                         va_next = end_addr;
3968                 src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
3969                 src_pte = &src_pte[pmap_l3_index(addr)];
3970                 dstmpte = NULL;
3971                 for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
3972                         ptetemp = pmap_load(src_pte);
3973
3974                         /*
3975                          * We only virtual copy managed pages.
3976                          */
3977                         if ((ptetemp & ATTR_SW_MANAGED) == 0)
3978                                 continue;
3979
3980                         if (dstmpte != NULL) {
3981                                 KASSERT(dstmpte->pindex == pmap_l2_pindex(addr),
3982                                     ("dstmpte pindex/addr mismatch"));
3983                                 dstmpte->wire_count++;
3984                         } else if ((dstmpte = pmap_alloc_l3(dst_pmap, addr,
3985                             NULL)) == NULL)
3986                                 goto out;
3987                         dst_pte = (pt_entry_t *)
3988                             PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
3989                         dst_pte = &dst_pte[pmap_l3_index(addr)];
3990                         if (pmap_load(dst_pte) == 0 &&
3991                             pmap_try_insert_pv_entry(dst_pmap, addr,
3992                             PHYS_TO_VM_PAGE(ptetemp & ~ATTR_MASK), &lock)) {
3993                                 /*
3994                                  * Clear the wired, modified, and accessed
3995                                  * (referenced) bits during the copy.
3996                                  */
3997                                 mask = ATTR_AF | ATTR_SW_WIRED;
3998                                 nbits = 0;
3999                                 if ((ptetemp & ATTR_SW_DBM) != 0)
4000                                         nbits |= ATTR_AP_RW_BIT;
4001                                 pmap_store(dst_pte, (ptetemp & ~mask) | nbits);
4002                                 pmap_resident_count_inc(dst_pmap, 1);
4003                         } else {
4004                                 SLIST_INIT(&free);
4005                                 if (pmap_unwire_l3(dst_pmap, addr, dstmpte,
4006                                     &free)) {
4007                                         /*
4008                                          * Although "addr" is not mapped,
4009                                          * the TLB could nonetheless have
4010                                          * intermediate entries that refer
4011                                          * to the freed page table pages.
4012                                          * Invalidate those entries.
4013                                          *
4014                                          * XXX redundant invalidation
4015                                          */
4016                                         pmap_invalidate_page(dst_pmap, addr);
4017                                         vm_page_free_pages_toq(&free, true);
4018                                 }
4019                                 goto out;
4020                         }
4021                         /* Have we copied all of the valid mappings? */ 
4022                         if (dstmpte->wire_count >= srcmpte->wire_count)
4023                                 break;
4024                 }
4025         }
4026 out:
4027         /*
4028          * XXX This barrier may not be needed because the destination pmap is
4029          * not active.
4030          */
4031         dsb(ishst);
4032
4033         if (lock != NULL)
4034                 rw_wunlock(lock);
4035         PMAP_UNLOCK(src_pmap);
4036         PMAP_UNLOCK(dst_pmap);
4037 }
4038
4039 /*
4040  *      pmap_zero_page zeros the specified hardware page by mapping
4041  *      the page into KVM and using bzero to clear its contents.
4042  */
4043 void
4044 pmap_zero_page(vm_page_t m)
4045 {
4046         vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4047
4048         pagezero((void *)va);
4049 }
4050
4051 /*
4052  *      pmap_zero_page_area zeros the specified hardware page by mapping
4053  *      the page into KVM and using bzero to clear its contents.
4054  *
4055  *      off and size may not cover an area beyond a single hardware page.
4056  */
4057 void
4058 pmap_zero_page_area(vm_page_t m, int off, int size)
4059 {
4060         vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4061
4062         if (off == 0 && size == PAGE_SIZE)
4063                 pagezero((void *)va);
4064         else
4065                 bzero((char *)va + off, size);
4066 }
4067
4068 /*
4069  *      pmap_copy_page copies the specified (machine independent)
4070  *      page by mapping the page into virtual memory and using
4071  *      bcopy to copy the page, one machine dependent page at a
4072  *      time.
4073  */
4074 void
4075 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
4076 {
4077         vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
4078         vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
4079
4080         pagecopy((void *)src, (void *)dst);
4081 }
4082
4083 int unmapped_buf_allowed = 1;
4084
4085 void
4086 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4087     vm_offset_t b_offset, int xfersize)
4088 {
4089         void *a_cp, *b_cp;
4090         vm_page_t m_a, m_b;
4091         vm_paddr_t p_a, p_b;
4092         vm_offset_t a_pg_offset, b_pg_offset;
4093         int cnt;
4094
4095         while (xfersize > 0) {
4096                 a_pg_offset = a_offset & PAGE_MASK;
4097                 m_a = ma[a_offset >> PAGE_SHIFT];
4098                 p_a = m_a->phys_addr;
4099                 b_pg_offset = b_offset & PAGE_MASK;
4100                 m_b = mb[b_offset >> PAGE_SHIFT];
4101                 p_b = m_b->phys_addr;
4102                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4103                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4104                 if (__predict_false(!PHYS_IN_DMAP(p_a))) {
4105                         panic("!DMAP a %lx", p_a);
4106                 } else {
4107                         a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
4108                 }
4109                 if (__predict_false(!PHYS_IN_DMAP(p_b))) {
4110                         panic("!DMAP b %lx", p_b);
4111                 } else {
4112                         b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
4113                 }
4114                 bcopy(a_cp, b_cp, cnt);
4115                 a_offset += cnt;
4116                 b_offset += cnt;
4117                 xfersize -= cnt;
4118         }
4119 }
4120
4121 vm_offset_t
4122 pmap_quick_enter_page(vm_page_t m)
4123 {
4124
4125         return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
4126 }
4127
4128 void
4129 pmap_quick_remove_page(vm_offset_t addr)
4130 {
4131 }
4132
4133 /*
4134  * Returns true if the pmap's pv is one of the first
4135  * 16 pvs linked to from this page.  This count may
4136  * be changed upwards or downwards in the future; it
4137  * is only necessary that true be returned for a small
4138  * subset of pmaps for proper page aging.
4139  */
4140 boolean_t
4141 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4142 {
4143         struct md_page *pvh;
4144         struct rwlock *lock;
4145         pv_entry_t pv;
4146         int loops = 0;
4147         boolean_t rv;
4148
4149         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4150             ("pmap_page_exists_quick: page %p is not managed", m));
4151         rv = FALSE;
4152         lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4153         rw_rlock(lock);
4154         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4155                 if (PV_PMAP(pv) == pmap) {
4156                         rv = TRUE;
4157                         break;
4158                 }
4159                 loops++;
4160                 if (loops >= 16)
4161                         break;
4162         }
4163         if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4164                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4165                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4166                         if (PV_PMAP(pv) == pmap) {
4167                                 rv = TRUE;
4168                                 break;
4169                         }
4170                         loops++;
4171                         if (loops >= 16)
4172                                 break;
4173                 }
4174         }
4175         rw_runlock(lock);
4176         return (rv);
4177 }
4178
4179 /*
4180  *      pmap_page_wired_mappings:
4181  *
4182  *      Return the number of managed mappings to the given physical page
4183  *      that are wired.
4184  */
4185 int
4186 pmap_page_wired_mappings(vm_page_t m)
4187 {
4188         struct rwlock *lock;
4189         struct md_page *pvh;
4190         pmap_t pmap;
4191         pt_entry_t *pte;
4192         pv_entry_t pv;
4193         int count, lvl, md_gen, pvh_gen;
4194
4195         if ((m->oflags & VPO_UNMANAGED) != 0)
4196                 return (0);
4197         lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4198         rw_rlock(lock);
4199 restart:
4200         count = 0;
4201         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4202                 pmap = PV_PMAP(pv);
4203                 if (!PMAP_TRYLOCK(pmap)) {
4204                         md_gen = m->md.pv_gen;
4205                         rw_runlock(lock);
4206                         PMAP_LOCK(pmap);
4207                         rw_rlock(lock);
4208                         if (md_gen != m->md.pv_gen) {
4209                                 PMAP_UNLOCK(pmap);
4210                                 goto restart;
4211                         }
4212                 }
4213                 pte = pmap_pte(pmap, pv->pv_va, &lvl);
4214                 if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0)
4215                         count++;
4216                 PMAP_UNLOCK(pmap);
4217         }
4218         if ((m->flags & PG_FICTITIOUS) == 0) {
4219                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4220                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4221                         pmap = PV_PMAP(pv);
4222                         if (!PMAP_TRYLOCK(pmap)) {
4223                                 md_gen = m->md.pv_gen;
4224                                 pvh_gen = pvh->pv_gen;
4225                                 rw_runlock(lock);
4226                                 PMAP_LOCK(pmap);
4227                                 rw_rlock(lock);
4228                                 if (md_gen != m->md.pv_gen ||
4229                                     pvh_gen != pvh->pv_gen) {
4230                                         PMAP_UNLOCK(pmap);
4231                                         goto restart;
4232                                 }
4233                         }
4234                         pte = pmap_pte(pmap, pv->pv_va, &lvl);
4235                         if (pte != NULL &&
4236                             (pmap_load(pte) & ATTR_SW_WIRED) != 0)
4237                                 count++;
4238                         PMAP_UNLOCK(pmap);
4239                 }
4240         }
4241         rw_runlock(lock);
4242         return (count);
4243 }
4244
4245 /*
4246  * Destroy all managed, non-wired mappings in the given user-space
4247  * pmap.  This pmap cannot be active on any processor besides the
4248  * caller.
