]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cam/scsi/scsi_pass.c
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / sys / cam / scsi / scsi_pass.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/conf.h>
37 #include <sys/types.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/devicestat.h>
41 #include <sys/errno.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/poll.h>
46 #include <sys/selinfo.h>
47 #include <sys/sdt.h>
48 #include <sys/sysent.h>
49 #include <sys/taskqueue.h>
50 #include <vm/uma.h>
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53
54 #include <machine/bus.h>
55
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_periph.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 #include <cam/cam_xpt_periph.h>
65
66 #include <cam/scsi/scsi_all.h>
67 #include <cam/scsi/scsi_pass.h>
68
69 typedef enum {
70         PASS_FLAG_OPEN                  = 0x01,
71         PASS_FLAG_LOCKED                = 0x02,
72         PASS_FLAG_INVALID               = 0x04,
73         PASS_FLAG_INITIAL_PHYSPATH      = 0x08,
74         PASS_FLAG_ZONE_INPROG           = 0x10,
75         PASS_FLAG_ZONE_VALID            = 0x20,
76         PASS_FLAG_UNMAPPED_CAPABLE      = 0x40,
77         PASS_FLAG_ABANDONED_REF_SET     = 0x80
78 } pass_flags;
79
80 typedef enum {
81         PASS_STATE_NORMAL
82 } pass_state;
83
84 typedef enum {
85         PASS_CCB_BUFFER_IO,
86         PASS_CCB_QUEUED_IO
87 } pass_ccb_types;
88
89 #define ccb_type        ppriv_field0
90 #define ccb_ioreq       ppriv_ptr1
91
92 /*
93  * The maximum number of memory segments we preallocate.
94  */
95 #define PASS_MAX_SEGS   16
96
97 typedef enum {
98         PASS_IO_NONE            = 0x00,
99         PASS_IO_USER_SEG_MALLOC = 0x01,
100         PASS_IO_KERN_SEG_MALLOC = 0x02,
101         PASS_IO_ABANDONED       = 0x04
102 } pass_io_flags; 
103
104 struct pass_io_req {
105         union ccb                        ccb;
106         union ccb                       *alloced_ccb;
107         union ccb                       *user_ccb_ptr;
108         camq_entry                       user_periph_links;
109         ccb_ppriv_area                   user_periph_priv;
110         struct cam_periph_map_info       mapinfo;
111         pass_io_flags                    flags;
112         ccb_flags                        data_flags;
113         int                              num_user_segs;
114         bus_dma_segment_t                user_segs[PASS_MAX_SEGS];
115         int                              num_kern_segs;
116         bus_dma_segment_t                kern_segs[PASS_MAX_SEGS];
117         bus_dma_segment_t               *user_segptr;
118         bus_dma_segment_t               *kern_segptr;
119         int                              num_bufs;
120         uint32_t                         dirs[CAM_PERIPH_MAXMAPS];
121         uint32_t                         lengths[CAM_PERIPH_MAXMAPS];
122         uint8_t                         *user_bufs[CAM_PERIPH_MAXMAPS];
123         uint8_t                         *kern_bufs[CAM_PERIPH_MAXMAPS];
124         struct bintime                   start_time;
125         TAILQ_ENTRY(pass_io_req)         links;
126 };
127
128 struct pass_softc {
129         pass_state                state;
130         pass_flags                flags;
131         u_int8_t                  pd_type;
132         union ccb                 saved_ccb;
133         int                       open_count;
134         u_int                     maxio;
135         struct devstat           *device_stats;
136         struct cdev              *dev;
137         struct cdev              *alias_dev;
138         struct task               add_physpath_task;
139         struct task               shutdown_kqueue_task;
140         struct selinfo            read_select;
141         TAILQ_HEAD(, pass_io_req) incoming_queue;
142         TAILQ_HEAD(, pass_io_req) active_queue;
143         TAILQ_HEAD(, pass_io_req) abandoned_queue;
144         TAILQ_HEAD(, pass_io_req) done_queue;
145         struct cam_periph        *periph;
146         char                      zone_name[12];
147         char                      io_zone_name[12];
148         uma_zone_t                pass_zone;
149         uma_zone_t                pass_io_zone;
150         size_t                    io_zone_size;
151 };
152
153 static  d_open_t        passopen;
154 static  d_close_t       passclose;
155 static  d_ioctl_t       passioctl;
156 static  d_ioctl_t       passdoioctl;
157 static  d_poll_t        passpoll;
158 static  d_kqfilter_t    passkqfilter;
159 static  void            passreadfiltdetach(struct knote *kn);
160 static  int             passreadfilt(struct knote *kn, long hint);
161
162 static  periph_init_t   passinit;
163 static  periph_ctor_t   passregister;
164 static  periph_oninv_t  passoninvalidate;
165 static  periph_dtor_t   passcleanup;
166 static  periph_start_t  passstart;
167 static  void            pass_shutdown_kqueue(void *context, int pending);
168 static  void            pass_add_physpath(void *context, int pending);
169 static  void            passasync(void *callback_arg, u_int32_t code,
170                                   struct cam_path *path, void *arg);
171 static  void            passdone(struct cam_periph *periph, 
172                                  union ccb *done_ccb);
173 static  int             passcreatezone(struct cam_periph *periph);
174 static  void            passiocleanup(struct pass_softc *softc, 
175                                       struct pass_io_req *io_req);
176 static  int             passcopysglist(struct cam_periph *periph,
177                                        struct pass_io_req *io_req,
178                                        ccb_flags direction);
179 static  int             passmemsetup(struct cam_periph *periph,
180                                      struct pass_io_req *io_req);
181 static  int             passmemdone(struct cam_periph *periph,
182                                     struct pass_io_req *io_req);
183 static  int             passerror(union ccb *ccb, u_int32_t cam_flags, 
184                                   u_int32_t sense_flags);
185 static  int             passsendccb(struct cam_periph *periph, union ccb *ccb,
186                                     union ccb *inccb);
187
188 static struct periph_driver passdriver =
189 {
190         passinit, "pass",
191         TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
192 };
193
194 PERIPHDRIVER_DECLARE(pass, passdriver);
195
196 static struct cdevsw pass_cdevsw = {
197         .d_version =    D_VERSION,
198         .d_flags =      D_TRACKCLOSE,
199         .d_open =       passopen,
200         .d_close =      passclose,
201         .d_ioctl =      passioctl,
202         .d_poll =       passpoll,
203         .d_kqfilter =   passkqfilter,
204         .d_name =       "pass",
205 };
206
207 static struct filterops passread_filtops = {
208         .f_isfd =       1,
209         .f_detach =     passreadfiltdetach,
210         .f_event =      passreadfilt
211 };
212
213 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
214
215 static void
216 passinit(void)
217 {
218         cam_status status;
219
220         /*
221          * Install a global async callback.  This callback will
222          * receive async callbacks like "new device found".
223          */
224         status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
225
226         if (status != CAM_REQ_CMP) {
227                 printf("pass: Failed to attach master async callback "
228                        "due to status 0x%x!\n", status);
229         }
230
231 }
232
233 static void
234 passrejectios(struct cam_periph *periph)
235 {
236         struct pass_io_req *io_req, *io_req2;
237         struct pass_softc *softc;
238
239         softc = (struct pass_softc *)periph->softc;
240
241         /*
242          * The user can no longer get status for I/O on the done queue, so
243          * clean up all outstanding I/O on the done queue.
244          */
245         TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
246                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
247                 passiocleanup(softc, io_req);
248                 uma_zfree(softc->pass_zone, io_req);
249         }
250
251         /*
252          * The underlying device is gone, so we can't issue these I/Os.
253          * The devfs node has been shut down, so we can't return status to
254          * the user.  Free any I/O left on the incoming queue.
255          */
256         TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
257                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
258                 passiocleanup(softc, io_req);
259                 uma_zfree(softc->pass_zone, io_req);
260         }
261
262         /*
263          * Normally we would put I/Os on the abandoned queue and acquire a
264          * reference when we saw the final close.  But, the device went
265          * away and devfs may have moved everything off to deadfs by the
266          * time the I/O done callback is called; as a result, we won't see
267          * any more closes.  So, if we have any active I/Os, we need to put
268          * them on the abandoned queue.  When the abandoned queue is empty,
269          * we'll release the remaining reference (see below) to the peripheral.
270          */
271         TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
272                 TAILQ_REMOVE(&softc->active_queue, io_req, links);
273                 io_req->flags |= PASS_IO_ABANDONED;
274                 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
275         }
276
277         /*
278          * If we put any I/O on the abandoned queue, acquire a reference.
