]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cam/scsi/scsi_pass.c
Use the new TUNABLE_INT64 to match the type of sbintime_t.
[FreeBSD/FreeBSD.git] / sys / cam / scsi / scsi_pass.c
1 /*-
2  * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
3  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_kdtrace.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/conf.h>
37 #include <sys/types.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/devicestat.h>
41 #include <sys/errno.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/poll.h>
46 #include <sys/selinfo.h>
47 #include <sys/sdt.h>
48 #include <sys/taskqueue.h>
49 #include <vm/uma.h>
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52
53 #include <machine/bus.h>
54
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_periph.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_xpt.h>
60 #include <cam/cam_xpt_periph.h>
61 #include <cam/cam_debug.h>
62 #include <cam/cam_compat.h>
63 #include <cam/cam_xpt_periph.h>
64
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_pass.h>
67
68 typedef enum {
69         PASS_FLAG_OPEN                  = 0x01,
70         PASS_FLAG_LOCKED                = 0x02,
71         PASS_FLAG_INVALID               = 0x04,
72         PASS_FLAG_INITIAL_PHYSPATH      = 0x08,
73         PASS_FLAG_ZONE_INPROG           = 0x10,
74         PASS_FLAG_ZONE_VALID            = 0x20,
75         PASS_FLAG_UNMAPPED_CAPABLE      = 0x40,
76         PASS_FLAG_ABANDONED_REF_SET     = 0x80
77 } pass_flags;
78
79 typedef enum {
80         PASS_STATE_NORMAL
81 } pass_state;
82
83 typedef enum {
84         PASS_CCB_BUFFER_IO,
85         PASS_CCB_QUEUED_IO
86 } pass_ccb_types;
87
88 #define ccb_type        ppriv_field0
89 #define ccb_ioreq       ppriv_ptr1
90
91 /*
92  * The maximum number of memory segments we preallocate.
93  */
94 #define PASS_MAX_SEGS   16
95
96 typedef enum {
97         PASS_IO_NONE            = 0x00,
98         PASS_IO_USER_SEG_MALLOC = 0x01,
99         PASS_IO_KERN_SEG_MALLOC = 0x02,
100         PASS_IO_ABANDONED       = 0x04
101 } pass_io_flags; 
102
103 struct pass_io_req {
104         union ccb                        ccb;
105         union ccb                       *alloced_ccb;
106         union ccb                       *user_ccb_ptr;
107         camq_entry                       user_periph_links;
108         ccb_ppriv_area                   user_periph_priv;
109         struct cam_periph_map_info       mapinfo;
110         pass_io_flags                    flags;
111         ccb_flags                        data_flags;
112         int                              num_user_segs;
113         bus_dma_segment_t                user_segs[PASS_MAX_SEGS];
114         int                              num_kern_segs;
115         bus_dma_segment_t                kern_segs[PASS_MAX_SEGS];
116         bus_dma_segment_t               *user_segptr;
117         bus_dma_segment_t               *kern_segptr;
118         int                              num_bufs;
119         uint32_t                         dirs[CAM_PERIPH_MAXMAPS];
120         uint32_t                         lengths[CAM_PERIPH_MAXMAPS];
121         uint8_t                         *user_bufs[CAM_PERIPH_MAXMAPS];
122         uint8_t                         *kern_bufs[CAM_PERIPH_MAXMAPS];
123         struct bintime                   start_time;
124         TAILQ_ENTRY(pass_io_req)         links;
125 };
126
127 struct pass_softc {
128         pass_state                state;
129         pass_flags                flags;
130         u_int8_t                  pd_type;
131         union ccb                 saved_ccb;
132         int                       open_count;
133         u_int                     maxio;
134         struct devstat           *device_stats;
135         struct cdev              *dev;
136         struct cdev              *alias_dev;
137         struct task               add_physpath_task;
138         struct task               shutdown_kqueue_task;
139         struct selinfo            read_select;
140         TAILQ_HEAD(, pass_io_req) incoming_queue;
141         TAILQ_HEAD(, pass_io_req) active_queue;
142         TAILQ_HEAD(, pass_io_req) abandoned_queue;
143         TAILQ_HEAD(, pass_io_req) done_queue;
144         struct cam_periph        *periph;
145         char                      zone_name[12];
146         char                      io_zone_name[12];
147         uma_zone_t                pass_zone;
148         uma_zone_t                pass_io_zone;
149         size_t                    io_zone_size;
150 };
151
152 static  d_open_t        passopen;
153 static  d_close_t       passclose;
154 static  d_ioctl_t       passioctl;
155 static  d_ioctl_t       passdoioctl;
156 static  d_poll_t        passpoll;
157 static  d_kqfilter_t    passkqfilter;
158 static  void            passreadfiltdetach(struct knote *kn);
159 static  int             passreadfilt(struct knote *kn, long hint);
160
161 static  periph_init_t   passinit;
162 static  periph_ctor_t   passregister;
163 static  periph_oninv_t  passoninvalidate;
164 static  periph_dtor_t   passcleanup;
165 static  periph_start_t  passstart;
166 static  void            pass_shutdown_kqueue(void *context, int pending);
167 static  void            pass_add_physpath(void *context, int pending);
168 static  void            passasync(void *callback_arg, u_int32_t code,
169                                   struct cam_path *path, void *arg);
170 static  void            passdone(struct cam_periph *periph, 
171                                  union ccb *done_ccb);
172 static  int             passcreatezone(struct cam_periph *periph);
173 static  void            passiocleanup(struct pass_softc *softc, 
174                                       struct pass_io_req *io_req);
175 static  int             passcopysglist(struct cam_periph *periph,
176                                        struct pass_io_req *io_req,
177                                        ccb_flags direction);
178 static  int             passmemsetup(struct cam_periph *periph,
179                                      struct pass_io_req *io_req);
180 static  int             passmemdone(struct cam_periph *periph,
181                                     struct pass_io_req *io_req);
182 static  int             passerror(union ccb *ccb, u_int32_t cam_flags, 
183                                   u_int32_t sense_flags);
184 static  int             passsendccb(struct cam_periph *periph, union ccb *ccb,
185                                     union ccb *inccb);
186
187 static struct periph_driver passdriver =
188 {
189         passinit, "pass",
190         TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
191 };
192
193 PERIPHDRIVER_DECLARE(pass, passdriver);
194
195 static struct cdevsw pass_cdevsw = {
196         .d_version =    D_VERSION,
197         .d_flags =      D_TRACKCLOSE,
198         .d_open =       passopen,
199         .d_close =      passclose,
200         .d_ioctl =      passioctl,
201         .d_poll =       passpoll,
202         .d_kqfilter =   passkqfilter,
203         .d_name =       "pass",
204 };
205
206 static struct filterops passread_filtops = {
207         .f_isfd =       1,
208         .f_detach =     passreadfiltdetach,
209         .f_event =      passreadfilt
210 };
211
212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
213
214 static void
215 passinit(void)
216 {
217         cam_status status;
218
219         /*
220          * Install a global async callback.  This callback will
221          * receive async callbacks like "new device found".
222          */
223         status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
224
225         if (status != CAM_REQ_CMP) {
226                 printf("pass: Failed to attach master async callback "
227                        "due to status 0x%x!\n", status);
228         }
229
230 }
231
232 static void
233 passrejectios(struct cam_periph *periph)
234 {
235         struct pass_io_req *io_req, *io_req2;
236         struct pass_softc *softc;
237
238         softc = (struct pass_softc *)periph->softc;
239
240         /*
241          * The user can no longer get status for I/O on the done queue, so
242          * clean up all outstanding I/O on the done queue.
243          */
244         TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
245                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
246                 passiocleanup(softc, io_req);
247                 uma_zfree(softc->pass_zone, io_req);
248         }
249
250         /*
251          * The underlying device is gone, so we can't issue these I/Os.
252          * The devfs node has been shut down, so we can't return status to
253          * the user.  Free any I/O left on the incoming queue.
254          */
255         TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
256                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
257                 passiocleanup(softc, io_req);
258                 uma_zfree(softc->pass_zone, io_req);
259         }
260
261         /*
262          * Normally we would put I/Os on the abandoned queue and acquire a
263          * reference when we saw the final close.  But, the device went
264          * away and devfs may have moved everything off to deadfs by the
265          * time the I/O done callback is called; as a result, we won't see
266          * any more closes.  So, if we have any active I/Os, we need to put
267          * them on the abandoned queue.  When the abandoned queue is empty,
268          * we'll release the remaining reference (see below) to the peripheral.
269          */
270         TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
271                 TAILQ_REMOVE(&softc->active_queue, io_req, links);
272                 io_req->flags |= PASS_IO_ABANDONED;
273                 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
274         }
275
276         /*
277          * If we put any I/O on the abandoned queue, acquire a reference.
