]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cam/scsi/scsi_enc_safte.c
Update llvm, clang and lldb to 3.7.0 release.
[FreeBSD/FreeBSD.git] / sys / cam / scsi / scsi_enc_safte.c
1 /*-
2  * Copyright (c) 2000 Matthew Jacob
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
18  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31
32 #include <sys/conf.h>
33 #include <sys/errno.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/queue.h>
38 #include <sys/sx.h>
39 #include <sys/systm.h>
40 #include <sys/sysctl.h>
41 #include <sys/types.h>
42
43 #include <cam/cam.h>
44 #include <cam/cam_ccb.h>
45 #include <cam/cam_periph.h>
46
47 #include <cam/scsi/scsi_enc.h>
48 #include <cam/scsi/scsi_enc_internal.h>
49 #include <cam/scsi/scsi_message.h>
50
51 /*
52  * SAF-TE Type Device Emulation
53  */
54
55 static int safte_set_enc_status(enc_softc_t *enc, uint8_t encstat, int slpflag);
56
57 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
58         SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
59 /*
60  * SAF-TE specific defines- Mandatory ones only...
61  */
62
63 /*
64  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
65  */
66 #define SAFTE_RD_RDCFG  0x00    /* read enclosure configuration */
67 #define SAFTE_RD_RDESTS 0x01    /* read enclosure status */
68 #define SAFTE_RD_RDDSTS 0x04    /* read drive slot status */
69 #define SAFTE_RD_RDGFLG 0x05    /* read global flags */
70
71 /*
72  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
73  */
74 #define SAFTE_WT_DSTAT  0x10    /* write device slot status */
75 #define SAFTE_WT_SLTOP  0x12    /* perform slot operation */
76 #define SAFTE_WT_FANSPD 0x13    /* set fan speed */
77 #define SAFTE_WT_ACTPWS 0x14    /* turn on/off power supply */
78 #define SAFTE_WT_GLOBAL 0x15    /* send global command */
79
80 #define SAFT_SCRATCH    64
81 #define SCSZ            0x8000
82
83 typedef enum {
84         SAFTE_UPDATE_NONE,
85         SAFTE_UPDATE_READCONFIG,
86         SAFTE_UPDATE_READGFLAGS,
87         SAFTE_UPDATE_READENCSTATUS,
88         SAFTE_UPDATE_READSLOTSTATUS,
89         SAFTE_PROCESS_CONTROL_REQS,
90         SAFTE_NUM_UPDATE_STATES
91 } safte_update_action;
92
93 static fsm_fill_handler_t safte_fill_read_buf_io;
94 static fsm_fill_handler_t safte_fill_control_request;
95 static fsm_done_handler_t safte_process_config;
96 static fsm_done_handler_t safte_process_gflags;
97 static fsm_done_handler_t safte_process_status;
98 static fsm_done_handler_t safte_process_slotstatus;
99 static fsm_done_handler_t safte_process_control_request;
100
101 static struct enc_fsm_state enc_fsm_states[SAFTE_NUM_UPDATE_STATES] =
102 {
103         { "SAFTE_UPDATE_NONE", 0, 0, 0, NULL, NULL, NULL },
104         {
105                 "SAFTE_UPDATE_READCONFIG",
106                 SAFTE_RD_RDCFG,
107                 SAFT_SCRATCH,
108                 60 * 1000,
109                 safte_fill_read_buf_io,
110                 safte_process_config,
111                 enc_error
112         },
113         {
114                 "SAFTE_UPDATE_READGFLAGS",
115                 SAFTE_RD_RDGFLG,
116                 16,
117                 60 * 1000,
118                 safte_fill_read_buf_io,
119                 safte_process_gflags,
120                 enc_error
121         },
122         {
123                 "SAFTE_UPDATE_READENCSTATUS",
124                 SAFTE_RD_RDESTS,
125                 SCSZ,
126                 60 * 1000,
127                 safte_fill_read_buf_io,
128                 safte_process_status,
129                 enc_error
130         },
131         {
132                 "SAFTE_UPDATE_READSLOTSTATUS",
133                 SAFTE_RD_RDDSTS,
134                 SCSZ,
135                 60 * 1000,
136                 safte_fill_read_buf_io,
137                 safte_process_slotstatus,
138                 enc_error
139         },
140         {
141                 "SAFTE_PROCESS_CONTROL_REQS",
142                 0,
143                 SCSZ,
144                 60 * 1000,
145                 safte_fill_control_request,
146                 safte_process_control_request,
147                 enc_error
148         }
149 };
150
151 typedef struct safte_control_request {
152         int     elm_idx;
153         uint8_t elm_stat[4];
154         int     result;
155         TAILQ_ENTRY(safte_control_request) links;
156 } safte_control_request_t;
157 TAILQ_HEAD(safte_control_reqlist, safte_control_request);
158 typedef struct safte_control_reqlist safte_control_reqlist_t;
159 enum {
160         SES_SETSTATUS_ENC_IDX = -1
161 };
162
163 static void
164 safte_terminate_control_requests(safte_control_reqlist_t *reqlist, int result)
165 {
166         safte_control_request_t *req;
167
168         while ((req = TAILQ_FIRST(reqlist)) != NULL) {
169                 TAILQ_REMOVE(reqlist, req, links);
170                 req->result = result;
171                 wakeup(req);
172         }
173 }
174
175 struct scfg {
176         /*
177          * Cached Configuration
178          */
179         uint8_t Nfans;          /* Number of Fans */
180         uint8_t Npwr;           /* Number of Power Supplies */
181         uint8_t Nslots;         /* Number of Device Slots */
182         uint8_t DoorLock;       /* Door Lock Installed */
183         uint8_t Ntherm;         /* Number of Temperature Sensors */
184         uint8_t Nspkrs;         /* Number of Speakers */
185         uint8_t Ntstats;        /* Number of Thermostats */
186         /*
187          * Cached Flag Bytes for Global Status
188          */
189         uint8_t flag1;
190         uint8_t flag2;
191         /*
192          * What object index ID is where various slots start.