279          */
280         if ((!TAILQ_EMPTY(&softc->abandoned_queue))
281          && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
282                 cam_periph_doacquire(periph);
283                 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
284         }
285 }
286
287 static void
288 passdevgonecb(void *arg)
289 {
290         struct cam_periph *periph;
291         struct mtx *mtx;
292         struct pass_softc *softc;
293         int i;
294
295         periph = (struct cam_periph *)arg;
296         mtx = cam_periph_mtx(periph);
297         mtx_lock(mtx);
298
299         softc = (struct pass_softc *)periph->softc;
300         KASSERT(softc->open_count >= 0, ("Negative open count %d",
301                 softc->open_count));
302
303         /*
304          * When we get this callback, we will get no more close calls from
305          * devfs.  So if we have any dangling opens, we need to release the
306          * reference held for that particular context.
307          */
308         for (i = 0; i < softc->open_count; i++)
309                 cam_periph_release_locked(periph);
310
311         softc->open_count = 0;
312
313         /*
314          * Release the reference held for the device node, it is gone now.
315          * Accordingly, inform all queued I/Os of their fate.
316          */
317         cam_periph_release_locked(periph);
318         passrejectios(periph);
319
320         /*
321          * We reference the SIM lock directly here, instead of using
322          * cam_periph_unlock().  The reason is that the final call to
323          * cam_periph_release_locked() above could result in the periph
324          * getting freed.  If that is the case, dereferencing the periph
325          * with a cam_periph_unlock() call would cause a page fault.
326          */
327         mtx_unlock(mtx);
328
329         /*
330          * We have to remove our kqueue context from a thread because it
331          * may sleep.  It would be nice if we could get a callback from
332          * kqueue when it is done cleaning up resources.
333          */
334         taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
335 }
336
337 static void
338 passoninvalidate(struct cam_periph *periph)
339 {
340         struct pass_softc *softc;
341
342         softc = (struct pass_softc *)periph->softc;
343
344         /*
345          * De-register any async callbacks.
346          */
347         xpt_register_async(0, passasync, periph, periph->path);
348
349         softc->flags |= PASS_FLAG_INVALID;
350
351         /*
352          * Tell devfs this device has gone away, and ask for a callback
353          * when it has cleaned up its state.
354          */
355         destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
356 }
357
358 static void
359 passcleanup(struct cam_periph *periph)
360 {
361         struct pass_softc *softc;
362
363         softc = (struct pass_softc *)periph->softc;
364
365         cam_periph_assert(periph, MA_OWNED);
366         KASSERT(TAILQ_EMPTY(&softc->active_queue),
367                 ("%s called when there are commands on the active queue!\n",
368                 __func__));
369         KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
370                 ("%s called when there are commands on the abandoned queue!\n",
371                 __func__));
372         KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
373                 ("%s called when there are commands on the incoming queue!\n",
374                 __func__));
375         KASSERT(TAILQ_EMPTY(&softc->done_queue),
376                 ("%s called when there are commands on the done queue!\n",
377                 __func__));
378
379         devstat_remove_entry(softc->device_stats);
380
381         cam_periph_unlock(periph);
382
383         /*
384          * We call taskqueue_drain() for the physpath task to make sure it
385          * is complete.  We drop the lock because this can potentially
386          * sleep.  XXX KDM that is bad.  Need a way to get a callback when
387          * a taskqueue is drained.
388          *
389          * Note that we don't drain the kqueue shutdown task queue.  This
390          * is because we hold a reference on the periph for kqueue, and
391          * release that reference from the kqueue shutdown task queue.  So
392          * we cannot come into this routine unless we've released that
393          * reference.  Also, because that could be the last reference, we
394          * could be called from the cam_periph_release() call in
395          * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
396          * would deadlock.  It would be preferable if we had a way to
397          * get a callback when a taskqueue is done.
398          */
399         taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
400
401         cam_periph_lock(periph);
402
403         free(softc, M_DEVBUF);
404 }
405
406 static void
407 pass_shutdown_kqueue(void *context, int pending)
408 {
409         struct cam_periph *periph;
410         struct pass_softc *softc;
411
412         periph = context;
413         softc = periph->softc;
414
415         knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
416         knlist_destroy(&softc->read_select.si_note);
417
418         /*
419          * Release the reference we held for kqueue.
420          */
421         cam_periph_release(periph);
422 }
423
424 static void
425 pass_add_physpath(void *context, int pending)
426 {
427         struct cam_periph *periph;
428         struct pass_softc *softc;
429         struct mtx *mtx;
430         char *physpath;
431
432         /*
433          * If we have one, create a devfs alias for our
434          * physical path.
435          */
436         periph = context;
437         softc = periph->softc;
438         physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
439         mtx = cam_periph_mtx(periph);
440         mtx_lock(mtx);
441
442         if (periph->flags & CAM_PERIPH_INVALID)
443                 goto out;
444
445         if (xpt_getattr(physpath, MAXPATHLEN,
446                         "GEOM::physpath", periph->path) == 0
447          && strlen(physpath) != 0) {
448
449                 mtx_unlock(mtx);
450                 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
451                                         softc->dev, softc->alias_dev, physpath);
452                 mtx_lock(mtx);
453         }
454
455 out:
456         /*
457          * Now that we've made our alias, we no longer have to have a
458          * reference to the device.
459          */
460         if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
461                 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
462
463         /*
464          * We always acquire a reference to the periph before queueing this
465          * task queue function, so it won't go away before we run.
466          */
467         while (pending-- > 0)
468                 cam_periph_release_locked(periph);
469         mtx_unlock(mtx);
470
471         free(physpath, M_DEVBUF);
472 }
473
474 static void
475 passasync(void *callback_arg, u_int32_t code,
476           struct cam_path *path, void *arg)
477 {
478         struct cam_periph *periph;
479
480         periph = (struct cam_periph *)callback_arg;
481
482         switch (code) {
483         case AC_FOUND_DEVICE:
484         {
485                 struct ccb_getdev *cgd;
486                 cam_status status;
487  
488                 cgd = (struct ccb_getdev *)arg;
489                 if (cgd == NULL)
490                         break;
491
492                 /*
493                  * Allocate a peripheral instance for
494                  * this device and start the probe
495                  * process.
496                  */
497                 status = cam_periph_alloc(passregister, passoninvalidate,
498                                           passcleanup, passstart, "pass",
499                                           CAM_PERIPH_BIO, path,
500                                           passasync, AC_FOUND_DEVICE, cgd);
501
502                 if (status != CAM_REQ_CMP
503                  && status != CAM_REQ_INPROG) {
504                         const struct cam_status_entry *entry;
505
506                         entry = cam_fetch_status_entry(status);
507
508                         printf("passasync: Unable to attach new device "
509                                "due to status %#x: %s\n", status, entry ?
510                                entry->status_text : "Unknown");
511                 }
512
513                 break;
514         }
515         case AC_ADVINFO_CHANGED:
516         {
517                 uintptr_t buftype;
518
519                 buftype = (uintptr_t)arg;
520                 if (buftype == CDAI_TYPE_PHYS_PATH) {
521                         struct pass_softc *softc;
522
523                         softc = (struct pass_softc *)periph->softc;
524                         /*
525                          * Acquire a reference to the periph before we
526                          * start the taskqueue, so that we don't run into
527                          * a situation where the periph goes away before
528                          * the task queue has a chance to run.
529                          */
530                         if (cam_periph_acquire(periph) != 0)
531                                 break;
532
533                         taskqueue_enqueue(taskqueue_thread,
534                                           &softc->add_physpath_task);
535                 }
536                 break;
537         }
538         default:
539                 cam_periph_async(periph, code, path, arg);
540                 break;
541         }
542 }
543
544 static cam_status
545 passregister(struct cam_periph *periph, void *arg)
546 {
547         struct pass_softc *softc;
548         struct ccb_getdev *cgd;
549         struct ccb_pathinq cpi;
550         struct make_dev_args args;
551         int error, no_tags;
552
553         cgd = (struct ccb_getdev *)arg;
554         if (cgd == NULL) {
555                 printf("%s: no getdev CCB, can't register device\n", __func__);
556                 return(CAM_REQ_CMP_ERR);
557         }
558
559         softc = (struct pass_softc *)malloc(sizeof(*softc),
560                                             M_DEVBUF, M_NOWAIT);
561
562         if (softc == NULL) {
563                 printf("%s: Unable to probe new device. "
564                        "Unable to allocate softc\n", __func__);
565                 return(CAM_REQ_CMP_ERR);
566         }
567
568         bzero(softc, sizeof(*softc));
569         softc->state = PASS_STATE_NORMAL;
570         if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
571                 softc->pd_type = SID_TYPE(&cgd->inq_data);
572         else if (cgd->protocol == PROTO_SATAPM)
573                 softc->pd_type = T_ENCLOSURE;
574         else
575                 softc->pd_type = T_DIRECT;
576
577         periph->softc = softc;
578         softc->periph = periph;
579         TAILQ_INIT(&softc->incoming_queue);
580         TAILQ_INIT(&softc->active_queue);
581         TAILQ_INIT(&softc->abandoned_queue);
582         TAILQ_INIT(&softc->done_queue);
583         snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
584                  periph->periph_name, periph->unit_number);
585         snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
586                  periph->periph_name, periph->unit_number);
587         softc->io_zone_size = MAXPHYS;
588         knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
589
590         xpt_path_inq(&cpi, periph->path);
591
592         if (cpi.maxio == 0)
593                 softc->maxio = DFLTPHYS;        /* traditional default */
594         else if (cpi.maxio > MAXPHYS)
595                 softc->maxio = MAXPHYS;         /* for safety */
596         else
597                 softc->maxio = cpi.maxio;       /* real value */
598
599         if (cpi.hba_misc & PIM_UNMAPPED)
600                 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
601
602         /*
603          * We pass in 0 for a blocksize, since we don't 
604          * know what the blocksize of this device is, if 
605          * it even has a blocksize.