278          */
279         if ((!TAILQ_EMPTY(&softc->abandoned_queue))
280          && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
281                 cam_periph_doacquire(periph);
282                 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
283         }
284 }
285
286 static void
287 passdevgonecb(void *arg)
288 {
289         struct cam_periph *periph;
290         struct mtx *mtx;
291         struct pass_softc *softc;
292         int i;
293
294         periph = (struct cam_periph *)arg;
295         mtx = cam_periph_mtx(periph);
296         mtx_lock(mtx);
297
298         softc = (struct pass_softc *)periph->softc;
299         KASSERT(softc->open_count >= 0, ("Negative open count %d",
300                 softc->open_count));
301
302         /*
303          * When we get this callback, we will get no more close calls from
304          * devfs.  So if we have any dangling opens, we need to release the
305          * reference held for that particular context.
306          */
307         for (i = 0; i < softc->open_count; i++)
308                 cam_periph_release_locked(periph);
309
310         softc->open_count = 0;
311
312         /*
313          * Release the reference held for the device node, it is gone now.
314          * Accordingly, inform all queued I/Os of their fate.
315          */
316         cam_periph_release_locked(periph);
317         passrejectios(periph);
318
319         /*
320          * We reference the SIM lock directly here, instead of using
321          * cam_periph_unlock().  The reason is that the final call to
322          * cam_periph_release_locked() above could result in the periph
323          * getting freed.  If that is the case, dereferencing the periph
324          * with a cam_periph_unlock() call would cause a page fault.
325          */
326         mtx_unlock(mtx);
327
328         /*
329          * We have to remove our kqueue context from a thread because it
330          * may sleep.  It would be nice if we could get a callback from
331          * kqueue when it is done cleaning up resources.
332          */
333         taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
334 }
335
336 static void
337 passoninvalidate(struct cam_periph *periph)
338 {
339         struct pass_softc *softc;
340
341         softc = (struct pass_softc *)periph->softc;
342
343         /*
344          * De-register any async callbacks.
345          */
346         xpt_register_async(0, passasync, periph, periph->path);
347
348         softc->flags |= PASS_FLAG_INVALID;
349
350         /*
351          * Tell devfs this device has gone away, and ask for a callback
352          * when it has cleaned up its state.
353          */
354         destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
355 }
356
357 static void
358 passcleanup(struct cam_periph *periph)
359 {
360         struct pass_softc *softc;
361
362         softc = (struct pass_softc *)periph->softc;
363
364         cam_periph_assert(periph, MA_OWNED);
365         KASSERT(TAILQ_EMPTY(&softc->active_queue),
366                 ("%s called when there are commands on the active queue!\n",
367                 __func__));
368         KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
369                 ("%s called when there are commands on the abandoned queue!\n",
370                 __func__));
371         KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
372                 ("%s called when there are commands on the incoming queue!\n",
373                 __func__));
374         KASSERT(TAILQ_EMPTY(&softc->done_queue),
375                 ("%s called when there are commands on the done queue!\n",
376                 __func__));
377
378         devstat_remove_entry(softc->device_stats);
379
380         cam_periph_unlock(periph);
381
382         /*
383          * We call taskqueue_drain() for the physpath task to make sure it
384          * is complete.  We drop the lock because this can potentially
385          * sleep.  XXX KDM that is bad.  Need a way to get a callback when
386          * a taskqueue is drained.
387          *
388          * Note that we don't drain the kqueue shutdown task queue.  This
389          * is because we hold a reference on the periph for kqueue, and
390          * release that reference from the kqueue shutdown task queue.  So
391          * we cannot come into this routine unless we've released that
392          * reference.  Also, because that could be the last reference, we
393          * could be called from the cam_periph_release() call in
394          * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
395          * would deadlock.  It would be preferable if we had a way to
396          * get a callback when a taskqueue is done.
397          */
398         taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
399
400         cam_periph_lock(periph);
401
402         free(softc, M_DEVBUF);
403 }
404
405 static void
406 pass_shutdown_kqueue(void *context, int pending)
407 {
408         struct cam_periph *periph;
409         struct pass_softc *softc;
410
411         periph = context;
412         softc = periph->softc;
413
414         knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
415         knlist_destroy(&softc->read_select.si_note);
416
417         /*
418          * Release the reference we held for kqueue.
419          */
420         cam_periph_release(periph);
421 }
422
423 static void
424 pass_add_physpath(void *context, int pending)
425 {
426         struct cam_periph *periph;
427         struct pass_softc *softc;
428         struct mtx *mtx;
429         char *physpath;
430
431         /*
432          * If we have one, create a devfs alias for our
433          * physical path.
434          */
435         periph = context;
436         softc = periph->softc;
437         physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
438         mtx = cam_periph_mtx(periph);
439         mtx_lock(mtx);
440
441         if (periph->flags & CAM_PERIPH_INVALID)
442                 goto out;
443
444         if (xpt_getattr(physpath, MAXPATHLEN,
445                         "GEOM::physpath", periph->path) == 0
446          && strlen(physpath) != 0) {
447
448                 mtx_unlock(mtx);
449                 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
450                                         softc->dev, softc->alias_dev, physpath);
451                 mtx_lock(mtx);
452         }
453
454 out:
455         /*
456          * Now that we've made our alias, we no longer have to have a
457          * reference to the device.
458          */
459         if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
460                 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
461
462         /*
463          * We always acquire a reference to the periph before queueing this
464          * task queue function, so it won't go away before we run.
465          */
466         while (pending-- > 0)
467                 cam_periph_release_locked(periph);
468         mtx_unlock(mtx);
469
470         free(physpath, M_DEVBUF);
471 }
472
473 static void
474 passasync(void *callback_arg, u_int32_t code,
475           struct cam_path *path, void *arg)
476 {
477         struct cam_periph *periph;
478
479         periph = (struct cam_periph *)callback_arg;
480
481         switch (code) {
482         case AC_FOUND_DEVICE:
483         {
484                 struct ccb_getdev *cgd;
485                 cam_status status;
486  
487                 cgd = (struct ccb_getdev *)arg;
488                 if (cgd == NULL)
489                         break;
490
491                 /*
492                  * Allocate a peripheral instance for
493                  * this device and start the probe
494                  * process.
495                  */
496                 status = cam_periph_alloc(passregister, passoninvalidate,
497                                           passcleanup, passstart, "pass",
498                                           CAM_PERIPH_BIO, path,
499                                           passasync, AC_FOUND_DEVICE, cgd);
500
501                 if (status != CAM_REQ_CMP
502                  && status != CAM_REQ_INPROG) {
503                         const struct cam_status_entry *entry;
504
505                         entry = cam_fetch_status_entry(status);
506
507                         printf("passasync: Unable to attach new device "
508                                "due to status %#x: %s\n", status, entry ?
509                                entry->status_text : "Unknown");
510                 }
511
512                 break;
513         }
514         case AC_ADVINFO_CHANGED:
515         {
516                 uintptr_t buftype;
517
518                 buftype = (uintptr_t)arg;
519                 if (buftype == CDAI_TYPE_PHYS_PATH) {
520                         struct pass_softc *softc;
521                         cam_status status;
522
523                         softc = (struct pass_softc *)periph->softc;
524                         /*
525                          * Acquire a reference to the periph before we
526                          * start the taskqueue, so that we don't run into
527                          * a situation where the periph goes away before
528                          * the task queue has a chance to run.
529                          */
530                         status = cam_periph_acquire(periph);
531                         if (status != CAM_REQ_CMP)
532                                 break;
533
534                         taskqueue_enqueue(taskqueue_thread,
535                                           &softc->add_physpath_task);
536                 }
537                 break;
538         }
539         default:
540                 cam_periph_async(periph, code, path, arg);
541                 break;
542         }
543 }
544
545 static cam_status
546 passregister(struct cam_periph *periph, void *arg)
547 {
548         struct pass_softc *softc;
549         struct ccb_getdev *cgd;
550         struct ccb_pathinq cpi;
551         struct make_dev_args args;
552         int error, no_tags;
553
554         cgd = (struct ccb_getdev *)arg;
555         if (cgd == NULL) {
556                 printf("%s: no getdev CCB, can't register device\n", __func__);
557                 return(CAM_REQ_CMP_ERR);
558         }
559
560         softc = (struct pass_softc *)malloc(sizeof(*softc),
561                                             M_DEVBUF, M_NOWAIT);
562
563         if (softc == NULL) {
564                 printf("%s: Unable to probe new device. "
565                        "Unable to allocate softc\n", __func__);
566                 return(CAM_REQ_CMP_ERR);
567         }
568
569         bzero(softc, sizeof(*softc));
570         softc->state = PASS_STATE_NORMAL;
571         if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
572                 softc->pd_type = SID_TYPE(&cgd->inq_data);
573         else if (cgd->protocol == PROTO_SATAPM)
574                 softc->pd_type = T_ENCLOSURE;
575         else
576                 softc->pd_type = T_DIRECT;
577
578         periph->softc = softc;
579         softc->periph = periph;
580         TAILQ_INIT(&softc->incoming_queue);
581         TAILQ_INIT(&softc->active_queue);
582         TAILQ_INIT(&softc->abandoned_queue);
583         TAILQ_INIT(&softc->done_queue);
584         snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
585                  periph->periph_name, periph->unit_number);
586         snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
587                  periph->periph_name, periph->unit_number);
588         softc->io_zone_size = MAXPHYS;
589         knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
590
591         bzero(&cpi, sizeof(cpi));
592         xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
593         cpi.ccb_h.func_code = XPT_PATH_INQ;
594         xpt_action((union ccb *)&cpi);
595
596         if (cpi.maxio == 0)
597                 softc->maxio = DFLTPHYS;        /* traditional default */
598         else if (cpi.maxio > MAXPHYS)
599                 softc->maxio = MAXPHYS;         /* for safety */
600         else
601                 softc->maxio = cpi.maxio;       /* real value */
602
603         if (cpi.hba_misc & PIM_UNMAPPED)
604                 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
605
606         /*
607          * We pass in 0 for a blocksize, since we don't 
608          * know what the blocksize of this device is, if 
609          * it even has a blocksize.
