]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cam/scsi/scsi_pass.c
Merge libcxxrt master 8049924686b8414d8e652cbd2a52c763b48e8456
[FreeBSD/FreeBSD.git] / sys / cam / scsi / scsi_pass.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/conf.h>
37 #include <sys/types.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/devicestat.h>
41 #include <sys/errno.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/poll.h>
46 #include <sys/selinfo.h>
47 #include <sys/sdt.h>
48 #include <sys/sysent.h>
49 #include <sys/taskqueue.h>
50 #include <vm/uma.h>
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53
54 #include <machine/bus.h>
55
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_periph.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 #include <cam/cam_xpt_periph.h>
65
66 #include <cam/scsi/scsi_all.h>
67 #include <cam/scsi/scsi_pass.h>
68
69 typedef enum {
70         PASS_FLAG_OPEN                  = 0x01,
71         PASS_FLAG_LOCKED                = 0x02,
72         PASS_FLAG_INVALID               = 0x04,
73         PASS_FLAG_INITIAL_PHYSPATH      = 0x08,
74         PASS_FLAG_ZONE_INPROG           = 0x10,
75         PASS_FLAG_ZONE_VALID            = 0x20,
76         PASS_FLAG_UNMAPPED_CAPABLE      = 0x40,
77         PASS_FLAG_ABANDONED_REF_SET     = 0x80
78 } pass_flags;
79
80 typedef enum {
81         PASS_STATE_NORMAL
82 } pass_state;
83
84 typedef enum {
85         PASS_CCB_BUFFER_IO,
86         PASS_CCB_QUEUED_IO
87 } pass_ccb_types;
88
89 #define ccb_type        ppriv_field0
90 #define ccb_ioreq       ppriv_ptr1
91
92 /*
93  * The maximum number of memory segments we preallocate.
94  */
95 #define PASS_MAX_SEGS   16
96
97 typedef enum {
98         PASS_IO_NONE            = 0x00,
99         PASS_IO_USER_SEG_MALLOC = 0x01,
100         PASS_IO_KERN_SEG_MALLOC = 0x02,
101         PASS_IO_ABANDONED       = 0x04
102 } pass_io_flags; 
103
104 struct pass_io_req {
105         union ccb                        ccb;
106         union ccb                       *alloced_ccb;
107         union ccb                       *user_ccb_ptr;
108         camq_entry                       user_periph_links;
109         ccb_ppriv_area                   user_periph_priv;
110         struct cam_periph_map_info       mapinfo;
111         pass_io_flags                    flags;
112         ccb_flags                        data_flags;
113         int                              num_user_segs;
114         bus_dma_segment_t                user_segs[PASS_MAX_SEGS];
115         int                              num_kern_segs;
116         bus_dma_segment_t                kern_segs[PASS_MAX_SEGS];
117         bus_dma_segment_t               *user_segptr;
118         bus_dma_segment_t               *kern_segptr;
119         int                              num_bufs;
120         uint32_t                         dirs[CAM_PERIPH_MAXMAPS];
121         uint32_t                         lengths[CAM_PERIPH_MAXMAPS];
122         uint8_t                         *user_bufs[CAM_PERIPH_MAXMAPS];
123         uint8_t                         *kern_bufs[CAM_PERIPH_MAXMAPS];
124         struct bintime                   start_time;
125         TAILQ_ENTRY(pass_io_req)         links;
126 };
127
128 struct pass_softc {
129         pass_state                state;
130         pass_flags                flags;
131         u_int8_t                  pd_type;
132         union ccb                 saved_ccb;
133         int                       open_count;
134         u_int                     maxio;
135         struct devstat           *device_stats;
136         struct cdev              *dev;
137         struct cdev              *alias_dev;
138         struct task               add_physpath_task;
139         struct task               shutdown_kqueue_task;
140         struct selinfo            read_select;
141         TAILQ_HEAD(, pass_io_req) incoming_queue;
142         TAILQ_HEAD(, pass_io_req) active_queue;
143         TAILQ_HEAD(, pass_io_req) abandoned_queue;
144         TAILQ_HEAD(, pass_io_req) done_queue;
145         struct cam_periph        *periph;
146         char                      zone_name[12];
147         char                      io_zone_name[12];
148         uma_zone_t                pass_zone;
149         uma_zone_t                pass_io_zone;
150         size_t                    io_zone_size;
151 };
152
153 static  d_open_t        passopen;
154 static  d_close_t       passclose;
155 static  d_ioctl_t       passioctl;
156 static  d_ioctl_t       passdoioctl;
157 static  d_poll_t        passpoll;
158 static  d_kqfilter_t    passkqfilter;
159 static  void            passreadfiltdetach(struct knote *kn);
160 static  int             passreadfilt(struct knote *kn, long hint);
161
162 static  periph_init_t   passinit;
163 static  periph_ctor_t   passregister;
164 static  periph_oninv_t  passoninvalidate;
165 static  periph_dtor_t   passcleanup;
166 static  periph_start_t  passstart;
167 static  void            pass_shutdown_kqueue(void *context, int pending);
168 static  void            pass_add_physpath(void *context, int pending);
169 static  void            passasync(void *callback_arg, u_int32_t code,
170                                   struct cam_path *path, void *arg);
171 static  void            passdone(struct cam_periph *periph, 
172                                  union ccb *done_ccb);
173 static  int             passcreatezone(struct cam_periph *periph);
174 static  void            passiocleanup(struct pass_softc *softc, 
175                                       struct pass_io_req *io_req);
176 static  int             passcopysglist(struct cam_periph *periph,
177                                        struct pass_io_req *io_req,
178                                        ccb_flags direction);
179 static  int             passmemsetup(struct cam_periph *periph,
180                                      struct pass_io_req *io_req);
181 static  int             passmemdone(struct cam_periph *periph,
182                                     struct pass_io_req *io_req);
183 static  int             passerror(union ccb *ccb, u_int32_t cam_flags, 
184                                   u_int32_t sense_flags);
185 static  int             passsendccb(struct cam_periph *periph, union ccb *ccb,
186                                     union ccb *inccb);
187
188 static struct periph_driver passdriver =
189 {
190         passinit, "pass",
191         TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
192 };
193
194 PERIPHDRIVER_DECLARE(pass, passdriver);
195
196 static struct cdevsw pass_cdevsw = {
197         .d_version =    D_VERSION,
198         .d_flags =      D_TRACKCLOSE,
199         .d_open =       passopen,
200         .d_close =      passclose,
201         .d_ioctl =      passioctl,
202         .d_poll =       passpoll,
203         .d_kqfilter =   passkqfilter,
204         .d_name =       "pass",
205 };
206
207 static struct filterops passread_filtops = {
208         .f_isfd =       1,
209         .f_detach =     passreadfiltdetach,
210         .f_event =      passreadfilt
211 };
212
213 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
214
215 static void
216 passinit(void)
217 {
218         cam_status status;
219
220         /*
221          * Install a global async callback.  This callback will
222          * receive async callbacks like "new device found".
223          */
224         status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
225
226         if (status != CAM_REQ_CMP) {
227                 printf("pass: Failed to attach master async callback "
228                        "due to status 0x%x!\n", status);
229         }
230
231 }
232
233 static void
234 passrejectios(struct cam_periph *periph)
235 {
236         struct pass_io_req *io_req, *io_req2;
237         struct pass_softc *softc;
238
239         softc = (struct pass_softc *)periph->softc;
240
241         /*
242          * The user can no longer get status for I/O on the done queue, so
243          * clean up all outstanding I/O on the done queue.
244          */
245         TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
246                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
247                 passiocleanup(softc, io_req);
248                 uma_zfree(softc->pass_zone, io_req);
249         }
250
251         /*
252          * The underlying device is gone, so we can't issue these I/Os.
253          * The devfs node has been shut down, so we can't return status to
254          * the user.  Free any I/O left on the incoming queue.
255          */
256         TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
257                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
258                 passiocleanup(softc, io_req);
259                 uma_zfree(softc->pass_zone, io_req);
260         }
261
262         /*
263          * Normally we would put I/Os on the abandoned queue and acquire a
264          * reference when we saw the final close.  But, the device went
265          * away and devfs may have moved everything off to deadfs by the
266          * time the I/O done callback is called; as a result, we won't see
267          * any more closes.  So, if we have any active I/Os, we need to put
268          * them on the abandoned queue.  When the abandoned queue is empty,
269          * we'll release the remaining reference (see below) to the peripheral.
270          */
271         TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
272                 TAILQ_REMOVE(&softc->active_queue, io_req, links);
273                 io_req->flags |= PASS_IO_ABANDONED;
274                 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
275         }
276
277         /*
278          * If we put any I/O on the abandoned queue, acquire a reference.