193          */
194         uint8_t pwroff;
195         uint8_t slotoff;
196 #define SAFT_ALARM_OFFSET(cc)   (cc)->slotoff - 1
197
198         encioc_enc_status_t     adm_status;
199         encioc_enc_status_t     enc_status;
200         encioc_enc_status_t     slot_status;
201
202         safte_control_reqlist_t requests;
203         safte_control_request_t *current_request;
204         int                     current_request_stage;
205         int                     current_request_stages;
206 };
207
208 #define SAFT_FLG1_ALARM         0x1
209 #define SAFT_FLG1_GLOBFAIL      0x2
210 #define SAFT_FLG1_GLOBWARN      0x4
211 #define SAFT_FLG1_ENCPWROFF     0x8
212 #define SAFT_FLG1_ENCFANFAIL    0x10
213 #define SAFT_FLG1_ENCPWRFAIL    0x20
214 #define SAFT_FLG1_ENCDRVFAIL    0x40
215 #define SAFT_FLG1_ENCDRVWARN    0x80
216
217 #define SAFT_FLG2_LOCKDOOR      0x4
218 #define SAFT_PRIVATE            sizeof (struct scfg)
219
220 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
221 #define SAFT_BAIL(r, x) \
222         if ((r) >= (x)) { \
223                 ENC_VLOG(enc, safte_2little, x, __LINE__);\
224                 return (EIO); \
225         }
226
227 int emulate_array_devices = 1;
228 SYSCTL_DECL(_kern_cam_enc);
229 SYSCTL_INT(_kern_cam_enc, OID_AUTO, emulate_array_devices, CTLFLAG_RWTUN,
230            &emulate_array_devices, 0, "Emulate Array Devices for SAF-TE");
231
232 static int
233 safte_fill_read_buf_io(enc_softc_t *enc, struct enc_fsm_state *state,
234                        union ccb *ccb, uint8_t *buf)
235 {
236
237         if (state->page_code != SAFTE_RD_RDCFG &&
238             enc->enc_cache.nelms == 0) {
239                 enc_update_request(enc, SAFTE_UPDATE_READCONFIG);
240                 return (-1);
241         }
242
243         if (enc->enc_type == ENC_SEMB_SAFT) {
244                 semb_read_buffer(&ccb->ataio, /*retries*/5,
245                                 NULL, MSG_SIMPLE_Q_TAG,
246                                 state->page_code, buf, state->buf_size,
247                                 state->timeout);
248         } else {
249                 scsi_read_buffer(&ccb->csio, /*retries*/5,
250                                 NULL, MSG_SIMPLE_Q_TAG, 1,
251                                 state->page_code, 0, buf, state->buf_size,
252                                 SSD_FULL_SIZE, state->timeout);
253         }
254         return (0);
255 }
256
257 static int
258 safte_process_config(enc_softc_t *enc, struct enc_fsm_state *state,
259     union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
260 {
261         struct scfg *cfg;
262         uint8_t *buf = *bufp;
263         int i, r;
264
265         cfg = enc->enc_private;
266         if (cfg == NULL)
267                 return (ENXIO);
268         if (error != 0)
269                 return (error);
270         if (xfer_len < 6) {
271                 ENC_VLOG(enc, "too little data (%d) for configuration\n",
272                     xfer_len);
273                 return (EIO);
274         }
275         cfg->Nfans = buf[0];
276         cfg->Npwr = buf[1];
277         cfg->Nslots = buf[2];
278         cfg->DoorLock = buf[3];
279         cfg->Ntherm = buf[4];
280         cfg->Nspkrs = buf[5];
281         if (xfer_len >= 7)
282                 cfg->Ntstats = buf[6] & 0x0f;
283         else
284                 cfg->Ntstats = 0;
285         ENC_VLOG(enc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d "
286             "Ntstats %d\n",
287             cfg->Nfans, cfg->Npwr, cfg->Nslots, cfg->DoorLock, cfg->Ntherm,
288             cfg->Nspkrs, cfg->Ntstats);
289
290         enc->enc_cache.nelms = cfg->Nfans + cfg->Npwr + cfg->Nslots +
291             cfg->DoorLock + cfg->Ntherm + cfg->Nspkrs + cfg->Ntstats + 1;
292         ENC_FREE_AND_NULL(enc->enc_cache.elm_map);
293         enc->enc_cache.elm_map =
294             ENC_MALLOCZ(enc->enc_cache.nelms * sizeof(enc_element_t));
295         if (enc->enc_cache.elm_map == NULL) {
296                 enc->enc_cache.nelms = 0;
297                 return (ENOMEM);
298         }
299
300         r = 0;
301         /*
302          * Note that this is all arranged for the convenience
303          * in later fetches of status.
