]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cam/scsi/scsi_pass.c
MFC r317848:
[FreeBSD/FreeBSD.git] / sys / cam / scsi / scsi_pass.c
1 /*-
2  * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
3  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/conf.h>
35 #include <sys/types.h>
36 #include <sys/bio.h>
37 #include <sys/bus.h>
38 #include <sys/devicestat.h>
39 #include <sys/errno.h>
40 #include <sys/fcntl.h>
41 #include <sys/malloc.h>
42 #include <sys/proc.h>
43 #include <sys/poll.h>
44 #include <sys/selinfo.h>
45 #include <sys/sdt.h>
46 #include <sys/taskqueue.h>
47 #include <vm/uma.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50
51 #include <machine/bus.h>
52
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_xpt.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_debug.h>
60 #include <cam/cam_compat.h>
61 #include <cam/cam_xpt_periph.h>
62
63 #include <cam/scsi/scsi_all.h>
64 #include <cam/scsi/scsi_pass.h>
65
66 typedef enum {
67         PASS_FLAG_OPEN                  = 0x01,
68         PASS_FLAG_LOCKED                = 0x02,
69         PASS_FLAG_INVALID               = 0x04,
70         PASS_FLAG_INITIAL_PHYSPATH      = 0x08,
71         PASS_FLAG_ZONE_INPROG           = 0x10,
72         PASS_FLAG_ZONE_VALID            = 0x20,
73         PASS_FLAG_UNMAPPED_CAPABLE      = 0x40,
74         PASS_FLAG_ABANDONED_REF_SET     = 0x80
75 } pass_flags;
76
77 typedef enum {
78         PASS_STATE_NORMAL
79 } pass_state;
80
81 typedef enum {
82         PASS_CCB_BUFFER_IO,
83         PASS_CCB_QUEUED_IO
84 } pass_ccb_types;
85
86 #define ccb_type        ppriv_field0
87 #define ccb_ioreq       ppriv_ptr1
88
89 /*
90  * The maximum number of memory segments we preallocate.
91  */
92 #define PASS_MAX_SEGS   16
93
94 typedef enum {
95         PASS_IO_NONE            = 0x00,
96         PASS_IO_USER_SEG_MALLOC = 0x01,
97         PASS_IO_KERN_SEG_MALLOC = 0x02,
98         PASS_IO_ABANDONED       = 0x04
99 } pass_io_flags; 
100
101 struct pass_io_req {
102         union ccb                        ccb;
103         union ccb                       *alloced_ccb;
104         union ccb                       *user_ccb_ptr;
105         camq_entry                       user_periph_links;
106         ccb_ppriv_area                   user_periph_priv;
107         struct cam_periph_map_info       mapinfo;
108         pass_io_flags                    flags;
109         ccb_flags                        data_flags;
110         int                              num_user_segs;
111         bus_dma_segment_t                user_segs[PASS_MAX_SEGS];
112         int                              num_kern_segs;
113         bus_dma_segment_t                kern_segs[PASS_MAX_SEGS];
114         bus_dma_segment_t               *user_segptr;
115         bus_dma_segment_t               *kern_segptr;
116         int                              num_bufs;
117         uint32_t                         dirs[CAM_PERIPH_MAXMAPS];
118         uint32_t                         lengths[CAM_PERIPH_MAXMAPS];
119         uint8_t                         *user_bufs[CAM_PERIPH_MAXMAPS];
120         uint8_t                         *kern_bufs[CAM_PERIPH_MAXMAPS];
121         struct bintime                   start_time;
122         TAILQ_ENTRY(pass_io_req)         links;
123 };
124
125 struct pass_softc {
126         pass_state                state;
127         pass_flags                flags;
128         u_int8_t                  pd_type;
129         union ccb                 saved_ccb;
130         int                       open_count;
131         u_int                     maxio;
132         struct devstat           *device_stats;
133         struct cdev              *dev;
134         struct cdev              *alias_dev;
135         struct task               add_physpath_task;
136         struct task               shutdown_kqueue_task;
137         struct selinfo            read_select;
138         TAILQ_HEAD(, pass_io_req) incoming_queue;
139         TAILQ_HEAD(, pass_io_req) active_queue;
140         TAILQ_HEAD(, pass_io_req) abandoned_queue;
141         TAILQ_HEAD(, pass_io_req) done_queue;
142         struct cam_periph        *periph;
143         char                      zone_name[12];
144         char                      io_zone_name[12];
145         uma_zone_t                pass_zone;
146         uma_zone_t                pass_io_zone;
147         size_t                    io_zone_size;
148 };
149
150 static  d_open_t        passopen;
151 static  d_close_t       passclose;
152 static  d_ioctl_t       passioctl;
153 static  d_ioctl_t       passdoioctl;
154 static  d_poll_t        passpoll;
155 static  d_kqfilter_t    passkqfilter;
156 static  void            passreadfiltdetach(struct knote *kn);
157 static  int             passreadfilt(struct knote *kn, long hint);
158
159 static  periph_init_t   passinit;
160 static  periph_ctor_t   passregister;
161 static  periph_oninv_t  passoninvalidate;
162 static  periph_dtor_t   passcleanup;
163 static  periph_start_t  passstart;
164 static  void            pass_shutdown_kqueue(void *context, int pending);
165 static  void            pass_add_physpath(void *context, int pending);
166 static  void            passasync(void *callback_arg, u_int32_t code,
167                                   struct cam_path *path, void *arg);
168 static  void            passdone(struct cam_periph *periph, 
169                                  union ccb *done_ccb);
170 static  int             passcreatezone(struct cam_periph *periph);
171 static  void            passiocleanup(struct pass_softc *softc, 
172                                       struct pass_io_req *io_req);
173 static  int             passcopysglist(struct cam_periph *periph,
174                                        struct pass_io_req *io_req,
175                                        ccb_flags direction);
176 static  int             passmemsetup(struct cam_periph *periph,
177                                      struct pass_io_req *io_req);
178 static  int             passmemdone(struct cam_periph *periph,
179                                     struct pass_io_req *io_req);
180 static  int             passerror(union ccb *ccb, u_int32_t cam_flags, 
181                                   u_int32_t sense_flags);
182 static  int             passsendccb(struct cam_periph *periph, union ccb *ccb,
183                                     union ccb *inccb);
184
185 static struct periph_driver passdriver =
186 {
187         passinit, "pass",
188         TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
189 };
190
191 PERIPHDRIVER_DECLARE(pass, passdriver);
192
193 static struct cdevsw pass_cdevsw = {
194         .d_version =    D_VERSION,
195         .d_flags =      D_TRACKCLOSE,
196         .d_open =       passopen,
197         .d_close =      passclose,
198         .d_ioctl =      passioctl,
199         .d_poll =       passpoll,
200         .d_kqfilter =   passkqfilter,
201         .d_name =       "pass",
202 };
203
204 static struct filterops passread_filtops = {
205         .f_isfd =       1,
206         .f_detach =     passreadfiltdetach,
207         .f_event =      passreadfilt
208 };
209
210 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
211
212 static void
213 passinit(void)
214 {
215         cam_status status;
216
217         /*
218          * Install a global async callback.  This callback will
219          * receive async callbacks like "new device found".
220          */
221         status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
222
223         if (status != CAM_REQ_CMP) {
224                 printf("pass: Failed to attach master async callback "
225                        "due to status 0x%x!\n", status);
226         }
227
228 }
229
230 static void
231 passrejectios(struct cam_periph *periph)
232 {
233         struct pass_io_req *io_req, *io_req2;
234         struct pass_softc *softc;
235
236         softc = (struct pass_softc *)periph->softc;
237
238         /*
239          * The user can no longer get status for I/O on the done queue, so
240          * clean up all outstanding I/O on the done queue.
241          */
242         TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
243                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
244                 passiocleanup(softc, io_req);
245                 uma_zfree(softc->pass_zone, io_req);
246         }
247
248         /*
249          * The underlying device is gone, so we can't issue these I/Os.
250          * The devfs node has been shut down, so we can't return status to
251          * the user.  Free any I/O left on the incoming queue.
252          */
253         TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
254                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
255                 passiocleanup(softc, io_req);
256                 uma_zfree(softc->pass_zone, io_req);
257         }
258
259         /*
260          * Normally we would put I/Os on the abandoned queue and acquire a
261          * reference when we saw the final close.  But, the device went
262          * away and devfs may have moved everything off to deadfs by the
263          * time the I/O done callback is called; as a result, we won't see
264          * any more closes.  So, if we have any active I/Os, we need to put
265          * them on the abandoned queue.  When the abandoned queue is empty,
266          * we'll release the remaining reference (see below) to the peripheral.
267          */
268         TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
269                 TAILQ_REMOVE(&softc->active_queue, io_req, links);
270                 io_req->flags |= PASS_IO_ABANDONED;
271                 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
272         }
273
274         /*
275          * If we put any I/O on the abandoned queue, acquire a reference.