279          */
280         if ((!TAILQ_EMPTY(&softc->abandoned_queue))
281          && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
282                 cam_periph_doacquire(periph);
283                 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
284         }
285 }
286
287 static void
288 passdevgonecb(void *arg)
289 {
290         struct cam_periph *periph;
291         struct mtx *mtx;
292         struct pass_softc *softc;
293         int i;
294
295         periph = (struct cam_periph *)arg;
296         mtx = cam_periph_mtx(periph);
297         mtx_lock(mtx);
298
299         softc = (struct pass_softc *)periph->softc;
300         KASSERT(softc->open_count >= 0, ("Negative open count %d",
301                 softc->open_count));
302
303         /*
304          * When we get this callback, we will get no more close calls from
305          * devfs.  So if we have any dangling opens, we need to release the
306          * reference held for that particular context.
307          */
308         for (i = 0; i < softc->open_count; i++)
309                 cam_periph_release_locked(periph);
310
311         softc->open_count = 0;
312
313         /*
314          * Release the reference held for the device node, it is gone now.
315          * Accordingly, inform all queued I/Os of their fate.
316          */
317         cam_periph_release_locked(periph);
318         passrejectios(periph);
319
320         /*
321          * We reference the SIM lock directly here, instead of using
322          * cam_periph_unlock().  The reason is that the final call to
323          * cam_periph_release_locked() above could result in the periph
324          * getting freed.  If that is the case, dereferencing the periph
325          * with a cam_periph_unlock() call would cause a page fault.
326          */
327         mtx_unlock(mtx);
328
329         /*
330          * We have to remove our kqueue context from a thread because it
331          * may sleep.  It would be nice if we could get a callback from
332          * kqueue when it is done cleaning up resources.
333          */
334         taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
335 }
336
337 static void
338 passoninvalidate(struct cam_periph *periph)
339 {
340         struct pass_softc *softc;
341
342         softc = (struct pass_softc *)periph->softc;
343
344         /*
345          * De-register any async callbacks.
346          */
347         xpt_register_async(0, passasync, periph, periph->path);
348
349         softc->flags |= PASS_FLAG_INVALID;
350
351         /*
352          * Tell devfs this device has gone away, and ask for a callback
353          * when it has cleaned up its state.
354          */
355         destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
356 }
357
358 static void
359 passcleanup(struct cam_periph *periph)
360 {
361         struct pass_softc *softc;
362
363         softc = (struct pass_softc *)periph->softc;
364
365         cam_periph_assert(periph, MA_OWNED);
366         KASSERT(TAILQ_EMPTY(&softc->active_queue),
367                 ("%s called when there are commands on the active queue!\n",
368                 __func__));
369         KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
370                 ("%s called when there are commands on the abandoned queue!\n",
371                 __func__));
372         KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
373                 ("%s called when there are commands on the incoming queue!\n",
374                 __func__));
375         KASSERT(TAILQ_EMPTY(&softc->done_queue),
376                 ("%s called when there are commands on the done queue!\n",
377                 __func__));
378
379         devstat_remove_entry(softc->device_stats);
380
381         cam_periph_unlock(periph);
382
383         /*
384          * We call taskqueue_drain() for the physpath task to make sure it
385          * is complete.  We drop the lock because this can potentially
386          * sleep.  XXX KDM that is bad.  Need a way to get a callback when
387          * a taskqueue is drained.
388          *
389          * Note that we don't drain the kqueue shutdown task queue.  This
390          * is because we hold a reference on the periph for kqueue, and
391          * release that reference from the kqueue shutdown task queue.  So
392          * we cannot come into this routine unless we've released that
393          * reference.  Also, because that could be the last reference, we
394          * could be called from the cam_periph_release() call in
395          * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
396          * would deadlock.  It would be preferable if we had a way to
397          * get a callback when a taskqueue is done.
398          */
399         taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
400
401         cam_periph_lock(periph);
402
403         free(softc, M_DEVBUF);
404 }
405
406 static void
407 pass_shutdown_kqueue(void *context, int pending)
408 {
409         struct cam_periph *periph;
410         struct pass_softc *softc;
411
412         periph = context;
413         softc = periph->softc;
414
415         knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
416         knlist_destroy(&softc->read_select.si_note);
417
418         /*
419          * Release the reference we held for kqueue.
420          */
421         cam_periph_release(periph);
422 }
423
424 static void
425 pass_add_physpath(void *context, int pending)
426 {
427         struct cam_periph *periph;
428         struct pass_softc *softc;
429         struct mtx *mtx;
430         char *physpath;
431
432         /*
433          * If we have one, create a devfs alias for our
434          * physical path.
435          */
436         periph = context;
437         softc = periph->softc;
438         physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
439         mtx = cam_periph_mtx(periph);
440         mtx_lock(mtx);
441
442         if (periph->flags & CAM_PERIPH_INVALID)
443                 goto out;
444
445         if (xpt_getattr(physpath, MAXPATHLEN,
446                         "GEOM::physpath", periph->path) == 0
447          && strlen(physpath) != 0) {
448                 mtx_unlock(mtx);
449                 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
450                                         softc->dev, softc->alias_dev, physpath);
451                 mtx_lock(mtx);
452         }
453
454 out:
455         /*
456          * Now that we've made our alias, we no longer have to have a
457          * reference to the device.
458          */
459         if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
460                 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
461
462         /*
463          * We always acquire a reference to the periph before queueing this
464          * task queue function, so it won't go away before we run.
465          */
466         while (pending-- > 0)
467                 cam_periph_release_locked(periph);
468         mtx_unlock(mtx);
469
470         free(physpath, M_DEVBUF);
471 }
472
473 static void
474 passasync(void *callback_arg, u_int32_t code,
475           struct cam_path *path, void *arg)
476 {
477         struct cam_periph *periph;
478
479         periph = (struct cam_periph *)callback_arg;
480
481         switch (code) {
482         case AC_FOUND_DEVICE:
483         {
484                 struct ccb_getdev *cgd;
485                 cam_status status;
486
487                 cgd = (struct ccb_getdev *)arg;
488                 if (cgd == NULL)
489                         break;
490
491                 /*
492                  * Allocate a peripheral instance for
493                  * this device and start the probe
494                  * process.
495                  */
496                 status = cam_periph_alloc(passregister, passoninvalidate,
497                                           passcleanup, passstart, "pass",
498                                           CAM_PERIPH_BIO, path,
499                                           passasync, AC_FOUND_DEVICE, cgd);
500
501                 if (status != CAM_REQ_CMP
502                  && status != CAM_REQ_INPROG) {
503                         const struct cam_status_entry *entry;
504
505                         entry = cam_fetch_status_entry(status);
506
507                         printf("passasync: Unable to attach new device "
508                                "due to status %#x: %s\n", status, entry ?
509                                entry->status_text : "Unknown");
510                 }
511
512                 break;
513         }
514         case AC_ADVINFO_CHANGED:
515         {
516                 uintptr_t buftype;
517
518                 buftype = (uintptr_t)arg;
519                 if (buftype == CDAI_TYPE_PHYS_PATH) {
520                         struct pass_softc *softc;
521
522                         softc = (struct pass_softc *)periph->softc;
523                         /*
524                          * Acquire a reference to the periph before we
525                          * start the taskqueue, so that we don't run into
526                          * a situation where the periph goes away before
527                          * the task queue has a chance to run.
528                          */
529                         if (cam_periph_acquire(periph) != 0)
530                                 break;
531
532                         taskqueue_enqueue(taskqueue_thread,
533                                           &softc->add_physpath_task);
534                 }
535                 break;
536         }
537         default:
538                 cam_periph_async(periph, code, path, arg);
539                 break;
540         }
541 }
542
543 static cam_status
544 passregister(struct cam_periph *periph, void *arg)
545 {
546         struct pass_softc *softc;
547         struct ccb_getdev *cgd;
548         struct ccb_pathinq cpi;
549         struct make_dev_args args;
550         int error, no_tags;
551
552         cgd = (struct ccb_getdev *)arg;
553         if (cgd == NULL) {
554                 printf("%s: no getdev CCB, can't register device\n", __func__);
555                 return(CAM_REQ_CMP_ERR);
556         }
557
558         softc = (struct pass_softc *)malloc(sizeof(*softc),
559                                             M_DEVBUF, M_NOWAIT);
560
561         if (softc == NULL) {
562                 printf("%s: Unable to probe new device. "
563                        "Unable to allocate softc\n", __func__);
564                 return(CAM_REQ_CMP_ERR);
565         }
566
567         bzero(softc, sizeof(*softc));
568         softc->state = PASS_STATE_NORMAL;
569         if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
570                 softc->pd_type = SID_TYPE(&cgd->inq_data);
571         else if (cgd->protocol == PROTO_SATAPM)
572                 softc->pd_type = T_ENCLOSURE;
573         else
574                 softc->pd_type = T_DIRECT;
575
576         periph->softc = softc;
577         softc->periph = periph;
578         TAILQ_INIT(&softc->incoming_queue);
579         TAILQ_INIT(&softc->active_queue);
580         TAILQ_INIT(&softc->abandoned_queue);
581         TAILQ_INIT(&softc->done_queue);
582         snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
583                  periph->periph_name, periph->unit_number);
584         snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
585                  periph->periph_name, periph->unit_number);
586         softc->io_zone_size = maxphys;
587         knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
588
589         xpt_path_inq(&cpi, periph->path);
590
591         if (cpi.maxio == 0)
592                 softc->maxio = DFLTPHYS;        /* traditional default */
593         else if (cpi.maxio > maxphys)
594                 softc->maxio = maxphys;         /* for safety */
595         else
596                 softc->maxio = cpi.maxio;       /* real value */
597
598         if (cpi.hba_misc & PIM_UNMAPPED)
599                 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
600
601         /*
602          * We pass in 0 for a blocksize, since we don't 
603          * know what the blocksize of this device is, if 
604          * it even has a blocksize.