606          */
607         cam_periph_unlock(periph);
608         no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
609         softc->device_stats = devstat_new_entry("pass",
610                           periph->unit_number, 0,
611                           DEVSTAT_NO_BLOCKSIZE
612                           | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
613                           softc->pd_type |
614                           XPORT_DEVSTAT_TYPE(cpi.transport) |
615                           DEVSTAT_TYPE_PASS,
616                           DEVSTAT_PRIORITY_PASS);
617
618         /*
619          * Initialize the taskqueue handler for shutting down kqueue.
620          */
621         TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
622                   pass_shutdown_kqueue, periph);
623
624         /*
625          * Acquire a reference to the periph that we can release once we've
626          * cleaned up the kqueue.
627          */
628         if (cam_periph_acquire(periph) != 0) {
629                 xpt_print(periph->path, "%s: lost periph during "
630                           "registration!\n", __func__);
631                 cam_periph_lock(periph);
632                 return (CAM_REQ_CMP_ERR);
633         }
634
635         /*
636          * Acquire a reference to the periph before we create the devfs
637          * instance for it.  We'll release this reference once the devfs
638          * instance has been freed.
639          */
640         if (cam_periph_acquire(periph) != 0) {
641                 xpt_print(periph->path, "%s: lost periph during "
642                           "registration!\n", __func__);
643                 cam_periph_lock(periph);
644                 return (CAM_REQ_CMP_ERR);
645         }
646
647         /* Register the device */
648         make_dev_args_init(&args);
649         args.mda_devsw = &pass_cdevsw;
650         args.mda_unit = periph->unit_number;
651         args.mda_uid = UID_ROOT;
652         args.mda_gid = GID_OPERATOR;
653         args.mda_mode = 0600;
654         args.mda_si_drv1 = periph;
655         args.mda_flags = MAKEDEV_NOWAIT;
656         error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
657             periph->unit_number);
658         if (error != 0) {
659                 cam_periph_lock(periph);
660                 cam_periph_release_locked(periph);
661                 return (CAM_REQ_CMP_ERR);
662         }
663
664         /*
665          * Hold a reference to the periph before we create the physical
666          * path alias so it can't go away.
667          */
668         if (cam_periph_acquire(periph) != 0) {
669                 xpt_print(periph->path, "%s: lost periph during "
670                           "registration!\n", __func__);
671                 cam_periph_lock(periph);
672                 return (CAM_REQ_CMP_ERR);
673         }
674
675         cam_periph_lock(periph);
676
677         TASK_INIT(&softc->add_physpath_task, /*priority*/0,
678                   pass_add_physpath, periph);
679
680         /*
681          * See if physical path information is already available.
682          */
683         taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
684
685         /*
686          * Add an async callback so that we get notified if
687          * this device goes away or its physical path
688          * (stored in the advanced info data of the EDT) has
689          * changed.
690          */
691         xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
692                            passasync, periph, periph->path);
693
694         if (bootverbose)
695                 xpt_announce_periph(periph, NULL);
696
697         return(CAM_REQ_CMP);
698 }
699
700 static int
701 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
702 {
703         struct cam_periph *periph;
704         struct pass_softc *softc;
705         int error;
706
707         periph = (struct cam_periph *)dev->si_drv1;
708         if (cam_periph_acquire(periph) != 0)
709                 return (ENXIO);
710
711         cam_periph_lock(periph);
712
713         softc = (struct pass_softc *)periph->softc;
714
715         if (softc->flags & PASS_FLAG_INVALID) {
716                 cam_periph_release_locked(periph);
717                 cam_periph_unlock(periph);
718                 return(ENXIO);
719         }
720
721         /*
722          * Don't allow access when we're running at a high securelevel.
723          */
724         error = securelevel_gt(td->td_ucred, 1);
725         if (error) {
726                 cam_periph_release_locked(periph);
727                 cam_periph_unlock(periph);
728                 return(error);
729         }
730
731         /*
732          * Only allow read-write access.
733          */
734         if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
735                 cam_periph_release_locked(periph);
736                 cam_periph_unlock(periph);
737                 return(EPERM);
738         }
739
740         /*
741          * We don't allow nonblocking access.
742          */
743         if ((flags & O_NONBLOCK) != 0) {
744                 xpt_print(periph->path, "can't do nonblocking access\n");
745                 cam_periph_release_locked(periph);
746                 cam_periph_unlock(periph);
747                 return(EINVAL);
748         }
749
750         softc->open_count++;
751
752         cam_periph_unlock(periph);
753
754         return (error);
755 }
756
757 static int
758 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
759 {
760         struct  cam_periph *periph;
761         struct  pass_softc *softc;
762         struct mtx *mtx;
763
764         periph = (struct cam_periph *)dev->si_drv1;
765         mtx = cam_periph_mtx(periph);
766         mtx_lock(mtx);
767
768         softc = periph->softc;
769         softc->open_count--;
770
771         if (softc->open_count == 0) {
772                 struct pass_io_req *io_req, *io_req2;
773
774                 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
775                         TAILQ_REMOVE(&softc->done_queue, io_req, links);
776                         passiocleanup(softc, io_req);
777                         uma_zfree(softc->pass_zone, io_req);
778                 }
779
780                 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
781                                    io_req2) {
782                         TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
783                         passiocleanup(softc, io_req);
784                         uma_zfree(softc->pass_zone, io_req);
785                 }
786
787                 /*
788                  * If there are any active I/Os, we need to forcibly acquire a
789                  * reference to the peripheral so that we don't go away
790                  * before they complete.  We'll release the reference when
791                  * the abandoned queue is empty.
792                  */
793                 io_req = TAILQ_FIRST(&softc->active_queue);
794                 if ((io_req != NULL)
795                  && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
796                         cam_periph_doacquire(periph);
797                         softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
798                 }
799
800                 /*
801                  * Since the I/O in the active queue is not under our
802                  * control, just set a flag so that we can clean it up when
803                  * it completes and put it on the abandoned queue.  This
804                  * will prevent our sending spurious completions in the
805                  * event that the device is opened again before these I/Os
806                  * complete.
807                  */
808                 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
809                                    io_req2) {
810                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
811                         io_req->flags |= PASS_IO_ABANDONED;
812                         TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
813                                           links);
814                 }
815         }
816
817         cam_periph_release_locked(periph);
818
819         /*
820          * We reference the lock directly here, instead of using
821          * cam_periph_unlock().  The reason is that the call to
822          * cam_periph_release_locked() above could result in the periph
823          * getting freed.  If that is the case, dereferencing the periph
824          * with a cam_periph_unlock() call would cause a page fault.
825          *
826          * cam_periph_release() avoids this problem using the same method,
827          * but we're manually acquiring and dropping the lock here to
828          * protect the open count and avoid another lock acquisition and
829          * release.
830          */
831         mtx_unlock(mtx);
832
833         return (0);
834 }
835
836
837 static void
838 passstart(struct cam_periph *periph, union ccb *start_ccb)
839 {
840         struct pass_softc *softc;
841
842         softc = (struct pass_softc *)periph->softc;
843
844         switch (softc->state) {
845         case PASS_STATE_NORMAL: {
846                 struct pass_io_req *io_req;
847
848                 /*
849                  * Check for any queued I/O requests that require an
850                  * allocated slot.
851                  */
852                 io_req = TAILQ_FIRST(&softc->incoming_queue);
853                 if (io_req == NULL) {
854                         xpt_release_ccb(start_ccb);
855                         break;
856                 }
857                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
858                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
859                 /*
860                  * Merge the user's CCB into the allocated CCB.
861                  */
862                 xpt_merge_ccb(start_ccb, &io_req->ccb);
863                 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
864                 start_ccb->ccb_h.ccb_ioreq = io_req;
865                 start_ccb->ccb_h.cbfcnp = passdone;
866                 io_req->alloced_ccb = start_ccb;
867                 binuptime(&io_req->start_time);
868                 devstat_start_transaction(softc->device_stats,
869                                           &io_req->start_time);
870
871                 xpt_action(start_ccb);
872
873                 /*
874                  * If we have any more I/O waiting, schedule ourselves again.