304          */
305         for (i = 0; i < cfg->Nfans; i++)
306                 enc->enc_cache.elm_map[r++].enctype = ELMTYP_FAN;
307         cfg->pwroff = (uint8_t) r;
308         for (i = 0; i < cfg->Npwr; i++)
309                 enc->enc_cache.elm_map[r++].enctype = ELMTYP_POWER;
310         for (i = 0; i < cfg->DoorLock; i++)
311                 enc->enc_cache.elm_map[r++].enctype = ELMTYP_DOORLOCK;
312         if (cfg->Nspkrs > 0)
313                 enc->enc_cache.elm_map[r++].enctype = ELMTYP_ALARM;
314         for (i = 0; i < cfg->Ntherm; i++)
315                 enc->enc_cache.elm_map[r++].enctype = ELMTYP_THERM;
316         for (i = 0; i <= cfg->Ntstats; i++)
317                 enc->enc_cache.elm_map[r++].enctype = ELMTYP_THERM;
318         cfg->slotoff = (uint8_t) r;
319         for (i = 0; i < cfg->Nslots; i++)
320                 enc->enc_cache.elm_map[r++].enctype =
321                     emulate_array_devices ? ELMTYP_ARRAY_DEV :
322                      ELMTYP_DEVICE;
323
324         enc_update_request(enc, SAFTE_UPDATE_READGFLAGS);
325         enc_update_request(enc, SAFTE_UPDATE_READENCSTATUS);
326         enc_update_request(enc, SAFTE_UPDATE_READSLOTSTATUS);
327
328         return (0);
329 }
330
331 static int
332 safte_process_gflags(enc_softc_t *enc, struct enc_fsm_state *state,
333     union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
334 {
335         struct scfg *cfg;
336         uint8_t *buf = *bufp;
337
338         cfg = enc->enc_private;
339         if (cfg == NULL)
340                 return (ENXIO);
341         if (error != 0)
342                 return (error);
343         SAFT_BAIL(3, xfer_len);
344         cfg->flag1 = buf[1];
345         cfg->flag2 = buf[2];
346
347         cfg->adm_status = 0;
348         if (cfg->flag1 & SAFT_FLG1_GLOBFAIL)
349                 cfg->adm_status |= SES_ENCSTAT_CRITICAL;
350         else if (cfg->flag1 & SAFT_FLG1_GLOBWARN)
351                 cfg->adm_status |= SES_ENCSTAT_NONCRITICAL;
352
353         return (0);
354 }
355
356 static int
357 safte_process_status(enc_softc_t *enc, struct enc_fsm_state *state,
358     union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
359 {
360         struct scfg *cfg;
361         uint8_t *buf = *bufp;
362         int oid, r, i, nitems;
363         uint16_t tempflags;
364         enc_cache_t *cache = &enc->enc_cache;
365
366         cfg = enc->enc_private;
367         if (cfg == NULL)
368                 return (ENXIO);
369         if (error != 0)
370                 return (error);
371
372         oid = r = 0;
373         cfg->enc_status = 0;
374
375         for (nitems = i = 0; i < cfg->Nfans; i++) {
376                 SAFT_BAIL(r, xfer_len);
377                 /*
378                  * 0 = Fan Operational
379                  * 1 = Fan is malfunctioning
380                  * 2 = Fan is not present
381                  * 0x80 = Unknown or Not Reportable Status
382                  */
383                 cache->elm_map[oid].encstat[1] = 0;     /* resvd */
384                 cache->elm_map[oid].encstat[2] = 0;     /* resvd */
385                 if (cfg->flag1 & SAFT_FLG1_ENCFANFAIL)
386                         cache->elm_map[oid].encstat[3] |= 0x40;
387                 else
388                         cache->elm_map[oid].encstat[3] &= ~0x40;
389                 switch ((int)buf[r]) {
390                 case 0:
391                         nitems++;
392                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
393                         if ((cache->elm_map[oid].encstat[3] & 0x37) == 0)
394                                 cache->elm_map[oid].encstat[3] |= 0x27;
395                         break;
396
397                 case 1:
398                         cache->elm_map[oid].encstat[0] =
399                             SES_OBJSTAT_CRIT;
400                         /*
401                          * FAIL and FAN STOPPED synthesized
402                          */
403                         cache->elm_map[oid].encstat[3] |= 0x10;
404                         cache->elm_map[oid].encstat[3] &= ~0x07;
405                         /*
406                          * Enclosure marked with CRITICAL error
407                          * if only one fan or no thermometers,
408                          * else the NONCRITICAL error is set.
409                          */
410                         if (cfg->Nfans == 1 || (cfg->Ntherm + cfg->Ntstats) == 0)
411                                 cfg->enc_status |= SES_ENCSTAT_CRITICAL;
412                         else
413                                 cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
414                         break;
415                 case 2:
416                         cache->elm_map[oid].encstat[0] =
417                             SES_OBJSTAT_NOTINSTALLED;
418                         cache->elm_map[oid].encstat[3] |= 0x10;
419                         cache->elm_map[oid].encstat[3] &= ~0x07;
420                         /*
421                          * Enclosure marked with CRITICAL error
422                          * if only one fan or no thermometers,
423                          * else the NONCRITICAL error is set.
424                          */
425                         if (cfg->Nfans == 1)
426                                 cfg->enc_status |= SES_ENCSTAT_CRITICAL;
427                         else
428                                 cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
429                         break;
430                 case 0x80:
431                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
432                         cache->elm_map[oid].encstat[3] = 0;
433                         cfg->enc_status |= SES_ENCSTAT_INFO;
434                         break;
435                 default:
436                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
437                         ENC_VLOG(enc, "Unknown fan%d status 0x%x\n", i,
438                             buf[r] & 0xff);
439                         break;
440                 }
441                 cache->elm_map[oid++].svalid = 1;
442                 r++;
443         }
444
445         /*
446          * No matter how you cut it, no cooling elements when there
447          * should be some there is critical.