4249  *
4250  * This function cannot be applied to the kernel pmap.  Moreover, it
4251  * is not intended for general use.  It is only to be used during
4252  * process termination.  Consequently, it can be implemented in ways
4253  * that make it faster than pmap_remove().  First, it can more quickly
4254  * destroy mappings by iterating over the pmap's collection of PV
4255  * entries, rather than searching the page table.  Second, it doesn't
4256  * have to test and clear the page table entries atomically, because
4257  * no processor is currently accessing the user address space.  In
4258  * particular, a page table entry's dirty bit won't change state once
4259  * this function starts.
4260  */
4261 void
4262 pmap_remove_pages(pmap_t pmap)
4263 {
4264         pd_entry_t *pde;
4265         pt_entry_t *pte, tpte;
4266         struct spglist free;
4267         vm_page_t m, ml3, mt;
4268         pv_entry_t pv;
4269         struct md_page *pvh;
4270         struct pv_chunk *pc, *npc;
4271         struct rwlock *lock;
4272         int64_t bit;
4273         uint64_t inuse, bitmask;
4274         int allfree, field, freed, idx, lvl;
4275         vm_paddr_t pa;
4276
4277         lock = NULL;
4278
4279         SLIST_INIT(&free);
4280         PMAP_LOCK(pmap);
4281         TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4282                 allfree = 1;
4283                 freed = 0;
4284                 for (field = 0; field < _NPCM; field++) {
4285                         inuse = ~pc->pc_map[field] & pc_freemask[field];
4286                         while (inuse != 0) {
4287                                 bit = ffsl(inuse) - 1;
4288                                 bitmask = 1UL << bit;
4289                                 idx = field * 64 + bit;
4290                                 pv = &pc->pc_pventry[idx];
4291                                 inuse &= ~bitmask;
4292
4293                                 pde = pmap_pde(pmap, pv->pv_va, &lvl);
4294                                 KASSERT(pde != NULL,
4295                                     ("Attempting to remove an unmapped page"));
4296
4297                                 switch(lvl) {
4298                                 case 1:
4299                                         pte = pmap_l1_to_l2(pde, pv->pv_va);
4300                                         tpte = pmap_load(pte); 
4301                                         KASSERT((tpte & ATTR_DESCR_MASK) ==
4302                                             L2_BLOCK,
4303                                             ("Attempting to remove an invalid "
4304                                             "block: %lx", tpte));
4305                                         tpte = pmap_load(pte);
4306                                         break;
4307                                 case 2:
4308                                         pte = pmap_l2_to_l3(pde, pv->pv_va);
4309                                         tpte = pmap_load(pte);
4310                                         KASSERT((tpte & ATTR_DESCR_MASK) ==
4311                                             L3_PAGE,
4312                                             ("Attempting to remove an invalid "
4313                                              "page: %lx", tpte));
4314                                         break;
4315                                 default:
4316                                         panic(
4317                                             "Invalid page directory level: %d",
4318                                             lvl);
4319                                 }
4320
4321 /*
4322  * We cannot remove wired pages from a process' mapping at this time
4323  */
4324                                 if (tpte & ATTR_SW_WIRED) {
4325                                         allfree = 0;
4326                                         continue;
4327                                 }
4328
4329                                 pa = tpte & ~ATTR_MASK;
4330
4331                                 m = PHYS_TO_VM_PAGE(pa);
4332                                 KASSERT(m->phys_addr == pa,
4333                                     ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4334                                     m, (uintmax_t)m->phys_addr,
4335                                     (uintmax_t)tpte));
4336
4337                                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4338                                     m < &vm_page_array[vm_page_array_size],
4339                                     ("pmap_remove_pages: bad pte %#jx",
4340                                     (uintmax_t)tpte));
4341
4342                                 /*
4343                                  * Because this pmap is not active on other
4344                                  * processors, the dirty bit cannot have
4345                                  * changed state since we last loaded pte.
4346                                  */
4347                                 pmap_clear(pte);
4348
4349                                 /*
4350                                  * Update the vm_page_t clean/reference bits.
4351                                  */
4352                                 if (pmap_pte_dirty(tpte)) {
4353                                         switch (lvl) {
4354                                         case 1:
4355                                                 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4356                                                         vm_page_dirty(mt);
4357                                                 break;
4358                                         case 2:
4359                                                 vm_page_dirty(m);
4360                                                 break;
4361                                         }
4362                                 }
4363
4364                                 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
4365
4366                                 /* Mark free */
4367                                 pc->pc_map[field] |= bitmask;
4368                                 switch (lvl) {
4369                                 case 1:
4370                                         pmap_resident_count_dec(pmap,
4371                                             L2_SIZE / PAGE_SIZE);
4372                                         pvh = pa_to_pvh(tpte & ~ATTR_MASK);
4373                                         TAILQ_REMOVE(&pvh->pv_list, pv,pv_next);
4374                                         pvh->pv_gen++;
4375                                         if (TAILQ_EMPTY(&pvh->pv_list)) {
4376                                                 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4377                                                         if ((mt->aflags & PGA_WRITEABLE) != 0 &&
4378                                                             TAILQ_EMPTY(&mt->md.pv_list))
4379                                                                 vm_page_aflag_clear(mt, PGA_WRITEABLE);
4380                                         }
4381                                         ml3 = pmap_remove_pt_page(pmap,
4382                                             pv->pv_va);
4383                                         if (ml3 != NULL) {
4384                                                 KASSERT(ml3->valid == VM_PAGE_BITS_ALL,
4385                                                     ("pmap_remove_pages: l3 page not promoted"));
4386                                                 pmap_resident_count_dec(pmap,1);
4387                                                 KASSERT(ml3->wire_count == NL3PG,
4388                                                     ("pmap_remove_pages: l3 page wire count error"));
4389                                                 ml3->wire_count = 0;
4390                                                 pmap_add_delayed_free_list(ml3,
4391                                                     &free, FALSE);
4392                                         }
4393                                         break;
4394                                 case 2:
4395                                         pmap_resident_count_dec(pmap, 1);
4396                                         TAILQ_REMOVE(&m->md.pv_list, pv,
4397                                             pv_next);
4398                                         m->md.pv_gen++;
4399                                         if ((m->aflags & PGA_WRITEABLE) != 0 &&
4400                                             TAILQ_EMPTY(&m->md.pv_list) &&
4401                                             (m->flags & PG_FICTITIOUS) == 0) {
4402                                                 pvh = pa_to_pvh(
4403                                                     VM_PAGE_TO_PHYS(m));
4404                                                 if (TAILQ_EMPTY(&pvh->pv_list))
4405                                                         vm_page_aflag_clear(m,
4406                                                             PGA_WRITEABLE);
4407                                         }
4408                                         break;
4409                                 }
4410                                 pmap_unuse_pt(pmap, pv->pv_va, pmap_load(pde),
4411                                     &free);
4412                                 freed++;
4413                         }
4414                 }
4415                 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
4416                 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
4417                 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
4418                 if (allfree) {
4419                         TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4420                         free_pv_chunk(pc);
4421                 }
4422         }
4423         pmap_invalidate_all(pmap);
4424         if (lock != NULL)
4425                 rw_wunlock(lock);
4426         PMAP_UNLOCK(pmap);
4427         vm_page_free_pages_toq(&free, true);
4428 }
4429
4430 /*
4431  * This is used to check if a page has been accessed or modified. As we
4432  * don't have a bit to see if it has been modified we have to assume it
4433  * has been if the page is read/write.