276          */
277         if ((!TAILQ_EMPTY(&softc->abandoned_queue))
278          && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
279                 cam_periph_doacquire(periph);
280                 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
281         }
282 }
283
284 static void
285 passdevgonecb(void *arg)
286 {
287         struct cam_periph *periph;
288         struct mtx *mtx;
289         struct pass_softc *softc;
290         int i;
291
292         periph = (struct cam_periph *)arg;
293         mtx = cam_periph_mtx(periph);
294         mtx_lock(mtx);
295
296         softc = (struct pass_softc *)periph->softc;
297         KASSERT(softc->open_count >= 0, ("Negative open count %d",
298                 softc->open_count));
299
300         /*
301          * When we get this callback, we will get no more close calls from
302          * devfs.  So if we have any dangling opens, we need to release the
303          * reference held for that particular context.
304          */
305         for (i = 0; i < softc->open_count; i++)
306                 cam_periph_release_locked(periph);
307
308         softc->open_count = 0;
309
310         /*
311          * Release the reference held for the device node, it is gone now.
312          * Accordingly, inform all queued I/Os of their fate.
313          */
314         cam_periph_release_locked(periph);
315         passrejectios(periph);
316
317         /*
318          * We reference the SIM lock directly here, instead of using
319          * cam_periph_unlock().  The reason is that the final call to
320          * cam_periph_release_locked() above could result in the periph
321          * getting freed.  If that is the case, dereferencing the periph
322          * with a cam_periph_unlock() call would cause a page fault.
323          */
324         mtx_unlock(mtx);
325
326         /*
327          * We have to remove our kqueue context from a thread because it
328          * may sleep.  It would be nice if we could get a callback from
329          * kqueue when it is done cleaning up resources.
330          */
331         taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
332 }
333
334 static void
335 passoninvalidate(struct cam_periph *periph)
336 {
337         struct pass_softc *softc;
338
339         softc = (struct pass_softc *)periph->softc;
340
341         /*
342          * De-register any async callbacks.
343          */
344         xpt_register_async(0, passasync, periph, periph->path);
345
346         softc->flags |= PASS_FLAG_INVALID;
347
348         /*
349          * Tell devfs this device has gone away, and ask for a callback
350          * when it has cleaned up its state.
351          */
352         destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
353 }
354
355 static void
356 passcleanup(struct cam_periph *periph)
357 {
358         struct pass_softc *softc;
359
360         softc = (struct pass_softc *)periph->softc;
361
362         cam_periph_assert(periph, MA_OWNED);
363         KASSERT(TAILQ_EMPTY(&softc->active_queue),
364                 ("%s called when there are commands on the active queue!\n",
365                 __func__));
366         KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
367                 ("%s called when there are commands on the abandoned queue!\n",
368                 __func__));
369         KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
370                 ("%s called when there are commands on the incoming queue!\n",
371                 __func__));
372         KASSERT(TAILQ_EMPTY(&softc->done_queue),
373                 ("%s called when there are commands on the done queue!\n",
374                 __func__));
375
376         devstat_remove_entry(softc->device_stats);
377
378         cam_periph_unlock(periph);
379
380         /*
381          * We call taskqueue_drain() for the physpath task to make sure it
382          * is complete.  We drop the lock because this can potentially
383          * sleep.  XXX KDM that is bad.  Need a way to get a callback when
384          * a taskqueue is drained.
385          *
386          * Note that we don't drain the kqueue shutdown task queue.  This
387          * is because we hold a reference on the periph for kqueue, and
388          * release that reference from the kqueue shutdown task queue.  So
389          * we cannot come into this routine unless we've released that
390          * reference.  Also, because that could be the last reference, we
391          * could be called from the cam_periph_release() call in
392          * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
393          * would deadlock.  It would be preferable if we had a way to
394          * get a callback when a taskqueue is done.
395          */
396         taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
397
398         cam_periph_lock(periph);
399
400         free(softc, M_DEVBUF);
401 }
402
403 static void
404 pass_shutdown_kqueue(void *context, int pending)
405 {
406         struct cam_periph *periph;
407         struct pass_softc *softc;
408
409         periph = context;
410         softc = periph->softc;
411
412         knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
413         knlist_destroy(&softc->read_select.si_note);
414
415         /*
416          * Release the reference we held for kqueue.
417          */
418         cam_periph_release(periph);
419 }
420
421 static void
422 pass_add_physpath(void *context, int pending)
423 {
424         struct cam_periph *periph;
425         struct pass_softc *softc;
426         struct mtx *mtx;
427         char *physpath;
428
429         /*
430          * If we have one, create a devfs alias for our
431          * physical path.
432          */
433         periph = context;
434         softc = periph->softc;
435         physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
436         mtx = cam_periph_mtx(periph);
437         mtx_lock(mtx);
438
439         if (periph->flags & CAM_PERIPH_INVALID)
440                 goto out;
441
442         if (xpt_getattr(physpath, MAXPATHLEN,
443                         "GEOM::physpath", periph->path) == 0
444          && strlen(physpath) != 0) {
445
446                 mtx_unlock(mtx);
447                 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
448                                         softc->dev, softc->alias_dev, physpath);
449                 mtx_lock(mtx);
450         }
451
452 out:
453         /*
454          * Now that we've made our alias, we no longer have to have a
455          * reference to the device.
456          */
457         if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
458                 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
459
460         /*
461          * We always acquire a reference to the periph before queueing this
462          * task queue function, so it won't go away before we run.
463          */
464         while (pending-- > 0)
465                 cam_periph_release_locked(periph);
466         mtx_unlock(mtx);
467
468         free(physpath, M_DEVBUF);
469 }
470
471 static void
472 passasync(void *callback_arg, u_int32_t code,
473           struct cam_path *path, void *arg)
474 {
475         struct cam_periph *periph;
476
477         periph = (struct cam_periph *)callback_arg;
478
479         switch (code) {
480         case AC_FOUND_DEVICE:
481         {
482                 struct ccb_getdev *cgd;
483                 cam_status status;
484  
485                 cgd = (struct ccb_getdev *)arg;
486                 if (cgd == NULL)
487                         break;
488
489                 /*
490                  * Allocate a peripheral instance for
491                  * this device and start the probe
492                  * process.
493                  */
494                 status = cam_periph_alloc(passregister, passoninvalidate,
495                                           passcleanup, passstart, "pass",
496                                           CAM_PERIPH_BIO, path,
497                                           passasync, AC_FOUND_DEVICE, cgd);
498
499                 if (status != CAM_REQ_CMP
500                  && status != CAM_REQ_INPROG) {
501                         const struct cam_status_entry *entry;
502
503                         entry = cam_fetch_status_entry(status);
504
505                         printf("passasync: Unable to attach new device "
506                                "due to status %#x: %s\n", status, entry ?
507                                entry->status_text : "Unknown");
508                 }
509
510                 break;
511         }
512         case AC_ADVINFO_CHANGED:
513         {
514                 uintptr_t buftype;
515
516                 buftype = (uintptr_t)arg;
517                 if (buftype == CDAI_TYPE_PHYS_PATH) {
518                         struct pass_softc *softc;
519                         cam_status status;
520
521                         softc = (struct pass_softc *)periph->softc;
522                         /*
523                          * Acquire a reference to the periph before we
524                          * start the taskqueue, so that we don't run into
525                          * a situation where the periph goes away before
526                          * the task queue has a chance to run.
527                          */
528                         status = cam_periph_acquire(periph);
529                         if (status != CAM_REQ_CMP)
530                                 break;
531
532                         taskqueue_enqueue(taskqueue_thread,
533                                           &softc->add_physpath_task);
534                 }
535                 break;
536         }
537         default:
538                 cam_periph_async(periph, code, path, arg);
539                 break;
540         }
541 }
542
543 static cam_status
544 passregister(struct cam_periph *periph, void *arg)
545 {
546         struct pass_softc *softc;
547         struct ccb_getdev *cgd;
548         struct ccb_pathinq cpi;
549         struct make_dev_args args;
550         int error, no_tags;
551
552         cgd = (struct ccb_getdev *)arg;
553         if (cgd == NULL) {
554                 printf("%s: no getdev CCB, can't register device\n", __func__);
555                 return(CAM_REQ_CMP_ERR);
556         }
557
558         softc = (struct pass_softc *)malloc(sizeof(*softc),
559                                             M_DEVBUF, M_NOWAIT);
560
561         if (softc == NULL) {
562                 printf("%s: Unable to probe new device. "
563                        "Unable to allocate softc\n", __func__);
564                 return(CAM_REQ_CMP_ERR);
565         }
566
567         bzero(softc, sizeof(*softc));
568         softc->state = PASS_STATE_NORMAL;
569         if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
570                 softc->pd_type = SID_TYPE(&cgd->inq_data);
571         else if (cgd->protocol == PROTO_SATAPM)
572                 softc->pd_type = T_ENCLOSURE;
573         else
574                 softc->pd_type = T_DIRECT;
575
576         periph->softc = softc;
577         softc->periph = periph;
578         TAILQ_INIT(&softc->incoming_queue);
579         TAILQ_INIT(&softc->active_queue);
580         TAILQ_INIT(&softc->abandoned_queue);
581         TAILQ_INIT(&softc->done_queue);
582         snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
583                  periph->periph_name, periph->unit_number);
584         snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
585                  periph->periph_name, periph->unit_number);
586         softc->io_zone_size = MAXPHYS;
587         knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
588
589         bzero(&cpi, sizeof(cpi));
590         xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
591         cpi.ccb_h.func_code = XPT_PATH_INQ;
592         xpt_action((union ccb *)&cpi);
593
594         if (cpi.maxio == 0)
595                 softc->maxio = DFLTPHYS;        /* traditional default */
596         else if (cpi.maxio > MAXPHYS)
597                 softc->maxio = MAXPHYS;         /* for safety */
598         else
599                 softc->maxio = cpi.maxio;       /* real value */
600
601         if (cpi.hba_misc & PIM_UNMAPPED)
602                 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
603
604         /*
605          * We pass in 0 for a blocksize, since we don't 
606          * know what the blocksize of this device is, if 
607          * it even has a blocksize.