448          */
449         if (cfg->Nfans && nitems == 0)
450                 cfg->enc_status |= SES_ENCSTAT_CRITICAL;
451
452         for (i = 0; i < cfg->Npwr; i++) {
453                 SAFT_BAIL(r, xfer_len);
454                 cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
455                 cache->elm_map[oid].encstat[1] = 0;     /* resvd */
456                 cache->elm_map[oid].encstat[2] = 0;     /* resvd */
457                 cache->elm_map[oid].encstat[3] = 0x20;  /* requested on */
458                 switch (buf[r]) {
459                 case 0x00:      /* pws operational and on */
460                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
461                         break;
462                 case 0x01:      /* pws operational and off */
463                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
464                         cache->elm_map[oid].encstat[3] = 0x10;
465                         cfg->enc_status |= SES_ENCSTAT_INFO;
466                         break;
467                 case 0x10:      /* pws is malfunctioning and commanded on */
468                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
469                         cache->elm_map[oid].encstat[3] = 0x61;
470                         cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
471                         break;
472
473                 case 0x11:      /* pws is malfunctioning and commanded off */
474                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
475                         cache->elm_map[oid].encstat[3] = 0x51;
476                         cfg->enc_status |= SES_ENCSTAT_NONCRITICAL;
477                         break;
478                 case 0x20:      /* pws is not present */
479                         cache->elm_map[oid].encstat[0] =
480                             SES_OBJSTAT_NOTINSTALLED;
481                         cache->elm_map[oid].encstat[3] = 0;
482                         cfg->enc_status |= SES_ENCSTAT_INFO;
483                         break;
484                 case 0x21:      /* pws is present */
485                         /*
486                          * This is for enclosures that cannot tell whether the
487                          * device is on or malfunctioning, but know that it is
488                          * present. Just fall through.
489                          */
490                         /* FALLTHROUGH */
491                 case 0x80:      /* Unknown or Not Reportable Status */
492                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
493                         cache->elm_map[oid].encstat[3] = 0;
494                         cfg->enc_status |= SES_ENCSTAT_INFO;
495                         break;
496                 default:
497                         ENC_VLOG(enc, "unknown power supply %d status (0x%x)\n",
498                             i, buf[r] & 0xff);
499                         break;
500                 }
501                 enc->enc_cache.elm_map[oid++].svalid = 1;
502                 r++;
503         }
504
505         /*
506          * Copy Slot SCSI IDs
507          */
508         for (i = 0; i < cfg->Nslots; i++) {
509                 SAFT_BAIL(r, xfer_len);
510                 if (cache->elm_map[cfg->slotoff + i].enctype == ELMTYP_DEVICE)
511                         cache->elm_map[cfg->slotoff + i].encstat[1] = buf[r];
512                 r++;
513         }
514
515         /*
516          * We always have doorlock status, no matter what,
517          * but we only save the status if we have one.
518          */
519         SAFT_BAIL(r, xfer_len);
520         if (cfg->DoorLock) {
521                 /*
522                  * 0 = Door Locked
523                  * 1 = Door Unlocked, or no Lock Installed
524                  * 0x80 = Unknown or Not Reportable Status
525                  */
526                 cache->elm_map[oid].encstat[1] = 0;
527                 cache->elm_map[oid].encstat[2] = 0;
528                 switch (buf[r]) {
529                 case 0:
530                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
531                         cache->elm_map[oid].encstat[3] = 0;
532                         break;
533                 case 1:
534                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
535                         cache->elm_map[oid].encstat[3] = 1;
536                         break;
537                 case 0x80:
538                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
539                         cache->elm_map[oid].encstat[3] = 0;
540                         cfg->enc_status |= SES_ENCSTAT_INFO;
541                         break;
542                 default:
543                         cache->elm_map[oid].encstat[0] =
544                             SES_OBJSTAT_UNSUPPORTED;
545                         ENC_VLOG(enc, "unknown lock status 0x%x\n",
546                             buf[r] & 0xff);
547                         break;
548                 }
549                 cache->elm_map[oid++].svalid = 1;
550         }
551         r++;
552
553         /*
554          * We always have speaker status, no matter what,
555          * but we only save the status if we have one.
556          */
557         SAFT_BAIL(r, xfer_len);
558         if (cfg->Nspkrs) {
559                 cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
560                 cache->elm_map[oid].encstat[1] = 0;
561                 cache->elm_map[oid].encstat[2] = 0;
562                 if (buf[r] == 0) {
563                         cache->elm_map[oid].encstat[0] |= SESCTL_DISABLE;
564                         cache->elm_map[oid].encstat[3] |= 0x40;
565                 }
566                 cache->elm_map[oid++].svalid = 1;
567         }
568         r++;
569
570         /*
571          * Now, for "pseudo" thermometers, we have two bytes
572          * of information in enclosure status- 16 bits. Actually,
573          * the MSB is a single TEMP ALERT flag indicating whether
574          * any other bits are set, but, thanks to fuzzy thinking,
575          * in the SAF-TE spec, this can also be set even if no
576          * other bits are set, thus making this really another
577          * binary temperature sensor.
578          */
579
580         SAFT_BAIL(r + cfg->Ntherm, xfer_len);
581         tempflags = buf[r + cfg->Ntherm];
582         SAFT_BAIL(r + cfg->Ntherm + 1, xfer_len);
583         tempflags |= (tempflags << 8) | buf[r + cfg->Ntherm + 1];
584
585         for (i = 0; i < cfg->Ntherm; i++) {
586                 SAFT_BAIL(r, xfer_len);
587                 /*
588                  * Status is a range from -10 to 245 deg Celsius,
589                  * which we need to normalize to -20 to -245 according
590                  * to the latest SCSI spec, which makes little
591                  * sense since this would overflow an 8bit value.
592                  * Well, still, the base normalization is -20,
593                  * not -10, so we have to adjust.