875                  */
876                 if (!TAILQ_EMPTY(&softc->incoming_queue))
877                         xpt_schedule(periph, CAM_PRIORITY_NORMAL);
878                 break;
879         }
880         default:
881                 break;
882         }
883 }
884
885 static void
886 passdone(struct cam_periph *periph, union ccb *done_ccb)
887
888         struct pass_softc *softc;
889         struct ccb_scsiio *csio;
890
891         softc = (struct pass_softc *)periph->softc;
892
893         cam_periph_assert(periph, MA_OWNED);
894
895         csio = &done_ccb->csio;
896         switch (csio->ccb_h.ccb_type) {
897         case PASS_CCB_QUEUED_IO: {
898                 struct pass_io_req *io_req;
899
900                 io_req = done_ccb->ccb_h.ccb_ioreq;
901 #if 0
902                 xpt_print(periph->path, "%s: called for user CCB %p\n",
903                           __func__, io_req->user_ccb_ptr);
904 #endif
905                 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
906                  && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
907                  && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
908                         int error;
909
910                         error = passerror(done_ccb, CAM_RETRY_SELTO,
911                                           SF_RETRY_UA | SF_NO_PRINT);
912
913                         if (error == ERESTART) {
914                                 /*
915                                  * A retry was scheduled, so
916                                  * just return.
917                                  */
918                                 return;
919                         }
920                 }
921
922                 /*
923                  * Copy the allocated CCB contents back to the malloced CCB
924                  * so we can give status back to the user when he requests it.
925                  */
926                 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
927
928                 /*
929                  * Log data/transaction completion with devstat(9).
930                  */
931                 switch (done_ccb->ccb_h.func_code) {
932                 case XPT_SCSI_IO:
933                         devstat_end_transaction(softc->device_stats,
934                             done_ccb->csio.dxfer_len - done_ccb->csio.resid,
935                             done_ccb->csio.tag_action & 0x3,
936                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
937                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
938                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
939                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
940                             &io_req->start_time);
941                         break;
942                 case XPT_ATA_IO:
943                         devstat_end_transaction(softc->device_stats,
944                             done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
945                             0, /* Not used in ATA */
946                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
947                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 
948                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
949                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
950                             &io_req->start_time);
951                         break;
952                 case XPT_SMP_IO:
953                         /*
954                          * XXX KDM this isn't quite right, but there isn't
955                          * currently an easy way to represent a bidirectional 
956                          * transfer in devstat.  The only way to do it
957                          * and have the byte counts come out right would
958                          * mean that we would have to record two
959                          * transactions, one for the request and one for the
960                          * response.  For now, so that we report something,
961                          * just treat the entire thing as a read.
962                          */
963                         devstat_end_transaction(softc->device_stats,
964                             done_ccb->smpio.smp_request_len +
965                             done_ccb->smpio.smp_response_len,
966                             DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
967                             &io_req->start_time);
968                         break;
969                 default:
970                         devstat_end_transaction(softc->device_stats, 0,
971                             DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
972                             &io_req->start_time);
973                         break;
974                 }
975
976                 /*
977                  * In the normal case, take the completed I/O off of the
978                  * active queue and put it on the done queue.  Notitfy the
979                  * user that we have a completed I/O.
980                  */
981                 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
982                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
983                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
984                         selwakeuppri(&softc->read_select, PRIBIO);
985                         KNOTE_LOCKED(&softc->read_select.si_note, 0);
986                 } else {
987                         /*
988                          * In the case of an abandoned I/O (final close
989                          * without fetching the I/O), take it off of the
990                          * abandoned queue and free it.
991                          */
992                         TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
993                         passiocleanup(softc, io_req);
994                         uma_zfree(softc->pass_zone, io_req);
995
996                         /*
997                          * Release the done_ccb here, since we may wind up
998                          * freeing the peripheral when we decrement the
999                          * reference count below.
1000                          */
1001                         xpt_release_ccb(done_ccb);
1002
1003                         /*
1004                          * If the abandoned queue is empty, we can release
1005                          * our reference to the periph since we won't have
1006                          * any more completions coming.
1007                          */
1008                         if ((TAILQ_EMPTY(&softc->abandoned_queue))
1009                          && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1010                                 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1011                                 cam_periph_release_locked(periph);
1012                         }
1013
1014                         /*
1015                          * We have already released the CCB, so we can
1016                          * return.
1017                          */
1018                         return;
1019                 }
1020                 break;
1021         }
1022         }
1023         xpt_release_ccb(done_ccb);
1024 }
1025
1026 static int
1027 passcreatezone(struct cam_periph *periph)
1028 {
1029         struct pass_softc *softc;
1030         int error;
1031
1032         error = 0;
1033         softc = (struct pass_softc *)periph->softc;
1034
1035         cam_periph_assert(periph, MA_OWNED);
1036         KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 
1037                 ("%s called when the pass(4) zone is valid!\n", __func__));
1038         KASSERT((softc->pass_zone == NULL), 
1039                 ("%s called when the pass(4) zone is allocated!\n", __func__));
1040
1041         if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1042
1043                 /*
1044                  * We're the first context through, so we need to create
1045                  * the pass(4) UMA zone for I/O requests.
1046                  */
1047                 softc->flags |= PASS_FLAG_ZONE_INPROG;
1048
1049                 /*
1050                  * uma_zcreate() does a blocking (M_WAITOK) allocation,
1051                  * so we cannot hold a mutex while we call it.
1052                  */
1053                 cam_periph_unlock(periph);
1054
1055                 softc->pass_zone = uma_zcreate(softc->zone_name,
1056                     sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1057                     /*align*/ 0, /*flags*/ 0);
1058
1059                 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1060                     softc->io_zone_size, NULL, NULL, NULL, NULL,
1061                     /*align*/ 0, /*flags*/ 0);
1062
1063                 cam_periph_lock(periph);
1064
1065                 if ((softc->pass_zone == NULL)
1066                  || (softc->pass_io_zone == NULL)) {
1067                         if (softc->pass_zone == NULL)
1068                                 xpt_print(periph->path, "unable to allocate "
1069                                     "IO Req UMA zone\n");
1070                         else
1071                                 xpt_print(periph->path, "unable to allocate "
1072                                     "IO UMA zone\n");
1073                         softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1074                         goto bailout;
1075                 }
1076
1077                 /*
1078                  * Set the flags appropriately and notify any other waiters.
1079                  */
1080                 softc->flags &= PASS_FLAG_ZONE_INPROG;
1081                 softc->flags |= PASS_FLAG_ZONE_VALID;
1082                 wakeup(&softc->pass_zone);
1083         } else {
1084                 /*
1085                  * In this case, the UMA zone has not yet been created, but
1086                  * another context is in the process of creating it.  We
1087                  * need to sleep until the creation is either done or has
1088                  * failed.
1089                  */
1090                 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1091                     && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1092                         error = msleep(&softc->pass_zone,
1093                                        cam_periph_mtx(periph), PRIBIO,
1094                                        "paszon", 0);
1095                         if (error != 0)
1096                                 goto bailout;
1097                 }
1098                 /*
1099                  * If the zone creation failed, no luck for the user.
1100                  */
1101                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1102                         error = ENOMEM;
1103                         goto bailout;
1104                 }
1105         }
1106 bailout:
1107         return (error);
1108 }
1109
1110 static void
1111 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1112 {
1113         union ccb *ccb;
1114         u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1115         int i, numbufs;
1116
1117         ccb = &io_req->ccb;
1118
1119         switch (ccb->ccb_h.func_code) {
1120         case XPT_DEV_MATCH:
1121                 numbufs = min(io_req->num_bufs, 2);
1122
1123                 if (numbufs == 1) {
1124                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1125                 } else {
1126                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1127                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1128                 }
1129                 break;
1130         case XPT_SCSI_IO:
1131         case XPT_CONT_TARGET_IO:
1132                 data_ptrs[0] = &ccb->csio.data_ptr;
1133                 numbufs = min(io_req->num_bufs, 1);
1134                 break;
1135         case XPT_ATA_IO:
1136                 data_ptrs[0] = &ccb->ataio.data_ptr;
1137                 numbufs = min(io_req->num_bufs, 1);
1138                 break;
1139         case XPT_SMP_IO:
1140                 numbufs = min(io_req->num_bufs, 2);
1141                 data_ptrs[0] = &ccb->smpio.smp_request;
1142                 data_ptrs[1] = &ccb->smpio.smp_response;
1143                 break;
1144         case XPT_DEV_ADVINFO:
1145                 numbufs = min(io_req->num_bufs, 1);
1146                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1147                 break;
1148         case XPT_NVME_IO:
1149         case XPT_NVME_ADMIN:
1150                 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1151                 numbufs = min(io_req->num_bufs, 1);
1152                 break;
1153         default:
1154                 /* allow ourselves to be swapped once again */
1155                 return;
1156                 break; /* NOTREACHED */ 
1157         }
1158
1159         if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1160                 free(io_req->user_segptr, M_SCSIPASS);
1161                 io_req->user_segptr = NULL;
1162         }
1163
1164         /*
1165          * We only want to free memory we malloced.