605          */
606         cam_periph_unlock(periph);
607         no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
608         softc->device_stats = devstat_new_entry("pass",
609                           periph->unit_number, 0,
610                           DEVSTAT_NO_BLOCKSIZE
611                           | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
612                           softc->pd_type |
613                           XPORT_DEVSTAT_TYPE(cpi.transport) |
614                           DEVSTAT_TYPE_PASS,
615                           DEVSTAT_PRIORITY_PASS);
616
617         /*
618          * Initialize the taskqueue handler for shutting down kqueue.
619          */
620         TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
621                   pass_shutdown_kqueue, periph);
622
623         /*
624          * Acquire a reference to the periph that we can release once we've
625          * cleaned up the kqueue.
626          */
627         if (cam_periph_acquire(periph) != 0) {
628                 xpt_print(periph->path, "%s: lost periph during "
629                           "registration!\n", __func__);
630                 cam_periph_lock(periph);
631                 return (CAM_REQ_CMP_ERR);
632         }
633
634         /*
635          * Acquire a reference to the periph before we create the devfs
636          * instance for it.  We'll release this reference once the devfs
637          * instance has been freed.
638          */
639         if (cam_periph_acquire(periph) != 0) {
640                 xpt_print(periph->path, "%s: lost periph during "
641                           "registration!\n", __func__);
642                 cam_periph_lock(periph);
643                 return (CAM_REQ_CMP_ERR);
644         }
645
646         /* Register the device */
647         make_dev_args_init(&args);
648         args.mda_devsw = &pass_cdevsw;
649         args.mda_unit = periph->unit_number;
650         args.mda_uid = UID_ROOT;
651         args.mda_gid = GID_OPERATOR;
652         args.mda_mode = 0600;
653         args.mda_si_drv1 = periph;
654         args.mda_flags = MAKEDEV_NOWAIT;
655         error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
656             periph->unit_number);
657         if (error != 0) {
658                 cam_periph_lock(periph);
659                 cam_periph_release_locked(periph);
660                 return (CAM_REQ_CMP_ERR);
661         }
662
663         /*
664          * Hold a reference to the periph before we create the physical
665          * path alias so it can't go away.
666          */
667         if (cam_periph_acquire(periph) != 0) {
668                 xpt_print(periph->path, "%s: lost periph during "
669                           "registration!\n", __func__);
670                 cam_periph_lock(periph);
671                 return (CAM_REQ_CMP_ERR);
672         }
673
674         cam_periph_lock(periph);
675
676         TASK_INIT(&softc->add_physpath_task, /*priority*/0,
677                   pass_add_physpath, periph);
678
679         /*
680          * See if physical path information is already available.
681          */
682         taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
683
684         /*
685          * Add an async callback so that we get notified if
686          * this device goes away or its physical path
687          * (stored in the advanced info data of the EDT) has
688          * changed.
689          */
690         xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
691                            passasync, periph, periph->path);
692
693         if (bootverbose)
694                 xpt_announce_periph(periph, NULL);
695
696         return(CAM_REQ_CMP);
697 }
698
699 static int
700 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
701 {
702         struct cam_periph *periph;
703         struct pass_softc *softc;
704         int error;
705
706         periph = (struct cam_periph *)dev->si_drv1;
707         if (cam_periph_acquire(periph) != 0)
708                 return (ENXIO);
709
710         cam_periph_lock(periph);
711
712         softc = (struct pass_softc *)periph->softc;
713
714         if (softc->flags & PASS_FLAG_INVALID) {
715                 cam_periph_release_locked(periph);
716                 cam_periph_unlock(periph);
717                 return(ENXIO);
718         }
719
720         /*
721          * Don't allow access when we're running at a high securelevel.
722          */
723         error = securelevel_gt(td->td_ucred, 1);
724         if (error) {
725                 cam_periph_release_locked(periph);
726                 cam_periph_unlock(periph);
727                 return(error);
728         }
729
730         /*
731          * Only allow read-write access.
732          */
733         if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
734                 cam_periph_release_locked(periph);
735                 cam_periph_unlock(periph);
736                 return(EPERM);
737         }
738
739         /*
740          * We don't allow nonblocking access.
741          */
742         if ((flags & O_NONBLOCK) != 0) {
743                 xpt_print(periph->path, "can't do nonblocking access\n");
744                 cam_periph_release_locked(periph);
745                 cam_periph_unlock(periph);
746                 return(EINVAL);
747         }
748
749         softc->open_count++;
750
751         cam_periph_unlock(periph);
752
753         return (error);
754 }
755
756 static int
757 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
758 {
759         struct  cam_periph *periph;
760         struct  pass_softc *softc;
761         struct mtx *mtx;
762
763         periph = (struct cam_periph *)dev->si_drv1;
764         mtx = cam_periph_mtx(periph);
765         mtx_lock(mtx);
766
767         softc = periph->softc;
768         softc->open_count--;
769
770         if (softc->open_count == 0) {
771                 struct pass_io_req *io_req, *io_req2;
772
773                 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
774                         TAILQ_REMOVE(&softc->done_queue, io_req, links);
775                         passiocleanup(softc, io_req);
776                         uma_zfree(softc->pass_zone, io_req);
777                 }
778
779                 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
780                                    io_req2) {
781                         TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
782                         passiocleanup(softc, io_req);
783                         uma_zfree(softc->pass_zone, io_req);
784                 }
785
786                 /*
787                  * If there are any active I/Os, we need to forcibly acquire a
788                  * reference to the peripheral so that we don't go away
789                  * before they complete.  We'll release the reference when
790                  * the abandoned queue is empty.
791                  */
792                 io_req = TAILQ_FIRST(&softc->active_queue);
793                 if ((io_req != NULL)
794                  && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
795                         cam_periph_doacquire(periph);
796                         softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
797                 }
798
799                 /*
800                  * Since the I/O in the active queue is not under our
801                  * control, just set a flag so that we can clean it up when
802                  * it completes and put it on the abandoned queue.  This
803                  * will prevent our sending spurious completions in the
804                  * event that the device is opened again before these I/Os
805                  * complete.
806                  */
807                 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
808                                    io_req2) {
809                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
810                         io_req->flags |= PASS_IO_ABANDONED;
811                         TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
812                                           links);
813                 }
814         }
815
816         cam_periph_release_locked(periph);
817
818         /*
819          * We reference the lock directly here, instead of using
820          * cam_periph_unlock().  The reason is that the call to
821          * cam_periph_release_locked() above could result in the periph
822          * getting freed.  If that is the case, dereferencing the periph
823          * with a cam_periph_unlock() call would cause a page fault.
824          *
825          * cam_periph_release() avoids this problem using the same method,
826          * but we're manually acquiring and dropping the lock here to
827          * protect the open count and avoid another lock acquisition and
828          * release.
829          */
830         mtx_unlock(mtx);
831
832         return (0);
833 }
834
835 static void
836 passstart(struct cam_periph *periph, union ccb *start_ccb)
837 {
838         struct pass_softc *softc;
839
840         softc = (struct pass_softc *)periph->softc;
841
842         switch (softc->state) {
843         case PASS_STATE_NORMAL: {
844                 struct pass_io_req *io_req;
845
846                 /*
847                  * Check for any queued I/O requests that require an
848                  * allocated slot.
849                  */
850                 io_req = TAILQ_FIRST(&softc->incoming_queue);
851                 if (io_req == NULL) {
852                         xpt_release_ccb(start_ccb);
853                         break;
854                 }
855                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
856                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
857                 /*
858                  * Merge the user's CCB into the allocated CCB.
859                  */
860                 xpt_merge_ccb(start_ccb, &io_req->ccb);
861                 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
862                 start_ccb->ccb_h.ccb_ioreq = io_req;
863                 start_ccb->ccb_h.cbfcnp = passdone;
864                 io_req->alloced_ccb = start_ccb;
865                 binuptime(&io_req->start_time);
866                 devstat_start_transaction(softc->device_stats,
867                                           &io_req->start_time);
868
869                 xpt_action(start_ccb);
870
871                 /*
872                  * If we have any more I/O waiting, schedule ourselves again.