594                  *
595                  * So what's over and under temperature?
596                  * Hmm- we'll state that 'normal' operating
597                  * is 10 to 40 deg Celsius.
598                  */
599
600                 /*
601                  * Actually.... All of the units that people out in the world
602                  * seem to have do not come even close to setting a value that
603                  * complies with this spec.
604                  *
605                  * The closest explanation I could find was in an
606                  * LSI-Logic manual, which seemed to indicate that
607                  * this value would be set by whatever the I2C code
608                  * would interpolate from the output of an LM75
609                  * temperature sensor.
610                  *
611                  * This means that it is impossible to use the actual
612                  * numeric value to predict anything. But we don't want
613                  * to lose the value. So, we'll propagate the *uncorrected*
614                  * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
615                  * temperature flags for warnings.
616                  */
617                 if (tempflags & (1 << i)) {
618                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
619                         cfg->enc_status |= SES_ENCSTAT_CRITICAL;
620                 } else
621                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
622                 cache->elm_map[oid].encstat[1] = 0;
623                 cache->elm_map[oid].encstat[2] = buf[r];
624                 cache->elm_map[oid].encstat[3] = 0;
625                 cache->elm_map[oid++].svalid = 1;
626                 r++;
627         }
628
629         for (i = 0; i <= cfg->Ntstats; i++) {
630                 cache->elm_map[oid].encstat[1] = 0;
631                 if (tempflags & (1 <<
632                     ((i == cfg->Ntstats) ? 15 : (cfg->Ntherm + i)))) {
633                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
634                         cache->elm_map[4].encstat[2] = 0xff;
635                         /*
636                          * Set 'over temperature' failure.
637                          */
638                         cache->elm_map[oid].encstat[3] = 8;
639                         cfg->enc_status |= SES_ENCSTAT_CRITICAL;
640                 } else {
641                         /*
642                          * We used to say 'not available' and synthesize a
643                          * nominal 30 deg (C)- that was wrong. Actually,
644                          * Just say 'OK', and use the reserved value of
645                          * zero.
646                          */
647                         if ((cfg->Ntherm + cfg->Ntstats) == 0)
648                                 cache->elm_map[oid].encstat[0] =
649                                     SES_OBJSTAT_NOTAVAIL;
650                         else
651                                 cache->elm_map[oid].encstat[0] =
652                                     SES_OBJSTAT_OK;
653                         cache->elm_map[oid].encstat[2] = 0;
654                         cache->elm_map[oid].encstat[3] = 0;
655                 }
656                 cache->elm_map[oid++].svalid = 1;
657         }
658         r += 2;
659
660         cache->enc_status =
661             cfg->enc_status | cfg->slot_status | cfg->adm_status;
662         return (0);
663 }
664
665 static int
666 safte_process_slotstatus(enc_softc_t *enc, struct enc_fsm_state *state,
667     union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
668 {
669         struct scfg *cfg;
670         uint8_t *buf = *bufp;
671         enc_cache_t *cache = &enc->enc_cache;
672         int oid, r, i;
673
674         cfg = enc->enc_private;
675         if (cfg == NULL)
676                 return (ENXIO);
677         if (error != 0)
678                 return (error);
679         cfg->slot_status = 0;
680         oid = cfg->slotoff;
681         for (r = i = 0; i < cfg->Nslots; i++, r += 4) {
682                 SAFT_BAIL(r+3, xfer_len);
683                 if (cache->elm_map[oid].enctype == ELMTYP_ARRAY_DEV)
684                         cache->elm_map[oid].encstat[1] = 0;
685                 cache->elm_map[oid].encstat[2] &= SESCTL_RQSID;
686                 cache->elm_map[oid].encstat[3] = 0;
687                 if ((buf[r+3] & 0x01) == 0) {   /* no device */
688                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_NOTINSTALLED;
689                 } else if (buf[r+0] & 0x02) {
690                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_CRIT;
691                         cfg->slot_status |= SES_ENCSTAT_CRITICAL;
692                 } else if (buf[r+0] & 0x40) {
693                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
694                         cfg->slot_status |= SES_ENCSTAT_NONCRITICAL;
695                 } else {
696                         cache->elm_map[oid].encstat[0] = SES_OBJSTAT_OK;
697                 }
698                 if (buf[r+3] & 0x2) {
699                         if (buf[r+3] & 0x01)
700                                 cache->elm_map[oid].encstat[2] |= SESCTL_RQSRMV;
701                         else
702                                 cache->elm_map[oid].encstat[2] |= SESCTL_RQSINS;
703                 }
704                 if ((buf[r+3] & 0x04) == 0)
705                         cache->elm_map[oid].encstat[3] |= SESCTL_DEVOFF;
706                 if (buf[r+0] & 0x02)
707                         cache->elm_map[oid].encstat[3] |= SESCTL_RQSFLT;
708                 if (buf[r+0] & 0x40)
709                         cache->elm_map[oid].encstat[0] |= SESCTL_PRDFAIL;
710                 if (cache->elm_map[oid].enctype == ELMTYP_ARRAY_DEV) {
711                         if (buf[r+0] & 0x01)
712                                 cache->elm_map[oid].encstat[1] |= 0x80;
713                         if (buf[r+0] & 0x04)
714                                 cache->elm_map[oid].encstat[1] |= 0x02;
715                         if (buf[r+0] & 0x08)