1166          */
1167         if (io_req->data_flags == CAM_DATA_VADDR) {
1168                 for (i = 0; i < io_req->num_bufs; i++) {
1169                         if (io_req->kern_bufs[i] == NULL)
1170                                 continue;
1171
1172                         free(io_req->kern_bufs[i], M_SCSIPASS);
1173                         io_req->kern_bufs[i] = NULL;
1174                 }
1175         } else if (io_req->data_flags == CAM_DATA_SG) {
1176                 for (i = 0; i < io_req->num_kern_segs; i++) {
1177                         if ((uint8_t *)(uintptr_t)
1178                             io_req->kern_segptr[i].ds_addr == NULL)
1179                                 continue;
1180
1181                         uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1182                             io_req->kern_segptr[i].ds_addr);
1183                         io_req->kern_segptr[i].ds_addr = 0;
1184                 }
1185         }
1186
1187         if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1188                 free(io_req->kern_segptr, M_SCSIPASS);
1189                 io_req->kern_segptr = NULL;
1190         }
1191
1192         if (io_req->data_flags != CAM_DATA_PADDR) {
1193                 for (i = 0; i < numbufs; i++) {
1194                         /*
1195                          * Restore the user's buffer pointers to their
1196                          * previous values.
1197                          */
1198                         if (io_req->user_bufs[i] != NULL)
1199                                 *data_ptrs[i] = io_req->user_bufs[i];
1200                 }
1201         }
1202
1203 }
1204
1205 static int
1206 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1207                ccb_flags direction)
1208 {
1209         bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1210         bus_dma_segment_t *user_sglist, *kern_sglist;
1211         int i, j, error;
1212
1213         error = 0;
1214         kern_watermark = 0;
1215         user_watermark = 0;
1216         len_to_copy = 0;
1217         len_copied = 0;
1218         user_sglist = io_req->user_segptr;
1219         kern_sglist = io_req->kern_segptr;
1220
1221         for (i = 0, j = 0; i < io_req->num_user_segs &&
1222              j < io_req->num_kern_segs;) {
1223                 uint8_t *user_ptr, *kern_ptr;
1224
1225                 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1226                     kern_sglist[j].ds_len - kern_watermark);
1227
1228                 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1229                 user_ptr = user_ptr + user_watermark;
1230                 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1231                 kern_ptr = kern_ptr + kern_watermark;
1232
1233                 user_watermark += len_to_copy;
1234                 kern_watermark += len_to_copy;
1235
1236                 if (direction == CAM_DIR_IN) {
1237                         error = copyout(kern_ptr, user_ptr, len_to_copy);
1238                         if (error != 0) {
1239                                 xpt_print(periph->path, "%s: copyout of %u "
1240                                           "bytes from %p to %p failed with "
1241                                           "error %d\n", __func__, len_to_copy,
1242                                           kern_ptr, user_ptr, error);
1243                                 goto bailout;
1244                         }
1245                 } else {
1246                         error = copyin(user_ptr, kern_ptr, len_to_copy);
1247                         if (error != 0) {
1248                                 xpt_print(periph->path, "%s: copyin of %u "
1249                                           "bytes from %p to %p failed with "
1250                                           "error %d\n", __func__, len_to_copy,
1251                                           user_ptr, kern_ptr, error);
1252                                 goto bailout;
1253                         }
1254                 }
1255
1256                 len_copied += len_to_copy;
1257
1258                 if (user_sglist[i].ds_len == user_watermark) {
1259                         i++;
1260                         user_watermark = 0;
1261                 }
1262
1263                 if (kern_sglist[j].ds_len == kern_watermark) {
1264                         j++;
1265                         kern_watermark = 0;
1266                 }
1267         }
1268
1269 bailout:
1270
1271         return (error);
1272 }
1273
1274 static int
1275 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1276 {
1277         union ccb *ccb;
1278         struct pass_softc *softc;
1279         int numbufs, i;
1280         uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1281         uint32_t lengths[CAM_PERIPH_MAXMAPS];
1282         uint32_t dirs[CAM_PERIPH_MAXMAPS];
1283         uint32_t num_segs;
1284         uint16_t *seg_cnt_ptr;
1285         size_t maxmap;
1286         int error;
1287
1288         cam_periph_assert(periph, MA_NOTOWNED);
1289
1290         softc = periph->softc;
1291
1292         error = 0;
1293         ccb = &io_req->ccb;
1294         maxmap = 0;
1295         num_segs = 0;
1296         seg_cnt_ptr = NULL;
1297
1298         switch(ccb->ccb_h.func_code) {
1299         case XPT_DEV_MATCH:
1300                 if (ccb->cdm.match_buf_len == 0) {
1301                         printf("%s: invalid match buffer length 0\n", __func__);
1302                         return(EINVAL);
1303                 }
1304                 if (ccb->cdm.pattern_buf_len > 0) {
1305                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1306                         lengths[0] = ccb->cdm.pattern_buf_len;
1307                         dirs[0] = CAM_DIR_OUT;
1308                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1309                         lengths[1] = ccb->cdm.match_buf_len;
1310                         dirs[1] = CAM_DIR_IN;
1311                         numbufs = 2;
1312                 } else {
1313                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1314                         lengths[0] = ccb->cdm.match_buf_len;
1315                         dirs[0] = CAM_DIR_IN;
1316                         numbufs = 1;
1317                 }
1318                 io_req->data_flags = CAM_DATA_VADDR;
1319                 break;
1320         case XPT_SCSI_IO:
1321         case XPT_CONT_TARGET_IO:
1322                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1323                         return(0);
1324
1325                 /*
1326                  * The user shouldn't be able to supply a bio.
1327                  */
1328                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1329                         return (EINVAL);
1330
1331                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1332
1333                 data_ptrs[0] = &ccb->csio.data_ptr;
1334                 lengths[0] = ccb->csio.dxfer_len;
1335                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1336                 num_segs = ccb->csio.sglist_cnt;
1337                 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1338                 numbufs = 1;
1339                 maxmap = softc->maxio;
1340                 break;
1341         case XPT_ATA_IO:
1342                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1343                         return(0);
1344
1345                 /*
1346                  * We only support a single virtual address for ATA I/O.
1347                  */
1348                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1349                         return (EINVAL);
1350
1351                 io_req->data_flags = CAM_DATA_VADDR;
1352
1353                 data_ptrs[0] = &ccb->ataio.data_ptr;
1354                 lengths[0] = ccb->ataio.dxfer_len;
1355                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1356                 numbufs = 1;
1357                 maxmap = softc->maxio;
1358                 break;
1359         case XPT_SMP_IO:
1360                 io_req->data_flags = CAM_DATA_VADDR;
1361
1362                 data_ptrs[0] = &ccb->smpio.smp_request;
1363                 lengths[0] = ccb->smpio.smp_request_len;
1364                 dirs[0] = CAM_DIR_OUT;
1365                 data_ptrs[1] = &ccb->smpio.smp_response;
1366                 lengths[1] = ccb->smpio.smp_response_len;
1367                 dirs[1] = CAM_DIR_IN;
1368                 numbufs = 2;
1369                 maxmap = softc->maxio;
1370                 break;
1371         case XPT_DEV_ADVINFO:
1372                 if (ccb->cdai.bufsiz == 0)
1373                         return (0);
1374
1375                 io_req->data_flags = CAM_DATA_VADDR;
1376
1377                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1378                 lengths[0] = ccb->cdai.bufsiz;
1379                 dirs[0] = CAM_DIR_IN;
1380                 numbufs = 1;
1381                 break;
1382         case XPT_NVME_ADMIN:
1383         case XPT_NVME_IO:
1384                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1385                         return (0);
1386
1387                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1388
1389                 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1390                 lengths[0] = ccb->nvmeio.dxfer_len;
1391                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1392                 num_segs = ccb->nvmeio.sglist_cnt;
1393                 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1394                 numbufs = 1;
1395                 maxmap = softc->maxio;
1396                 break;
1397         default:
1398                 return(EINVAL);
1399                 break; /* NOTREACHED */
1400         }
1401
1402         io_req->num_bufs = numbufs;
1403
1404         /*
1405          * If there is a maximum, check to make sure that the user's
1406          * request fits within the limit.  In general, we should only have
1407          * a maximum length for requests that go to hardware.  Otherwise it
1408          * is whatever we're able to malloc.