4434  */
4435 static boolean_t
4436 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
4437 {
4438         struct rwlock *lock;
4439         pv_entry_t pv;
4440         struct md_page *pvh;
4441         pt_entry_t *pte, mask, value;
4442         pmap_t pmap;
4443         int lvl, md_gen, pvh_gen;
4444         boolean_t rv;
4445
4446         rv = FALSE;
4447         lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4448         rw_rlock(lock);
4449 restart:
4450         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4451                 pmap = PV_PMAP(pv);
4452                 if (!PMAP_TRYLOCK(pmap)) {
4453                         md_gen = m->md.pv_gen;
4454                         rw_runlock(lock);
4455                         PMAP_LOCK(pmap);
4456                         rw_rlock(lock);
4457                         if (md_gen != m->md.pv_gen) {
4458                                 PMAP_UNLOCK(pmap);
4459                                 goto restart;
4460                         }
4461                 }
4462                 pte = pmap_pte(pmap, pv->pv_va, &lvl);
4463                 KASSERT(lvl == 3,
4464                     ("pmap_page_test_mappings: Invalid level %d", lvl));
4465                 mask = 0;
4466                 value = 0;
4467                 if (modified) {
4468                         mask |= ATTR_AP_RW_BIT;
4469                         value |= ATTR_AP(ATTR_AP_RW);
4470                 }
4471                 if (accessed) {
4472                         mask |= ATTR_AF | ATTR_DESCR_MASK;
4473                         value |= ATTR_AF | L3_PAGE;
4474                 }
4475                 rv = (pmap_load(pte) & mask) == value;
4476                 PMAP_UNLOCK(pmap);
4477                 if (rv)
4478                         goto out;
4479         }
4480         if ((m->flags & PG_FICTITIOUS) == 0) {
4481                 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4482                 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4483                         pmap = PV_PMAP(pv);
4484                         if (!PMAP_TRYLOCK(pmap)) {
4485                                 md_gen = m->md.pv_gen;
4486                                 pvh_gen = pvh->pv_gen;
4487                                 rw_runlock(lock);
4488                                 PMAP_LOCK(pmap);
4489                                 rw_rlock(lock);
4490                                 if (md_gen != m->md.pv_gen ||
4491                                     pvh_gen != pvh->pv_gen) {
4492                                         PMAP_UNLOCK(pmap);
4493                                         goto restart;
4494                                 }
4495                         }
4496                         pte = pmap_pte(pmap, pv->pv_va, &lvl);
4497                         KASSERT(lvl == 2,
4498                             ("pmap_page_test_mappings: Invalid level %d", lvl));
4499                         mask = 0;
4500                         value = 0;
4501                         if (modified) {
4502                                 mask |= ATTR_AP_RW_BIT;
4503                                 value |= ATTR_AP(ATTR_AP_RW);
4504                         }
4505                         if (accessed) {
4506                                 mask |= ATTR_AF | ATTR_DESCR_MASK;
4507                                 value |= ATTR_AF | L2_BLOCK;
4508                         }
4509                         rv = (pmap_load(pte) & mask) == value;
4510                         PMAP_UNLOCK(pmap);
4511                         if (rv)
4512                                 goto out;
4513                 }
4514         }
4515 out:
4516         rw_runlock(lock);
4517         return (rv);
4518 }
4519
4520 /*
4521  *      pmap_is_modified:
4522  *
4523  *      Return whether or not the specified physical page was modified
4524  *      in any physical maps.
4525  */
4526 boolean_t
4527 pmap_is_modified(vm_page_t m)
4528 {
4529
4530         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4531             ("pmap_is_modified: page %p is not managed", m));
4532
4533         /*
4534          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4535          * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4536          * is clear, no PTEs can have PG_M set.
4537          */
4538         VM_OBJECT_ASSERT_WLOCKED(m->object);
4539         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4540                 return (FALSE);
4541         return (pmap_page_test_mappings(m, FALSE, TRUE));
4542 }
4543
4544 /*
4545  *      pmap_is_prefaultable:
4546  *
4547  *      Return whether or not the specified virtual address is eligible
4548  *      for prefault.
4549  */
4550 boolean_t
4551 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4552 {
4553         pt_entry_t *pte;
4554         boolean_t rv;
4555         int lvl;
4556
4557         rv = FALSE;
4558         PMAP_LOCK(pmap);
4559         pte = pmap_pte(pmap, addr, &lvl);
4560         if (pte != NULL && pmap_load(pte) != 0) {
4561                 rv = TRUE;
4562         }
4563         PMAP_UNLOCK(pmap);
4564         return (rv);
4565 }
4566
4567 /*
4568  *      pmap_is_referenced:
4569  *
4570  *      Return whether or not the specified physical page was referenced
4571  *      in any physical maps.
4572  */
4573 boolean_t
4574 pmap_is_referenced(vm_page_t m)
4575 {
4576
4577         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4578             ("pmap_is_referenced: page %p is not managed", m));
4579         return (pmap_page_test_mappings(m, TRUE, FALSE));
4580 }
4581
4582 /*
4583  * Clear the write and modified bits in each of the given page's mappings.
4584  */
4585 void
4586 pmap_remove_write(vm_page_t m)
4587 {
4588         struct md_page *pvh;
4589         pmap_t pmap;
4590         struct rwlock *lock;
4591         pv_entry_t next_pv, pv;
4592         pt_entry_t oldpte, *pte;
4593         vm_offset_t va;
4594         int lvl, md_gen, pvh_gen;
4595
4596         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4597             ("pmap_remove_write: page %p is not managed", m));
4598
4599         /*
4600          * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4601          * set by another thread while the object is locked.  Thus,
4602          * if PGA_WRITEABLE is clear, no page table entries need updating.
4603          */
4604         VM_OBJECT_ASSERT_WLOCKED(m->object);
4605         if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4606                 return;
4607         lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4608         pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
4609             pa_to_pvh(VM_PAGE_TO_PHYS(m));
4610 retry_pv_loop:
4611         rw_wlock(lock);
4612         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4613                 pmap = PV_PMAP(pv);
4614                 if (!PMAP_TRYLOCK(pmap)) {
4615                         pvh_gen = pvh->pv_gen;
4616                         rw_wunlock(lock);
4617                         PMAP_LOCK(pmap);
4618                         rw_wlock(lock);
4619                         if (pvh_gen != pvh->pv_gen) {
4620                                 PMAP_UNLOCK(pmap);
4621                                 rw_wunlock(lock);
4622                                 goto retry_pv_loop;
4623                         }
4624                 }
4625                 va = pv->pv_va;
4626                 pte = pmap_pte(pmap, pv->pv_va, &lvl);
4627                 if ((pmap_load(pte) & ATTR_SW_DBM) != 0)
4628                         (void)pmap_demote_l2_locked(pmap, pte, va, &lock);
4629                 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4630                     ("inconsistent pv lock %p %p for page %p",
4631                     lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4632                 PMAP_UNLOCK(pmap);
4633         }
4634         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4635                 pmap = PV_PMAP(pv);
4636                 if (!PMAP_TRYLOCK(pmap)) {
4637                         pvh_gen = pvh->pv_gen;
4638                         md_gen = m->md.pv_gen;
4639                         rw_wunlock(lock);
4640                         PMAP_LOCK(pmap);
4641                         rw_wlock(lock);
4642                         if (pvh_gen != pvh->pv_gen ||
4643                             md_gen != m->md.pv_gen) {
4644                                 PMAP_UNLOCK(pmap);
4645                                 rw_wunlock(lock);
4646                                 goto retry_pv_loop;
4647                         }
4648                 }
4649                 pte = pmap_pte(pmap, pv->pv_va, &lvl);
4650                 oldpte = pmap_load(pte);
4651 retry:
4652                 if ((oldpte & ATTR_SW_DBM) != 0) {
4653                         if (!atomic_fcmpset_long(pte, &oldpte,
4654                             (oldpte | ATTR_AP_RW_BIT) & ~ATTR_SW_DBM))
4655                                 goto retry;
4656                         if ((oldpte & ATTR_AP_RW_BIT) ==
4657                             ATTR_AP(ATTR_AP_RW))
4658                                 vm_page_dirty(m);
4659                         pmap_invalidate_page(pmap, pv->pv_va);
4660                 }
4661                 PMAP_UNLOCK(pmap);
4662         }
4663         rw_wunlock(lock);
4664         vm_page_aflag_clear(m, PGA_WRITEABLE);
4665 }
4666
4667 /*
4668  *      pmap_ts_referenced:
4669  *
4670  *      Return a count of reference bits for a page, clearing those bits.
4671  *      It is not necessary for every reference bit to be cleared, but it
4672  *      is necessary that 0 only be returned when there are truly no
4673  *      reference bits set.