873                  */
874                 if (!TAILQ_EMPTY(&softc->incoming_queue))
875                         xpt_schedule(periph, CAM_PRIORITY_NORMAL);
876                 break;
877         }
878         default:
879                 break;
880         }
881 }
882
883 static void
884 passdone(struct cam_periph *periph, union ccb *done_ccb)
885
886         struct pass_softc *softc;
887         struct ccb_scsiio *csio;
888
889         softc = (struct pass_softc *)periph->softc;
890
891         cam_periph_assert(periph, MA_OWNED);
892
893         csio = &done_ccb->csio;
894         switch (csio->ccb_h.ccb_type) {
895         case PASS_CCB_QUEUED_IO: {
896                 struct pass_io_req *io_req;
897
898                 io_req = done_ccb->ccb_h.ccb_ioreq;
899 #if 0
900                 xpt_print(periph->path, "%s: called for user CCB %p\n",
901                           __func__, io_req->user_ccb_ptr);
902 #endif
903                 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
904                  && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
905                  && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
906                         int error;
907
908                         error = passerror(done_ccb, CAM_RETRY_SELTO,
909                                           SF_RETRY_UA | SF_NO_PRINT);
910
911                         if (error == ERESTART) {
912                                 /*
913                                  * A retry was scheduled, so
914                                  * just return.
915                                  */
916                                 return;
917                         }
918                 }
919
920                 /*
921                  * Copy the allocated CCB contents back to the malloced CCB
922                  * so we can give status back to the user when he requests it.
923                  */
924                 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
925
926                 /*
927                  * Log data/transaction completion with devstat(9).
928                  */
929                 switch (done_ccb->ccb_h.func_code) {
930                 case XPT_SCSI_IO:
931                         devstat_end_transaction(softc->device_stats,
932                             done_ccb->csio.dxfer_len - done_ccb->csio.resid,
933                             done_ccb->csio.tag_action & 0x3,
934                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
935                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
936                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
937                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
938                             &io_req->start_time);
939                         break;
940                 case XPT_ATA_IO:
941                         devstat_end_transaction(softc->device_stats,
942                             done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
943                             0, /* Not used in ATA */
944                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
945                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 
946                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
947                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
948                             &io_req->start_time);
949                         break;
950                 case XPT_SMP_IO:
951                         /*
952                          * XXX KDM this isn't quite right, but there isn't
953                          * currently an easy way to represent a bidirectional 
954                          * transfer in devstat.  The only way to do it
955                          * and have the byte counts come out right would
956                          * mean that we would have to record two
957                          * transactions, one for the request and one for the
958                          * response.  For now, so that we report something,
959                          * just treat the entire thing as a read.
960                          */
961                         devstat_end_transaction(softc->device_stats,
962                             done_ccb->smpio.smp_request_len +
963                             done_ccb->smpio.smp_response_len,
964                             DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
965                             &io_req->start_time);
966                         break;
967                 default:
968                         devstat_end_transaction(softc->device_stats, 0,
969                             DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
970                             &io_req->start_time);
971                         break;
972                 }
973
974                 /*
975                  * In the normal case, take the completed I/O off of the
976                  * active queue and put it on the done queue.  Notitfy the
977                  * user that we have a completed I/O.
978                  */
979                 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
980                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
981                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
982                         selwakeuppri(&softc->read_select, PRIBIO);
983                         KNOTE_LOCKED(&softc->read_select.si_note, 0);
984                 } else {
985                         /*
986                          * In the case of an abandoned I/O (final close
987                          * without fetching the I/O), take it off of the
988                          * abandoned queue and free it.
989                          */
990                         TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
991                         passiocleanup(softc, io_req);
992                         uma_zfree(softc->pass_zone, io_req);
993
994                         /*
995                          * Release the done_ccb here, since we may wind up
996                          * freeing the peripheral when we decrement the
997                          * reference count below.
998                          */
999                         xpt_release_ccb(done_ccb);
1000
1001                         /*
1002                          * If the abandoned queue is empty, we can release
1003                          * our reference to the periph since we won't have
1004                          * any more completions coming.
1005                          */
1006                         if ((TAILQ_EMPTY(&softc->abandoned_queue))
1007                          && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1008                                 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1009                                 cam_periph_release_locked(periph);
1010                         }
1011
1012                         /*
1013                          * We have already released the CCB, so we can
1014                          * return.
1015                          */
1016                         return;
1017                 }
1018                 break;
1019         }
1020         }
1021         xpt_release_ccb(done_ccb);
1022 }
1023
1024 static int
1025 passcreatezone(struct cam_periph *periph)
1026 {
1027         struct pass_softc *softc;
1028         int error;
1029
1030         error = 0;
1031         softc = (struct pass_softc *)periph->softc;
1032
1033         cam_periph_assert(periph, MA_OWNED);
1034         KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 
1035                 ("%s called when the pass(4) zone is valid!\n", __func__));
1036         KASSERT((softc->pass_zone == NULL), 
1037                 ("%s called when the pass(4) zone is allocated!\n", __func__));
1038
1039         if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1040                 /*
1041                  * We're the first context through, so we need to create
1042                  * the pass(4) UMA zone for I/O requests.
1043                  */
1044                 softc->flags |= PASS_FLAG_ZONE_INPROG;
1045
1046                 /*
1047                  * uma_zcreate() does a blocking (M_WAITOK) allocation,
1048                  * so we cannot hold a mutex while we call it.
1049                  */
1050                 cam_periph_unlock(periph);
1051
1052                 softc->pass_zone = uma_zcreate(softc->zone_name,
1053                     sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1054                     /*align*/ 0, /*flags*/ 0);
1055
1056                 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1057                     softc->io_zone_size, NULL, NULL, NULL, NULL,
1058                     /*align*/ 0, /*flags*/ 0);
1059
1060                 cam_periph_lock(periph);
1061
1062                 if ((softc->pass_zone == NULL)
1063                  || (softc->pass_io_zone == NULL)) {
1064                         if (softc->pass_zone == NULL)
1065                                 xpt_print(periph->path, "unable to allocate "
1066                                     "IO Req UMA zone\n");
1067                         else
1068                                 xpt_print(periph->path, "unable to allocate "
1069                                     "IO UMA zone\n");
1070                         softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1071                         goto bailout;
1072                 }
1073
1074                 /*
1075                  * Set the flags appropriately and notify any other waiters.
1076                  */
1077                 softc->flags &= PASS_FLAG_ZONE_INPROG;
1078                 softc->flags |= PASS_FLAG_ZONE_VALID;
1079                 wakeup(&softc->pass_zone);
1080         } else {
1081                 /*
1082                  * In this case, the UMA zone has not yet been created, but
1083                  * another context is in the process of creating it.  We
1084                  * need to sleep until the creation is either done or has
1085                  * failed.
1086                  */
1087                 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1088                     && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1089                         error = msleep(&softc->pass_zone,
1090                                        cam_periph_mtx(periph), PRIBIO,
1091                                        "paszon", 0);
1092                         if (error != 0)
1093                                 goto bailout;
1094                 }
1095                 /*
1096                  * If the zone creation failed, no luck for the user.
1097                  */
1098                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1099                         error = ENOMEM;
1100                         goto bailout;
1101                 }
1102         }
1103 bailout:
1104         return (error);
1105 }
1106
1107 static void
1108 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1109 {
1110         union ccb *ccb;
1111         u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1112         int i, numbufs;
1113
1114         ccb = &io_req->ccb;
1115
1116         switch (ccb->ccb_h.func_code) {
1117         case XPT_DEV_MATCH:
1118                 numbufs = min(io_req->num_bufs, 2);
1119
1120                 if (numbufs == 1) {
1121                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1122                 } else {
1123                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1124                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1125                 }
1126                 break;
1127         case XPT_SCSI_IO:
1128         case XPT_CONT_TARGET_IO:
1129                 data_ptrs[0] = &ccb->csio.data_ptr;
1130                 numbufs = min(io_req->num_bufs, 1);
1131                 break;
1132         case XPT_ATA_IO:
1133                 data_ptrs[0] = &ccb->ataio.data_ptr;
1134                 numbufs = min(io_req->num_bufs, 1);
1135                 break;
1136         case XPT_SMP_IO:
1137                 numbufs = min(io_req->num_bufs, 2);
1138                 data_ptrs[0] = &ccb->smpio.smp_request;
1139                 data_ptrs[1] = &ccb->smpio.smp_response;
1140                 break;
1141         case XPT_DEV_ADVINFO:
1142                 numbufs = min(io_req->num_bufs, 1);
1143                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1144                 break;
1145         case XPT_NVME_IO:
1146         case XPT_NVME_ADMIN:
1147                 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1148                 numbufs = min(io_req->num_bufs, 1);
1149                 break;
1150         default:
1151                 /* allow ourselves to be swapped once again */
1152                 return;
1153                 break; /* NOTREACHED */ 
1154         }
1155
1156         if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1157                 free(io_req->user_segptr, M_SCSIPASS);
1158                 io_req->user_segptr = NULL;
1159         }
1160
1161         /*
1162          * We only want to free memory we malloced.