610          */
611         cam_periph_unlock(periph);
612         no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
613         softc->device_stats = devstat_new_entry("pass",
614                           periph->unit_number, 0,
615                           DEVSTAT_NO_BLOCKSIZE
616                           | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
617                           softc->pd_type |
618                           XPORT_DEVSTAT_TYPE(cpi.transport) |
619                           DEVSTAT_TYPE_PASS,
620                           DEVSTAT_PRIORITY_PASS);
621
622         /*
623          * Initialize the taskqueue handler for shutting down kqueue.
624          */
625         TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
626                   pass_shutdown_kqueue, periph);
627
628         /*
629          * Acquire a reference to the periph that we can release once we've
630          * cleaned up the kqueue.
631          */
632         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
633                 xpt_print(periph->path, "%s: lost periph during "
634                           "registration!\n", __func__);
635                 cam_periph_lock(periph);
636                 return (CAM_REQ_CMP_ERR);
637         }
638
639         /*
640          * Acquire a reference to the periph before we create the devfs
641          * instance for it.  We'll release this reference once the devfs
642          * instance has been freed.
643          */
644         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
645                 xpt_print(periph->path, "%s: lost periph during "
646                           "registration!\n", __func__);
647                 cam_periph_lock(periph);
648                 return (CAM_REQ_CMP_ERR);
649         }
650
651         /* Register the device */
652         make_dev_args_init(&args);
653         args.mda_devsw = &pass_cdevsw;
654         args.mda_unit = periph->unit_number;
655         args.mda_uid = UID_ROOT;
656         args.mda_gid = GID_OPERATOR;
657         args.mda_mode = 0600;
658         args.mda_si_drv1 = periph;
659         error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
660             periph->unit_number);
661         if (error != 0) {
662                 cam_periph_lock(periph);
663                 cam_periph_release_locked(periph);
664                 return (CAM_REQ_CMP_ERR);
665         }
666
667         /*
668          * Hold a reference to the periph before we create the physical
669          * path alias so it can't go away.
670          */
671         if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
672                 xpt_print(periph->path, "%s: lost periph during "
673                           "registration!\n", __func__);
674                 cam_periph_lock(periph);
675                 return (CAM_REQ_CMP_ERR);
676         }
677
678         cam_periph_lock(periph);
679
680         TASK_INIT(&softc->add_physpath_task, /*priority*/0,
681                   pass_add_physpath, periph);
682
683         /*
684          * See if physical path information is already available.
685          */
686         taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
687
688         /*
689          * Add an async callback so that we get notified if
690          * this device goes away or its physical path
691          * (stored in the advanced info data of the EDT) has
692          * changed.
693          */
694         xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
695                            passasync, periph, periph->path);
696
697         if (bootverbose)
698                 xpt_announce_periph(periph, NULL);
699
700         return(CAM_REQ_CMP);
701 }
702
703 static int
704 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
705 {
706         struct cam_periph *periph;
707         struct pass_softc *softc;
708         int error;
709
710         periph = (struct cam_periph *)dev->si_drv1;
711         if (cam_periph_acquire(periph) != CAM_REQ_CMP)
712                 return (ENXIO);
713
714         cam_periph_lock(periph);
715
716         softc = (struct pass_softc *)periph->softc;
717
718         if (softc->flags & PASS_FLAG_INVALID) {
719                 cam_periph_release_locked(periph);
720                 cam_periph_unlock(periph);
721                 return(ENXIO);
722         }
723
724         /*
725          * Don't allow access when we're running at a high securelevel.
726          */
727         error = securelevel_gt(td->td_ucred, 1);
728         if (error) {
729                 cam_periph_release_locked(periph);
730                 cam_periph_unlock(periph);
731                 return(error);
732         }
733
734         /*
735          * Only allow read-write access.
736          */
737         if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
738                 cam_periph_release_locked(periph);
739                 cam_periph_unlock(periph);
740                 return(EPERM);
741         }
742
743         /*
744          * We don't allow nonblocking access.
745          */
746         if ((flags & O_NONBLOCK) != 0) {
747                 xpt_print(periph->path, "can't do nonblocking access\n");
748                 cam_periph_release_locked(periph);
749                 cam_periph_unlock(periph);
750                 return(EINVAL);
751         }
752
753         softc->open_count++;
754
755         cam_periph_unlock(periph);
756
757         return (error);
758 }
759
760 static int
761 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
762 {
763         struct  cam_periph *periph;
764         struct  pass_softc *softc;
765         struct mtx *mtx;
766
767         periph = (struct cam_periph *)dev->si_drv1;
768         mtx = cam_periph_mtx(periph);
769         mtx_lock(mtx);
770
771         softc = periph->softc;
772         softc->open_count--;
773
774         if (softc->open_count == 0) {
775                 struct pass_io_req *io_req, *io_req2;
776
777                 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
778                         TAILQ_REMOVE(&softc->done_queue, io_req, links);
779                         passiocleanup(softc, io_req);
780                         uma_zfree(softc->pass_zone, io_req);
781                 }
782
783                 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
784                                    io_req2) {
785                         TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
786                         passiocleanup(softc, io_req);
787                         uma_zfree(softc->pass_zone, io_req);
788                 }
789
790                 /*
791                  * If there are any active I/Os, we need to forcibly acquire a
792                  * reference to the peripheral so that we don't go away
793                  * before they complete.  We'll release the reference when
794                  * the abandoned queue is empty.
795                  */
796                 io_req = TAILQ_FIRST(&softc->active_queue);
797                 if ((io_req != NULL)
798                  && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
799                         cam_periph_doacquire(periph);
800                         softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
801                 }
802
803                 /*
804                  * Since the I/O in the active queue is not under our
805                  * control, just set a flag so that we can clean it up when
806                  * it completes and put it on the abandoned queue.  This
807                  * will prevent our sending spurious completions in the
808                  * event that the device is opened again before these I/Os
809                  * complete.
810                  */
811                 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
812                                    io_req2) {
813                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
814                         io_req->flags |= PASS_IO_ABANDONED;
815                         TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
816                                           links);
817                 }
818         }
819
820         cam_periph_release_locked(periph);
821
822         /*
823          * We reference the lock directly here, instead of using
824          * cam_periph_unlock().  The reason is that the call to
825          * cam_periph_release_locked() above could result in the periph
826          * getting freed.  If that is the case, dereferencing the periph
827          * with a cam_periph_unlock() call would cause a page fault.
828          *
829          * cam_periph_release() avoids this problem using the same method,
830          * but we're manually acquiring and dropping the lock here to
831          * protect the open count and avoid another lock acquisition and
832          * release.
833          */
834         mtx_unlock(mtx);
835
836         return (0);
837 }
838
839
840 static void
841 passstart(struct cam_periph *periph, union ccb *start_ccb)
842 {
843         struct pass_softc *softc;
844
845         softc = (struct pass_softc *)periph->softc;
846
847         switch (softc->state) {
848         case PASS_STATE_NORMAL: {
849                 struct pass_io_req *io_req;
850
851                 /*
852                  * Check for any queued I/O requests that require an
853                  * allocated slot.
854                  */
855                 io_req = TAILQ_FIRST(&softc->incoming_queue);
856                 if (io_req == NULL) {
857                         xpt_release_ccb(start_ccb);
858                         break;
859                 }
860                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
861                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
862                 /*
863                  * Merge the user's CCB into the allocated CCB.