4674  *
4675  *      As an optimization, update the page's dirty field if a modified bit is
4676  *      found while counting reference bits.  This opportunistic update can be
4677  *      performed at low cost and can eliminate the need for some future calls
4678  *      to pmap_is_modified().  However, since this function stops after
4679  *      finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
4680  *      dirty pages.  Those dirty pages will only be detected by a future call
4681  *      to pmap_is_modified().
4682  */
4683 int
4684 pmap_ts_referenced(vm_page_t m)
4685 {
4686         struct md_page *pvh;
4687         pv_entry_t pv, pvf;
4688         pmap_t pmap;
4689         struct rwlock *lock;
4690         pd_entry_t *pde, tpde;
4691         pt_entry_t *pte, tpte;
4692         vm_offset_t va;
4693         vm_paddr_t pa;
4694         int cleared, lvl, md_gen, not_cleared, pvh_gen;
4695         struct spglist free;
4696
4697         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4698             ("pmap_ts_referenced: page %p is not managed", m));
4699         SLIST_INIT(&free);
4700         cleared = 0;
4701         pa = VM_PAGE_TO_PHYS(m);
4702         lock = PHYS_TO_PV_LIST_LOCK(pa);
4703         pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
4704         rw_wlock(lock);
4705 retry:
4706         not_cleared = 0;
4707         if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4708                 goto small_mappings;
4709         pv = pvf;
4710         do {
4711                 if (pvf == NULL)
4712                         pvf = pv;
4713                 pmap = PV_PMAP(pv);
4714                 if (!PMAP_TRYLOCK(pmap)) {
4715                         pvh_gen = pvh->pv_gen;
4716                         rw_wunlock(lock);
4717                         PMAP_LOCK(pmap);
4718                         rw_wlock(lock);
4719                         if (pvh_gen != pvh->pv_gen) {
4720                                 PMAP_UNLOCK(pmap);
4721                                 goto retry;
4722                         }
4723                 }
4724                 va = pv->pv_va;
4725                 pde = pmap_pde(pmap, pv->pv_va, &lvl);
4726                 KASSERT(pde != NULL, ("pmap_ts_referenced: no l1 table found"));
4727                 KASSERT(lvl == 1,
4728                     ("pmap_ts_referenced: invalid pde level %d", lvl));
4729                 tpde = pmap_load(pde);
4730                 KASSERT((tpde & ATTR_DESCR_MASK) == L1_TABLE,
4731                     ("pmap_ts_referenced: found an invalid l1 table"));
4732                 pte = pmap_l1_to_l2(pde, pv->pv_va);
4733                 tpte = pmap_load(pte);
4734                 if (pmap_pte_dirty(tpte)) {
4735                         /*
4736                          * Although "tpte" is mapping a 2MB page, because
4737                          * this function is called at a 4KB page granularity,
4738                          * we only update the 4KB page under test.
4739                          */
4740                         vm_page_dirty(m);
4741                 }
4742
4743                 if ((tpte & ATTR_AF) != 0) {
4744                         /*
4745                          * Since this reference bit is shared by 512 4KB pages,
4746                          * it should not be cleared every time it is tested.
4747                          * Apply a simple "hash" function on the physical page
4748                          * number, the virtual superpage number, and the pmap
4749                          * address to select one 4KB page out of the 512 on
4750                          * which testing the reference bit will result in
4751                          * clearing that reference bit.  This function is
4752                          * designed to avoid the selection of the same 4KB page
4753                          * for every 2MB page mapping.
4754                          *
4755                          * On demotion, a mapping that hasn't been referenced
4756                          * is simply destroyed.  To avoid the possibility of a
4757                          * subsequent page fault on a demoted wired mapping,
4758                          * always leave its reference bit set.  Moreover,
4759                          * since the superpage is wired, the current state of
4760                          * its reference bit won't affect page replacement.
4761                          */
4762                         if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
4763                             (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
4764                             (tpte & ATTR_SW_WIRED) == 0) {
4765                                 pmap_clear_bits(pte, ATTR_AF);
4766                                 pmap_invalidate_page(pmap, pv->pv_va);
4767                                 cleared++;
4768                         } else
4769                                 not_cleared++;
4770                 }
4771                 PMAP_UNLOCK(pmap);
4772                 /* Rotate the PV list if it has more than one entry. */
4773                 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4774                         TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4775                         TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4776                         pvh->pv_gen++;
4777                 }
4778                 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
4779                         goto out;
4780         } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4781 small_mappings:
4782         if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4783                 goto out;
4784         pv = pvf;
4785         do {
4786                 if (pvf == NULL)
4787                         pvf = pv;
4788                 pmap = PV_PMAP(pv);
4789                 if (!PMAP_TRYLOCK(pmap)) {
4790                         pvh_gen = pvh->pv_gen;
4791                         md_gen = m->md.pv_gen;
4792                         rw_wunlock(lock);
4793                         PMAP_LOCK(pmap);
4794                         rw_wlock(lock);
4795                         if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4796                                 PMAP_UNLOCK(pmap);
4797                                 goto retry;
4798                         }
4799                 }
4800                 pde = pmap_pde(pmap, pv->pv_va, &lvl);
4801                 KASSERT(pde != NULL, ("pmap_ts_referenced: no l2 table found"));
4802                 KASSERT(lvl == 2,
4803                     ("pmap_ts_referenced: invalid pde level %d", lvl));
4804                 tpde = pmap_load(pde);
4805                 KASSERT((tpde & ATTR_DESCR_MASK) == L2_TABLE,
4806                     ("pmap_ts_referenced: found an invalid l2 table"));
4807                 pte = pmap_l2_to_l3(pde, pv->pv_va);
4808                 tpte = pmap_load(pte);
4809                 if (pmap_pte_dirty(tpte))
4810                         vm_page_dirty(m);
4811                 if ((tpte & ATTR_AF) != 0) {
4812                         if ((tpte & ATTR_SW_WIRED) == 0) {
4813                                 pmap_clear_bits(pte, ATTR_AF);
4814                                 pmap_invalidate_page(pmap, pv->pv_va);
4815                                 cleared++;
4816                         } else
4817                                 not_cleared++;
4818                 }
4819                 PMAP_UNLOCK(pmap);
4820                 /* Rotate the PV list if it has more than one entry. */
4821                 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4822                         TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4823                         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4824                         m->md.pv_gen++;
4825                 }
4826         } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
4827             not_cleared < PMAP_TS_REFERENCED_MAX);
4828 out:
4829         rw_wunlock(lock);
4830         vm_page_free_pages_toq(&free, true);
4831         return (cleared + not_cleared);
4832 }
4833
4834 /*
4835  *      Apply the given advice to the specified range of addresses within the
4836  *      given pmap.  Depending on the advice, clear the referenced and/or
4837  *      modified flags in each mapping and set the mapped page's dirty field.
4838  */
4839 void
4840 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4841 {
4842 }
4843
4844 /*
4845  *      Clear the modify bits on the specified physical page.
4846  */
4847 void
4848 pmap_clear_modify(vm_page_t m)
4849 {
4850         struct md_page *pvh;
4851         struct rwlock *lock;
4852         pmap_t pmap;
4853         pv_entry_t next_pv, pv;
4854         pd_entry_t *l2, oldl2;
4855         pt_entry_t *l3, oldl3;
4856         vm_offset_t va;
4857         int md_gen, pvh_gen;
4858
4859         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4860             ("pmap_clear_modify: page %p is not managed", m));
4861         VM_OBJECT_ASSERT_WLOCKED(m->object);
4862         KASSERT(!vm_page_xbusied(m),
4863             ("pmap_clear_modify: page %p is exclusive busied", m));
4864
4865         /*
4866          * If the page is not PGA_WRITEABLE, then no PTEs can have ATTR_SW_DBM
4867          * set.  If the object containing the page is locked and the page is not
4868          * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4869          */
4870         if ((m->aflags & PGA_WRITEABLE) == 0)
4871                 return;
4872         pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
4873             pa_to_pvh(VM_PAGE_TO_PHYS(m));
4874         lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4875         rw_wlock(lock);
4876 restart:
4877         TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4878                 pmap = PV_PMAP(pv);
4879                 if (!PMAP_TRYLOCK(pmap)) {
4880                         pvh_gen = pvh->pv_gen;
4881                         rw_wunlock(lock);
4882                         PMAP_LOCK(pmap);
4883                         rw_wlock(lock);
4884                         if (pvh_gen != pvh->pv_gen) {
4885                                 PMAP_UNLOCK(pmap);
4886                                 goto restart;
4887                         }
4888                 }
4889                 va = pv->pv_va;
4890                 l2 = pmap_l2(pmap, va);
4891                 oldl2 = pmap_load(l2);
4892                 if ((oldl2 & ATTR_SW_DBM) != 0) {
4893                         if (pmap_demote_l2_locked(pmap, l2, va, &lock)) {
4894                                 if ((oldl2 & ATTR_SW_WIRED) == 0) {
4895                                         /*
4896                                          * Write protect the mapping to a
4897                                          * single page so that a subsequent
4898                                          * write access may repromote.