1163          */
1164         if (io_req->data_flags == CAM_DATA_VADDR) {
1165                 for (i = 0; i < io_req->num_bufs; i++) {
1166                         if (io_req->kern_bufs[i] == NULL)
1167                                 continue;
1168
1169                         free(io_req->kern_bufs[i], M_SCSIPASS);
1170                         io_req->kern_bufs[i] = NULL;
1171                 }
1172         } else if (io_req->data_flags == CAM_DATA_SG) {
1173                 for (i = 0; i < io_req->num_kern_segs; i++) {
1174                         if ((uint8_t *)(uintptr_t)
1175                             io_req->kern_segptr[i].ds_addr == NULL)
1176                                 continue;
1177
1178                         uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1179                             io_req->kern_segptr[i].ds_addr);
1180                         io_req->kern_segptr[i].ds_addr = 0;
1181                 }
1182         }
1183
1184         if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1185                 free(io_req->kern_segptr, M_SCSIPASS);
1186                 io_req->kern_segptr = NULL;
1187         }
1188
1189         if (io_req->data_flags != CAM_DATA_PADDR) {
1190                 for (i = 0; i < numbufs; i++) {
1191                         /*
1192                          * Restore the user's buffer pointers to their
1193                          * previous values.
1194                          */
1195                         if (io_req->user_bufs[i] != NULL)
1196                                 *data_ptrs[i] = io_req->user_bufs[i];
1197                 }
1198         }
1199
1200 }
1201
1202 static int
1203 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1204                ccb_flags direction)
1205 {
1206         bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1207         bus_dma_segment_t *user_sglist, *kern_sglist;
1208         int i, j, error;
1209
1210         error = 0;
1211         kern_watermark = 0;
1212         user_watermark = 0;
1213         len_to_copy = 0;
1214         len_copied = 0;
1215         user_sglist = io_req->user_segptr;
1216         kern_sglist = io_req->kern_segptr;
1217
1218         for (i = 0, j = 0; i < io_req->num_user_segs &&
1219              j < io_req->num_kern_segs;) {
1220                 uint8_t *user_ptr, *kern_ptr;
1221
1222                 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1223                     kern_sglist[j].ds_len - kern_watermark);
1224
1225                 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1226                 user_ptr = user_ptr + user_watermark;
1227                 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1228                 kern_ptr = kern_ptr + kern_watermark;
1229
1230                 user_watermark += len_to_copy;
1231                 kern_watermark += len_to_copy;
1232
1233                 if (direction == CAM_DIR_IN) {
1234                         error = copyout(kern_ptr, user_ptr, len_to_copy);
1235                         if (error != 0) {
1236                                 xpt_print(periph->path, "%s: copyout of %u "
1237                                           "bytes from %p to %p failed with "
1238                                           "error %d\n", __func__, len_to_copy,
1239                                           kern_ptr, user_ptr, error);
1240                                 goto bailout;
1241                         }
1242                 } else {
1243                         error = copyin(user_ptr, kern_ptr, len_to_copy);
1244                         if (error != 0) {
1245                                 xpt_print(periph->path, "%s: copyin of %u "
1246                                           "bytes from %p to %p failed with "
1247                                           "error %d\n", __func__, len_to_copy,
1248                                           user_ptr, kern_ptr, error);
1249                                 goto bailout;
1250                         }
1251                 }
1252
1253                 len_copied += len_to_copy;
1254
1255                 if (user_sglist[i].ds_len == user_watermark) {
1256                         i++;
1257                         user_watermark = 0;
1258                 }
1259
1260                 if (kern_sglist[j].ds_len == kern_watermark) {
1261                         j++;
1262                         kern_watermark = 0;
1263                 }
1264         }
1265
1266 bailout:
1267
1268         return (error);
1269 }
1270
1271 static int
1272 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1273 {
1274         union ccb *ccb;
1275         struct pass_softc *softc;
1276         int numbufs, i;
1277         uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1278         uint32_t lengths[CAM_PERIPH_MAXMAPS];
1279         uint32_t dirs[CAM_PERIPH_MAXMAPS];
1280         uint32_t num_segs;
1281         uint16_t *seg_cnt_ptr;
1282         size_t maxmap;
1283         int error;
1284
1285         cam_periph_assert(periph, MA_NOTOWNED);
1286
1287         softc = periph->softc;
1288
1289         error = 0;
1290         ccb = &io_req->ccb;
1291         maxmap = 0;
1292         num_segs = 0;
1293         seg_cnt_ptr = NULL;
1294
1295         switch(ccb->ccb_h.func_code) {
1296         case XPT_DEV_MATCH:
1297                 if (ccb->cdm.match_buf_len == 0) {
1298                         printf("%s: invalid match buffer length 0\n", __func__);
1299                         return(EINVAL);
1300                 }
1301                 if (ccb->cdm.pattern_buf_len > 0) {
1302                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1303                         lengths[0] = ccb->cdm.pattern_buf_len;
1304                         dirs[0] = CAM_DIR_OUT;
1305                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1306                         lengths[1] = ccb->cdm.match_buf_len;
1307                         dirs[1] = CAM_DIR_IN;
1308                         numbufs = 2;
1309                 } else {
1310                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1311                         lengths[0] = ccb->cdm.match_buf_len;
1312                         dirs[0] = CAM_DIR_IN;
1313                         numbufs = 1;
1314                 }
1315                 io_req->data_flags = CAM_DATA_VADDR;
1316                 break;
1317         case XPT_SCSI_IO:
1318         case XPT_CONT_TARGET_IO:
1319                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1320                         return(0);
1321
1322                 /*
1323                  * The user shouldn't be able to supply a bio.
1324                  */
1325                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1326                         return (EINVAL);
1327
1328                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1329
1330                 data_ptrs[0] = &ccb->csio.data_ptr;
1331                 lengths[0] = ccb->csio.dxfer_len;
1332                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1333                 num_segs = ccb->csio.sglist_cnt;
1334                 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1335                 numbufs = 1;
1336                 maxmap = softc->maxio;
1337                 break;
1338         case XPT_ATA_IO:
1339                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1340                         return(0);
1341
1342                 /*
1343                  * We only support a single virtual address for ATA I/O.
1344                  */
1345                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1346                         return (EINVAL);
1347
1348                 io_req->data_flags = CAM_DATA_VADDR;
1349
1350                 data_ptrs[0] = &ccb->ataio.data_ptr;
1351                 lengths[0] = ccb->ataio.dxfer_len;
1352                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1353                 numbufs = 1;
1354                 maxmap = softc->maxio;
1355                 break;
1356         case XPT_SMP_IO:
1357                 io_req->data_flags = CAM_DATA_VADDR;
1358
1359                 data_ptrs[0] = &ccb->smpio.smp_request;
1360                 lengths[0] = ccb->smpio.smp_request_len;
1361                 dirs[0] = CAM_DIR_OUT;
1362                 data_ptrs[1] = &ccb->smpio.smp_response;
1363                 lengths[1] = ccb->smpio.smp_response_len;
1364                 dirs[1] = CAM_DIR_IN;
1365                 numbufs = 2;
1366                 maxmap = softc->maxio;
1367                 break;
1368         case XPT_DEV_ADVINFO:
1369                 if (ccb->cdai.bufsiz == 0)
1370                         return (0);
1371
1372                 io_req->data_flags = CAM_DATA_VADDR;
1373
1374                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1375                 lengths[0] = ccb->cdai.bufsiz;
1376                 dirs[0] = CAM_DIR_IN;
1377                 numbufs = 1;
1378                 break;
1379         case XPT_NVME_ADMIN:
1380         case XPT_NVME_IO:
1381                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1382                         return (0);
1383
1384                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1385
1386                 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1387                 lengths[0] = ccb->nvmeio.dxfer_len;
1388                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1389                 num_segs = ccb->nvmeio.sglist_cnt;
1390                 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1391                 numbufs = 1;
1392                 maxmap = softc->maxio;
1393                 break;
1394         default:
1395                 return(EINVAL);
1396                 break; /* NOTREACHED */
1397         }
1398
1399         io_req->num_bufs = numbufs;
1400
1401         /*
1402          * If there is a maximum, check to make sure that the user's
1403          * request fits within the limit.  In general, we should only have
1404          * a maximum length for requests that go to hardware.  Otherwise it
1405          * is whatever we're able to malloc.