608          */
609         cam_periph_unlock(periph);
610         no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
611         softc->device_stats = devstat_new_entry("pass",
612                           periph->unit_number, 0,
613                           DEVSTAT_NO_BLOCKSIZE
614                           | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
615                           softc->pd_type |
616                           XPORT_DEVSTAT_TYPE(cpi.transport) |
617                           DEVSTAT_TYPE_PASS,
618                           DEVSTAT_PRIORITY_PASS);
619
620         /*
621          * Initialize the taskqueue handler for shutting down kqueue.
622          */
623         TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
624                   pass_shutdown_kqueue, periph);
625
626         /*
627          * Acquire a reference to the periph that we can release once we've
628          * cleaned up the kqueue.
629          */
630         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
631                 xpt_print(periph->path, "%s: lost periph during "
632                           "registration!\n", __func__);
633                 cam_periph_lock(periph);
634                 return (CAM_REQ_CMP_ERR);
635         }
636
637         /*
638          * Acquire a reference to the periph before we create the devfs
639          * instance for it.  We'll release this reference once the devfs
640          * instance has been freed.
641          */
642         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
643                 xpt_print(periph->path, "%s: lost periph during "
644                           "registration!\n", __func__);
645                 cam_periph_lock(periph);
646                 return (CAM_REQ_CMP_ERR);
647         }
648
649         /* Register the device */
650         make_dev_args_init(&args);
651         args.mda_devsw = &pass_cdevsw;
652         args.mda_unit = periph->unit_number;
653         args.mda_uid = UID_ROOT;
654         args.mda_gid = GID_OPERATOR;
655         args.mda_mode = 0600;
656         args.mda_si_drv1 = periph;
657         error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
658             periph->unit_number);
659         if (error != 0) {
660                 cam_periph_lock(periph);
661                 cam_periph_release_locked(periph);
662                 return (CAM_REQ_CMP_ERR);
663         }
664
665         /*
666          * Hold a reference to the periph before we create the physical
667          * path alias so it can't go away.
668          */
669         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
670                 xpt_print(periph->path, "%s: lost periph during "
671                           "registration!\n", __func__);
672                 cam_periph_lock(periph);
673                 return (CAM_REQ_CMP_ERR);
674         }
675
676         cam_periph_lock(periph);
677
678         TASK_INIT(&softc->add_physpath_task, /*priority*/0,
679                   pass_add_physpath, periph);
680
681         /*
682          * See if physical path information is already available.
683          */
684         taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
685
686         /*
687          * Add an async callback so that we get notified if
688          * this device goes away or its physical path
689          * (stored in the advanced info data of the EDT) has
690          * changed.
691          */
692         xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
693                            passasync, periph, periph->path);
694
695         if (bootverbose)
696                 xpt_announce_periph(periph, NULL);
697
698         return(CAM_REQ_CMP);
699 }
700
701 static int
702 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
703 {
704         struct cam_periph *periph;
705         struct pass_softc *softc;
706         int error;
707
708         periph = (struct cam_periph *)dev->si_drv1;
709         if (cam_periph_acquire(periph) != CAM_REQ_CMP)
710                 return (ENXIO);
711
712         cam_periph_lock(periph);
713
714         softc = (struct pass_softc *)periph->softc;
715
716         if (softc->flags & PASS_FLAG_INVALID) {
717                 cam_periph_release_locked(periph);
718                 cam_periph_unlock(periph);
719                 return(ENXIO);
720         }
721
722         /*
723          * Don't allow access when we're running at a high securelevel.
724          */
725         error = securelevel_gt(td->td_ucred, 1);
726         if (error) {
727                 cam_periph_release_locked(periph);
728                 cam_periph_unlock(periph);
729                 return(error);
730         }
731
732         /*
733          * Only allow read-write access.
734          */
735         if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
736                 cam_periph_release_locked(periph);
737                 cam_periph_unlock(periph);
738                 return(EPERM);
739         }
740
741         /*
742          * We don't allow nonblocking access.
743          */
744         if ((flags & O_NONBLOCK) != 0) {
745                 xpt_print(periph->path, "can't do nonblocking access\n");
746                 cam_periph_release_locked(periph);
747                 cam_periph_unlock(periph);
748                 return(EINVAL);
749         }
750
751         softc->open_count++;
752
753         cam_periph_unlock(periph);
754
755         return (error);
756 }
757
758 static int
759 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
760 {
761         struct  cam_periph *periph;
762         struct  pass_softc *softc;
763         struct mtx *mtx;
764
765         periph = (struct cam_periph *)dev->si_drv1;
766         mtx = cam_periph_mtx(periph);
767         mtx_lock(mtx);
768
769         softc = periph->softc;
770         softc->open_count--;
771
772         if (softc->open_count == 0) {
773                 struct pass_io_req *io_req, *io_req2;
774
775                 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
776                         TAILQ_REMOVE(&softc->done_queue, io_req, links);
777                         passiocleanup(softc, io_req);
778                         uma_zfree(softc->pass_zone, io_req);
779                 }
780
781                 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
782                                    io_req2) {
783                         TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
784                         passiocleanup(softc, io_req);
785                         uma_zfree(softc->pass_zone, io_req);
786                 }
787
788                 /*
789                  * If there are any active I/Os, we need to forcibly acquire a
790                  * reference to the peripheral so that we don't go away
791                  * before they complete.  We'll release the reference when
792                  * the abandoned queue is empty.
793                  */
794                 io_req = TAILQ_FIRST(&softc->active_queue);
795                 if ((io_req != NULL)
796                  && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
797                         cam_periph_doacquire(periph);
798                         softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
799                 }
800
801                 /*
802                  * Since the I/O in the active queue is not under our
803                  * control, just set a flag so that we can clean it up when
804                  * it completes and put it on the abandoned queue.  This
805                  * will prevent our sending spurious completions in the
806                  * event that the device is opened again before these I/Os
807                  * complete.
808                  */
809                 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
810                                    io_req2) {
811                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
812                         io_req->flags |= PASS_IO_ABANDONED;
813                         TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
814                                           links);
815                 }
816         }
817
818         cam_periph_release_locked(periph);
819
820         /*
821          * We reference the lock directly here, instead of using
822          * cam_periph_unlock().  The reason is that the call to
823          * cam_periph_release_locked() above could result in the periph
824          * getting freed.  If that is the case, dereferencing the periph
825          * with a cam_periph_unlock() call would cause a page fault.
826          *
827          * cam_periph_release() avoids this problem using the same method,
828          * but we're manually acquiring and dropping the lock here to
829          * protect the open count and avoid another lock acquisition and
830          * release.
831          */
832         mtx_unlock(mtx);
833
834         return (0);
835 }
836
837
838 static void
839 passstart(struct cam_periph *periph, union ccb *start_ccb)
840 {
841         struct pass_softc *softc;
842
843         softc = (struct pass_softc *)periph->softc;
844
845         switch (softc->state) {
846         case PASS_STATE_NORMAL: {
847                 struct pass_io_req *io_req;
848
849                 /*
850                  * Check for any queued I/O requests that require an
851                  * allocated slot.
852                  */
853                 io_req = TAILQ_FIRST(&softc->incoming_queue);
854                 if (io_req == NULL) {
855                         xpt_release_ccb(start_ccb);
856                         break;
857                 }
858                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
859                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
860                 /*
861                  * Merge the user's CCB into the allocated CCB.