4899                                          */
4900                                         va += VM_PAGE_TO_PHYS(m) -
4901                                             (oldl2 & ~ATTR_MASK);
4902                                         l3 = pmap_l2_to_l3(l2, va);
4903                                         oldl3 = pmap_load(l3);
4904                                         if (pmap_l3_valid(oldl3)) {
4905                                                 while (!atomic_fcmpset_long(l3,
4906                                                     &oldl3, (oldl3 & ~ATTR_SW_DBM) |
4907                                                     ATTR_AP(ATTR_AP_RO)))
4908                                                         cpu_spinwait();
4909                                                 vm_page_dirty(m);
4910                                                 pmap_invalidate_page(pmap, va);
4911                                         }
4912                                 }
4913                         }
4914                 }
4915                 PMAP_UNLOCK(pmap);
4916         }
4917         TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4918                 pmap = PV_PMAP(pv);
4919                 if (!PMAP_TRYLOCK(pmap)) {
4920                         md_gen = m->md.pv_gen;
4921                         pvh_gen = pvh->pv_gen;
4922                         rw_wunlock(lock);
4923                         PMAP_LOCK(pmap);
4924                         rw_wlock(lock);
4925                         if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4926                                 PMAP_UNLOCK(pmap);
4927                                 goto restart;
4928                         }
4929                 }
4930                 l2 = pmap_l2(pmap, pv->pv_va);
4931                 l3 = pmap_l2_to_l3(l2, pv->pv_va);
4932                 oldl3 = pmap_load(l3);
4933                 if (pmap_l3_valid(oldl3) &&
4934                     (oldl3 & (ATTR_AP_RW_BIT | ATTR_SW_DBM)) == ATTR_SW_DBM) {
4935                         pmap_set_bits(l3, ATTR_AP(ATTR_AP_RO));
4936                         pmap_invalidate_page(pmap, pv->pv_va);
4937                 }
4938                 PMAP_UNLOCK(pmap);
4939         }
4940         rw_wunlock(lock);
4941 }
4942
4943 void *
4944 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4945 {
4946         struct pmap_preinit_mapping *ppim;
4947         vm_offset_t va, offset;
4948         pd_entry_t *pde;
4949         pt_entry_t *l2;
4950         int i, lvl, l2_blocks, free_l2_count, start_idx;
4951
4952         if (!vm_initialized) {
4953                 /*
4954                  * No L3 ptables so map entire L2 blocks where start VA is:
4955                  *      preinit_map_va + start_idx * L2_SIZE
4956                  * There may be duplicate mappings (multiple VA -> same PA) but
4957                  * ARM64 dcache is always PIPT so that's acceptable.
4958                  */
4959                  if (size == 0)
4960                          return (NULL);
4961
4962                  /* Calculate how many L2 blocks are needed for the mapping */
4963                 l2_blocks = (roundup2(pa + size, L2_SIZE) -
4964                     rounddown2(pa, L2_SIZE)) >> L2_SHIFT;
4965
4966                 offset = pa & L2_OFFSET;
4967
4968                 if (preinit_map_va == 0)
4969                         return (NULL);
4970
4971                 /* Map 2MiB L2 blocks from reserved VA space */
4972
4973                 free_l2_count = 0;
4974                 start_idx = -1;
4975                 /* Find enough free contiguous VA space */
4976                 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
4977                         ppim = pmap_preinit_mapping + i;
4978                         if (free_l2_count > 0 && ppim->pa != 0) {
4979                                 /* Not enough space here */
4980                                 free_l2_count = 0;
4981                                 start_idx = -1;
4982                                 continue;
4983                         }
4984
4985                         if (ppim->pa == 0) {
4986                                 /* Free L2 block */
4987                                 if (start_idx == -1)
4988                                         start_idx = i;
4989                                 free_l2_count++;
4990                                 if (free_l2_count == l2_blocks)
4991                                         break;
4992                         }
4993                 }
4994                 if (free_l2_count != l2_blocks)
4995                         panic("%s: too many preinit mappings", __func__);
4996
4997                 va = preinit_map_va + (start_idx * L2_SIZE);
4998                 for (i = start_idx; i < start_idx + l2_blocks; i++) {
4999                         /* Mark entries as allocated */
5000                         ppim = pmap_preinit_mapping + i;
5001                         ppim->pa = pa;
5002                         ppim->va = va + offset;
5003                         ppim->size = size;
5004                 }
5005
5006                 /* Map L2 blocks */
5007                 pa = rounddown2(pa, L2_SIZE);
5008                 for (i = 0; i < l2_blocks; i++) {
5009                         pde = pmap_pde(kernel_pmap, va, &lvl);
5010                         KASSERT(pde != NULL,
5011                             ("pmap_mapbios: Invalid page entry, va: 0x%lx",
5012                             va));
5013                         KASSERT(lvl == 1,
5014                             ("pmap_mapbios: Invalid level %d", lvl));
5015
5016                         /* Insert L2_BLOCK */
5017                         l2 = pmap_l1_to_l2(pde, va);
5018                         pmap_load_store(l2,
5019                             pa | ATTR_DEFAULT | ATTR_XN |
5020                             ATTR_IDX(CACHED_MEMORY) | L2_BLOCK);
5021
5022                         va += L2_SIZE;
5023                         pa += L2_SIZE;
5024                 }
5025                 pmap_invalidate_all(kernel_pmap);
5026
5027                 va = preinit_map_va + (start_idx * L2_SIZE);
5028
5029         } else {
5030                 /* kva_alloc may be used to map the pages */
5031                 offset = pa & PAGE_MASK;
5032                 size = round_page(offset + size);
5033
5034                 va = kva_alloc(size);
5035                 if (va == 0)
5036                         panic("%s: Couldn't allocate KVA", __func__);
5037
5038                 pde = pmap_pde(kernel_pmap, va, &lvl);
5039                 KASSERT(lvl == 2, ("pmap_mapbios: Invalid level %d", lvl));
5040
5041                 /* L3 table is linked */
5042                 va = trunc_page(va);
5043                 pa = trunc_page(pa);
5044                 pmap_kenter(va, size, pa, CACHED_MEMORY);
5045         }
5046
5047         return ((void *)(va + offset));
5048 }
5049
5050 void
5051 pmap_unmapbios(vm_offset_t va, vm_size_t size)
5052 {
5053         struct pmap_preinit_mapping *ppim;
5054         vm_offset_t offset, tmpsize, va_trunc;
5055         pd_entry_t *pde;
5056         pt_entry_t *l2;
5057         int i, lvl, l2_blocks, block;
5058         bool preinit_map;
5059
5060         l2_blocks =
5061            (roundup2(va + size, L2_SIZE) - rounddown2(va, L2_SIZE)) >> L2_SHIFT;
5062         KASSERT(l2_blocks > 0, ("pmap_unmapbios: invalid size %lx", size));
5063
5064         /* Remove preinit mapping */
5065         preinit_map = false;
5066         block = 0;
5067         for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5068                 ppim = pmap_preinit_mapping + i;
5069                 if (ppim->va == va) {
5070                         KASSERT(ppim->size == size,
5071                             ("pmap_unmapbios: size mismatch"));
5072                         ppim->va = 0;
5073                         ppim->pa = 0;
5074                         ppim->size = 0;
5075                         preinit_map = true;
5076                         offset = block * L2_SIZE;
5077                         va_trunc = rounddown2(va, L2_SIZE) + offset;
5078
5079                         /* Remove L2_BLOCK */
5080                         pde = pmap_pde(kernel_pmap, va_trunc, &lvl);
5081                         KASSERT(pde != NULL,
5082                             ("pmap_unmapbios: Invalid page entry, va: 0x%lx",
5083                             va_trunc));
5084                         l2 = pmap_l1_to_l2(pde, va_trunc);
5085                         pmap_clear(l2);
5086
5087                         if (block == (l2_blocks - 1))
5088                                 break;
5089                         block++;
5090                 }
5091         }
5092         if (preinit_map) {
5093                 pmap_invalidate_all(kernel_pmap);
5094                 return;
5095         }
5096
5097         /* Unmap the pages reserved with kva_alloc. */
5098         if (vm_initialized) {
5099                 offset = va & PAGE_MASK;
5100                 size = round_page(offset + size);
5101                 va = trunc_page(va);
5102
5103                 pde = pmap_pde(kernel_pmap, va, &lvl);
5104                 KASSERT(pde != NULL,
5105                     ("pmap_unmapbios: Invalid page entry, va: 0x%lx", va));
5106                 KASSERT(lvl == 2, ("pmap_unmapbios: Invalid level %d", lvl));
5107
5108                 /* Unmap and invalidate the pages */
5109                 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5110                         pmap_kremove(va + tmpsize);
5111
5112                 kva_free(va, size);
5113         }
5114 }
5115
5116 /*
5117  * Sets the memory attribute for the specified page.