1409          */
1410         for (i = 0; i < numbufs; i++) {
1411                 io_req->user_bufs[i] = *data_ptrs[i];
1412                 io_req->dirs[i] = dirs[i];
1413                 io_req->lengths[i] = lengths[i];
1414
1415                 if (maxmap == 0)
1416                         continue;
1417
1418                 if (lengths[i] <= maxmap)
1419                         continue;
1420
1421                 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1422                           "bytes\n", __func__, lengths[i], maxmap);
1423                 error = EINVAL;
1424                 goto bailout;
1425         }
1426
1427         switch (io_req->data_flags) {
1428         case CAM_DATA_VADDR:
1429                 /* Map or copy the buffer into kernel address space */
1430                 for (i = 0; i < numbufs; i++) {
1431                         uint8_t *tmp_buf;
1432
1433                         /*
1434                          * If for some reason no length is specified, we
1435                          * don't need to allocate anything.
1436                          */
1437                         if (io_req->lengths[i] == 0)
1438                                 continue;
1439
1440                         tmp_buf = malloc(lengths[i], M_SCSIPASS,
1441                                          M_WAITOK | M_ZERO);
1442                         io_req->kern_bufs[i] = tmp_buf;
1443                         *data_ptrs[i] = tmp_buf;
1444
1445 #if 0
1446                         xpt_print(periph->path, "%s: malloced %p len %u, user "
1447                                   "buffer %p, operation: %s\n", __func__,
1448                                   tmp_buf, lengths[i], io_req->user_bufs[i],
1449                                   (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1450 #endif
1451                         /*
1452                          * We only need to copy in if the user is writing.
1453                          */
1454                         if (dirs[i] != CAM_DIR_OUT)
1455                                 continue;
1456
1457                         error = copyin(io_req->user_bufs[i],
1458                                        io_req->kern_bufs[i], lengths[i]);
1459                         if (error != 0) {
1460                                 xpt_print(periph->path, "%s: copy of user "
1461                                           "buffer from %p to %p failed with "
1462                                           "error %d\n", __func__,
1463                                           io_req->user_bufs[i],
1464                                           io_req->kern_bufs[i], error);
1465                                 goto bailout;
1466                         }
1467                 }
1468                 break;
1469         case CAM_DATA_PADDR:
1470                 /* Pass down the pointer as-is */
1471                 break;
1472         case CAM_DATA_SG: {
1473                 size_t sg_length, size_to_go, alloc_size;
1474                 uint32_t num_segs_needed;
1475
1476                 /*
1477                  * Copy the user S/G list in, and then copy in the
1478                  * individual segments.
1479                  */
1480                 /*
1481                  * We shouldn't see this, but check just in case.
1482                  */
1483                 if (numbufs != 1) {
1484                         xpt_print(periph->path, "%s: cannot currently handle "
1485                                   "more than one S/G list per CCB\n", __func__);
1486                         error = EINVAL;
1487                         goto bailout;
1488                 }
1489
1490                 /*
1491                  * We have to have at least one segment.
1492                  */
1493                 if (num_segs == 0) {
1494                         xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1495                                   "but sglist_cnt=0!\n", __func__);
1496                         error = EINVAL;
1497                         goto bailout;
1498                 }
1499
1500                 /*
1501                  * Make sure the user specified the total length and didn't
1502                  * just leave it to us to decode the S/G list.
1503                  */
1504                 if (lengths[0] == 0) {
1505                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1506                                   "but CAM_DATA_SG flag is set!\n", __func__);
1507                         error = EINVAL;
1508                         goto bailout;
1509                 }
1510
1511                 /*
1512                  * We allocate buffers in io_zone_size increments for an
1513                  * S/G list.  This will generally be MAXPHYS.
1514                  */
1515                 if (lengths[0] <= softc->io_zone_size)
1516                         num_segs_needed = 1;
1517                 else {
1518                         num_segs_needed = lengths[0] / softc->io_zone_size;
1519                         if ((lengths[0] % softc->io_zone_size) != 0)
1520                                 num_segs_needed++;
1521                 }
1522
1523                 /* Figure out the size of the S/G list */
1524                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1525                 io_req->num_user_segs = num_segs;
1526                 io_req->num_kern_segs = num_segs_needed;
1527
1528                 /* Save the user's S/G list pointer for later restoration */
1529                 io_req->user_bufs[0] = *data_ptrs[0];
1530
1531                 /*
1532                  * If we have enough segments allocated by default to handle
1533                  * the length of the user's S/G list,
1534                  */
1535                 if (num_segs > PASS_MAX_SEGS) {
1536                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1537                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1538                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1539                 } else
1540                         io_req->user_segptr = io_req->user_segs;
1541
1542                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1543                 if (error != 0) {
1544                         xpt_print(periph->path, "%s: copy of user S/G list "
1545                                   "from %p to %p failed with error %d\n",
1546                                   __func__, *data_ptrs[0], io_req->user_segptr,
1547                                   error);
1548                         goto bailout;
1549                 }
1550
1551                 if (num_segs_needed > PASS_MAX_SEGS) {
1552                         io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1553                             num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1554                         io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1555                 } else {
1556                         io_req->kern_segptr = io_req->kern_segs;
1557                 }
1558
1559                 /*
1560                  * Allocate the kernel S/G list.
1561                  */
1562                 for (size_to_go = lengths[0], i = 0;
1563                      size_to_go > 0 && i < num_segs_needed;
1564                      i++, size_to_go -= alloc_size) {
1565                         uint8_t *kern_ptr;
1566
1567                         alloc_size = min(size_to_go, softc->io_zone_size);
1568                         kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1569                         io_req->kern_segptr[i].ds_addr =
1570                             (bus_addr_t)(uintptr_t)kern_ptr;
1571                         io_req->kern_segptr[i].ds_len = alloc_size;
1572                 }
1573                 if (size_to_go > 0) {
1574                         printf("%s: size_to_go = %zu, software error!\n",
1575                                __func__, size_to_go);
1576                         error = EINVAL;
1577                         goto bailout;
1578                 }
1579
1580                 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1581                 *seg_cnt_ptr = io_req->num_kern_segs;
1582
1583                 /*
1584                  * We only need to copy data here if the user is writing.
1585                  */
1586                 if (dirs[0] == CAM_DIR_OUT)
1587                         error = passcopysglist(periph, io_req, dirs[0]);
1588                 break;
1589         }
1590         case CAM_DATA_SG_PADDR: {
1591                 size_t sg_length;
1592
1593                 /*
1594                  * We shouldn't see this, but check just in case.
1595                  */
1596                 if (numbufs != 1) {
1597                         printf("%s: cannot currently handle more than one "
1598                                "S/G list per CCB\n", __func__);
1599                         error = EINVAL;
1600                         goto bailout;
1601                 }
1602
1603                 /*
1604                  * We have to have at least one segment.
1605                  */
1606                 if (num_segs == 0) {
1607                         xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1608                                   "set, but sglist_cnt=0!\n", __func__);
1609                         error = EINVAL;
1610                         goto bailout;
1611                 }
1612
1613                 /*
1614                  * Make sure the user specified the total length and didn't
1615                  * just leave it to us to decode the S/G list.
1616                  */
1617                 if (lengths[0] == 0) {
1618                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1619                                   "but CAM_DATA_SG flag is set!\n", __func__);
1620                         error = EINVAL;
1621                         goto bailout;
1622                 }
1623
1624                 /* Figure out the size of the S/G list */
1625                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1626                 io_req->num_user_segs = num_segs;
1627                 io_req->num_kern_segs = io_req->num_user_segs;
1628
1629                 /* Save the user's S/G list pointer for later restoration */
1630                 io_req->user_bufs[0] = *data_ptrs[0];
1631
1632                 if (num_segs > PASS_MAX_SEGS) {
1633                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1634                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1635                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1636                 } else
1637                         io_req->user_segptr = io_req->user_segs;
1638
1639                 io_req->kern_segptr = io_req->user_segptr;
1640
1641                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1642                 if (error != 0) {
1643                         xpt_print(periph->path, "%s: copy of user S/G list "
1644                                   "from %p to %p failed with error %d\n",
1645                                   __func__, *data_ptrs[0], io_req->user_segptr,
1646                                   error);
1647                         goto bailout;
1648                 }
1649                 break;
1650         }
1651         default:
1652         case CAM_DATA_BIO:
1653                 /*
1654                  * A user shouldn't be attaching a bio to the CCB.  It
1655                  * isn't a user-accessible structure.
1656                  */
1657                 error = EINVAL;
1658                 break;
1659         }
1660
1661 bailout:
1662         if (error != 0)
1663                 passiocleanup(softc, io_req);
1664
1665         return (error);
1666 }
1667
1668 static int
1669 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1670 {
1671         struct pass_softc *softc;
1672         int error;
1673         int i;
1674
1675         error = 0;
1676         softc = (struct pass_softc *)periph->softc;
1677
1678         switch (io_req->data_flags) {
1679         case CAM_DATA_VADDR:
1680                 /*
1681                  * Copy back to the user buffer if this was a read.