864                  */
865                 xpt_merge_ccb(start_ccb, &io_req->ccb);
866                 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
867                 start_ccb->ccb_h.ccb_ioreq = io_req;
868                 start_ccb->ccb_h.cbfcnp = passdone;
869                 io_req->alloced_ccb = start_ccb;
870                 binuptime(&io_req->start_time);
871                 devstat_start_transaction(softc->device_stats,
872                                           &io_req->start_time);
873
874                 xpt_action(start_ccb);
875
876                 /*
877                  * If we have any more I/O waiting, schedule ourselves again.
878                  */
879                 if (!TAILQ_EMPTY(&softc->incoming_queue))
880                         xpt_schedule(periph, CAM_PRIORITY_NORMAL);
881                 break;
882         }
883         default:
884                 break;
885         }
886 }
887
888 static void
889 passdone(struct cam_periph *periph, union ccb *done_ccb)
890
891         struct pass_softc *softc;
892         struct ccb_scsiio *csio;
893
894         softc = (struct pass_softc *)periph->softc;
895
896         cam_periph_assert(periph, MA_OWNED);
897
898         csio = &done_ccb->csio;
899         switch (csio->ccb_h.ccb_type) {
900         case PASS_CCB_QUEUED_IO: {
901                 struct pass_io_req *io_req;
902
903                 io_req = done_ccb->ccb_h.ccb_ioreq;
904 #if 0
905                 xpt_print(periph->path, "%s: called for user CCB %p\n",
906                           __func__, io_req->user_ccb_ptr);
907 #endif
908                 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
909                  && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
910                  && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
911                         int error;
912
913                         error = passerror(done_ccb, CAM_RETRY_SELTO,
914                                           SF_RETRY_UA | SF_NO_PRINT);
915
916                         if (error == ERESTART) {
917                                 /*
918                                  * A retry was scheduled, so
919                                  * just return.
920                                  */
921                                 return;
922                         }
923                 }
924
925                 /*
926                  * Copy the allocated CCB contents back to the malloced CCB
927                  * so we can give status back to the user when he requests it.
928                  */
929                 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
930
931                 /*
932                  * Log data/transaction completion with devstat(9).
933                  */
934                 switch (done_ccb->ccb_h.func_code) {
935                 case XPT_SCSI_IO:
936                         devstat_end_transaction(softc->device_stats,
937                             done_ccb->csio.dxfer_len - done_ccb->csio.resid,
938                             done_ccb->csio.tag_action & 0x3,
939                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
940                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
941                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
942                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
943                             &io_req->start_time);
944                         break;
945                 case XPT_ATA_IO:
946                         devstat_end_transaction(softc->device_stats,
947                             done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
948                             done_ccb->ataio.tag_action & 0x3,
949                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
950                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 
951                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
952                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
953                             &io_req->start_time);
954                         break;
955                 case XPT_SMP_IO:
956                         /*
957                          * XXX KDM this isn't quite right, but there isn't
958                          * currently an easy way to represent a bidirectional 
959                          * transfer in devstat.  The only way to do it
960                          * and have the byte counts come out right would
961                          * mean that we would have to record two
962                          * transactions, one for the request and one for the
963                          * response.  For now, so that we report something,
964                          * just treat the entire thing as a read.
965                          */
966                         devstat_end_transaction(softc->device_stats,
967                             done_ccb->smpio.smp_request_len +
968                             done_ccb->smpio.smp_response_len,
969                             DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
970                             &io_req->start_time);
971                         break;
972                 default:
973                         devstat_end_transaction(softc->device_stats, 0,
974                             DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
975                             &io_req->start_time);
976                         break;
977                 }
978
979                 /*
980                  * In the normal case, take the completed I/O off of the
981                  * active queue and put it on the done queue.  Notitfy the
982                  * user that we have a completed I/O.
983                  */
984                 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
985                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
986                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
987                         selwakeuppri(&softc->read_select, PRIBIO);
988                         KNOTE_LOCKED(&softc->read_select.si_note, 0);
989                 } else {
990                         /*
991                          * In the case of an abandoned I/O (final close
992                          * without fetching the I/O), take it off of the
993                          * abandoned queue and free it.
994                          */
995                         TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
996                         passiocleanup(softc, io_req);
997                         uma_zfree(softc->pass_zone, io_req);
998
999                         /*
1000                          * Release the done_ccb here, since we may wind up
1001                          * freeing the peripheral when we decrement the
1002                          * reference count below.
1003                          */
1004                         xpt_release_ccb(done_ccb);
1005
1006                         /*
1007                          * If the abandoned queue is empty, we can release
1008                          * our reference to the periph since we won't have
1009                          * any more completions coming.
1010                          */
1011                         if ((TAILQ_EMPTY(&softc->abandoned_queue))
1012                          && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1013                                 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1014                                 cam_periph_release_locked(periph);
1015                         }
1016
1017                         /*
1018                          * We have already released the CCB, so we can
1019                          * return.
1020                          */
1021                         return;
1022                 }
1023                 break;
1024         }
1025         }
1026         xpt_release_ccb(done_ccb);
1027 }
1028
1029 static int
1030 passcreatezone(struct cam_periph *periph)
1031 {
1032         struct pass_softc *softc;
1033         int error;
1034
1035         error = 0;
1036         softc = (struct pass_softc *)periph->softc;
1037
1038         cam_periph_assert(periph, MA_OWNED);
1039         KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 
1040                 ("%s called when the pass(4) zone is valid!\n", __func__));
1041         KASSERT((softc->pass_zone == NULL), 
1042                 ("%s called when the pass(4) zone is allocated!\n", __func__));
1043
1044         if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1045
1046                 /*
1047                  * We're the first context through, so we need to create
1048                  * the pass(4) UMA zone for I/O requests.
1049                  */
1050                 softc->flags |= PASS_FLAG_ZONE_INPROG;
1051
1052                 /*
1053                  * uma_zcreate() does a blocking (M_WAITOK) allocation,
1054                  * so we cannot hold a mutex while we call it.
1055                  */
1056                 cam_periph_unlock(periph);
1057
1058                 softc->pass_zone = uma_zcreate(softc->zone_name,
1059                     sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1060                     /*align*/ 0, /*flags*/ 0);
1061
1062                 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1063                     softc->io_zone_size, NULL, NULL, NULL, NULL,
1064                     /*align*/ 0, /*flags*/ 0);
1065
1066                 cam_periph_lock(periph);
1067
1068                 if ((softc->pass_zone == NULL)
1069                  || (softc->pass_io_zone == NULL)) {
1070                         if (softc->pass_zone == NULL)
1071                                 xpt_print(periph->path, "unable to allocate "
1072                                     "IO Req UMA zone\n");
1073                         else
1074                                 xpt_print(periph->path, "unable to allocate "
1075                                     "IO UMA zone\n");
1076                         softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1077                         goto bailout;
1078                 }
1079
1080                 /*
1081                  * Set the flags appropriately and notify any other waiters.
1082                  */
1083                 softc->flags &= PASS_FLAG_ZONE_INPROG;
1084                 softc->flags |= PASS_FLAG_ZONE_VALID;
1085                 wakeup(&softc->pass_zone);
1086         } else {
1087                 /*
1088                  * In this case, the UMA zone has not yet been created, but
1089                  * another context is in the process of creating it.  We
1090                  * need to sleep until the creation is either done or has
1091                  * failed.
1092                  */
1093                 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1094                     && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1095                         error = msleep(&softc->pass_zone,
1096                                        cam_periph_mtx(periph), PRIBIO,
1097                                        "paszon", 0);
1098                         if (error != 0)
1099                                 goto bailout;
1100                 }
1101                 /*
1102                  * If the zone creation failed, no luck for the user.
1103                  */
1104                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1105                         error = ENOMEM;
1106                         goto bailout;
1107                 }
1108         }
1109 bailout:
1110         return (error);
1111 }
1112
1113 static void
1114 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1115 {
1116         union ccb *ccb;
1117         u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1118         int i, numbufs;
1119
1120         ccb = &io_req->ccb;
1121
1122         switch (ccb->ccb_h.func_code) {
1123         case XPT_DEV_MATCH:
1124                 numbufs = min(io_req->num_bufs, 2);
1125
1126                 if (numbufs == 1) {
1127                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1128                 } else {
1129                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1130                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1131                 }
1132                 break;
1133         case XPT_SCSI_IO:
1134         case XPT_CONT_TARGET_IO:
1135                 data_ptrs[0] = &ccb->csio.data_ptr;
1136                 numbufs = min(io_req->num_bufs, 1);
1137                 break;
1138         case XPT_ATA_IO:
1139                 data_ptrs[0] = &ccb->ataio.data_ptr;
1140                 numbufs = min(io_req->num_bufs, 1);
1141                 break;
1142         case XPT_SMP_IO:
1143                 numbufs = min(io_req->num_bufs, 2);
1144                 data_ptrs[0] = &ccb->smpio.smp_request;
1145                 data_ptrs[1] = &ccb->smpio.smp_response;
1146                 break;
1147         case XPT_DEV_ADVINFO:
1148                 numbufs = min(io_req->num_bufs, 1);
1149                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1150                 break;
1151         default:
1152                 /* allow ourselves to be swapped once again */
1153                 return;
1154                 break; /* NOTREACHED */ 
1155         }
1156
1157         if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1158                 free(io_req->user_segptr, M_SCSIPASS);
1159                 io_req->user_segptr = NULL;
1160         }
1161
1162         /*
1163          * We only want to free memory we malloced.