5118  */
5119 void
5120 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5121 {
5122
5123         m->md.pv_memattr = ma;
5124
5125         /*
5126          * If "m" is a normal page, update its direct mapping.  This update
5127          * can be relied upon to perform any cache operations that are
5128          * required for data coherence.
5129          */
5130         if ((m->flags & PG_FICTITIOUS) == 0 &&
5131             pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
5132             m->md.pv_memattr) != 0)
5133                 panic("memory attribute change on the direct map failed");
5134 }
5135
5136 /*
5137  * Changes the specified virtual address range's memory type to that given by
5138  * the parameter "mode".  The specified virtual address range must be
5139  * completely contained within either the direct map or the kernel map.  If
5140  * the virtual address range is contained within the kernel map, then the
5141  * memory type for each of the corresponding ranges of the direct map is also
5142  * changed.  (The corresponding ranges of the direct map are those ranges that
5143  * map the same physical pages as the specified virtual address range.)  These
5144  * changes to the direct map are necessary because Intel describes the
5145  * behavior of their processors as "undefined" if two or more mappings to the
5146  * same physical page have different memory types.
5147  *
5148  * Returns zero if the change completed successfully, and either EINVAL or
5149  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5150  * of the virtual address range was not mapped, and ENOMEM is returned if
5151  * there was insufficient memory available to complete the change.  In the
5152  * latter case, the memory type may have been changed on some part of the
5153  * virtual address range or the direct map.
5154  */
5155 static int
5156 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5157 {
5158         int error;
5159
5160         PMAP_LOCK(kernel_pmap);
5161         error = pmap_change_attr_locked(va, size, mode);
5162         PMAP_UNLOCK(kernel_pmap);
5163         return (error);
5164 }
5165
5166 static int
5167 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
5168 {
5169         vm_offset_t base, offset, tmpva;
5170         pt_entry_t l3, *pte, *newpte;
5171         int lvl;
5172
5173         PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
5174         base = trunc_page(va);
5175         offset = va & PAGE_MASK;
5176         size = round_page(offset + size);
5177
5178         if (!VIRT_IN_DMAP(base))
5179                 return (EINVAL);
5180
5181         for (tmpva = base; tmpva < base + size; ) {
5182                 pte = pmap_pte(kernel_pmap, tmpva, &lvl);
5183                 if (pte == NULL)
5184                         return (EINVAL);
5185
5186                 if ((pmap_load(pte) & ATTR_IDX_MASK) == ATTR_IDX(mode)) {
5187                         /*
5188                          * We already have the correct attribute,
5189                          * ignore this entry.
5190                          */
5191                         switch (lvl) {
5192                         default:
5193                                 panic("Invalid DMAP table level: %d\n", lvl);
5194                         case 1:
5195                                 tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
5196                                 break;
5197                         case 2:
5198                                 tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
5199                                 break;
5200                         case 3:
5201                                 tmpva += PAGE_SIZE;
5202                                 break;
5203                         }
5204                 } else {
5205                         /*
5206                          * Split the entry to an level 3 table, then
5207                          * set the new attribute.
5208                          */
5209                         switch (lvl) {
5210                         default:
5211                                 panic("Invalid DMAP table level: %d\n", lvl);
5212                         case 1:
5213                                 newpte = pmap_demote_l1(kernel_pmap, pte,
5214                                     tmpva & ~L1_OFFSET);
5215                                 if (newpte == NULL)
5216                                         return (EINVAL);
5217                                 pte = pmap_l1_to_l2(pte, tmpva);
5218                         case 2:
5219                                 newpte = pmap_demote_l2(kernel_pmap, pte,
5220                                     tmpva);
5221                                 if (newpte == NULL)
5222                                         return (EINVAL);
5223                                 pte = pmap_l2_to_l3(pte, tmpva);
5224                         case 3:
5225                                 /* Update the entry */
5226                                 l3 = pmap_load(pte);
5227                                 l3 &= ~ATTR_IDX_MASK;
5228                                 l3 |= ATTR_IDX(mode);
5229                                 if (mode == DEVICE_MEMORY)
5230                                         l3 |= ATTR_XN;
5231
5232                                 pmap_update_entry(kernel_pmap, pte, l3, tmpva,
5233                                     PAGE_SIZE);
5234
5235                                 /*
5236                                  * If moving to a non-cacheable entry flush
5237                                  * the cache.
5238                                  */
5239                                 if (mode == VM_MEMATTR_UNCACHEABLE)
5240                                         cpu_dcache_wbinv_range(tmpva, L3_SIZE);
5241
5242                                 break;
5243                         }
5244                         tmpva += PAGE_SIZE;
5245                 }
5246         }
5247
5248         return (0);
5249 }
5250
5251 /*
5252  * Create an L2 table to map all addresses within an L1 mapping.
5253  */
5254 static pt_entry_t *
5255 pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va)
5256 {
5257         pt_entry_t *l2, newl2, oldl1;
5258         vm_offset_t tmpl1;
5259         vm_paddr_t l2phys, phys;
5260         vm_page_t ml2;
5261         int i;
5262
5263         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5264         oldl1 = pmap_load(l1);
5265         KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK,
5266             ("pmap_demote_l1: Demoting a non-block entry"));
5267         KASSERT((va & L1_OFFSET) == 0,
5268             ("pmap_demote_l1: Invalid virtual address %#lx", va));
5269         KASSERT((oldl1 & ATTR_SW_MANAGED) == 0,
5270             ("pmap_demote_l1: Level 1 table shouldn't be managed"));
5271
5272         tmpl1 = 0;
5273         if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) {
5274                 tmpl1 = kva_alloc(PAGE_SIZE);
5275                 if (tmpl1 == 0)
5276                         return (NULL);
5277         }
5278
5279         if ((ml2 = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
5280             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
5281                 CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx"
5282                     " in pmap %p", va, pmap);
5283                 return (NULL);
5284         }
5285
5286         l2phys = VM_PAGE_TO_PHYS(ml2);
5287         l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
5288
5289         /* Address the range points at */
5290         phys = oldl1 & ~ATTR_MASK;
5291         /* The attributed from the old l1 table to be copied */
5292         newl2 = oldl1 & ATTR_MASK;
5293
5294         /* Create the new entries */
5295         for (i = 0; i < Ln_ENTRIES; i++) {
5296                 l2[i] = newl2 | phys;
5297                 phys += L2_SIZE;
5298         }
5299         KASSERT(l2[0] == ((oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK),
5300             ("Invalid l2 page (%lx != %lx)", l2[0],
5301             (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK));
5302
5303         if (tmpl1 != 0) {
5304                 pmap_kenter(tmpl1, PAGE_SIZE,
5305                     DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET, CACHED_MEMORY);
5306                 l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK));
5307         }
5308
5309         pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE);
5310
5311         if (tmpl1 != 0) {
5312                 pmap_kremove(tmpl1);
5313                 kva_free(tmpl1, PAGE_SIZE);
5314         }
5315
5316         return (l2);
5317 }
5318
5319 static void
5320 pmap_fill_l3(pt_entry_t *firstl3, pt_entry_t newl3)
5321 {
5322         pt_entry_t *l3;
5323
5324         for (l3 = firstl3; l3 - firstl3 < Ln_ENTRIES; l3++) {
5325                 *l3 = newl3;
5326                 newl3 += L3_SIZE;
5327         }
5328 }
5329
5330 static void
5331 pmap_demote_l2_abort(pmap_t pmap, vm_offset_t va, pt_entry_t *l2,
5332     struct rwlock **lockp)
5333 {
5334         struct spglist free;
5335
5336         SLIST_INIT(&free);
5337         (void)pmap_remove_l2(pmap, l2, va, pmap_load(pmap_l1(pmap, va)), &free,
5338             lockp);
5339         vm_page_free_pages_toq(&free, true);
5340 }
5341
5342 /*
5343  * Create an L3 table to map all addresses within an L2 mapping.