716                                 cache->elm_map[oid].encstat[1] |= 0x04;
717                         if (buf[r+0] & 0x10)
718                                 cache->elm_map[oid].encstat[1] |= 0x08;
719                         if (buf[r+0] & 0x20)
720                                 cache->elm_map[oid].encstat[1] |= 0x10;
721                         if (buf[r+1] & 0x01)
722                                 cache->elm_map[oid].encstat[1] |= 0x20;
723                         if (buf[r+1] & 0x02)
724                                 cache->elm_map[oid].encstat[1] |= 0x01;
725                 }
726                 cache->elm_map[oid++].svalid = 1;
727         }
728
729         cache->enc_status =
730             cfg->enc_status | cfg->slot_status | cfg->adm_status;
731         return (0);
732 }
733
734 static int
735 safte_fill_control_request(enc_softc_t *enc, struct enc_fsm_state *state,
736                        union ccb *ccb, uint8_t *buf)
737 {
738         struct scfg *cfg;
739         enc_element_t *ep, *ep1;
740         safte_control_request_t *req;
741         int i, idx, xfer_len;
742
743         cfg = enc->enc_private;
744         if (cfg == NULL)
745                 return (ENXIO);
746
747         if (enc->enc_cache.nelms == 0) {
748                 enc_update_request(enc, SAFTE_UPDATE_READCONFIG);
749                 return (-1);
750         }
751
752         if (cfg->current_request == NULL) {
753                 cfg->current_request = TAILQ_FIRST(&cfg->requests);
754                 TAILQ_REMOVE(&cfg->requests, cfg->current_request, links);
755                 cfg->current_request_stage = 0;
756                 cfg->current_request_stages = 1;
757         }
758         req = cfg->current_request;
759
760         idx = (int)req->elm_idx;
761         if (req->elm_idx == SES_SETSTATUS_ENC_IDX) {
762                 cfg->adm_status = req->elm_stat[0] & ALL_ENC_STAT;
763                 cfg->flag1 &= ~(SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
764                 if (req->elm_stat[0] & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV))
765                         cfg->flag1 |= SAFT_FLG1_GLOBFAIL;
766                 else if (req->elm_stat[0] & SES_ENCSTAT_NONCRITICAL)
767                         cfg->flag1 |= SAFT_FLG1_GLOBWARN;
768                 buf[0] = SAFTE_WT_GLOBAL;
769                 buf[1] = cfg->flag1;
770                 buf[2] = cfg->flag2;
771                 buf[3] = 0;
772                 xfer_len = 16;
773         } else {
774                 ep = &enc->enc_cache.elm_map[idx];
775
776                 switch (ep->enctype) {
777                 case ELMTYP_DEVICE:
778                 case ELMTYP_ARRAY_DEV:
779                         switch (cfg->current_request_stage) {
780                         case 0:
781                                 ep->priv = 0;
782                                 if (req->elm_stat[0] & SESCTL_PRDFAIL)
783                                         ep->priv |= 0x40;
784                                 if (req->elm_stat[3] & SESCTL_RQSFLT)
785                                         ep->priv |= 0x02;
786                                 if (ep->enctype == ELMTYP_ARRAY_DEV) {
787                                         if (req->elm_stat[1] & 0x01)
788                                                 ep->priv |= 0x200;
789                                         if (req->elm_stat[1] & 0x02)
790                                                 ep->priv |= 0x04;
791                                         if (req->elm_stat[1] & 0x04)
792                                                 ep->priv |= 0x08;
793                                         if (req->elm_stat[1] & 0x08)
794                                                 ep->priv |= 0x10;
795                                         if (req->elm_stat[1] & 0x10)
796                                                 ep->priv |= 0x20;
797                                         if (req->elm_stat[1] & 0x20)
798                                                 ep->priv |= 0x100;
799                                         if (req->elm_stat[1] & 0x80)
800                                                 ep->priv |= 0x01;
801                                 }
802                                 if (ep->priv == 0)
803                                         ep->priv |= 0x01;       /* no errors */
804
805                                 buf[0] = SAFTE_WT_DSTAT;
806                                 for (i = 0; i < cfg->Nslots; i++) {
807                                         ep1 = &enc->enc_cache.elm_map[cfg->slotoff + i];
808                                         buf[1 + (3 * i)] = ep1->priv;
809                                         buf[2 + (3 * i)] = ep1->priv >> 8;
810                                 }
811                                 xfer_len = cfg->Nslots * 3 + 1;
812 #define DEVON(x)        (!(((x)[2] & SESCTL_RQSINS) |   \
813                            ((x)[2] & SESCTL_RQSRMV) |   \
814                            ((x)[3] & SESCTL_DEVOFF)))
815                                 if (DEVON(req->elm_stat) != DEVON(ep->encstat))
816                                         cfg->current_request_stages++;
817 #define IDON(x)         (!!((x)[2] & SESCTL_RQSID))
818                                 if (IDON(req->elm_stat) != IDON(ep->encstat))
819                                         cfg->current_request_stages++;
820                                 break;
821                         case 1:
822                         case 2:
823                                 buf[0] = SAFTE_WT_SLTOP;
824                                 buf[1] = idx - cfg->slotoff;
825                                 if (cfg->current_request_stage == 1 &&
826                                     DEVON(req->elm_stat) != DEVON(ep->encstat)) {
827                                         if (DEVON(req->elm_stat))
828                                                 buf[2] = 0x01;
829                                         else
830                                                 buf[2] = 0x02;