862                  */
863                 xpt_merge_ccb(start_ccb, &io_req->ccb);
864                 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
865                 start_ccb->ccb_h.ccb_ioreq = io_req;
866                 start_ccb->ccb_h.cbfcnp = passdone;
867                 io_req->alloced_ccb = start_ccb;
868                 binuptime(&io_req->start_time);
869                 devstat_start_transaction(softc->device_stats,
870                                           &io_req->start_time);
871
872                 xpt_action(start_ccb);
873
874                 /*
875                  * If we have any more I/O waiting, schedule ourselves again.
876                  */
877                 if (!TAILQ_EMPTY(&softc->incoming_queue))
878                         xpt_schedule(periph, CAM_PRIORITY_NORMAL);
879                 break;
880         }
881         default:
882                 break;
883         }
884 }
885
886 static void
887 passdone(struct cam_periph *periph, union ccb *done_ccb)
888
889         struct pass_softc *softc;
890         struct ccb_scsiio *csio;
891
892         softc = (struct pass_softc *)periph->softc;
893
894         cam_periph_assert(periph, MA_OWNED);
895
896         csio = &done_ccb->csio;
897         switch (csio->ccb_h.ccb_type) {
898         case PASS_CCB_QUEUED_IO: {
899                 struct pass_io_req *io_req;
900
901                 io_req = done_ccb->ccb_h.ccb_ioreq;
902 #if 0
903                 xpt_print(periph->path, "%s: called for user CCB %p\n",
904                           __func__, io_req->user_ccb_ptr);
905 #endif
906                 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
907                  && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
908                  && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
909                         int error;
910
911                         error = passerror(done_ccb, CAM_RETRY_SELTO,
912                                           SF_RETRY_UA | SF_NO_PRINT);
913
914                         if (error == ERESTART) {
915                                 /*
916                                  * A retry was scheduled, so
917                                  * just return.
918                                  */
919                                 return;
920                         }
921                 }
922
923                 /*
924                  * Copy the allocated CCB contents back to the malloced CCB
925                  * so we can give status back to the user when he requests it.
926                  */
927                 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
928
929                 /*
930                  * Log data/transaction completion with devstat(9).
931                  */
932                 switch (done_ccb->ccb_h.func_code) {
933                 case XPT_SCSI_IO:
934                         devstat_end_transaction(softc->device_stats,
935                             done_ccb->csio.dxfer_len - done_ccb->csio.resid,
936                             done_ccb->csio.tag_action & 0x3,
937                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
938                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
939                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
940                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
941                             &io_req->start_time);
942                         break;
943                 case XPT_ATA_IO:
944                         devstat_end_transaction(softc->device_stats,
945                             done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
946                             0, /* Not used in ATA */
947                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
948                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 
949                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
950                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
951                             &io_req->start_time);
952                         break;
953                 case XPT_SMP_IO:
954                         /*
955                          * XXX KDM this isn't quite right, but there isn't
956                          * currently an easy way to represent a bidirectional 
957                          * transfer in devstat.  The only way to do it
958                          * and have the byte counts come out right would
959                          * mean that we would have to record two
960                          * transactions, one for the request and one for the
961                          * response.  For now, so that we report something,
962                          * just treat the entire thing as a read.
963                          */
964                         devstat_end_transaction(softc->device_stats,
965                             done_ccb->smpio.smp_request_len +
966                             done_ccb->smpio.smp_response_len,
967                             DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
968                             &io_req->start_time);
969                         break;
970                 default:
971                         devstat_end_transaction(softc->device_stats, 0,
972                             DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
973                             &io_req->start_time);
974                         break;
975                 }
976
977                 /*
978                  * In the normal case, take the completed I/O off of the
979                  * active queue and put it on the done queue.  Notitfy the
980                  * user that we have a completed I/O.
981                  */
982                 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
983                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
984                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
985                         selwakeuppri(&softc->read_select, PRIBIO);
986                         KNOTE_LOCKED(&softc->read_select.si_note, 0);
987                 } else {
988                         /*
989                          * In the case of an abandoned I/O (final close
990                          * without fetching the I/O), take it off of the
991                          * abandoned queue and free it.
992                          */
993                         TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
994                         passiocleanup(softc, io_req);
995                         uma_zfree(softc->pass_zone, io_req);
996
997                         /*
998                          * Release the done_ccb here, since we may wind up
999                          * freeing the peripheral when we decrement the
1000                          * reference count below.
1001                          */
1002                         xpt_release_ccb(done_ccb);
1003
1004                         /*
1005                          * If the abandoned queue is empty, we can release
1006                          * our reference to the periph since we won't have
1007                          * any more completions coming.
1008                          */
1009                         if ((TAILQ_EMPTY(&softc->abandoned_queue))
1010                          && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1011                                 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1012                                 cam_periph_release_locked(periph);
1013                         }
1014
1015                         /*
1016                          * We have already released the CCB, so we can
1017                          * return.
1018                          */
1019                         return;
1020                 }
1021                 break;
1022         }
1023         }
1024         xpt_release_ccb(done_ccb);
1025 }
1026
1027 static int
1028 passcreatezone(struct cam_periph *periph)
1029 {
1030         struct pass_softc *softc;
1031         int error;
1032
1033         error = 0;
1034         softc = (struct pass_softc *)periph->softc;
1035
1036         cam_periph_assert(periph, MA_OWNED);
1037         KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 
1038                 ("%s called when the pass(4) zone is valid!\n", __func__));
1039         KASSERT((softc->pass_zone == NULL), 
1040                 ("%s called when the pass(4) zone is allocated!\n", __func__));
1041
1042         if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1043
1044                 /*
1045                  * We're the first context through, so we need to create
1046                  * the pass(4) UMA zone for I/O requests.
1047                  */
1048                 softc->flags |= PASS_FLAG_ZONE_INPROG;
1049
1050                 /*
1051                  * uma_zcreate() does a blocking (M_WAITOK) allocation,
1052                  * so we cannot hold a mutex while we call it.
1053                  */
1054                 cam_periph_unlock(periph);
1055
1056                 softc->pass_zone = uma_zcreate(softc->zone_name,
1057                     sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1058                     /*align*/ 0, /*flags*/ 0);
1059
1060                 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1061                     softc->io_zone_size, NULL, NULL, NULL, NULL,
1062                     /*align*/ 0, /*flags*/ 0);
1063
1064                 cam_periph_lock(periph);
1065
1066                 if ((softc->pass_zone == NULL)
1067                  || (softc->pass_io_zone == NULL)) {
1068                         if (softc->pass_zone == NULL)
1069                                 xpt_print(periph->path, "unable to allocate "
1070                                     "IO Req UMA zone\n");
1071                         else
1072                                 xpt_print(periph->path, "unable to allocate "
1073                                     "IO UMA zone\n");
1074                         softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1075                         goto bailout;
1076                 }
1077
1078                 /*
1079                  * Set the flags appropriately and notify any other waiters.
1080                  */
1081                 softc->flags &= PASS_FLAG_ZONE_INPROG;
1082                 softc->flags |= PASS_FLAG_ZONE_VALID;
1083                 wakeup(&softc->pass_zone);
1084         } else {
1085                 /*
1086                  * In this case, the UMA zone has not yet been created, but
1087                  * another context is in the process of creating it.  We
1088                  * need to sleep until the creation is either done or has
1089                  * failed.
1090                  */
1091                 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1092                     && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1093                         error = msleep(&softc->pass_zone,
1094                                        cam_periph_mtx(periph), PRIBIO,
1095                                        "paszon", 0);
1096                         if (error != 0)
1097                                 goto bailout;
1098                 }
1099                 /*
1100                  * If the zone creation failed, no luck for the user.
1101                  */
1102                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1103                         error = ENOMEM;
1104                         goto bailout;
1105                 }
1106         }
1107 bailout:
1108         return (error);
1109 }
1110
1111 static void
1112 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1113 {
1114         union ccb *ccb;
1115         u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1116         int i, numbufs;
1117
1118         ccb = &io_req->ccb;
1119
1120         switch (ccb->ccb_h.func_code) {
1121         case XPT_DEV_MATCH:
1122                 numbufs = min(io_req->num_bufs, 2);
1123
1124                 if (numbufs == 1) {
1125                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1126                 } else {
1127                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1128                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1129                 }
1130                 break;
1131         case XPT_SCSI_IO:
1132         case XPT_CONT_TARGET_IO:
1133                 data_ptrs[0] = &ccb->csio.data_ptr;
1134                 numbufs = min(io_req->num_bufs, 1);
1135                 break;
1136         case XPT_ATA_IO:
1137                 data_ptrs[0] = &ccb->ataio.data_ptr;
1138                 numbufs = min(io_req->num_bufs, 1);
1139                 break;
1140         case XPT_SMP_IO:
1141                 numbufs = min(io_req->num_bufs, 2);
1142                 data_ptrs[0] = &ccb->smpio.smp_request;
1143                 data_ptrs[1] = &ccb->smpio.smp_response;
1144                 break;
1145         case XPT_DEV_ADVINFO:
1146                 numbufs = min(io_req->num_bufs, 1);
1147                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1148                 break;
1149         default:
1150                 /* allow ourselves to be swapped once again */
1151                 return;
1152                 break; /* NOTREACHED */ 
1153         }
1154
1155         if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1156                 free(io_req->user_segptr, M_SCSIPASS);
1157                 io_req->user_segptr = NULL;
1158         }
1159
1160         /*
1161          * We only want to free memory we malloced.