5344  */
5345 static pt_entry_t *
5346 pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va,
5347     struct rwlock **lockp)
5348 {
5349         pt_entry_t *l3, newl3, oldl2;
5350         vm_offset_t tmpl2;
5351         vm_paddr_t l3phys;
5352         vm_page_t ml3;
5353
5354         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5355         l3 = NULL;
5356         oldl2 = pmap_load(l2);
5357         KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK,
5358             ("pmap_demote_l2: Demoting a non-block entry"));
5359         va &= ~L2_OFFSET;
5360
5361         tmpl2 = 0;
5362         if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) {
5363                 tmpl2 = kva_alloc(PAGE_SIZE);
5364                 if (tmpl2 == 0)
5365                         return (NULL);
5366         }
5367
5368         /*
5369          * Invalidate the 2MB page mapping and return "failure" if the
5370          * mapping was never accessed.
5371          */
5372         if ((oldl2 & ATTR_AF) == 0) {
5373                 KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
5374                     ("pmap_demote_l2: a wired mapping is missing ATTR_AF"));
5375                 pmap_demote_l2_abort(pmap, va, l2, lockp);
5376                 CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx in pmap %p",
5377                     va, pmap);
5378                 goto fail;
5379         }
5380
5381         if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) {
5382                 KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
5383                     ("pmap_demote_l2: page table page for a wired mapping"
5384                     " is missing"));
5385
5386                 /*
5387                  * If the page table page is missing and the mapping
5388                  * is for a kernel address, the mapping must belong to
5389                  * the direct map.  Page table pages are preallocated
5390                  * for every other part of the kernel address space,
5391                  * so the direct map region is the only part of the
5392                  * kernel address space that must be handled here.
5393                  */
5394                 KASSERT(va < VM_MAXUSER_ADDRESS || VIRT_IN_DMAP(va),
5395                     ("pmap_demote_l2: No saved mpte for va %#lx", va));
5396
5397                 /*
5398                  * If the 2MB page mapping belongs to the direct map
5399                  * region of the kernel's address space, then the page
5400                  * allocation request specifies the highest possible
5401                  * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
5402                  * priority is normal.
5403                  */
5404                 ml3 = vm_page_alloc(NULL, pmap_l2_pindex(va),
5405                     (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
5406                     VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5407
5408                 /*
5409                  * If the allocation of the new page table page fails,
5410                  * invalidate the 2MB page mapping and return "failure".
5411                  */
5412                 if (ml3 == NULL) {
5413                         pmap_demote_l2_abort(pmap, va, l2, lockp);
5414                         CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx"
5415                             " in pmap %p", va, pmap);
5416                         goto fail;
5417                 }
5418
5419                 if (va < VM_MAXUSER_ADDRESS) {
5420                         ml3->wire_count = NL3PG;
5421                         pmap_resident_count_inc(pmap, 1);
5422                 }
5423         }
5424         l3phys = VM_PAGE_TO_PHYS(ml3);
5425         l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys);
5426         newl3 = (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE;
5427         KASSERT((oldl2 & (ATTR_AP_RW_BIT | ATTR_SW_DBM)) !=
5428             (ATTR_AP(ATTR_AP_RO) | ATTR_SW_DBM),
5429             ("pmap_demote_l2: L2 entry is writeable but not dirty"));
5430
5431         /*
5432          * If the page table page is not leftover from an earlier promotion,
5433          * or the mapping attributes have changed, (re)initialize the L3 table.
5434          */
5435         if (ml3->valid == 0 || (l3[0] & ATTR_MASK) != (newl3 & ATTR_MASK))
5436                 pmap_fill_l3(l3, newl3);
5437
5438         /*
5439          * Map the temporary page so we don't lose access to the l2 table.
5440          */
5441         if (tmpl2 != 0) {
5442                 pmap_kenter(tmpl2, PAGE_SIZE,
5443                     DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET, CACHED_MEMORY);
5444                 l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK));
5445         }
5446
5447         /*
5448          * The spare PV entries must be reserved prior to demoting the
5449          * mapping, that is, prior to changing the PDE.  Otherwise, the state
5450          * of the L2 and the PV lists will be inconsistent, which can result
5451          * in reclaim_pv_chunk() attempting to remove a PV entry from the
5452          * wrong PV list and pmap_pv_demote_l2() failing to find the expected
5453          * PV entry for the 2MB page mapping that is being demoted.
5454          */
5455         if ((oldl2 & ATTR_SW_MANAGED) != 0)
5456                 reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
5457
5458         /*
5459          * Pass PAGE_SIZE so that a single TLB invalidation is performed on
5460          * the 2MB page mapping.
5461          */
5462         pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE);
5463
5464         /*
5465          * Demote the PV entry.
5466          */
5467         if ((oldl2 & ATTR_SW_MANAGED) != 0)
5468                 pmap_pv_demote_l2(pmap, va, oldl2 & ~ATTR_MASK, lockp);
5469
5470         atomic_add_long(&pmap_l2_demotions, 1);
5471         CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx"
5472             " in pmap %p %lx", va, pmap, l3[0]);
5473
5474 fail:
5475         if (tmpl2 != 0) {
5476                 pmap_kremove(tmpl2);
5477                 kva_free(tmpl2, PAGE_SIZE);
5478         }
5479
5480         return (l3);
5481
5482 }
5483
5484 static pt_entry_t *
5485 pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
5486 {
5487         struct rwlock *lock;
5488         pt_entry_t *l3;
5489
5490         lock = NULL;
5491         l3 = pmap_demote_l2_locked(pmap, l2, va, &lock);
5492         if (lock != NULL)
5493                 rw_wunlock(lock);
5494         return (l3);
5495 }
5496
5497 /*
5498  * perform the pmap work for mincore
5499  */
5500 int
5501 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5502 {
5503         pt_entry_t *pte, tpte;
5504         vm_paddr_t mask, pa;
5505         int lvl, val;
5506         bool managed;
5507
5508         PMAP_LOCK(pmap);
5509 retry:
5510         val = 0;
5511         pte = pmap_pte(pmap, addr, &lvl);
5512         if (pte != NULL) {
5513                 tpte = pmap_load(pte);
5514
5515                 switch (lvl) {
5516                 case 3:
5517                         mask = L3_OFFSET;
5518                         break;
5519                 case 2:
5520                         mask = L2_OFFSET;
5521                         break;
5522                 case 1:
5523                         mask = L1_OFFSET;
5524                         break;
5525                 default:
5526                         panic("pmap_mincore: invalid level %d", lvl);
5527                 }
5528
5529                 managed = (tpte & ATTR_SW_MANAGED) != 0;
5530                 val = MINCORE_INCORE;
5531                 if (lvl != 3)
5532                         val |= MINCORE_SUPER;
5533                 if ((managed && pmap_pte_dirty(tpte)) || (!managed &&
5534                     (tpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)))
5535                         val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5536                 if ((tpte & ATTR_AF) == ATTR_AF)
5537                         val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5538
5539                 pa = (tpte & ~ATTR_MASK) | (addr & mask);
5540         } else
5541                 managed = false;
5542
5543         if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5544             (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
5545                 /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5546                 if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5547                         goto retry;
5548         } else
5549                 PA_UNLOCK_COND(*locked_pa);
5550         PMAP_UNLOCK(pmap);
5551
5552         return (val);
5553 }
5554
5555 void
5556 pmap_activate(struct thread *td)
5557 {
5558         pmap_t  pmap;
5559
5560         critical_enter();
5561         pmap = vmspace_pmap(td->td_proc->p_vmspace);
5562         td->td_proc->p_md.md_l0addr = vtophys(pmap->pm_l0);
5563         __asm __volatile(
5564             "msr ttbr0_el1, %0  \n"
5565             "isb                \n"
5566             : : "r"(td->td_proc->p_md.md_l0addr));
5567         pmap_invalidate_all(pmap);
5568         critical_exit();
5569 }
5570
5571 struct pcb *
5572 pmap_switch(struct thread *old, struct thread *new)
5573 {
5574         pcpu_bp_harden bp_harden;
5575         struct pcb *pcb;
5576
5577         /* Store the new curthread */
5578         PCPU_SET(curthread, new);
5579
5580         /* And the new pcb */
5581         pcb = new->td_pcb;
5582         PCPU_SET(curpcb, pcb);
5583
5584         /*
5585          * TODO: We may need to flush the cache here if switching
5586          * to a user process.
5587          */
5588
5589         if (old == NULL ||
5590             old->td_proc->p_md.md_l0addr != new->td_proc->p_md.md_l0addr) {
5591                 __asm __volatile(
5592                     /* Switch to the new pmap */
5593                     "msr        ttbr0_el1, %0   \n"
5594                     "isb                        \n"
5595
5596                     /* Invalidate the TLB */
5597                     "dsb        ishst           \n"
5598                     "tlbi       vmalle1is       \n"
5599                     "dsb        ish             \n"
5600                     "isb                        \n"
5601                     : : "r"(new->td_proc->p_md.md_l0addr));
5602
5603                 /*
5604                  * Stop userspace from training the branch predictor against
5605                  * other processes. This will call into a CPU specific
5606                  * function that clears the branch predictor state.