1164          */
1165         if (io_req->data_flags == CAM_DATA_VADDR) {
1166                 for (i = 0; i < io_req->num_bufs; i++) {
1167                         if (io_req->kern_bufs[i] == NULL)
1168                                 continue;
1169
1170                         free(io_req->kern_bufs[i], M_SCSIPASS);
1171                         io_req->kern_bufs[i] = NULL;
1172                 }
1173         } else if (io_req->data_flags == CAM_DATA_SG) {
1174                 for (i = 0; i < io_req->num_kern_segs; i++) {
1175                         if ((uint8_t *)(uintptr_t)
1176                             io_req->kern_segptr[i].ds_addr == NULL)
1177                                 continue;
1178
1179                         uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1180                             io_req->kern_segptr[i].ds_addr);
1181                         io_req->kern_segptr[i].ds_addr = 0;
1182                 }
1183         }
1184
1185         if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1186                 free(io_req->kern_segptr, M_SCSIPASS);
1187                 io_req->kern_segptr = NULL;
1188         }
1189
1190         if (io_req->data_flags != CAM_DATA_PADDR) {
1191                 for (i = 0; i < numbufs; i++) {
1192                         /*
1193                          * Restore the user's buffer pointers to their
1194                          * previous values.
1195                          */
1196                         if (io_req->user_bufs[i] != NULL)
1197                                 *data_ptrs[i] = io_req->user_bufs[i];
1198                 }
1199         }
1200
1201 }
1202
1203 static int
1204 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1205                ccb_flags direction)
1206 {
1207         bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1208         bus_dma_segment_t *user_sglist, *kern_sglist;
1209         int i, j, error;
1210
1211         error = 0;
1212         kern_watermark = 0;
1213         user_watermark = 0;
1214         len_to_copy = 0;
1215         len_copied = 0;
1216         user_sglist = io_req->user_segptr;
1217         kern_sglist = io_req->kern_segptr;
1218
1219         for (i = 0, j = 0; i < io_req->num_user_segs &&
1220              j < io_req->num_kern_segs;) {
1221                 uint8_t *user_ptr, *kern_ptr;
1222
1223                 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1224                     kern_sglist[j].ds_len - kern_watermark);
1225
1226                 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1227                 user_ptr = user_ptr + user_watermark;
1228                 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1229                 kern_ptr = kern_ptr + kern_watermark;
1230
1231                 user_watermark += len_to_copy;
1232                 kern_watermark += len_to_copy;
1233
1234                 if (!useracc(user_ptr, len_to_copy,
1235                     (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
1236                         xpt_print(periph->path, "%s: unable to access user "
1237                                   "S/G list element %p len %zu\n", __func__,
1238                                   user_ptr, len_to_copy);
1239                         error = EFAULT;
1240                         goto bailout;
1241                 }
1242
1243                 if (direction == CAM_DIR_IN) {
1244                         error = copyout(kern_ptr, user_ptr, len_to_copy);
1245                         if (error != 0) {
1246                                 xpt_print(periph->path, "%s: copyout of %u "
1247                                           "bytes from %p to %p failed with "
1248                                           "error %d\n", __func__, len_to_copy,
1249                                           kern_ptr, user_ptr, error);
1250                                 goto bailout;
1251                         }
1252                 } else {
1253                         error = copyin(user_ptr, kern_ptr, len_to_copy);
1254                         if (error != 0) {
1255                                 xpt_print(periph->path, "%s: copyin of %u "
1256                                           "bytes from %p to %p failed with "
1257                                           "error %d\n", __func__, len_to_copy,
1258                                           user_ptr, kern_ptr, error);
1259                                 goto bailout;
1260                         }
1261                 }
1262
1263                 len_copied += len_to_copy;
1264
1265                 if (user_sglist[i].ds_len == user_watermark) {
1266                         i++;
1267                         user_watermark = 0;
1268                 }
1269
1270                 if (kern_sglist[j].ds_len == kern_watermark) {
1271                         j++;
1272                         kern_watermark = 0;
1273                 }
1274         }
1275
1276 bailout:
1277
1278         return (error);
1279 }
1280
1281 static int
1282 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1283 {
1284         union ccb *ccb;
1285         struct pass_softc *softc;
1286         int numbufs, i;
1287         uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1288         uint32_t lengths[CAM_PERIPH_MAXMAPS];
1289         uint32_t dirs[CAM_PERIPH_MAXMAPS];
1290         uint32_t num_segs;
1291         uint16_t *seg_cnt_ptr;
1292         size_t maxmap;
1293         int error;
1294
1295         cam_periph_assert(periph, MA_NOTOWNED);
1296
1297         softc = periph->softc;
1298
1299         error = 0;
1300         ccb = &io_req->ccb;
1301         maxmap = 0;
1302         num_segs = 0;
1303         seg_cnt_ptr = NULL;
1304
1305         switch(ccb->ccb_h.func_code) {
1306         case XPT_DEV_MATCH:
1307                 if (ccb->cdm.match_buf_len == 0) {
1308                         printf("%s: invalid match buffer length 0\n", __func__);
1309                         return(EINVAL);
1310                 }
1311                 if (ccb->cdm.pattern_buf_len > 0) {
1312                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1313                         lengths[0] = ccb->cdm.pattern_buf_len;
1314                         dirs[0] = CAM_DIR_OUT;
1315                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1316                         lengths[1] = ccb->cdm.match_buf_len;
1317                         dirs[1] = CAM_DIR_IN;
1318                         numbufs = 2;
1319                 } else {
1320                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1321                         lengths[0] = ccb->cdm.match_buf_len;
1322                         dirs[0] = CAM_DIR_IN;
1323                         numbufs = 1;
1324                 }
1325                 io_req->data_flags = CAM_DATA_VADDR;
1326                 break;
1327         case XPT_SCSI_IO:
1328         case XPT_CONT_TARGET_IO:
1329                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1330                         return(0);
1331
1332                 /*
1333                  * The user shouldn't be able to supply a bio.
1334                  */
1335                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1336                         return (EINVAL);
1337
1338                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1339
1340                 data_ptrs[0] = &ccb->csio.data_ptr;
1341                 lengths[0] = ccb->csio.dxfer_len;
1342                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1343                 num_segs = ccb->csio.sglist_cnt;
1344                 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1345                 numbufs = 1;
1346                 maxmap = softc->maxio;
1347                 break;
1348         case XPT_ATA_IO:
1349                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1350                         return(0);
1351
1352                 /*
1353                  * We only support a single virtual address for ATA I/O.
1354                  */
1355                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1356                         return (EINVAL);
1357
1358                 io_req->data_flags = CAM_DATA_VADDR;
1359
1360                 data_ptrs[0] = &ccb->ataio.data_ptr;
1361                 lengths[0] = ccb->ataio.dxfer_len;
1362                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1363                 numbufs = 1;
1364                 maxmap = softc->maxio;
1365                 break;
1366         case XPT_SMP_IO:
1367                 io_req->data_flags = CAM_DATA_VADDR;
1368
1369                 data_ptrs[0] = &ccb->smpio.smp_request;
1370                 lengths[0] = ccb->smpio.smp_request_len;
1371                 dirs[0] = CAM_DIR_OUT;
1372                 data_ptrs[1] = &ccb->smpio.smp_response;
1373                 lengths[1] = ccb->smpio.smp_response_len;
1374                 dirs[1] = CAM_DIR_IN;
1375                 numbufs = 2;
1376                 maxmap = softc->maxio;
1377                 break;
1378         case XPT_DEV_ADVINFO:
1379                 if (ccb->cdai.bufsiz == 0)
1380                         return (0);
1381
1382                 io_req->data_flags = CAM_DATA_VADDR;
1383
1384                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1385                 lengths[0] = ccb->cdai.bufsiz;
1386                 dirs[0] = CAM_DIR_IN;
1387                 numbufs = 1;
1388                 break;
1389         default:
1390                 return(EINVAL);
1391                 break; /* NOTREACHED */
1392         }
1393
1394         io_req->num_bufs = numbufs;
1395
1396         /*
1397          * If there is a maximum, check to make sure that the user's
1398          * request fits within the limit.  In general, we should only have
1399          * a maximum length for requests that go to hardware.  Otherwise it
1400          * is whatever we're able to malloc.