1162          */
1163         if (io_req->data_flags == CAM_DATA_VADDR) {
1164                 for (i = 0; i < io_req->num_bufs; i++) {
1165                         if (io_req->kern_bufs[i] == NULL)
1166                                 continue;
1167
1168                         free(io_req->kern_bufs[i], M_SCSIPASS);
1169                         io_req->kern_bufs[i] = NULL;
1170                 }
1171         } else if (io_req->data_flags == CAM_DATA_SG) {
1172                 for (i = 0; i < io_req->num_kern_segs; i++) {
1173                         if ((uint8_t *)(uintptr_t)
1174                             io_req->kern_segptr[i].ds_addr == NULL)
1175                                 continue;
1176
1177                         uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1178                             io_req->kern_segptr[i].ds_addr);
1179                         io_req->kern_segptr[i].ds_addr = 0;
1180                 }
1181         }
1182
1183         if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1184                 free(io_req->kern_segptr, M_SCSIPASS);
1185                 io_req->kern_segptr = NULL;
1186         }
1187
1188         if (io_req->data_flags != CAM_DATA_PADDR) {
1189                 for (i = 0; i < numbufs; i++) {
1190                         /*
1191                          * Restore the user's buffer pointers to their
1192                          * previous values.
1193                          */
1194                         if (io_req->user_bufs[i] != NULL)
1195                                 *data_ptrs[i] = io_req->user_bufs[i];
1196                 }
1197         }
1198
1199 }
1200
1201 static int
1202 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1203                ccb_flags direction)
1204 {
1205         bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1206         bus_dma_segment_t *user_sglist, *kern_sglist;
1207         int i, j, error;
1208
1209         error = 0;
1210         kern_watermark = 0;
1211         user_watermark = 0;
1212         len_to_copy = 0;
1213         len_copied = 0;
1214         user_sglist = io_req->user_segptr;
1215         kern_sglist = io_req->kern_segptr;
1216
1217         for (i = 0, j = 0; i < io_req->num_user_segs &&
1218              j < io_req->num_kern_segs;) {
1219                 uint8_t *user_ptr, *kern_ptr;
1220
1221                 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1222                     kern_sglist[j].ds_len - kern_watermark);
1223
1224                 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1225                 user_ptr = user_ptr + user_watermark;
1226                 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1227                 kern_ptr = kern_ptr + kern_watermark;
1228
1229                 user_watermark += len_to_copy;
1230                 kern_watermark += len_to_copy;
1231
1232                 if (!useracc(user_ptr, len_to_copy,
1233                     (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
1234                         xpt_print(periph->path, "%s: unable to access user "
1235                                   "S/G list element %p len %zu\n", __func__,
1236                                   user_ptr, len_to_copy);
1237                         error = EFAULT;
1238                         goto bailout;
1239                 }
1240
1241                 if (direction == CAM_DIR_IN) {
1242                         error = copyout(kern_ptr, user_ptr, len_to_copy);
1243                         if (error != 0) {
1244                                 xpt_print(periph->path, "%s: copyout of %u "
1245                                           "bytes from %p to %p failed with "
1246                                           "error %d\n", __func__, len_to_copy,
1247                                           kern_ptr, user_ptr, error);
1248                                 goto bailout;
1249                         }
1250                 } else {
1251                         error = copyin(user_ptr, kern_ptr, len_to_copy);
1252                         if (error != 0) {
1253                                 xpt_print(periph->path, "%s: copyin of %u "
1254                                           "bytes from %p to %p failed with "
1255                                           "error %d\n", __func__, len_to_copy,
1256                                           user_ptr, kern_ptr, error);
1257                                 goto bailout;
1258                         }
1259                 }
1260
1261                 len_copied += len_to_copy;
1262
1263                 if (user_sglist[i].ds_len == user_watermark) {
1264                         i++;
1265                         user_watermark = 0;
1266                 }
1267
1268                 if (kern_sglist[j].ds_len == kern_watermark) {
1269                         j++;
1270                         kern_watermark = 0;
1271                 }
1272         }
1273
1274 bailout:
1275
1276         return (error);
1277 }
1278
1279 static int
1280 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1281 {
1282         union ccb *ccb;
1283         struct pass_softc *softc;
1284         int numbufs, i;
1285         uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1286         uint32_t lengths[CAM_PERIPH_MAXMAPS];
1287         uint32_t dirs[CAM_PERIPH_MAXMAPS];
1288         uint32_t num_segs;
1289         uint16_t *seg_cnt_ptr;
1290         size_t maxmap;
1291         int error;
1292
1293         cam_periph_assert(periph, MA_NOTOWNED);
1294
1295         softc = periph->softc;
1296
1297         error = 0;
1298         ccb = &io_req->ccb;
1299         maxmap = 0;
1300         num_segs = 0;
1301         seg_cnt_ptr = NULL;
1302
1303         switch(ccb->ccb_h.func_code) {
1304         case XPT_DEV_MATCH:
1305                 if (ccb->cdm.match_buf_len == 0) {
1306                         printf("%s: invalid match buffer length 0\n", __func__);
1307                         return(EINVAL);
1308                 }
1309                 if (ccb->cdm.pattern_buf_len > 0) {
1310                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1311                         lengths[0] = ccb->cdm.pattern_buf_len;
1312                         dirs[0] = CAM_DIR_OUT;
1313                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1314                         lengths[1] = ccb->cdm.match_buf_len;
1315                         dirs[1] = CAM_DIR_IN;
1316                         numbufs = 2;
1317                 } else {
1318                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1319                         lengths[0] = ccb->cdm.match_buf_len;
1320                         dirs[0] = CAM_DIR_IN;
1321                         numbufs = 1;
1322                 }
1323                 io_req->data_flags = CAM_DATA_VADDR;
1324                 break;
1325         case XPT_SCSI_IO:
1326         case XPT_CONT_TARGET_IO:
1327                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1328                         return(0);
1329
1330                 /*
1331                  * The user shouldn't be able to supply a bio.
1332                  */
1333                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1334                         return (EINVAL);
1335
1336                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1337
1338                 data_ptrs[0] = &ccb->csio.data_ptr;
1339                 lengths[0] = ccb->csio.dxfer_len;
1340                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1341                 num_segs = ccb->csio.sglist_cnt;
1342                 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1343                 numbufs = 1;
1344                 maxmap = softc->maxio;
1345                 break;
1346         case XPT_ATA_IO:
1347                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1348                         return(0);
1349
1350                 /*
1351                  * We only support a single virtual address for ATA I/O.
1352                  */
1353                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1354                         return (EINVAL);
1355
1356                 io_req->data_flags = CAM_DATA_VADDR;
1357
1358                 data_ptrs[0] = &ccb->ataio.data_ptr;
1359                 lengths[0] = ccb->ataio.dxfer_len;
1360                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1361                 numbufs = 1;
1362                 maxmap = softc->maxio;
1363                 break;
1364         case XPT_SMP_IO:
1365                 io_req->data_flags = CAM_DATA_VADDR;
1366
1367                 data_ptrs[0] = &ccb->smpio.smp_request;
1368                 lengths[0] = ccb->smpio.smp_request_len;
1369                 dirs[0] = CAM_DIR_OUT;
1370                 data_ptrs[1] = &ccb->smpio.smp_response;
1371                 lengths[1] = ccb->smpio.smp_response_len;
1372                 dirs[1] = CAM_DIR_IN;
1373                 numbufs = 2;
1374                 maxmap = softc->maxio;
1375                 break;
1376         case XPT_DEV_ADVINFO:
1377                 if (ccb->cdai.bufsiz == 0)
1378                         return (0);
1379
1380                 io_req->data_flags = CAM_DATA_VADDR;
1381
1382                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1383                 lengths[0] = ccb->cdai.bufsiz;
1384                 dirs[0] = CAM_DIR_IN;
1385                 numbufs = 1;
1386                 break;
1387         default:
1388                 return(EINVAL);
1389                 break; /* NOTREACHED */
1390         }
1391
1392         io_req->num_bufs = numbufs;
1393
1394         /*
1395          * If there is a maximum, check to make sure that the user's
1396          * request fits within the limit.  In general, we should only have
1397          * a maximum length for requests that go to hardware.  Otherwise it
1398          * is whatever we're able to malloc.