1406          */
1407         for (i = 0; i < numbufs; i++) {
1408                 io_req->user_bufs[i] = *data_ptrs[i];
1409                 io_req->dirs[i] = dirs[i];
1410                 io_req->lengths[i] = lengths[i];
1411
1412                 if (maxmap == 0)
1413                         continue;
1414
1415                 if (lengths[i] <= maxmap)
1416                         continue;
1417
1418                 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1419                           "bytes\n", __func__, lengths[i], maxmap);
1420                 error = EINVAL;
1421                 goto bailout;
1422         }
1423
1424         switch (io_req->data_flags) {
1425         case CAM_DATA_VADDR:
1426                 /* Map or copy the buffer into kernel address space */
1427                 for (i = 0; i < numbufs; i++) {
1428                         uint8_t *tmp_buf;
1429
1430                         /*
1431                          * If for some reason no length is specified, we
1432                          * don't need to allocate anything.
1433                          */
1434                         if (io_req->lengths[i] == 0)
1435                                 continue;
1436
1437                         tmp_buf = malloc(lengths[i], M_SCSIPASS,
1438                                          M_WAITOK | M_ZERO);
1439                         io_req->kern_bufs[i] = tmp_buf;
1440                         *data_ptrs[i] = tmp_buf;
1441
1442 #if 0
1443                         xpt_print(periph->path, "%s: malloced %p len %u, user "
1444                                   "buffer %p, operation: %s\n", __func__,
1445                                   tmp_buf, lengths[i], io_req->user_bufs[i],
1446                                   (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1447 #endif
1448                         /*
1449                          * We only need to copy in if the user is writing.
1450                          */
1451                         if (dirs[i] != CAM_DIR_OUT)
1452                                 continue;
1453
1454                         error = copyin(io_req->user_bufs[i],
1455                                        io_req->kern_bufs[i], lengths[i]);
1456                         if (error != 0) {
1457                                 xpt_print(periph->path, "%s: copy of user "
1458                                           "buffer from %p to %p failed with "
1459                                           "error %d\n", __func__,
1460                                           io_req->user_bufs[i],
1461                                           io_req->kern_bufs[i], error);
1462                                 goto bailout;
1463                         }
1464                 }
1465                 break;
1466         case CAM_DATA_PADDR:
1467                 /* Pass down the pointer as-is */
1468                 break;
1469         case CAM_DATA_SG: {
1470                 size_t sg_length, size_to_go, alloc_size;
1471                 uint32_t num_segs_needed;
1472
1473                 /*
1474                  * Copy the user S/G list in, and then copy in the
1475                  * individual segments.
1476                  */
1477                 /*
1478                  * We shouldn't see this, but check just in case.
1479                  */
1480                 if (numbufs != 1) {
1481                         xpt_print(periph->path, "%s: cannot currently handle "
1482                                   "more than one S/G list per CCB\n", __func__);
1483                         error = EINVAL;
1484                         goto bailout;
1485                 }
1486
1487                 /*
1488                  * We have to have at least one segment.
1489                  */
1490                 if (num_segs == 0) {
1491                         xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1492                                   "but sglist_cnt=0!\n", __func__);
1493                         error = EINVAL;
1494                         goto bailout;
1495                 }
1496
1497                 /*
1498                  * Make sure the user specified the total length and didn't
1499                  * just leave it to us to decode the S/G list.
1500                  */
1501                 if (lengths[0] == 0) {
1502                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1503                                   "but CAM_DATA_SG flag is set!\n", __func__);
1504                         error = EINVAL;
1505                         goto bailout;
1506                 }
1507
1508                 /*
1509                  * We allocate buffers in io_zone_size increments for an
1510                  * S/G list.  This will generally be maxphys.
1511                  */
1512                 if (lengths[0] <= softc->io_zone_size)
1513                         num_segs_needed = 1;
1514                 else {
1515                         num_segs_needed = lengths[0] / softc->io_zone_size;
1516                         if ((lengths[0] % softc->io_zone_size) != 0)
1517                                 num_segs_needed++;
1518                 }
1519
1520                 /* Figure out the size of the S/G list */
1521                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1522                 io_req->num_user_segs = num_segs;
1523                 io_req->num_kern_segs = num_segs_needed;
1524
1525                 /* Save the user's S/G list pointer for later restoration */
1526                 io_req->user_bufs[0] = *data_ptrs[0];
1527
1528                 /*
1529                  * If we have enough segments allocated by default to handle
1530                  * the length of the user's S/G list,
1531                  */
1532                 if (num_segs > PASS_MAX_SEGS) {
1533                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1534                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1535                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1536                 } else
1537                         io_req->user_segptr = io_req->user_segs;
1538
1539                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1540                 if (error != 0) {
1541                         xpt_print(periph->path, "%s: copy of user S/G list "
1542                                   "from %p to %p failed with error %d\n",
1543                                   __func__, *data_ptrs[0], io_req->user_segptr,
1544                                   error);
1545                         goto bailout;
1546                 }
1547
1548                 if (num_segs_needed > PASS_MAX_SEGS) {
1549                         io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1550                             num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1551                         io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1552                 } else {
1553                         io_req->kern_segptr = io_req->kern_segs;
1554                 }
1555
1556                 /*
1557                  * Allocate the kernel S/G list.
1558                  */
1559                 for (size_to_go = lengths[0], i = 0;
1560                      size_to_go > 0 && i < num_segs_needed;
1561                      i++, size_to_go -= alloc_size) {
1562                         uint8_t *kern_ptr;
1563
1564                         alloc_size = min(size_to_go, softc->io_zone_size);
1565                         kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1566                         io_req->kern_segptr[i].ds_addr =
1567                             (bus_addr_t)(uintptr_t)kern_ptr;
1568                         io_req->kern_segptr[i].ds_len = alloc_size;
1569                 }
1570                 if (size_to_go > 0) {
1571                         printf("%s: size_to_go = %zu, software error!\n",
1572                                __func__, size_to_go);
1573                         error = EINVAL;
1574                         goto bailout;
1575                 }
1576
1577                 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1578                 *seg_cnt_ptr = io_req->num_kern_segs;
1579
1580                 /*
1581                  * We only need to copy data here if the user is writing.
1582                  */
1583                 if (dirs[0] == CAM_DIR_OUT)
1584                         error = passcopysglist(periph, io_req, dirs[0]);
1585                 break;
1586         }
1587         case CAM_DATA_SG_PADDR: {
1588                 size_t sg_length;
1589
1590                 /*
1591                  * We shouldn't see this, but check just in case.
1592                  */
1593                 if (numbufs != 1) {
1594                         printf("%s: cannot currently handle more than one "
1595                                "S/G list per CCB\n", __func__);
1596                         error = EINVAL;
1597                         goto bailout;
1598                 }
1599
1600                 /*
1601                  * We have to have at least one segment.
1602                  */
1603                 if (num_segs == 0) {
1604                         xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1605                                   "set, but sglist_cnt=0!\n", __func__);
1606                         error = EINVAL;
1607                         goto bailout;
1608                 }
1609
1610                 /*
1611                  * Make sure the user specified the total length and didn't
1612                  * just leave it to us to decode the S/G list.
1613                  */
1614                 if (lengths[0] == 0) {
1615                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1616                                   "but CAM_DATA_SG flag is set!\n", __func__);
1617                         error = EINVAL;
1618                         goto bailout;
1619                 }
1620
1621                 /* Figure out the size of the S/G list */
1622                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1623                 io_req->num_user_segs = num_segs;
1624                 io_req->num_kern_segs = io_req->num_user_segs;
1625
1626                 /* Save the user's S/G list pointer for later restoration */
1627                 io_req->user_bufs[0] = *data_ptrs[0];
1628
1629                 if (num_segs > PASS_MAX_SEGS) {
1630                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1631                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1632                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1633                 } else
1634                         io_req->user_segptr = io_req->user_segs;
1635
1636                 io_req->kern_segptr = io_req->user_segptr;
1637
1638                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1639                 if (error != 0) {
1640                         xpt_print(periph->path, "%s: copy of user S/G list "
1641                                   "from %p to %p failed with error %d\n",
1642                                   __func__, *data_ptrs[0], io_req->user_segptr,
1643                                   error);
1644                         goto bailout;
1645                 }
1646                 break;
1647         }
1648         default:
1649         case CAM_DATA_BIO:
1650                 /*
1651                  * A user shouldn't be attaching a bio to the CCB.  It
1652                  * isn't a user-accessible structure.
1653                  */
1654                 error = EINVAL;
1655                 break;
1656         }
1657
1658 bailout:
1659         if (error != 0)
1660                 passiocleanup(softc, io_req);
1661
1662         return (error);
1663 }
1664
1665 static int
1666 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1667 {
1668         struct pass_softc *softc;
1669         int error;
1670         int i;
1671
1672         error = 0;
1673         softc = (struct pass_softc *)periph->softc;
1674
1675         switch (io_req->data_flags) {
1676         case CAM_DATA_VADDR:
1677                 /*
1678                  * Copy back to the user buffer if this was a read.