1401          */
1402         for (i = 0; i < numbufs; i++) {
1403                 io_req->user_bufs[i] = *data_ptrs[i];
1404                 io_req->dirs[i] = dirs[i];
1405                 io_req->lengths[i] = lengths[i];
1406
1407                 if (maxmap == 0)
1408                         continue;
1409
1410                 if (lengths[i] <= maxmap)
1411                         continue;
1412
1413                 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1414                           "bytes\n", __func__, lengths[i], maxmap);
1415                 error = EINVAL;
1416                 goto bailout;
1417         }
1418
1419         switch (io_req->data_flags) {
1420         case CAM_DATA_VADDR:
1421                 /* Map or copy the buffer into kernel address space */
1422                 for (i = 0; i < numbufs; i++) {
1423                         uint8_t *tmp_buf;
1424
1425                         /*
1426                          * If for some reason no length is specified, we
1427                          * don't need to allocate anything.
1428                          */
1429                         if (io_req->lengths[i] == 0)
1430                                 continue;
1431
1432                         /*
1433                          * Make sure that the user's buffer is accessible
1434                          * to that process.
1435                          */
1436                         if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
1437                             (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
1438                              VM_PROT_READ)) {
1439                                 xpt_print(periph->path, "%s: user address %p "
1440                                     "length %u is not accessible\n", __func__,
1441                                     io_req->user_bufs[i], io_req->lengths[i]);
1442                                 error = EFAULT;
1443                                 goto bailout;
1444                         }
1445
1446                         tmp_buf = malloc(lengths[i], M_SCSIPASS,
1447                                          M_WAITOK | M_ZERO);
1448                         io_req->kern_bufs[i] = tmp_buf;
1449                         *data_ptrs[i] = tmp_buf;
1450
1451 #if 0
1452                         xpt_print(periph->path, "%s: malloced %p len %u, user "
1453                                   "buffer %p, operation: %s\n", __func__,
1454                                   tmp_buf, lengths[i], io_req->user_bufs[i],
1455                                   (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1456 #endif
1457                         /*
1458                          * We only need to copy in if the user is writing.
1459                          */
1460                         if (dirs[i] != CAM_DIR_OUT)
1461                                 continue;
1462
1463                         error = copyin(io_req->user_bufs[i],
1464                                        io_req->kern_bufs[i], lengths[i]);
1465                         if (error != 0) {
1466                                 xpt_print(periph->path, "%s: copy of user "
1467                                           "buffer from %p to %p failed with "
1468                                           "error %d\n", __func__,
1469                                           io_req->user_bufs[i],
1470                                           io_req->kern_bufs[i], error);
1471                                 goto bailout;
1472                         }
1473                 }
1474                 break;
1475         case CAM_DATA_PADDR:
1476                 /* Pass down the pointer as-is */
1477                 break;
1478         case CAM_DATA_SG: {
1479                 size_t sg_length, size_to_go, alloc_size;
1480                 uint32_t num_segs_needed;
1481
1482                 /*
1483                  * Copy the user S/G list in, and then copy in the
1484                  * individual segments.
1485                  */
1486                 /*
1487                  * We shouldn't see this, but check just in case.
1488                  */
1489                 if (numbufs != 1) {
1490                         xpt_print(periph->path, "%s: cannot currently handle "
1491                                   "more than one S/G list per CCB\n", __func__);
1492                         error = EINVAL;
1493                         goto bailout;
1494                 }
1495
1496                 /*
1497                  * We have to have at least one segment.
1498                  */
1499                 if (num_segs == 0) {
1500                         xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1501                                   "but sglist_cnt=0!\n", __func__);
1502                         error = EINVAL;
1503                         goto bailout;
1504                 }
1505
1506                 /*
1507                  * Make sure the user specified the total length and didn't
1508                  * just leave it to us to decode the S/G list.
1509                  */
1510                 if (lengths[0] == 0) {
1511                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1512                                   "but CAM_DATA_SG flag is set!\n", __func__);
1513                         error = EINVAL;
1514                         goto bailout;
1515                 }
1516
1517                 /*
1518                  * We allocate buffers in io_zone_size increments for an
1519                  * S/G list.  This will generally be MAXPHYS.
1520                  */
1521                 if (lengths[0] <= softc->io_zone_size)
1522                         num_segs_needed = 1;
1523                 else {
1524                         num_segs_needed = lengths[0] / softc->io_zone_size;
1525                         if ((lengths[0] % softc->io_zone_size) != 0)
1526                                 num_segs_needed++;
1527                 }
1528
1529                 /* Figure out the size of the S/G list */
1530                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1531                 io_req->num_user_segs = num_segs;
1532                 io_req->num_kern_segs = num_segs_needed;
1533
1534                 /* Save the user's S/G list pointer for later restoration */
1535                 io_req->user_bufs[0] = *data_ptrs[0];
1536
1537                 /*
1538                  * If we have enough segments allocated by default to handle
1539                  * the length of the user's S/G list,
1540                  */
1541                 if (num_segs > PASS_MAX_SEGS) {
1542                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1543                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1544                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1545                 } else
1546                         io_req->user_segptr = io_req->user_segs;
1547
1548                 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
1549                         xpt_print(periph->path, "%s: unable to access user "
1550                                   "S/G list at %p\n", __func__, *data_ptrs[0]);
1551                         error = EFAULT;
1552                         goto bailout;
1553                 }
1554
1555                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1556                 if (error != 0) {
1557                         xpt_print(periph->path, "%s: copy of user S/G list "
1558                                   "from %p to %p failed with error %d\n",
1559                                   __func__, *data_ptrs[0], io_req->user_segptr,
1560                                   error);
1561                         goto bailout;
1562                 }
1563
1564                 if (num_segs_needed > PASS_MAX_SEGS) {
1565                         io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1566                             num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1567                         io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1568                 } else {
1569                         io_req->kern_segptr = io_req->kern_segs;
1570                 }
1571
1572                 /*
1573                  * Allocate the kernel S/G list.
1574                  */
1575                 for (size_to_go = lengths[0], i = 0;
1576                      size_to_go > 0 && i < num_segs_needed;
1577                      i++, size_to_go -= alloc_size) {
1578                         uint8_t *kern_ptr;
1579
1580                         alloc_size = min(size_to_go, softc->io_zone_size);
1581                         kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1582                         io_req->kern_segptr[i].ds_addr =
1583                             (bus_addr_t)(uintptr_t)kern_ptr;
1584                         io_req->kern_segptr[i].ds_len = alloc_size;
1585                 }
1586                 if (size_to_go > 0) {
1587                         printf("%s: size_to_go = %zu, software error!\n",
1588                                __func__, size_to_go);
1589                         error = EINVAL;
1590                         goto bailout;
1591                 }
1592
1593                 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1594                 *seg_cnt_ptr = io_req->num_kern_segs;
1595
1596                 /*
1597                  * We only need to copy data here if the user is writing.
1598                  */
1599                 if (dirs[0] == CAM_DIR_OUT)
1600                         error = passcopysglist(periph, io_req, dirs[0]);
1601                 break;
1602         }
1603         case CAM_DATA_SG_PADDR: {
1604                 size_t sg_length;
1605
1606                 /*
1607                  * We shouldn't see this, but check just in case.
1608                  */
1609                 if (numbufs != 1) {
1610                         printf("%s: cannot currently handle more than one "
1611                                "S/G list per CCB\n", __func__);
1612                         error = EINVAL;
1613                         goto bailout;
1614                 }
1615
1616                 /*
1617                  * We have to have at least one segment.
1618                  */
1619                 if (num_segs == 0) {
1620                         xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1621                                   "set, but sglist_cnt=0!\n", __func__);
1622                         error = EINVAL;
1623                         goto bailout;
1624                 }
1625
1626                 /*
1627                  * Make sure the user specified the total length and didn't
1628                  * just leave it to us to decode the S/G list.
1629                  */
1630                 if (lengths[0] == 0) {
1631                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1632                                   "but CAM_DATA_SG flag is set!\n", __func__);
1633                         error = EINVAL;
1634                         goto bailout;
1635                 }
1636
1637                 /* Figure out the size of the S/G list */
1638                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1639                 io_req->num_user_segs = num_segs;
1640                 io_req->num_kern_segs = io_req->num_user_segs;
1641
1642                 /* Save the user's S/G list pointer for later restoration */
1643                 io_req->user_bufs[0] = *data_ptrs[0];
1644
1645                 if (num_segs > PASS_MAX_SEGS) {
1646                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1647                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1648                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1649                 } else
1650                         io_req->user_segptr = io_req->user_segs;
1651
1652                 io_req->kern_segptr = io_req->user_segptr;
1653
1654                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1655                 if (error != 0) {
1656                         xpt_print(periph->path, "%s: copy of user S/G list "
1657                                   "from %p to %p failed with error %d\n",
1658                                   __func__, *data_ptrs[0], io_req->user_segptr,
1659                                   error);
1660                         goto bailout;
1661                 }
1662                 break;
1663         }
1664         default:
1665         case CAM_DATA_BIO:
1666                 /*
1667                  * A user shouldn't be attaching a bio to the CCB.  It
1668                  * isn't a user-accessible structure.