1399          */
1400         for (i = 0; i < numbufs; i++) {
1401                 io_req->user_bufs[i] = *data_ptrs[i];
1402                 io_req->dirs[i] = dirs[i];
1403                 io_req->lengths[i] = lengths[i];
1404
1405                 if (maxmap == 0)
1406                         continue;
1407
1408                 if (lengths[i] <= maxmap)
1409                         continue;
1410
1411                 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1412                           "bytes\n", __func__, lengths[i], maxmap);
1413                 error = EINVAL;
1414                 goto bailout;
1415         }
1416
1417         switch (io_req->data_flags) {
1418         case CAM_DATA_VADDR:
1419                 /* Map or copy the buffer into kernel address space */
1420                 for (i = 0; i < numbufs; i++) {
1421                         uint8_t *tmp_buf;
1422
1423                         /*
1424                          * If for some reason no length is specified, we
1425                          * don't need to allocate anything.
1426                          */
1427                         if (io_req->lengths[i] == 0)
1428                                 continue;
1429
1430                         /*
1431                          * Make sure that the user's buffer is accessible
1432                          * to that process.
1433                          */
1434                         if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
1435                             (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
1436                              VM_PROT_READ)) {
1437                                 xpt_print(periph->path, "%s: user address %p "
1438                                     "length %u is not accessible\n", __func__,
1439                                     io_req->user_bufs[i], io_req->lengths[i]);
1440                                 error = EFAULT;
1441                                 goto bailout;
1442                         }
1443
1444                         tmp_buf = malloc(lengths[i], M_SCSIPASS,
1445                                          M_WAITOK | M_ZERO);
1446                         io_req->kern_bufs[i] = tmp_buf;
1447                         *data_ptrs[i] = tmp_buf;
1448
1449 #if 0
1450                         xpt_print(periph->path, "%s: malloced %p len %u, user "
1451                                   "buffer %p, operation: %s\n", __func__,
1452                                   tmp_buf, lengths[i], io_req->user_bufs[i],
1453                                   (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1454 #endif
1455                         /*
1456                          * We only need to copy in if the user is writing.
1457                          */
1458                         if (dirs[i] != CAM_DIR_OUT)
1459                                 continue;
1460
1461                         error = copyin(io_req->user_bufs[i],
1462                                        io_req->kern_bufs[i], lengths[i]);
1463                         if (error != 0) {
1464                                 xpt_print(periph->path, "%s: copy of user "
1465                                           "buffer from %p to %p failed with "
1466                                           "error %d\n", __func__,
1467                                           io_req->user_bufs[i],
1468                                           io_req->kern_bufs[i], error);
1469                                 goto bailout;
1470                         }
1471                 }
1472                 break;
1473         case CAM_DATA_PADDR:
1474                 /* Pass down the pointer as-is */
1475                 break;
1476         case CAM_DATA_SG: {
1477                 size_t sg_length, size_to_go, alloc_size;
1478                 uint32_t num_segs_needed;
1479
1480                 /*
1481                  * Copy the user S/G list in, and then copy in the
1482                  * individual segments.
1483                  */
1484                 /*
1485                  * We shouldn't see this, but check just in case.
1486                  */
1487                 if (numbufs != 1) {
1488                         xpt_print(periph->path, "%s: cannot currently handle "
1489                                   "more than one S/G list per CCB\n", __func__);
1490                         error = EINVAL;
1491                         goto bailout;
1492                 }
1493
1494                 /*
1495                  * We have to have at least one segment.
1496                  */
1497                 if (num_segs == 0) {
1498                         xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1499                                   "but sglist_cnt=0!\n", __func__);
1500                         error = EINVAL;
1501                         goto bailout;
1502                 }
1503
1504                 /*
1505                  * Make sure the user specified the total length and didn't
1506                  * just leave it to us to decode the S/G list.
1507                  */
1508                 if (lengths[0] == 0) {
1509                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1510                                   "but CAM_DATA_SG flag is set!\n", __func__);
1511                         error = EINVAL;
1512                         goto bailout;
1513                 }
1514
1515                 /*
1516                  * We allocate buffers in io_zone_size increments for an
1517                  * S/G list.  This will generally be MAXPHYS.
1518                  */
1519                 if (lengths[0] <= softc->io_zone_size)
1520                         num_segs_needed = 1;
1521                 else {
1522                         num_segs_needed = lengths[0] / softc->io_zone_size;
1523                         if ((lengths[0] % softc->io_zone_size) != 0)
1524                                 num_segs_needed++;
1525                 }
1526
1527                 /* Figure out the size of the S/G list */
1528                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1529                 io_req->num_user_segs = num_segs;
1530                 io_req->num_kern_segs = num_segs_needed;
1531
1532                 /* Save the user's S/G list pointer for later restoration */
1533                 io_req->user_bufs[0] = *data_ptrs[0];
1534
1535                 /*
1536                  * If we have enough segments allocated by default to handle
1537                  * the length of the user's S/G list,
1538                  */
1539                 if (num_segs > PASS_MAX_SEGS) {
1540                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1541                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1542                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1543                 } else
1544                         io_req->user_segptr = io_req->user_segs;
1545
1546                 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
1547                         xpt_print(periph->path, "%s: unable to access user "
1548                                   "S/G list at %p\n", __func__, *data_ptrs[0]);
1549                         error = EFAULT;
1550                         goto bailout;
1551                 }
1552
1553                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1554                 if (error != 0) {
1555                         xpt_print(periph->path, "%s: copy of user S/G list "
1556                                   "from %p to %p failed with error %d\n",
1557                                   __func__, *data_ptrs[0], io_req->user_segptr,
1558                                   error);
1559                         goto bailout;
1560                 }
1561
1562                 if (num_segs_needed > PASS_MAX_SEGS) {
1563                         io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1564                             num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1565                         io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1566                 } else {
1567                         io_req->kern_segptr = io_req->kern_segs;
1568                 }
1569
1570                 /*
1571                  * Allocate the kernel S/G list.
1572                  */
1573                 for (size_to_go = lengths[0], i = 0;
1574                      size_to_go > 0 && i < num_segs_needed;
1575                      i++, size_to_go -= alloc_size) {
1576                         uint8_t *kern_ptr;
1577
1578                         alloc_size = min(size_to_go, softc->io_zone_size);
1579                         kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1580                         io_req->kern_segptr[i].ds_addr =
1581                             (bus_addr_t)(uintptr_t)kern_ptr;
1582                         io_req->kern_segptr[i].ds_len = alloc_size;
1583                 }
1584                 if (size_to_go > 0) {
1585                         printf("%s: size_to_go = %zu, software error!\n",
1586                                __func__, size_to_go);
1587                         error = EINVAL;
1588                         goto bailout;
1589                 }
1590
1591                 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1592                 *seg_cnt_ptr = io_req->num_kern_segs;
1593
1594                 /*
1595                  * We only need to copy data here if the user is writing.
1596                  */
1597                 if (dirs[0] == CAM_DIR_OUT)
1598                         error = passcopysglist(periph, io_req, dirs[0]);
1599                 break;
1600         }
1601         case CAM_DATA_SG_PADDR: {
1602                 size_t sg_length;
1603
1604                 /*
1605                  * We shouldn't see this, but check just in case.
1606                  */
1607                 if (numbufs != 1) {
1608                         printf("%s: cannot currently handle more than one "
1609                                "S/G list per CCB\n", __func__);
1610                         error = EINVAL;
1611                         goto bailout;
1612                 }
1613
1614                 /*
1615                  * We have to have at least one segment.
1616                  */
1617                 if (num_segs == 0) {
1618                         xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1619                                   "set, but sglist_cnt=0!\n", __func__);
1620                         error = EINVAL;
1621                         goto bailout;
1622                 }
1623
1624                 /*
1625                  * Make sure the user specified the total length and didn't
1626                  * just leave it to us to decode the S/G list.
1627                  */
1628                 if (lengths[0] == 0) {
1629                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1630                                   "but CAM_DATA_SG flag is set!\n", __func__);
1631                         error = EINVAL;
1632                         goto bailout;
1633                 }
1634
1635                 /* Figure out the size of the S/G list */
1636                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1637                 io_req->num_user_segs = num_segs;
1638                 io_req->num_kern_segs = io_req->num_user_segs;
1639
1640                 /* Save the user's S/G list pointer for later restoration */
1641                 io_req->user_bufs[0] = *data_ptrs[0];
1642
1643                 if (num_segs > PASS_MAX_SEGS) {
1644                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1645                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1646                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1647                 } else
1648                         io_req->user_segptr = io_req->user_segs;
1649
1650                 io_req->kern_segptr = io_req->user_segptr;
1651
1652                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1653                 if (error != 0) {
1654                         xpt_print(periph->path, "%s: copy of user S/G list "
1655                                   "from %p to %p failed with error %d\n",
1656                                   __func__, *data_ptrs[0], io_req->user_segptr,
1657                                   error);
1658                         goto bailout;
1659                 }
1660                 break;
1661         }
1662         default:
1663         case CAM_DATA_BIO:
1664                 /*
1665                  * A user shouldn't be attaching a bio to the CCB.  It
1666                  * isn't a user-accessible structure.