1679                  */
1680                 for (i = 0; i < io_req->num_bufs; i++) {
1681                         if (io_req->dirs[i] != CAM_DIR_IN)
1682                                 continue;
1683
1684                         error = copyout(io_req->kern_bufs[i],
1685                             io_req->user_bufs[i], io_req->lengths[i]);
1686                         if (error != 0) {
1687                                 xpt_print(periph->path, "Unable to copy %u "
1688                                           "bytes from %p to user address %p\n",
1689                                           io_req->lengths[i],
1690                                           io_req->kern_bufs[i],
1691                                           io_req->user_bufs[i]);
1692                                 goto bailout;
1693                         }
1694                 }
1695                 break;
1696         case CAM_DATA_PADDR:
1697                 /* Do nothing.  The pointer is a physical address already */
1698                 break;
1699         case CAM_DATA_SG:
1700                 /*
1701                  * Copy back to the user buffer if this was a read.
1702                  * Restore the user's S/G list buffer pointer.
1703                  */
1704                 if (io_req->dirs[0] == CAM_DIR_IN)
1705                         error = passcopysglist(periph, io_req, io_req->dirs[0]);
1706                 break;
1707         case CAM_DATA_SG_PADDR:
1708                 /*
1709                  * Restore the user's S/G list buffer pointer.  No need to
1710                  * copy.
1711                  */
1712                 break;
1713         default:
1714         case CAM_DATA_BIO:
1715                 error = EINVAL;
1716                 break;
1717         }
1718
1719 bailout:
1720         /*
1721          * Reset the user's pointers to their original values and free
1722          * allocated memory.
1723          */
1724         passiocleanup(softc, io_req);
1725
1726         return (error);
1727 }
1728
1729 static int
1730 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1731 {
1732         int error;
1733
1734         if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1735                 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1736         }
1737         return (error);
1738 }
1739
1740 static int
1741 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1742 {
1743         struct  cam_periph *periph;
1744         struct  pass_softc *softc;
1745         int     error;
1746         uint32_t priority;
1747
1748         periph = (struct cam_periph *)dev->si_drv1;
1749         cam_periph_lock(periph);
1750         softc = (struct pass_softc *)periph->softc;
1751
1752         error = 0;
1753
1754         switch (cmd) {
1755         case CAMIOCOMMAND:
1756         {
1757                 union ccb *inccb;
1758                 union ccb *ccb;
1759                 int ccb_malloced;
1760
1761                 inccb = (union ccb *)addr;
1762 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1763                 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
1764                         inccb->csio.bio = NULL;
1765 #endif
1766
1767                 if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1768                         error = EINVAL;
1769                         break;
1770                 }
1771
1772                 /*
1773                  * Some CCB types, like scan bus and scan lun can only go
1774                  * through the transport layer device.
1775                  */
1776                 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1777                         xpt_print(periph->path, "CCB function code %#x is "
1778                             "restricted to the XPT device\n",
1779                             inccb->ccb_h.func_code);
1780                         error = ENODEV;
1781                         break;
1782                 }
1783
1784                 /* Compatibility for RL/priority-unaware code. */
1785                 priority = inccb->ccb_h.pinfo.priority;
1786                 if (priority <= CAM_PRIORITY_OOB)
1787                     priority += CAM_PRIORITY_OOB + 1;
1788
1789                 /*
1790                  * Non-immediate CCBs need a CCB from the per-device pool
1791                  * of CCBs, which is scheduled by the transport layer.
1792                  * Immediate CCBs and user-supplied CCBs should just be
1793                  * malloced.
1794                  */
1795                 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1796                  && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1797                         ccb = cam_periph_getccb(periph, priority);
1798                         ccb_malloced = 0;
1799                 } else {
1800                         ccb = xpt_alloc_ccb_nowait();
1801
1802                         if (ccb != NULL)
1803                                 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1804                                               priority);
1805                         ccb_malloced = 1;
1806                 }
1807
1808                 if (ccb == NULL) {
1809                         xpt_print(periph->path, "unable to allocate CCB\n");
1810                         error = ENOMEM;
1811                         break;
1812                 }
1813
1814                 error = passsendccb(periph, ccb, inccb);
1815
1816                 if (ccb_malloced)
1817                         xpt_free_ccb(ccb);
1818                 else
1819                         xpt_release_ccb(ccb);
1820
1821                 break;
1822         }
1823         case CAMIOQUEUE:
1824         {
1825                 struct pass_io_req *io_req;
1826                 union ccb **user_ccb, *ccb;
1827                 xpt_opcode fc;
1828
1829 #ifdef COMPAT_FREEBSD32
1830                 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1831                         error = ENOTTY;
1832                         goto bailout;
1833                 }
1834 #endif
1835                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1836                         error = passcreatezone(periph);
1837                         if (error != 0)
1838                                 goto bailout;
1839                 }
1840
1841                 /*
1842                  * We're going to do a blocking allocation for this I/O
1843                  * request, so we have to drop the lock.
1844                  */
1845                 cam_periph_unlock(periph);
1846
1847                 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1848                 ccb = &io_req->ccb;
1849                 user_ccb = (union ccb **)addr;
1850
1851                 /*
1852                  * Unlike the CAMIOCOMMAND ioctl above, we only have a
1853                  * pointer to the user's CCB, so we have to copy the whole
1854                  * thing in to a buffer we have allocated (above) instead
1855                  * of allowing the ioctl code to malloc a buffer and copy
1856                  * it in.
1857                  *
1858                  * This is an advantage for this asynchronous interface,
1859                  * since we don't want the memory to get freed while the
1860                  * CCB is outstanding.
1861                  */
1862 #if 0
1863                 xpt_print(periph->path, "Copying user CCB %p to "
1864                           "kernel address %p\n", *user_ccb, ccb);
1865 #endif
1866                 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1867                 if (error != 0) {
1868                         xpt_print(periph->path, "Copy of user CCB %p to "
1869                                   "kernel address %p failed with error %d\n",
1870                                   *user_ccb, ccb, error);
1871                         goto camioqueue_error;
1872                 }
1873 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1874                 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
1875                         ccb->csio.bio = NULL;
1876 #endif
1877
1878                 if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1879                         error = EINVAL;
1880                         goto camioqueue_error;
1881                 }
1882
1883                 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1884                         if (ccb->csio.cdb_len > IOCDBLEN) {
1885                                 error = EINVAL;
1886                                 goto camioqueue_error;
1887                         }
1888                         error = copyin(ccb->csio.cdb_io.cdb_ptr,
1889                             ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1890                         if (error != 0)
1891                                 goto camioqueue_error;
1892                         ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1893                 }
1894
1895                 /*
1896                  * Some CCB types, like scan bus and scan lun can only go
1897                  * through the transport layer device.
1898                  */
1899                 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1900                         xpt_print(periph->path, "CCB function code %#x is "
1901                             "restricted to the XPT device\n",
1902                             ccb->ccb_h.func_code);
1903                         error = ENODEV;
1904                         goto camioqueue_error;
1905                 }
1906
1907                 /*
1908                  * Save the user's CCB pointer as well as his linked list
1909                  * pointers and peripheral private area so that we can
1910                  * restore these later.
1911                  */
1912                 io_req->user_ccb_ptr = *user_ccb;
1913                 io_req->user_periph_links = ccb->ccb_h.periph_links;
1914                 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1915
1916                 /*
1917                  * Now that we've saved the user's values, we can set our
1918                  * own peripheral private entry.
1919                  */
1920                 ccb->ccb_h.ccb_ioreq = io_req;
1921
1922                 /* Compatibility for RL/priority-unaware code. */
1923                 priority = ccb->ccb_h.pinfo.priority;
1924                 if (priority <= CAM_PRIORITY_OOB)
1925                     priority += CAM_PRIORITY_OOB + 1;
1926
1927                 /*
1928                  * Setup fields in the CCB like the path and the priority.
1929                  * The path in particular cannot be done in userland, since
1930                  * it is a pointer to a kernel data structure.
1931                  */
1932                 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1933                                     ccb->ccb_h.flags);
1934
1935                 /*
1936                  * Setup our done routine.  There is no way for the user to
1937                  * have a valid pointer here.
1938                  */
1939                 ccb->ccb_h.cbfcnp = passdone;
1940
1941                 fc = ccb->ccb_h.func_code;
1942                 /*
1943                  * If this function code has memory that can be mapped in
1944                  * or out, we need to call passmemsetup().
1945                  */
1946                 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1947                  || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1948                  || (fc == XPT_DEV_ADVINFO)
1949                  || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1950                         error = passmemsetup(periph, io_req);
1951                         if (error != 0)
1952                                 goto camioqueue_error;
1953                 } else
1954                         io_req->mapinfo.num_bufs_used = 0;
1955
1956                 cam_periph_lock(periph);
1957
1958                 /*
1959                  * Everything goes on the incoming queue initially.