1669                  */
1670                 error = EINVAL;
1671                 break;
1672         }
1673
1674 bailout:
1675         if (error != 0)
1676                 passiocleanup(softc, io_req);
1677
1678         return (error);
1679 }
1680
1681 static int
1682 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1683 {
1684         struct pass_softc *softc;
1685         union ccb *ccb;
1686         int error;
1687         int i;
1688
1689         error = 0;
1690         softc = (struct pass_softc *)periph->softc;
1691         ccb = &io_req->ccb;
1692
1693         switch (io_req->data_flags) {
1694         case CAM_DATA_VADDR:
1695                 /*
1696                  * Copy back to the user buffer if this was a read.
1697                  */
1698                 for (i = 0; i < io_req->num_bufs; i++) {
1699                         if (io_req->dirs[i] != CAM_DIR_IN)
1700                                 continue;
1701
1702                         error = copyout(io_req->kern_bufs[i],
1703                             io_req->user_bufs[i], io_req->lengths[i]);
1704                         if (error != 0) {
1705                                 xpt_print(periph->path, "Unable to copy %u "
1706                                           "bytes from %p to user address %p\n",
1707                                           io_req->lengths[i],
1708                                           io_req->kern_bufs[i],
1709                                           io_req->user_bufs[i]);
1710                                 goto bailout;
1711                         }
1712
1713                 }
1714                 break;
1715         case CAM_DATA_PADDR:
1716                 /* Do nothing.  The pointer is a physical address already */
1717                 break;
1718         case CAM_DATA_SG:
1719                 /*
1720                  * Copy back to the user buffer if this was a read.
1721                  * Restore the user's S/G list buffer pointer.
1722                  */
1723                 if (io_req->dirs[0] == CAM_DIR_IN)
1724                         error = passcopysglist(periph, io_req, io_req->dirs[0]);
1725                 break;
1726         case CAM_DATA_SG_PADDR:
1727                 /*
1728                  * Restore the user's S/G list buffer pointer.  No need to
1729                  * copy.
1730                  */
1731                 break;
1732         default:
1733         case CAM_DATA_BIO:
1734                 error = EINVAL;
1735                 break;
1736         }
1737
1738 bailout:
1739         /*
1740          * Reset the user's pointers to their original values and free
1741          * allocated memory.
1742          */
1743         passiocleanup(softc, io_req);
1744
1745         return (error);
1746 }
1747
1748 static int
1749 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1750 {
1751         int error;
1752
1753         if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1754                 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1755         }
1756         return (error);
1757 }
1758
1759 static int
1760 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1761 {
1762         struct  cam_periph *periph;
1763         struct  pass_softc *softc;
1764         int     error;
1765         uint32_t priority;
1766
1767         periph = (struct cam_periph *)dev->si_drv1;
1768         cam_periph_lock(periph);
1769         softc = (struct pass_softc *)periph->softc;
1770
1771         error = 0;
1772
1773         switch (cmd) {
1774
1775         case CAMIOCOMMAND:
1776         {
1777                 union ccb *inccb;
1778                 union ccb *ccb;
1779                 int ccb_malloced;
1780
1781                 inccb = (union ccb *)addr;
1782
1783                 /*
1784                  * Some CCB types, like scan bus and scan lun can only go
1785                  * through the transport layer device.
1786                  */
1787                 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1788                         xpt_print(periph->path, "CCB function code %#x is "
1789                             "restricted to the XPT device\n",
1790                             inccb->ccb_h.func_code);
1791                         error = ENODEV;
1792                         break;
1793                 }
1794
1795                 /* Compatibility for RL/priority-unaware code. */
1796                 priority = inccb->ccb_h.pinfo.priority;
1797                 if (priority <= CAM_PRIORITY_OOB)
1798                     priority += CAM_PRIORITY_OOB + 1;
1799
1800                 /*
1801                  * Non-immediate CCBs need a CCB from the per-device pool
1802                  * of CCBs, which is scheduled by the transport layer.
1803                  * Immediate CCBs and user-supplied CCBs should just be
1804                  * malloced.
1805                  */
1806                 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1807                  && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1808                         ccb = cam_periph_getccb(periph, priority);
1809                         ccb_malloced = 0;
1810                 } else {
1811                         ccb = xpt_alloc_ccb_nowait();
1812
1813                         if (ccb != NULL)
1814                                 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1815                                               priority);
1816                         ccb_malloced = 1;
1817                 }
1818
1819                 if (ccb == NULL) {
1820                         xpt_print(periph->path, "unable to allocate CCB\n");
1821                         error = ENOMEM;
1822                         break;
1823                 }
1824
1825                 error = passsendccb(periph, ccb, inccb);
1826
1827                 if (ccb_malloced)
1828                         xpt_free_ccb(ccb);
1829                 else
1830                         xpt_release_ccb(ccb);
1831
1832                 break;
1833         }
1834         case CAMIOQUEUE:
1835         {
1836                 struct pass_io_req *io_req;
1837                 union ccb **user_ccb, *ccb;
1838                 xpt_opcode fc;
1839
1840                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1841                         error = passcreatezone(periph);
1842                         if (error != 0)
1843                                 goto bailout;
1844                 }
1845
1846                 /*
1847                  * We're going to do a blocking allocation for this I/O
1848                  * request, so we have to drop the lock.
1849                  */
1850                 cam_periph_unlock(periph);
1851
1852                 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1853                 ccb = &io_req->ccb;
1854                 user_ccb = (union ccb **)addr;
1855
1856                 /*
1857                  * Unlike the CAMIOCOMMAND ioctl above, we only have a
1858                  * pointer to the user's CCB, so we have to copy the whole
1859                  * thing in to a buffer we have allocated (above) instead
1860                  * of allowing the ioctl code to malloc a buffer and copy
1861                  * it in.
1862                  *
1863                  * This is an advantage for this asynchronous interface,
1864                  * since we don't want the memory to get freed while the
1865                  * CCB is outstanding.
1866                  */
1867 #if 0
1868                 xpt_print(periph->path, "Copying user CCB %p to "
1869                           "kernel address %p\n", *user_ccb, ccb);
1870 #endif
1871                 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1872                 if (error != 0) {
1873                         xpt_print(periph->path, "Copy of user CCB %p to "
1874                                   "kernel address %p failed with error %d\n",
1875                                   *user_ccb, ccb, error);
1876                         uma_zfree(softc->pass_zone, io_req);
1877                         cam_periph_lock(periph);
1878                         break;
1879                 }
1880
1881                 /*
1882                  * Some CCB types, like scan bus and scan lun can only go
1883                  * through the transport layer device.
1884                  */
1885                 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1886                         xpt_print(periph->path, "CCB function code %#x is "
1887                             "restricted to the XPT device\n",
1888                             ccb->ccb_h.func_code);
1889                         uma_zfree(softc->pass_zone, io_req);
1890                         cam_periph_lock(periph);
1891                         error = ENODEV;
1892                         break;
1893                 }
1894
1895                 /*
1896                  * Save the user's CCB pointer as well as his linked list
1897                  * pointers and peripheral private area so that we can
1898                  * restore these later.
1899                  */
1900                 io_req->user_ccb_ptr = *user_ccb;
1901                 io_req->user_periph_links = ccb->ccb_h.periph_links;
1902                 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1903
1904                 /*
1905                  * Now that we've saved the user's values, we can set our
1906                  * own peripheral private entry.
1907                  */
1908                 ccb->ccb_h.ccb_ioreq = io_req;
1909
1910                 /* Compatibility for RL/priority-unaware code. */
1911                 priority = ccb->ccb_h.pinfo.priority;
1912                 if (priority <= CAM_PRIORITY_OOB)
1913                     priority += CAM_PRIORITY_OOB + 1;
1914
1915                 /*
1916                  * Setup fields in the CCB like the path and the priority.
1917                  * The path in particular cannot be done in userland, since
1918                  * it is a pointer to a kernel data structure.
1919                  */
1920                 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1921                                     ccb->ccb_h.flags);
1922
1923                 /*
1924                  * Setup our done routine.  There is no way for the user to
1925                  * have a valid pointer here.
1926                  */
1927                 ccb->ccb_h.cbfcnp = passdone;
1928
1929                 fc = ccb->ccb_h.func_code;
1930                 /*
1931                  * If this function code has memory that can be mapped in
1932                  * or out, we need to call passmemsetup().