5607                  */
5608                 bp_harden = PCPU_GET(bp_harden);
5609                 if (bp_harden != NULL)
5610                         bp_harden();
5611         }
5612
5613         return (pcb);
5614 }
5615
5616 void
5617 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
5618 {
5619
5620         if (va >= VM_MIN_KERNEL_ADDRESS) {
5621                 cpu_icache_sync_range(va, sz);
5622         } else {
5623                 u_int len, offset;
5624                 vm_paddr_t pa;
5625
5626                 /* Find the length of data in this page to flush */
5627                 offset = va & PAGE_MASK;
5628                 len = imin(PAGE_SIZE - offset, sz);
5629
5630                 while (sz != 0) {
5631                         /* Extract the physical address & find it in the DMAP */
5632                         pa = pmap_extract(pmap, va);
5633                         if (pa != 0)
5634                                 cpu_icache_sync_range(PHYS_TO_DMAP(pa), len);
5635
5636                         /* Move to the next page */
5637                         sz -= len;
5638                         va += len;
5639                         /* Set the length for the next iteration */
5640                         len = imin(PAGE_SIZE, sz);
5641                 }
5642         }
5643 }
5644
5645 int
5646 pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far)
5647 {
5648         pt_entry_t *pte;
5649         register_t intr;
5650         uint64_t ec, par;
5651         int lvl, rv;
5652
5653         rv = KERN_FAILURE;
5654
5655         ec = ESR_ELx_EXCEPTION(esr);
5656         switch (ec) {
5657         case EXCP_INSN_ABORT_L:
5658         case EXCP_INSN_ABORT:
5659         case EXCP_DATA_ABORT_L:
5660         case EXCP_DATA_ABORT:
5661                 break;
5662         default:
5663                 return (rv);
5664         }
5665
5666         /* Data and insn aborts use same encoding for FSC field. */
5667         switch (esr & ISS_DATA_DFSC_MASK) {
5668         case ISS_DATA_DFSC_AFF_L1:
5669         case ISS_DATA_DFSC_AFF_L2:
5670         case ISS_DATA_DFSC_AFF_L3:
5671                 PMAP_LOCK(pmap);
5672                 pte = pmap_pte(pmap, far, &lvl);
5673                 if (pte != NULL) {
5674                         pmap_set_bits(pte, ATTR_AF);
5675                         rv = KERN_SUCCESS;
5676                         /*
5677                          * XXXMJ as an optimization we could mark the entry
5678                          * dirty if this is a write fault.
5679                          */
5680                 }
5681                 PMAP_UNLOCK(pmap);
5682                 break;
5683         case ISS_DATA_DFSC_PF_L1:
5684         case ISS_DATA_DFSC_PF_L2:
5685         case ISS_DATA_DFSC_PF_L3:
5686                 if ((ec != EXCP_DATA_ABORT_L && ec != EXCP_DATA_ABORT) ||
5687                     (esr & ISS_DATA_WnR) == 0)
5688                         return (rv);
5689                 PMAP_LOCK(pmap);
5690                 pte = pmap_pte(pmap, far, &lvl);
5691                 if (pte != NULL &&
5692                     (pmap_load(pte) & (ATTR_AP_RW_BIT | ATTR_SW_DBM)) ==
5693                     (ATTR_AP(ATTR_AP_RO) | ATTR_SW_DBM)) {
5694                         pmap_clear_bits(pte, ATTR_AP_RW_BIT);
5695                         pmap_invalidate_page(pmap, trunc_page(far));
5696                         rv = KERN_SUCCESS;
5697                 }
5698                 PMAP_UNLOCK(pmap);
5699                 break;
5700         case ISS_DATA_DFSC_TF_L0:
5701         case ISS_DATA_DFSC_TF_L1:
5702         case ISS_DATA_DFSC_TF_L2:
5703         case ISS_DATA_DFSC_TF_L3:
5704                 PMAP_LOCK(pmap);
5705                 /* Ask the MMU to check the address */
5706                 intr = intr_disable();
5707                 if (pmap == kernel_pmap)
5708                         par = arm64_address_translate_s1e1r(far);
5709                 else
5710                         par = arm64_address_translate_s1e0r(far);
5711                 intr_restore(intr);
5712                 PMAP_UNLOCK(pmap);
5713
5714                 /*
5715                  * If the translation was successful the address was invalid
5716                  * due to a break-before-make sequence. We can unlock and
5717                  * return success to the trap handler.
5718                  */
5719                 if (PAR_SUCCESS(par))
5720                         rv = KERN_SUCCESS;
5721                 break;
5722         }
5723
5724         return (rv);
5725 }
5726
5727 /*
5728  *      Increase the starting virtual address of the given mapping if a
5729  *      different alignment might result in more superpage mappings.
5730  */
5731 void
5732 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5733     vm_offset_t *addr, vm_size_t size)
5734 {
5735         vm_offset_t superpage_offset;
5736
5737         if (size < L2_SIZE)
5738                 return;
5739         if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5740                 offset += ptoa(object->pg_color);
5741         superpage_offset = offset & L2_OFFSET;
5742         if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
5743             (*addr & L2_OFFSET) == superpage_offset)
5744                 return;
5745         if ((*addr & L2_OFFSET) < superpage_offset)
5746                 *addr = (*addr & ~L2_OFFSET) + superpage_offset;
5747         else
5748                 *addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
5749 }
5750
5751 /**
5752  * Get the kernel virtual address of a set of physical pages. If there are
5753  * physical addresses not covered by the DMAP perform a transient mapping
5754  * that will be removed when calling pmap_unmap_io_transient.
5755  *
5756  * \param page        The pages the caller wishes to obtain the virtual
5757  *                    address on the kernel memory map.
5758  * \param vaddr       On return contains the kernel virtual memory address
5759  *                    of the pages passed in the page parameter.
5760  * \param count       Number of pages passed in.
5761  * \param can_fault   TRUE if the thread using the mapped pages can take
5762  *                    page faults, FALSE otherwise.
5763  *
5764  * \returns TRUE if the caller must call pmap_unmap_io_transient when
5765  *          finished or FALSE otherwise.
5766  *
5767  */
5768 boolean_t
5769 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
5770     boolean_t can_fault)
5771 {
5772         vm_paddr_t paddr;
5773         boolean_t needs_mapping;
5774         int error, i;
5775
5776         /*
5777          * Allocate any KVA space that we need, this is done in a separate
5778          * loop to prevent calling vmem_alloc while pinned.
5779          */
5780         needs_mapping = FALSE;
5781         for (i = 0; i < count; i++) {
5782                 paddr = VM_PAGE_TO_PHYS(page[i]);
5783                 if (__predict_false(!PHYS_IN_DMAP(paddr))) {
5784                         error = vmem_alloc(kernel_arena, PAGE_SIZE,
5785                             M_BESTFIT | M_WAITOK, &vaddr[i]);
5786                         KASSERT(error == 0, ("vmem_alloc failed: %d", error));
5787                         needs_mapping = TRUE;
5788                 } else {
5789                         vaddr[i] = PHYS_TO_DMAP(paddr);
5790                 }
5791         }
5792
5793         /* Exit early if everything is covered by the DMAP */
5794         if (!needs_mapping)
5795                 return (FALSE);
5796
5797         if (!can_fault)
5798                 sched_pin();
5799         for (i = 0; i < count; i++) {
5800                 paddr = VM_PAGE_TO_PHYS(page[i]);
5801                 if (!PHYS_IN_DMAP(paddr)) {
5802                         panic(
5803                            "pmap_map_io_transient: TODO: Map out of DMAP data");
5804                 }
5805         }
5806
5807         return (needs_mapping);
5808 }
5809
5810 void
5811 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
5812     boolean_t can_fault)
5813 {
5814         vm_paddr_t paddr;
5815         int i;
5816
5817         if (!can_fault)
5818                 sched_unpin();
5819         for (i = 0; i < count; i++) {
5820                 paddr = VM_PAGE_TO_PHYS(page[i]);
5821                 if (!PHYS_IN_DMAP(paddr)) {
5822                         panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
5823                 }
5824         }
5825 }
5826
5827 boolean_t
5828 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
5829 {
5830
5831         return (mode >= VM_MEMATTR_DEVICE && mode <= VM_MEMATTR_WRITE_THROUGH);
5832 }