1667                  */
1668                 error = EINVAL;
1669                 break;
1670         }
1671
1672 bailout:
1673         if (error != 0)
1674                 passiocleanup(softc, io_req);
1675
1676         return (error);
1677 }
1678
1679 static int
1680 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1681 {
1682         struct pass_softc *softc;
1683         union ccb *ccb;
1684         int error;
1685         int i;
1686
1687         error = 0;
1688         softc = (struct pass_softc *)periph->softc;
1689         ccb = &io_req->ccb;
1690
1691         switch (io_req->data_flags) {
1692         case CAM_DATA_VADDR:
1693                 /*
1694                  * Copy back to the user buffer if this was a read.
1695                  */
1696                 for (i = 0; i < io_req->num_bufs; i++) {
1697                         if (io_req->dirs[i] != CAM_DIR_IN)
1698                                 continue;
1699
1700                         error = copyout(io_req->kern_bufs[i],
1701                             io_req->user_bufs[i], io_req->lengths[i]);
1702                         if (error != 0) {
1703                                 xpt_print(periph->path, "Unable to copy %u "
1704                                           "bytes from %p to user address %p\n",
1705                                           io_req->lengths[i],
1706                                           io_req->kern_bufs[i],
1707                                           io_req->user_bufs[i]);
1708                                 goto bailout;
1709                         }
1710
1711                 }
1712                 break;
1713         case CAM_DATA_PADDR:
1714                 /* Do nothing.  The pointer is a physical address already */
1715                 break;
1716         case CAM_DATA_SG:
1717                 /*
1718                  * Copy back to the user buffer if this was a read.
1719                  * Restore the user's S/G list buffer pointer.
1720                  */
1721                 if (io_req->dirs[0] == CAM_DIR_IN)
1722                         error = passcopysglist(periph, io_req, io_req->dirs[0]);
1723                 break;
1724         case CAM_DATA_SG_PADDR:
1725                 /*
1726                  * Restore the user's S/G list buffer pointer.  No need to
1727                  * copy.
1728                  */
1729                 break;
1730         default:
1731         case CAM_DATA_BIO:
1732                 error = EINVAL;
1733                 break;
1734         }
1735
1736 bailout:
1737         /*
1738          * Reset the user's pointers to their original values and free
1739          * allocated memory.
1740          */
1741         passiocleanup(softc, io_req);
1742
1743         return (error);
1744 }
1745
1746 static int
1747 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1748 {
1749         int error;
1750
1751         if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1752                 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1753         }
1754         return (error);
1755 }
1756
1757 static int
1758 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1759 {
1760         struct  cam_periph *periph;
1761         struct  pass_softc *softc;
1762         int     error;
1763         uint32_t priority;
1764
1765         periph = (struct cam_periph *)dev->si_drv1;
1766         cam_periph_lock(periph);
1767         softc = (struct pass_softc *)periph->softc;
1768
1769         error = 0;
1770
1771         switch (cmd) {
1772
1773         case CAMIOCOMMAND:
1774         {
1775                 union ccb *inccb;
1776                 union ccb *ccb;
1777                 int ccb_malloced;
1778
1779                 inccb = (union ccb *)addr;
1780
1781                 /*
1782                  * Some CCB types, like scan bus and scan lun can only go
1783                  * through the transport layer device.
1784                  */
1785                 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1786                         xpt_print(periph->path, "CCB function code %#x is "
1787                             "restricted to the XPT device\n",
1788                             inccb->ccb_h.func_code);
1789                         error = ENODEV;
1790                         break;
1791                 }
1792
1793                 /* Compatibility for RL/priority-unaware code. */
1794                 priority = inccb->ccb_h.pinfo.priority;
1795                 if (priority <= CAM_PRIORITY_OOB)
1796                     priority += CAM_PRIORITY_OOB + 1;
1797
1798                 /*
1799                  * Non-immediate CCBs need a CCB from the per-device pool
1800                  * of CCBs, which is scheduled by the transport layer.
1801                  * Immediate CCBs and user-supplied CCBs should just be
1802                  * malloced.
1803                  */
1804                 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1805                  && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1806                         ccb = cam_periph_getccb(periph, priority);
1807                         ccb_malloced = 0;
1808                 } else {
1809                         ccb = xpt_alloc_ccb_nowait();
1810
1811                         if (ccb != NULL)
1812                                 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1813                                               priority);
1814                         ccb_malloced = 1;
1815                 }
1816
1817                 if (ccb == NULL) {
1818                         xpt_print(periph->path, "unable to allocate CCB\n");
1819                         error = ENOMEM;
1820                         break;
1821                 }
1822
1823                 error = passsendccb(periph, ccb, inccb);
1824
1825                 if (ccb_malloced)
1826                         xpt_free_ccb(ccb);
1827                 else
1828                         xpt_release_ccb(ccb);
1829
1830                 break;
1831         }
1832         case CAMIOQUEUE:
1833         {
1834                 struct pass_io_req *io_req;
1835                 union ccb **user_ccb, *ccb;
1836                 xpt_opcode fc;
1837
1838                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1839                         error = passcreatezone(periph);
1840                         if (error != 0)
1841                                 goto bailout;
1842                 }
1843
1844                 /*
1845                  * We're going to do a blocking allocation for this I/O
1846                  * request, so we have to drop the lock.
1847                  */
1848                 cam_periph_unlock(periph);
1849
1850                 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1851                 ccb = &io_req->ccb;
1852                 user_ccb = (union ccb **)addr;
1853
1854                 /*
1855                  * Unlike the CAMIOCOMMAND ioctl above, we only have a
1856                  * pointer to the user's CCB, so we have to copy the whole
1857                  * thing in to a buffer we have allocated (above) instead
1858                  * of allowing the ioctl code to malloc a buffer and copy
1859                  * it in.
1860                  *
1861                  * This is an advantage for this asynchronous interface,
1862                  * since we don't want the memory to get freed while the
1863                  * CCB is outstanding.
1864                  */
1865 #if 0
1866                 xpt_print(periph->path, "Copying user CCB %p to "
1867                           "kernel address %p\n", *user_ccb, ccb);
1868 #endif
1869                 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1870                 if (error != 0) {
1871                         xpt_print(periph->path, "Copy of user CCB %p to "
1872                                   "kernel address %p failed with error %d\n",
1873                                   *user_ccb, ccb, error);
1874                         uma_zfree(softc->pass_zone, io_req);
1875                         cam_periph_lock(periph);
1876                         break;
1877                 }
1878
1879                 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1880                         if (ccb->csio.cdb_len > IOCDBLEN) {
1881                                 error = EINVAL;
1882                                 break;
1883                         }
1884                         error = copyin(ccb->csio.cdb_io.cdb_ptr,
1885                             ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1886                         if (error)
1887                                 break;
1888                         ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1889                 }
1890
1891                 /*
1892                  * Some CCB types, like scan bus and scan lun can only go
1893                  * through the transport layer device.
1894                  */
1895                 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1896                         xpt_print(periph->path, "CCB function code %#x is "
1897                             "restricted to the XPT device\n",
1898                             ccb->ccb_h.func_code);
1899                         uma_zfree(softc->pass_zone, io_req);
1900                         cam_periph_lock(periph);
1901                         error = ENODEV;
1902                         break;
1903                 }
1904
1905                 /*
1906                  * Save the user's CCB pointer as well as his linked list
1907                  * pointers and peripheral private area so that we can
1908                  * restore these later.
1909                  */
1910                 io_req->user_ccb_ptr = *user_ccb;
1911                 io_req->user_periph_links = ccb->ccb_h.periph_links;
1912                 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1913
1914                 /*
1915                  * Now that we've saved the user's values, we can set our
1916                  * own peripheral private entry.
1917                  */
1918                 ccb->ccb_h.ccb_ioreq = io_req;
1919
1920                 /* Compatibility for RL/priority-unaware code. */
1921                 priority = ccb->ccb_h.pinfo.priority;
1922                 if (priority <= CAM_PRIORITY_OOB)
1923                     priority += CAM_PRIORITY_OOB + 1;
1924
1925                 /*
1926                  * Setup fields in the CCB like the path and the priority.
1927                  * The path in particular cannot be done in userland, since
1928                  * it is a pointer to a kernel data structure.
1929                  */
1930                 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1931                                     ccb->ccb_h.flags);
1932
1933                 /*
1934                  * Setup our done routine.  There is no way for the user to
1935                  * have a valid pointer here.
1936                  */
1937                 ccb->ccb_h.cbfcnp = passdone;
1938
1939                 fc = ccb->ccb_h.func_code;
1940                 /*
1941                  * If this function code has memory that can be mapped in
1942                  * or out, we need to call passmemsetup().