831                                 } else {
832                                         if (IDON(req->elm_stat))
833                                                 buf[2] = 0x04;
834                                         else
835                                                 buf[2] = 0x00;
836                                         ep->encstat[2] &= ~SESCTL_RQSID;
837                                         ep->encstat[2] |= req->elm_stat[2] &
838                                             SESCTL_RQSID;
839                                 }
840                                 xfer_len = 64;
841                                 break;
842                         default:
843                                 return (EINVAL);
844                         }
845                         break;
846                 case ELMTYP_POWER:
847                         cfg->current_request_stages = 2;
848                         switch (cfg->current_request_stage) {
849                         case 0:
850                                 if (req->elm_stat[3] & SESCTL_RQSTFAIL) {
851                                         cfg->flag1 |= SAFT_FLG1_ENCPWRFAIL;
852                                 } else {
853                                         cfg->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
854                                 }
855                                 buf[0] = SAFTE_WT_GLOBAL;
856                                 buf[1] = cfg->flag1;
857                                 buf[2] = cfg->flag2;
858                                 buf[3] = 0;
859                                 xfer_len = 16;
860                                 break;
861                         case 1:
862                                 buf[0] = SAFTE_WT_ACTPWS;
863                                 buf[1] = idx - cfg->pwroff;
864                                 if (req->elm_stat[3] & SESCTL_RQSTON)
865                                         buf[2] = 0x01;
866                                 else
867                                         buf[2] = 0x00;
868                                 buf[3] = 0;
869                                 xfer_len = 16;
870                         default:
871                                 return (EINVAL);
872                         }
873                         break;
874                 case ELMTYP_FAN:
875                         if ((req->elm_stat[3] & 0x7) != 0)
876                                 cfg->current_request_stages = 2;
877                         switch (cfg->current_request_stage) {
878                         case 0:
879                                 if (req->elm_stat[3] & SESCTL_RQSTFAIL)
880                                         cfg->flag1 |= SAFT_FLG1_ENCFANFAIL;
881                                 else
882                                         cfg->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
883                                 buf[0] = SAFTE_WT_GLOBAL;
884                                 buf[1] = cfg->flag1;
885                                 buf[2] = cfg->flag2;
886                                 buf[3] = 0;
887                                 xfer_len = 16;
888                                 break;
889                         case 1:
890                                 buf[0] = SAFTE_WT_FANSPD;
891                                 buf[1] = idx;
892                                 if (req->elm_stat[3] & SESCTL_RQSTON) {
893                                         if ((req->elm_stat[3] & 0x7) == 7)
894                                                 buf[2] = 4;
895                                         else if ((req->elm_stat[3] & 0x7) >= 5)
896                                                 buf[2] = 3;
897                                         else if ((req->elm_stat[3] & 0x7) >= 3)
898                                                 buf[2] = 2;
899                                         else
900                                                 buf[2] = 1;
901                                 } else
902                                         buf[2] = 0;
903                                 buf[3] = 0;
904                                 xfer_len = 16;
905                                 ep->encstat[3] = req->elm_stat[3] & 0x67;
906                         default:
907                                 return (EINVAL);
908                         }
909                         break;
910                 case ELMTYP_DOORLOCK:
911                         if (req->elm_stat[3] & 0x1)
912                                 cfg->flag2 &= ~SAFT_FLG2_LOCKDOOR;
913                         else
914                                 cfg->flag2 |= SAFT_FLG2_LOCKDOOR;
915                         buf[0] = SAFTE_WT_GLOBAL;
916                         buf[1] = cfg->flag1;
917                         buf[2] = cfg->flag2;
918                         buf[3] = 0;
919                         xfer_len = 16;
920                         break;
921                 case ELMTYP_ALARM:
922                         if ((req->elm_stat[0] & SESCTL_DISABLE) ||
923                             (req->elm_stat[3] & 0x40)) {
924                                 cfg->flag2 &= ~SAFT_FLG1_ALARM;
925                         } else if ((req->elm_stat[3] & 0x0f) != 0) {
926                                 cfg->flag2 |= SAFT_FLG1_ALARM;
927                         } else {
928                                 cfg->flag2 &= ~SAFT_FLG1_ALARM;
929                         }
930                         buf[0] = SAFTE_WT_GLOBAL;
931                         buf[1] = cfg->flag1;
932                         buf[2] = cfg->flag2;
933                         buf[3] = 0;
934                         xfer_len = 16;
935                         ep->encstat[3] = req->elm_stat[3];
936                         break;
937                 default:
938                         return (EINVAL);
939                 }
940         }
941
942         if (enc->enc_type == ENC_SEMB_SAFT) {
943                 semb_write_buffer(&ccb->ataio, /*retries*/5,
944                                 NULL, MSG_SIMPLE_Q_TAG,