1682                  */
1683                 for (i = 0; i < io_req->num_bufs; i++) {
1684                         if (io_req->dirs[i] != CAM_DIR_IN)
1685                                 continue;
1686
1687                         error = copyout(io_req->kern_bufs[i],
1688                             io_req->user_bufs[i], io_req->lengths[i]);
1689                         if (error != 0) {
1690                                 xpt_print(periph->path, "Unable to copy %u "
1691                                           "bytes from %p to user address %p\n",
1692                                           io_req->lengths[i],
1693                                           io_req->kern_bufs[i],
1694                                           io_req->user_bufs[i]);
1695                                 goto bailout;
1696                         }
1697
1698                 }
1699                 break;
1700         case CAM_DATA_PADDR:
1701                 /* Do nothing.  The pointer is a physical address already */
1702                 break;
1703         case CAM_DATA_SG:
1704                 /*
1705                  * Copy back to the user buffer if this was a read.
1706                  * Restore the user's S/G list buffer pointer.
1707                  */
1708                 if (io_req->dirs[0] == CAM_DIR_IN)
1709                         error = passcopysglist(periph, io_req, io_req->dirs[0]);
1710                 break;
1711         case CAM_DATA_SG_PADDR:
1712                 /*
1713                  * Restore the user's S/G list buffer pointer.  No need to
1714                  * copy.
1715                  */
1716                 break;
1717         default:
1718         case CAM_DATA_BIO:
1719                 error = EINVAL;
1720                 break;
1721         }
1722
1723 bailout:
1724         /*
1725          * Reset the user's pointers to their original values and free
1726          * allocated memory.
1727          */
1728         passiocleanup(softc, io_req);
1729
1730         return (error);
1731 }
1732
1733 static int
1734 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1735 {
1736         int error;
1737
1738         if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1739                 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1740         }
1741         return (error);
1742 }
1743
1744 static int
1745 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1746 {
1747         struct  cam_periph *periph;
1748         struct  pass_softc *softc;
1749         int     error;
1750         uint32_t priority;
1751
1752         periph = (struct cam_periph *)dev->si_drv1;
1753         cam_periph_lock(periph);
1754         softc = (struct pass_softc *)periph->softc;
1755
1756         error = 0;
1757
1758         switch (cmd) {
1759
1760         case CAMIOCOMMAND:
1761         {
1762                 union ccb *inccb;
1763                 union ccb *ccb;
1764                 int ccb_malloced;
1765
1766                 inccb = (union ccb *)addr;
1767 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1768                 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
1769                         inccb->csio.bio = NULL;
1770 #endif
1771
1772                 if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1773                         error = EINVAL;
1774                         break;
1775                 }
1776
1777                 /*
1778                  * Some CCB types, like scan bus and scan lun can only go
1779                  * through the transport layer device.
1780                  */
1781                 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1782                         xpt_print(periph->path, "CCB function code %#x is "
1783                             "restricted to the XPT device\n",
1784                             inccb->ccb_h.func_code);
1785                         error = ENODEV;
1786                         break;
1787                 }
1788
1789                 /* Compatibility for RL/priority-unaware code. */
1790                 priority = inccb->ccb_h.pinfo.priority;
1791                 if (priority <= CAM_PRIORITY_OOB)
1792                     priority += CAM_PRIORITY_OOB + 1;
1793
1794                 /*
1795                  * Non-immediate CCBs need a CCB from the per-device pool
1796                  * of CCBs, which is scheduled by the transport layer.
1797                  * Immediate CCBs and user-supplied CCBs should just be
1798                  * malloced.
1799                  */
1800                 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1801                  && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1802                         ccb = cam_periph_getccb(periph, priority);
1803                         ccb_malloced = 0;
1804                 } else {
1805                         ccb = xpt_alloc_ccb_nowait();
1806
1807                         if (ccb != NULL)
1808                                 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1809                                               priority);
1810                         ccb_malloced = 1;
1811                 }
1812
1813                 if (ccb == NULL) {
1814                         xpt_print(periph->path, "unable to allocate CCB\n");
1815                         error = ENOMEM;
1816                         break;
1817                 }
1818
1819                 error = passsendccb(periph, ccb, inccb);
1820
1821                 if (ccb_malloced)
1822                         xpt_free_ccb(ccb);
1823                 else
1824                         xpt_release_ccb(ccb);
1825
1826                 break;
1827         }
1828         case CAMIOQUEUE:
1829         {
1830                 struct pass_io_req *io_req;
1831                 union ccb **user_ccb, *ccb;
1832                 xpt_opcode fc;
1833
1834 #ifdef COMPAT_FREEBSD32
1835                 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1836                         error = ENOTTY;
1837                         goto bailout;
1838                 }
1839 #endif
1840                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1841                         error = passcreatezone(periph);
1842                         if (error != 0)
1843                                 goto bailout;
1844                 }
1845
1846                 /*
1847                  * We're going to do a blocking allocation for this I/O
1848                  * request, so we have to drop the lock.
1849                  */
1850                 cam_periph_unlock(periph);
1851
1852                 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1853                 ccb = &io_req->ccb;
1854                 user_ccb = (union ccb **)addr;
1855
1856                 /*
1857                  * Unlike the CAMIOCOMMAND ioctl above, we only have a
1858                  * pointer to the user's CCB, so we have to copy the whole
1859                  * thing in to a buffer we have allocated (above) instead
1860                  * of allowing the ioctl code to malloc a buffer and copy
1861                  * it in.
1862                  *
1863                  * This is an advantage for this asynchronous interface,
1864                  * since we don't want the memory to get freed while the
1865                  * CCB is outstanding.
1866                  */
1867 #if 0
1868                 xpt_print(periph->path, "Copying user CCB %p to "
1869                           "kernel address %p\n", *user_ccb, ccb);
1870 #endif
1871                 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1872                 if (error != 0) {
1873                         xpt_print(periph->path, "Copy of user CCB %p to "
1874                                   "kernel address %p failed with error %d\n",
1875                                   *user_ccb, ccb, error);
1876                         goto camioqueue_error;
1877                 }
1878 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1879                 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
1880                         ccb->csio.bio = NULL;
1881 #endif
1882
1883                 if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1884                         error = EINVAL;
1885                         goto camioqueue_error;
1886                 }
1887
1888                 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1889                         if (ccb->csio.cdb_len > IOCDBLEN) {
1890                                 error = EINVAL;
1891                                 goto camioqueue_error;
1892                         }
1893                         error = copyin(ccb->csio.cdb_io.cdb_ptr,
1894                             ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1895                         if (error != 0)
1896                                 goto camioqueue_error;
1897                         ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1898                 }
1899
1900                 /*
1901                  * Some CCB types, like scan bus and scan lun can only go
1902                  * through the transport layer device.
1903                  */
1904                 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1905                         xpt_print(periph->path, "CCB function code %#x is "
1906                             "restricted to the XPT device\n",
1907                             ccb->ccb_h.func_code);
1908                         error = ENODEV;
1909                         goto camioqueue_error;
1910                 }
1911
1912                 /*
1913                  * Save the user's CCB pointer as well as his linked list
1914                  * pointers and peripheral private area so that we can
1915                  * restore these later.
1916                  */
1917                 io_req->user_ccb_ptr = *user_ccb;
1918                 io_req->user_periph_links = ccb->ccb_h.periph_links;
1919                 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1920
1921                 /*
1922                  * Now that we've saved the user's values, we can set our
1923                  * own peripheral private entry.
1924                  */
1925                 ccb->ccb_h.ccb_ioreq = io_req;
1926
1927                 /* Compatibility for RL/priority-unaware code. */
1928                 priority = ccb->ccb_h.pinfo.priority;
1929                 if (priority <= CAM_PRIORITY_OOB)
1930                     priority += CAM_PRIORITY_OOB + 1;
1931
1932                 /*
1933                  * Setup fields in the CCB like the path and the priority.
1934                  * The path in particular cannot be done in userland, since
1935                  * it is a pointer to a kernel data structure.
1936                  */
1937                 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1938                                     ccb->ccb_h.flags);
1939
1940                 /*
1941                  * Setup our done routine.  There is no way for the user to
1942                  * have a valid pointer here.
1943                  */
1944                 ccb->ccb_h.cbfcnp = passdone;
1945
1946                 fc = ccb->ccb_h.func_code;
1947                 /*
1948                  * If this function code has memory that can be mapped in
1949                  * or out, we need to call passmemsetup().
1950                  */
1951                 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1952                  || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1953                  || (fc == XPT_DEV_ADVINFO)
1954                  || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1955                         error = passmemsetup(periph, io_req);
1956                         if (error != 0)
1957                                 goto camioqueue_error;
1958                 } else
1959                         io_req->mapinfo.num_bufs_used = 0;
1960
1961                 cam_periph_lock(periph);
1962
1963                 /*
1964                  * Everything goes on the incoming queue initially.