1960                  */
1961                 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1962
1963                 /*
1964                  * If the CCB is queued, and is not a user CCB, then
1965                  * we need to allocate a slot for it.  Call xpt_schedule()
1966                  * so that our start routine will get called when a CCB is
1967                  * available.
1968                  */
1969                 if ((fc & XPT_FC_QUEUED)
1970                  && ((fc & XPT_FC_USER_CCB) == 0)) {
1971                         xpt_schedule(periph, priority);
1972                         break;
1973                 } 
1974
1975                 /*
1976                  * At this point, the CCB in question is either an
1977                  * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1978                  * and therefore should be malloced, not allocated via a slot.
1979                  * Remove the CCB from the incoming queue and add it to the
1980                  * active queue.
1981                  */
1982                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1983                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1984
1985                 xpt_action(ccb);
1986
1987                 /*
1988                  * If this is not a queued CCB (i.e. it is an immediate CCB),
1989                  * then it is already done.  We need to put it on the done
1990                  * queue for the user to fetch.
1991                  */
1992                 if ((fc & XPT_FC_QUEUED) == 0) {
1993                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
1994                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
1995                 }
1996                 break;
1997
1998 camioqueue_error:
1999                 uma_zfree(softc->pass_zone, io_req);
2000                 cam_periph_lock(periph);
2001                 break;
2002         }
2003         case CAMIOGET:
2004         {
2005                 union ccb **user_ccb;
2006                 struct pass_io_req *io_req;
2007                 int old_error;
2008
2009 #ifdef COMPAT_FREEBSD32
2010                 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2011                         error = ENOTTY;
2012                         goto bailout;
2013                 }
2014 #endif
2015                 user_ccb = (union ccb **)addr;
2016                 old_error = 0;
2017
2018                 io_req = TAILQ_FIRST(&softc->done_queue);
2019                 if (io_req == NULL) {
2020                         error = ENOENT;
2021                         break;
2022                 }
2023
2024                 /*
2025                  * Remove the I/O from the done queue.
2026                  */
2027                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2028
2029                 /*
2030                  * We have to drop the lock during the copyout because the
2031                  * copyout can result in VM faults that require sleeping.
2032                  */
2033                 cam_periph_unlock(periph);
2034
2035                 /*
2036                  * Do any needed copies (e.g. for reads) and revert the
2037                  * pointers in the CCB back to the user's pointers.
2038                  */
2039                 error = passmemdone(periph, io_req);
2040
2041                 old_error = error;
2042
2043                 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2044                 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2045
2046 #if 0
2047                 xpt_print(periph->path, "Copying to user CCB %p from "
2048                           "kernel address %p\n", *user_ccb, &io_req->ccb);
2049 #endif
2050
2051                 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2052                 if (error != 0) {
2053                         xpt_print(periph->path, "Copy to user CCB %p from "
2054                                   "kernel address %p failed with error %d\n",
2055                                   *user_ccb, &io_req->ccb, error);
2056                 }
2057
2058                 /*
2059                  * Prefer the first error we got back, and make sure we
2060                  * don't overwrite bad status with good.
2061                  */
2062                 if (old_error != 0)
2063                         error = old_error;
2064
2065                 cam_periph_lock(periph);
2066
2067                 /*
2068                  * At this point, if there was an error, we could potentially
2069                  * re-queue the I/O and try again.  But why?  The error
2070                  * would almost certainly happen again.  We might as well
2071                  * not leak memory.
2072                  */
2073                 uma_zfree(softc->pass_zone, io_req);
2074                 break;
2075         }
2076         default:
2077                 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2078                 break;
2079         }
2080
2081 bailout:
2082         cam_periph_unlock(periph);
2083
2084         return(error);
2085 }
2086
2087 static int
2088 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2089 {
2090         struct cam_periph *periph;
2091         struct pass_softc *softc;
2092         int revents;
2093
2094         periph = (struct cam_periph *)dev->si_drv1;
2095         softc = (struct pass_softc *)periph->softc;
2096
2097         revents = poll_events & (POLLOUT | POLLWRNORM);
2098         if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2099                 cam_periph_lock(periph);
2100
2101                 if (!TAILQ_EMPTY(&softc->done_queue)) {
2102                         revents |= poll_events & (POLLIN | POLLRDNORM);
2103                 }
2104                 cam_periph_unlock(periph);
2105                 if (revents == 0)
2106                         selrecord(td, &softc->read_select);
2107         }
2108
2109         return (revents);
2110 }
2111
2112 static int
2113 passkqfilter(struct cdev *dev, struct knote *kn)
2114 {
2115         struct cam_periph *periph;
2116         struct pass_softc *softc;
2117
2118         periph = (struct cam_periph *)dev->si_drv1;
2119         softc = (struct pass_softc *)periph->softc;
2120
2121         kn->kn_hook = (caddr_t)periph;
2122         kn->kn_fop = &passread_filtops;
2123         knlist_add(&softc->read_select.si_note, kn, 0);
2124
2125         return (0);
2126 }
2127
2128 static void
2129 passreadfiltdetach(struct knote *kn)
2130 {
2131         struct cam_periph *periph;
2132         struct pass_softc *softc;
2133
2134         periph = (struct cam_periph *)kn->kn_hook;
2135         softc = (struct pass_softc *)periph->softc;
2136
2137         knlist_remove(&softc->read_select.si_note, kn, 0);
2138 }
2139
2140 static int
2141 passreadfilt(struct knote *kn, long hint)
2142 {
2143         struct cam_periph *periph;
2144         struct pass_softc *softc;
2145         int retval;
2146
2147         periph = (struct cam_periph *)kn->kn_hook;
2148         softc = (struct pass_softc *)periph->softc;
2149
2150         cam_periph_assert(periph, MA_OWNED);
2151
2152         if (TAILQ_EMPTY(&softc->done_queue))
2153                 retval = 0;
2154         else
2155                 retval = 1;
2156
2157         return (retval);
2158 }
2159
2160 /*
2161  * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2162  * should be the CCB that is copied in from the user.
2163  */
2164 static int
2165 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2166 {
2167         struct pass_softc *softc;
2168         struct cam_periph_map_info mapinfo;
2169         uint8_t *cmd;
2170         xpt_opcode fc;
2171         int error;
2172
2173         softc = (struct pass_softc *)periph->softc;
2174
2175         /*
2176          * There are some fields in the CCB header that need to be
2177          * preserved, the rest we get from the user.
2178          */
2179         xpt_merge_ccb(ccb, inccb);
2180
2181         if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2182                 cmd = __builtin_alloca(ccb->csio.cdb_len);
2183                 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2184                 if (error)
2185                         return (error);
2186                 ccb->csio.cdb_io.cdb_ptr = cmd;
2187         }
2188
2189         /*
2190          * Let cam_periph_mapmem do a sanity check on the data pointer format.
2191          * Even if no data transfer is needed, it's a cheap check and it
2192          * simplifies the code.
2193          */
2194         fc = ccb->ccb_h.func_code;
2195         if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2196             || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
2197             || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
2198                 bzero(&mapinfo, sizeof(mapinfo));
2199
2200                 /*
2201                  * cam_periph_mapmem calls into proc and vm functions that can
2202                  * sleep as well as trigger I/O, so we can't hold the lock.
2203                  * Dropping it here is reasonably safe.
2204                  */
2205                 cam_periph_unlock(periph);
2206                 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2207                 cam_periph_lock(periph);
2208
2209                 /*
2210                  * cam_periph_mapmem returned an error, we can't continue.
2211                  * Return the error to the user.
2212                  */
2213                 if (error)
2214                         return(error);
2215         } else
2216                 /* Ensure that the unmap call later on is a no-op. */
2217                 mapinfo.num_bufs_used = 0;
2218
2219         /*
2220          * If the user wants us to perform any error recovery, then honor
2221          * that request.  Otherwise, it's up to the user to perform any
2222          * error recovery.
2223          */
2224         cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 
2225             passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
2226             /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
2227             softc->device_stats);
2228
2229         cam_periph_unlock(periph);
2230         cam_periph_unmapmem(ccb, &mapinfo);
2231         cam_periph_lock(periph);
2232
2233         ccb->ccb_h.cbfcnp = NULL;
2234         ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2235         bcopy(ccb, inccb, sizeof(union ccb));
2236
2237         return(0);
2238 }
2239
2240 static int
2241 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2242 {
2243         struct cam_periph *periph;
2244         struct pass_softc *softc;
2245
2246         periph = xpt_path_periph(ccb->ccb_h.path);
2247         softc = (struct pass_softc *)periph->softc;
2248
2249         return(cam_periph_error(ccb, cam_flags, sense_flags));
2250 }