1943                  */
1944                 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1945                  || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1946                  || (fc == XPT_DEV_ADVINFO)) {
1947                         error = passmemsetup(periph, io_req);
1948                         if (error != 0) {
1949                                 uma_zfree(softc->pass_zone, io_req);
1950                                 cam_periph_lock(periph);
1951                                 break;
1952                         }
1953                 } else
1954                         io_req->mapinfo.num_bufs_used = 0;
1955
1956                 cam_periph_lock(periph);
1957
1958                 /*
1959                  * Everything goes on the incoming queue initially.
1960                  */
1961                 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1962
1963                 /*
1964                  * If the CCB is queued, and is not a user CCB, then
1965                  * we need to allocate a slot for it.  Call xpt_schedule()
1966                  * so that our start routine will get called when a CCB is
1967                  * available.
1968                  */
1969                 if ((fc & XPT_FC_QUEUED)
1970                  && ((fc & XPT_FC_USER_CCB) == 0)) {
1971                         xpt_schedule(periph, priority);
1972                         break;
1973                 } 
1974
1975                 /*
1976                  * At this point, the CCB in question is either an
1977                  * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1978                  * and therefore should be malloced, not allocated via a slot.
1979                  * Remove the CCB from the incoming queue and add it to the
1980                  * active queue.
1981                  */
1982                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1983                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1984
1985                 xpt_action(ccb);
1986
1987                 /*
1988                  * If this is not a queued CCB (i.e. it is an immediate CCB),
1989                  * then it is already done.  We need to put it on the done
1990                  * queue for the user to fetch.
1991                  */
1992                 if ((fc & XPT_FC_QUEUED) == 0) {
1993                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
1994                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
1995                 }
1996                 break;
1997         }
1998         case CAMIOGET:
1999         {
2000                 union ccb **user_ccb;
2001                 struct pass_io_req *io_req;
2002                 int old_error;
2003
2004                 user_ccb = (union ccb **)addr;
2005                 old_error = 0;
2006
2007                 io_req = TAILQ_FIRST(&softc->done_queue);
2008                 if (io_req == NULL) {
2009                         error = ENOENT;
2010                         break;
2011                 }
2012
2013                 /*
2014                  * Remove the I/O from the done queue.
2015                  */
2016                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2017
2018                 /*
2019                  * We have to drop the lock during the copyout because the
2020                  * copyout can result in VM faults that require sleeping.
2021                  */
2022                 cam_periph_unlock(periph);
2023
2024                 /*
2025                  * Do any needed copies (e.g. for reads) and revert the
2026                  * pointers in the CCB back to the user's pointers.
2027                  */
2028                 error = passmemdone(periph, io_req);
2029
2030                 old_error = error;
2031
2032                 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2033                 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2034
2035 #if 0
2036                 xpt_print(periph->path, "Copying to user CCB %p from "
2037                           "kernel address %p\n", *user_ccb, &io_req->ccb);
2038 #endif
2039
2040                 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2041                 if (error != 0) {
2042                         xpt_print(periph->path, "Copy to user CCB %p from "
2043                                   "kernel address %p failed with error %d\n",
2044                                   *user_ccb, &io_req->ccb, error);
2045                 }
2046
2047                 /*
2048                  * Prefer the first error we got back, and make sure we
2049                  * don't overwrite bad status with good.
2050                  */
2051                 if (old_error != 0)
2052                         error = old_error;
2053
2054                 cam_periph_lock(periph);
2055
2056                 /*
2057                  * At this point, if there was an error, we could potentially
2058                  * re-queue the I/O and try again.  But why?  The error
2059                  * would almost certainly happen again.  We might as well
2060                  * not leak memory.
2061                  */
2062                 uma_zfree(softc->pass_zone, io_req);
2063                 break;
2064         }
2065         default:
2066                 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2067                 break;
2068         }
2069
2070 bailout:
2071         cam_periph_unlock(periph);
2072
2073         return(error);
2074 }
2075
2076 static int
2077 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2078 {
2079         struct cam_periph *periph;
2080         struct pass_softc *softc;
2081         int revents;
2082
2083         periph = (struct cam_periph *)dev->si_drv1;
2084         softc = (struct pass_softc *)periph->softc;
2085
2086         revents = poll_events & (POLLOUT | POLLWRNORM);
2087         if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2088                 cam_periph_lock(periph);
2089
2090                 if (!TAILQ_EMPTY(&softc->done_queue)) {
2091                         revents |= poll_events & (POLLIN | POLLRDNORM);
2092                 }
2093                 cam_periph_unlock(periph);
2094                 if (revents == 0)
2095                         selrecord(td, &softc->read_select);
2096         }
2097
2098         return (revents);
2099 }
2100
2101 static int
2102 passkqfilter(struct cdev *dev, struct knote *kn)
2103 {
2104         struct cam_periph *periph;
2105         struct pass_softc *softc;
2106
2107         periph = (struct cam_periph *)dev->si_drv1;
2108         softc = (struct pass_softc *)periph->softc;
2109
2110         kn->kn_hook = (caddr_t)periph;
2111         kn->kn_fop = &passread_filtops;
2112         knlist_add(&softc->read_select.si_note, kn, 0);
2113
2114         return (0);
2115 }
2116
2117 static void
2118 passreadfiltdetach(struct knote *kn)
2119 {
2120         struct cam_periph *periph;
2121         struct pass_softc *softc;
2122
2123         periph = (struct cam_periph *)kn->kn_hook;
2124         softc = (struct pass_softc *)periph->softc;
2125
2126         knlist_remove(&softc->read_select.si_note, kn, 0);
2127 }
2128
2129 static int
2130 passreadfilt(struct knote *kn, long hint)
2131 {
2132         struct cam_periph *periph;
2133         struct pass_softc *softc;
2134         int retval;
2135
2136         periph = (struct cam_periph *)kn->kn_hook;
2137         softc = (struct pass_softc *)periph->softc;
2138
2139         cam_periph_assert(periph, MA_OWNED);
2140
2141         if (TAILQ_EMPTY(&softc->done_queue))
2142                 retval = 0;
2143         else
2144                 retval = 1;
2145
2146         return (retval);
2147 }
2148
2149 /*
2150  * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2151  * should be the CCB that is copied in from the user.
2152  */
2153 static int
2154 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2155 {
2156         struct pass_softc *softc;
2157         struct cam_periph_map_info mapinfo;
2158         uint8_t *cmd;
2159         xpt_opcode fc;
2160         int error;
2161
2162         softc = (struct pass_softc *)periph->softc;
2163
2164         /*
2165          * There are some fields in the CCB header that need to be
2166          * preserved, the rest we get from the user.
2167          */
2168         xpt_merge_ccb(ccb, inccb);
2169
2170         if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2171                 cmd = __builtin_alloca(ccb->csio.cdb_len);
2172                 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2173                 if (error)
2174                         return (error);
2175                 ccb->csio.cdb_io.cdb_ptr = cmd;
2176         }
2177
2178         /*
2179          */
2180         ccb->ccb_h.cbfcnp = passdone;
2181
2182         /*
2183          * Let cam_periph_mapmem do a sanity check on the data pointer format.
2184          * Even if no data transfer is needed, it's a cheap check and it
2185          * simplifies the code.
2186          */
2187         fc = ccb->ccb_h.func_code;
2188         if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2189          || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) {
2190                 bzero(&mapinfo, sizeof(mapinfo));
2191
2192                 /*
2193                  * cam_periph_mapmem calls into proc and vm functions that can
2194                  * sleep as well as trigger I/O, so we can't hold the lock.
2195                  * Dropping it here is reasonably safe.
2196                  */
2197                 cam_periph_unlock(periph);
2198                 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2199                 cam_periph_lock(periph);
2200
2201                 /*
2202                  * cam_periph_mapmem returned an error, we can't continue.
2203                  * Return the error to the user.
2204                  */
2205                 if (error)
2206                         return(error);
2207         } else
2208                 /* Ensure that the unmap call later on is a no-op. */
2209                 mapinfo.num_bufs_used = 0;
2210
2211         /*
2212          * If the user wants us to perform any error recovery, then honor
2213          * that request.  Otherwise, it's up to the user to perform any
2214          * error recovery.
2215          */
2216         cam_periph_runccb(ccb, passerror, /* cam_flags */ CAM_RETRY_SELTO,
2217             /* sense_flags */ ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ?
2218              SF_RETRY_UA : SF_NO_RECOVERY) | SF_NO_PRINT,
2219             softc->device_stats);
2220
2221         cam_periph_unmapmem(ccb, &mapinfo);
2222
2223         ccb->ccb_h.cbfcnp = NULL;
2224         ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2225         bcopy(ccb, inccb, sizeof(union ccb));
2226
2227         return(0);
2228 }
2229
2230 static int
2231 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2232 {
2233         struct cam_periph *periph;
2234         struct pass_softc *softc;
2235
2236         periph = xpt_path_periph(ccb->ccb_h.path);
2237         softc = (struct pass_softc *)periph->softc;
2238         
2239         return(cam_periph_error(ccb, cam_flags, sense_flags, 
2240                                  &softc->saved_ccb));
2241 }