1933                  */
1934                 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1935                  || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1936                  || (fc == XPT_DEV_ADVINFO)) {
1937                         error = passmemsetup(periph, io_req);
1938                         if (error != 0) {
1939                                 uma_zfree(softc->pass_zone, io_req);
1940                                 cam_periph_lock(periph);
1941                                 break;
1942                         }
1943                 } else
1944                         io_req->mapinfo.num_bufs_used = 0;
1945
1946                 cam_periph_lock(periph);
1947
1948                 /*
1949                  * Everything goes on the incoming queue initially.
1950                  */
1951                 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1952
1953                 /*
1954                  * If the CCB is queued, and is not a user CCB, then
1955                  * we need to allocate a slot for it.  Call xpt_schedule()
1956                  * so that our start routine will get called when a CCB is
1957                  * available.
1958                  */
1959                 if ((fc & XPT_FC_QUEUED)
1960                  && ((fc & XPT_FC_USER_CCB) == 0)) {
1961                         xpt_schedule(periph, priority);
1962                         break;
1963                 } 
1964
1965                 /*
1966                  * At this point, the CCB in question is either an
1967                  * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1968                  * and therefore should be malloced, not allocated via a slot.
1969                  * Remove the CCB from the incoming queue and add it to the
1970                  * active queue.
1971                  */
1972                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1973                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1974
1975                 xpt_action(ccb);
1976
1977                 /*
1978                  * If this is not a queued CCB (i.e. it is an immediate CCB),
1979                  * then it is already done.  We need to put it on the done
1980                  * queue for the user to fetch.
1981                  */
1982                 if ((fc & XPT_FC_QUEUED) == 0) {
1983                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
1984                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
1985                 }
1986                 break;
1987         }
1988         case CAMIOGET:
1989         {
1990                 union ccb **user_ccb;
1991                 struct pass_io_req *io_req;
1992                 int old_error;
1993
1994                 user_ccb = (union ccb **)addr;
1995                 old_error = 0;
1996
1997                 io_req = TAILQ_FIRST(&softc->done_queue);
1998                 if (io_req == NULL) {
1999                         error = ENOENT;
2000                         break;
2001                 }
2002
2003                 /*
2004                  * Remove the I/O from the done queue.
2005                  */
2006                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2007
2008                 /*
2009                  * We have to drop the lock during the copyout because the
2010                  * copyout can result in VM faults that require sleeping.
2011                  */
2012                 cam_periph_unlock(periph);
2013
2014                 /*
2015                  * Do any needed copies (e.g. for reads) and revert the
2016                  * pointers in the CCB back to the user's pointers.
2017                  */
2018                 error = passmemdone(periph, io_req);
2019
2020                 old_error = error;
2021
2022                 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2023                 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2024
2025 #if 0
2026                 xpt_print(periph->path, "Copying to user CCB %p from "
2027                           "kernel address %p\n", *user_ccb, &io_req->ccb);
2028 #endif
2029
2030                 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2031                 if (error != 0) {
2032                         xpt_print(periph->path, "Copy to user CCB %p from "
2033                                   "kernel address %p failed with error %d\n",
2034                                   *user_ccb, &io_req->ccb, error);
2035                 }
2036
2037                 /*
2038                  * Prefer the first error we got back, and make sure we
2039                  * don't overwrite bad status with good.
2040                  */
2041                 if (old_error != 0)
2042                         error = old_error;
2043
2044                 cam_periph_lock(periph);
2045
2046                 /*
2047                  * At this point, if there was an error, we could potentially
2048                  * re-queue the I/O and try again.  But why?  The error
2049                  * would almost certainly happen again.  We might as well
2050                  * not leak memory.
2051                  */
2052                 uma_zfree(softc->pass_zone, io_req);
2053                 break;
2054         }
2055         default:
2056                 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2057                 break;
2058         }
2059
2060 bailout:
2061         cam_periph_unlock(periph);
2062
2063         return(error);
2064 }
2065
2066 static int
2067 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2068 {
2069         struct cam_periph *periph;
2070         struct pass_softc *softc;
2071         int revents;
2072
2073         periph = (struct cam_periph *)dev->si_drv1;
2074         softc = (struct pass_softc *)periph->softc;
2075
2076         revents = poll_events & (POLLOUT | POLLWRNORM);
2077         if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2078                 cam_periph_lock(periph);
2079
2080                 if (!TAILQ_EMPTY(&softc->done_queue)) {
2081                         revents |= poll_events & (POLLIN | POLLRDNORM);
2082                 }
2083                 cam_periph_unlock(periph);
2084                 if (revents == 0)
2085                         selrecord(td, &softc->read_select);
2086         }
2087
2088         return (revents);
2089 }
2090
2091 static int
2092 passkqfilter(struct cdev *dev, struct knote *kn)
2093 {
2094         struct cam_periph *periph;
2095         struct pass_softc *softc;
2096
2097         periph = (struct cam_periph *)dev->si_drv1;
2098         softc = (struct pass_softc *)periph->softc;
2099
2100         kn->kn_hook = (caddr_t)periph;
2101         kn->kn_fop = &passread_filtops;
2102         knlist_add(&softc->read_select.si_note, kn, 0);
2103
2104         return (0);
2105 }
2106
2107 static void
2108 passreadfiltdetach(struct knote *kn)
2109 {
2110         struct cam_periph *periph;
2111         struct pass_softc *softc;
2112
2113         periph = (struct cam_periph *)kn->kn_hook;
2114         softc = (struct pass_softc *)periph->softc;
2115
2116         knlist_remove(&softc->read_select.si_note, kn, 0);
2117 }
2118
2119 static int
2120 passreadfilt(struct knote *kn, long hint)
2121 {
2122         struct cam_periph *periph;
2123         struct pass_softc *softc;
2124         int retval;
2125
2126         periph = (struct cam_periph *)kn->kn_hook;
2127         softc = (struct pass_softc *)periph->softc;
2128
2129         cam_periph_assert(periph, MA_OWNED);
2130
2131         if (TAILQ_EMPTY(&softc->done_queue))
2132                 retval = 0;
2133         else
2134                 retval = 1;
2135
2136         return (retval);
2137 }
2138
2139 /*
2140  * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2141  * should be the CCB that is copied in from the user.
2142  */
2143 static int
2144 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2145 {
2146         struct pass_softc *softc;
2147         struct cam_periph_map_info mapinfo;
2148         xpt_opcode fc;
2149         int error;
2150
2151         softc = (struct pass_softc *)periph->softc;
2152
2153         /*
2154          * There are some fields in the CCB header that need to be
2155          * preserved, the rest we get from the user.
2156          */
2157         xpt_merge_ccb(ccb, inccb);
2158
2159         /*
2160          */
2161         ccb->ccb_h.cbfcnp = passdone;
2162
2163         /*
2164          * Let cam_periph_mapmem do a sanity check on the data pointer format.
2165          * Even if no data transfer is needed, it's a cheap check and it
2166          * simplifies the code.
2167          */
2168         fc = ccb->ccb_h.func_code;
2169         if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2170          || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) {
2171                 bzero(&mapinfo, sizeof(mapinfo));
2172
2173                 /*
2174                  * cam_periph_mapmem calls into proc and vm functions that can
2175                  * sleep as well as trigger I/O, so we can't hold the lock.
2176                  * Dropping it here is reasonably safe.
2177                  */
2178                 cam_periph_unlock(periph);
2179                 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2180                 cam_periph_lock(periph);
2181
2182                 /*
2183                  * cam_periph_mapmem returned an error, we can't continue.
2184                  * Return the error to the user.
2185                  */
2186                 if (error)
2187                         return(error);
2188         } else
2189                 /* Ensure that the unmap call later on is a no-op. */
2190                 mapinfo.num_bufs_used = 0;
2191
2192         /*
2193          * If the user wants us to perform any error recovery, then honor
2194          * that request.  Otherwise, it's up to the user to perform any
2195          * error recovery.
2196          */
2197         cam_periph_runccb(ccb, passerror, /* cam_flags */ CAM_RETRY_SELTO,
2198             /* sense_flags */ ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ?
2199              SF_RETRY_UA : SF_NO_RECOVERY) | SF_NO_PRINT,
2200             softc->device_stats);
2201
2202         cam_periph_unmapmem(ccb, &mapinfo);
2203
2204         ccb->ccb_h.cbfcnp = NULL;
2205         ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2206         bcopy(ccb, inccb, sizeof(union ccb));
2207
2208         return(0);
2209 }
2210
2211 static int
2212 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2213 {
2214         struct cam_periph *periph;
2215         struct pass_softc *softc;
2216
2217         periph = xpt_path_periph(ccb->ccb_h.path);
2218         softc = (struct pass_softc *)periph->softc;
2219         
2220         return(cam_periph_error(ccb, cam_flags, sense_flags, 
2221                                  &softc->saved_ccb));
2222 }