945                                 buf, xfer_len, state->timeout);
946         } else {
947                 scsi_write_buffer(&ccb->csio, /*retries*/5,
948                                 NULL, MSG_SIMPLE_Q_TAG, 1,
949                                 0, 0, buf, xfer_len,
950                                 SSD_FULL_SIZE, state->timeout);
951         }
952         return (0);
953 }
954
955 static int
956 safte_process_control_request(enc_softc_t *enc, struct enc_fsm_state *state,
957     union ccb *ccb, uint8_t **bufp, int error, int xfer_len)
958 {
959         struct scfg *cfg;
960         safte_control_request_t *req;
961         int idx, type;
962
963         cfg = enc->enc_private;
964         if (cfg == NULL)
965                 return (ENXIO);
966
967         req = cfg->current_request;
968         if (req->result == 0)
969                 req->result = error;
970         if (++cfg->current_request_stage >= cfg->current_request_stages) {
971                 idx = req->elm_idx;
972                 if (idx == SES_SETSTATUS_ENC_IDX)
973                         type = -1;
974                 else
975                         type = enc->enc_cache.elm_map[idx].enctype;
976                 if (type == ELMTYP_DEVICE || type == ELMTYP_ARRAY_DEV)
977                         enc_update_request(enc, SAFTE_UPDATE_READSLOTSTATUS);
978                 else
979                         enc_update_request(enc, SAFTE_UPDATE_READENCSTATUS);
980                 cfg->current_request = NULL;
981                 wakeup(req);
982         } else {
983                 enc_update_request(enc, SAFTE_PROCESS_CONTROL_REQS);
984         }
985         return (0);
986 }
987
988 static void
989 safte_softc_invalidate(enc_softc_t *enc)
990 {
991         struct scfg *cfg;
992
993         cfg = enc->enc_private;
994         safte_terminate_control_requests(&cfg->requests, ENXIO);
995 }
996
997 static void
998 safte_softc_cleanup(enc_softc_t *enc)
999 {
1000
1001         ENC_FREE_AND_NULL(enc->enc_cache.elm_map);
1002         ENC_FREE_AND_NULL(enc->enc_private);
1003         enc->enc_cache.nelms = 0;
1004 }
1005
1006 static int
1007 safte_init_enc(enc_softc_t *enc)
1008 {
1009         struct scfg *cfg;
1010         int err;
1011         static char cdb0[6] = { SEND_DIAGNOSTIC };
1012
1013         cfg = enc->enc_private;
1014         if (cfg == NULL)
1015                 return (ENXIO);
1016
1017         err = enc_runcmd(enc, cdb0, 6, NULL, 0);
1018         if (err) {
1019                 return (err);
1020         }
1021         DELAY(5000);
1022         cfg->flag1 = 0;
1023         cfg->flag2 = 0;
1024         err = safte_set_enc_status(enc, 0, 1);
1025         return (err);
1026 }
1027
1028 static int
1029 safte_get_enc_status(enc_softc_t *enc, int slpflg)
1030 {
1031
1032         return (0);
1033 }
1034
1035 static int
1036 safte_set_enc_status(enc_softc_t *enc, uint8_t encstat, int slpflag)
1037 {
1038         struct scfg *cfg;
1039         safte_control_request_t req;
1040
1041         cfg = enc->enc_private;
1042         if (cfg == NULL)
1043                 return (ENXIO);
1044
1045         req.elm_idx = SES_SETSTATUS_ENC_IDX;
1046         req.elm_stat[0] = encstat & 0xf;
1047         req.result = 0;
1048         
1049         TAILQ_INSERT_TAIL(&cfg->requests, &req, links);
1050         enc_update_request(enc, SAFTE_PROCESS_CONTROL_REQS);
1051         cam_periph_sleep(enc->periph, &req, PUSER, "encstat", 0);
1052
1053         return (req.result);
1054 }
1055
1056 static int
1057 safte_get_elm_status(enc_softc_t *enc, encioc_elm_status_t *elms, int slpflg)
1058 {
1059         int i = (int)elms->elm_idx;
1060
1061         elms->cstat[0] = enc->enc_cache.elm_map[i].encstat[0];
1062         elms->cstat[1] = enc->enc_cache.elm_map[i].encstat[1];
1063         elms->cstat[2] = enc->enc_cache.elm_map[i].encstat[2];
1064         elms->cstat[3] = enc->enc_cache.elm_map[i].encstat[3];
1065         return (0);
1066 }
1067
1068 static int
1069 safte_set_elm_status(enc_softc_t *enc, encioc_elm_status_t *elms, int slpflag)
1070 {
1071         struct scfg *cfg;
1072         safte_control_request_t req;
1073
1074         cfg = enc->enc_private;
1075         if (cfg == NULL)
1076                 return (ENXIO);
1077
1078         /* If this is clear, we don't do diddly.  */
1079         if ((elms->cstat[0] & SESCTL_CSEL) == 0)
1080                 return (0);
1081
1082         req.elm_idx = elms->elm_idx;
1083         memcpy(&req.elm_stat, elms->cstat, sizeof(req.elm_stat));
1084         req.result = 0;
1085
1086         TAILQ_INSERT_TAIL(&cfg->requests, &req, links);
1087         enc_update_request(enc, SAFTE_PROCESS_CONTROL_REQS);
1088         cam_periph_sleep(enc->periph, &req, PUSER, "encstat", 0);
1089
1090         return (req.result);
1091 }
1092
1093 static void
1094 safte_poll_status(enc_softc_t *enc)
1095 {
1096
1097         enc_update_request(enc, SAFTE_UPDATE_READENCSTATUS);
1098         enc_update_request(enc, SAFTE_UPDATE_READSLOTSTATUS);
1099 }
1100
1101 static struct enc_vec safte_enc_vec =
1102 {
1103         .softc_invalidate       = safte_softc_invalidate,
1104         .softc_cleanup  = safte_softc_cleanup,
1105         .init_enc       = safte_init_enc,
1106         .get_enc_status = safte_get_enc_status,
1107         .set_enc_status = safte_set_enc_status,
1108         .get_elm_status = safte_get_elm_status,
1109         .set_elm_status = safte_set_elm_status,
1110         .poll_status    = safte_poll_status
1111 };
1112
1113 int
1114 safte_softc_init(enc_softc_t *enc)
1115 {
1116         struct scfg *cfg;
1117
1118         enc->enc_vec = safte_enc_vec;
1119         enc->enc_fsm_states = enc_fsm_states;
1120
1121         if (enc->enc_private == NULL) {
1122                 enc->enc_private = ENC_MALLOCZ(SAFT_PRIVATE);
1123                 if (enc->enc_private == NULL)
1124                         return (ENOMEM);
1125         }
1126         cfg = enc->enc_private;
1127
1128         enc->enc_cache.nelms = 0;
1129         enc->enc_cache.enc_status = 0;
1130
1131         TAILQ_INIT(&cfg->requests);
1132         return (0);
1133 }
1134