1965                  */
1966                 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1967
1968                 /*
1969                  * If the CCB is queued, and is not a user CCB, then
1970                  * we need to allocate a slot for it.  Call xpt_schedule()
1971                  * so that our start routine will get called when a CCB is
1972                  * available.
1973                  */
1974                 if ((fc & XPT_FC_QUEUED)
1975                  && ((fc & XPT_FC_USER_CCB) == 0)) {
1976                         xpt_schedule(periph, priority);
1977                         break;
1978                 } 
1979
1980                 /*
1981                  * At this point, the CCB in question is either an
1982                  * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1983                  * and therefore should be malloced, not allocated via a slot.
1984                  * Remove the CCB from the incoming queue and add it to the
1985                  * active queue.
1986                  */
1987                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1988                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1989
1990                 xpt_action(ccb);
1991
1992                 /*
1993                  * If this is not a queued CCB (i.e. it is an immediate CCB),
1994                  * then it is already done.  We need to put it on the done
1995                  * queue for the user to fetch.
1996                  */
1997                 if ((fc & XPT_FC_QUEUED) == 0) {
1998                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
1999                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2000                 }
2001                 break;
2002
2003 camioqueue_error:
2004                 uma_zfree(softc->pass_zone, io_req);
2005                 cam_periph_lock(periph);
2006                 break;
2007         }
2008         case CAMIOGET:
2009         {
2010                 union ccb **user_ccb;
2011                 struct pass_io_req *io_req;
2012                 int old_error;
2013
2014 #ifdef COMPAT_FREEBSD32
2015                 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2016                         error = ENOTTY;
2017                         goto bailout;
2018                 }
2019 #endif
2020                 user_ccb = (union ccb **)addr;
2021                 old_error = 0;
2022
2023                 io_req = TAILQ_FIRST(&softc->done_queue);
2024                 if (io_req == NULL) {
2025                         error = ENOENT;
2026                         break;
2027                 }
2028
2029                 /*
2030                  * Remove the I/O from the done queue.
2031                  */
2032                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2033
2034                 /*
2035                  * We have to drop the lock during the copyout because the
2036                  * copyout can result in VM faults that require sleeping.
2037                  */
2038                 cam_periph_unlock(periph);
2039
2040                 /*
2041                  * Do any needed copies (e.g. for reads) and revert the
2042                  * pointers in the CCB back to the user's pointers.
2043                  */
2044                 error = passmemdone(periph, io_req);
2045
2046                 old_error = error;
2047
2048                 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2049                 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2050
2051 #if 0
2052                 xpt_print(periph->path, "Copying to user CCB %p from "
2053                           "kernel address %p\n", *user_ccb, &io_req->ccb);
2054 #endif
2055
2056                 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2057                 if (error != 0) {
2058                         xpt_print(periph->path, "Copy to user CCB %p from "
2059                                   "kernel address %p failed with error %d\n",
2060                                   *user_ccb, &io_req->ccb, error);
2061                 }
2062
2063                 /*
2064                  * Prefer the first error we got back, and make sure we
2065                  * don't overwrite bad status with good.
2066                  */
2067                 if (old_error != 0)
2068                         error = old_error;
2069
2070                 cam_periph_lock(periph);
2071
2072                 /*
2073                  * At this point, if there was an error, we could potentially
2074                  * re-queue the I/O and try again.  But why?  The error
2075                  * would almost certainly happen again.  We might as well
2076                  * not leak memory.
2077                  */
2078                 uma_zfree(softc->pass_zone, io_req);
2079                 break;
2080         }
2081         default:
2082                 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2083                 break;
2084         }
2085
2086 bailout:
2087         cam_periph_unlock(periph);
2088
2089         return(error);
2090 }
2091
2092 static int
2093 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2094 {
2095         struct cam_periph *periph;
2096         struct pass_softc *softc;
2097         int revents;
2098
2099         periph = (struct cam_periph *)dev->si_drv1;
2100         softc = (struct pass_softc *)periph->softc;
2101
2102         revents = poll_events & (POLLOUT | POLLWRNORM);
2103         if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2104                 cam_periph_lock(periph);
2105
2106                 if (!TAILQ_EMPTY(&softc->done_queue)) {
2107                         revents |= poll_events & (POLLIN | POLLRDNORM);
2108                 }
2109                 cam_periph_unlock(periph);
2110                 if (revents == 0)
2111                         selrecord(td, &softc->read_select);
2112         }
2113
2114         return (revents);
2115 }
2116
2117 static int
2118 passkqfilter(struct cdev *dev, struct knote *kn)
2119 {
2120         struct cam_periph *periph;
2121         struct pass_softc *softc;
2122
2123         periph = (struct cam_periph *)dev->si_drv1;
2124         softc = (struct pass_softc *)periph->softc;
2125
2126         kn->kn_hook = (caddr_t)periph;
2127         kn->kn_fop = &passread_filtops;
2128         knlist_add(&softc->read_select.si_note, kn, 0);
2129
2130         return (0);
2131 }
2132
2133 static void
2134 passreadfiltdetach(struct knote *kn)
2135 {
2136         struct cam_periph *periph;
2137         struct pass_softc *softc;
2138
2139         periph = (struct cam_periph *)kn->kn_hook;
2140         softc = (struct pass_softc *)periph->softc;
2141
2142         knlist_remove(&softc->read_select.si_note, kn, 0);
2143 }
2144
2145 static int
2146 passreadfilt(struct knote *kn, long hint)
2147 {
2148         struct cam_periph *periph;
2149         struct pass_softc *softc;
2150         int retval;
2151
2152         periph = (struct cam_periph *)kn->kn_hook;
2153         softc = (struct pass_softc *)periph->softc;
2154
2155         cam_periph_assert(periph, MA_OWNED);
2156
2157         if (TAILQ_EMPTY(&softc->done_queue))
2158                 retval = 0;
2159         else
2160                 retval = 1;
2161
2162         return (retval);
2163 }
2164
2165 /*
2166  * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2167  * should be the CCB that is copied in from the user.
2168  */
2169 static int
2170 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2171 {
2172         struct pass_softc *softc;
2173         struct cam_periph_map_info mapinfo;
2174         uint8_t *cmd;
2175         xpt_opcode fc;
2176         int error;
2177
2178         softc = (struct pass_softc *)periph->softc;
2179
2180         /*
2181          * There are some fields in the CCB header that need to be
2182          * preserved, the rest we get from the user.
2183          */
2184         xpt_merge_ccb(ccb, inccb);
2185
2186         if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2187                 cmd = __builtin_alloca(ccb->csio.cdb_len);
2188                 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2189                 if (error)
2190                         return (error);
2191                 ccb->csio.cdb_io.cdb_ptr = cmd;
2192         }
2193
2194         /*
2195          * Let cam_periph_mapmem do a sanity check on the data pointer format.
2196          * Even if no data transfer is needed, it's a cheap check and it
2197          * simplifies the code.
2198          */
2199         fc = ccb->ccb_h.func_code;
2200         if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2201             || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
2202             || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
2203
2204                 bzero(&mapinfo, sizeof(mapinfo));
2205
2206                 /*
2207                  * cam_periph_mapmem calls into proc and vm functions that can
2208                  * sleep as well as trigger I/O, so we can't hold the lock.
2209                  * Dropping it here is reasonably safe.
2210                  */
2211                 cam_periph_unlock(periph);
2212                 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2213                 cam_periph_lock(periph);
2214
2215                 /*
2216                  * cam_periph_mapmem returned an error, we can't continue.
2217                  * Return the error to the user.
2218                  */
2219                 if (error)
2220                         return(error);
2221         } else
2222                 /* Ensure that the unmap call later on is a no-op. */
2223                 mapinfo.num_bufs_used = 0;
2224
2225         /*
2226          * If the user wants us to perform any error recovery, then honor
2227          * that request.  Otherwise, it's up to the user to perform any
2228          * error recovery.
2229          */
2230         cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 
2231             passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
2232             /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
2233             softc->device_stats);
2234
2235         cam_periph_unlock(periph);
2236         cam_periph_unmapmem(ccb, &mapinfo);
2237         cam_periph_lock(periph);
2238
2239         ccb->ccb_h.cbfcnp = NULL;
2240         ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2241         bcopy(ccb, inccb, sizeof(union ccb));
2242
2243         return(0);
2244 }
2245
2246 static int
2247 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2248 {
2249         struct cam_periph *periph;
2250         struct pass_softc *softc;
2251
2252         periph = xpt_path_periph(ccb->ccb_h.path);
2253         softc = (struct pass_softc *)periph->softc;
2254         
2255         return(cam_periph_error(ccb, cam_flags, sense_flags));
2256 }