]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cam/scsi/scsi_pass.c
Merge llvm trunk r338150 (just before the 7.0.0 branch point), and
[FreeBSD/FreeBSD.git] / sys / cam / scsi / scsi_pass.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/conf.h>
37 #include <sys/types.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/devicestat.h>
41 #include <sys/errno.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/poll.h>
46 #include <sys/selinfo.h>
47 #include <sys/sdt.h>
48 #include <sys/sysent.h>
49 #include <sys/taskqueue.h>
50 #include <vm/uma.h>
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53
54 #include <machine/bus.h>
55
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_periph.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 #include <cam/cam_xpt_periph.h>
65
66 #include <cam/scsi/scsi_all.h>
67 #include <cam/scsi/scsi_pass.h>
68
69 typedef enum {
70         PASS_FLAG_OPEN                  = 0x01,
71         PASS_FLAG_LOCKED                = 0x02,
72         PASS_FLAG_INVALID               = 0x04,
73         PASS_FLAG_INITIAL_PHYSPATH      = 0x08,
74         PASS_FLAG_ZONE_INPROG           = 0x10,
75         PASS_FLAG_ZONE_VALID            = 0x20,
76         PASS_FLAG_UNMAPPED_CAPABLE      = 0x40,
77         PASS_FLAG_ABANDONED_REF_SET     = 0x80
78 } pass_flags;
79
80 typedef enum {
81         PASS_STATE_NORMAL
82 } pass_state;
83
84 typedef enum {
85         PASS_CCB_BUFFER_IO,
86         PASS_CCB_QUEUED_IO
87 } pass_ccb_types;
88
89 #define ccb_type        ppriv_field0
90 #define ccb_ioreq       ppriv_ptr1
91
92 /*
93  * The maximum number of memory segments we preallocate.
94  */
95 #define PASS_MAX_SEGS   16
96
97 typedef enum {
98         PASS_IO_NONE            = 0x00,
99         PASS_IO_USER_SEG_MALLOC = 0x01,
100         PASS_IO_KERN_SEG_MALLOC = 0x02,
101         PASS_IO_ABANDONED       = 0x04
102 } pass_io_flags; 
103
104 struct pass_io_req {
105         union ccb                        ccb;
106         union ccb                       *alloced_ccb;
107         union ccb                       *user_ccb_ptr;
108         camq_entry                       user_periph_links;
109         ccb_ppriv_area                   user_periph_priv;
110         struct cam_periph_map_info       mapinfo;
111         pass_io_flags                    flags;
112         ccb_flags                        data_flags;
113         int                              num_user_segs;
114         bus_dma_segment_t                user_segs[PASS_MAX_SEGS];
115         int                              num_kern_segs;
116         bus_dma_segment_t                kern_segs[PASS_MAX_SEGS];
117         bus_dma_segment_t               *user_segptr;
118         bus_dma_segment_t               *kern_segptr;
119         int                              num_bufs;
120         uint32_t                         dirs[CAM_PERIPH_MAXMAPS];
121         uint32_t                         lengths[CAM_PERIPH_MAXMAPS];
122         uint8_t                         *user_bufs[CAM_PERIPH_MAXMAPS];
123         uint8_t                         *kern_bufs[CAM_PERIPH_MAXMAPS];
124         struct bintime                   start_time;
125         TAILQ_ENTRY(pass_io_req)         links;
126 };
127
128 struct pass_softc {
129         pass_state                state;
130         pass_flags                flags;
131         u_int8_t                  pd_type;
132         union ccb                 saved_ccb;
133         int                       open_count;
134         u_int                     maxio;
135         struct devstat           *device_stats;
136         struct cdev              *dev;
137         struct cdev              *alias_dev;
138         struct task               add_physpath_task;
139         struct task               shutdown_kqueue_task;
140         struct selinfo            read_select;
141         TAILQ_HEAD(, pass_io_req) incoming_queue;
142         TAILQ_HEAD(, pass_io_req) active_queue;
143         TAILQ_HEAD(, pass_io_req) abandoned_queue;
144         TAILQ_HEAD(, pass_io_req) done_queue;
145         struct cam_periph        *periph;
146         char                      zone_name[12];
147         char                      io_zone_name[12];
148         uma_zone_t                pass_zone;
149         uma_zone_t                pass_io_zone;
150         size_t                    io_zone_size;
151 };
152
153 static  d_open_t        passopen;
154 static  d_close_t       passclose;
155 static  d_ioctl_t       passioctl;
156 static  d_ioctl_t       passdoioctl;
157 static  d_poll_t        passpoll;
158 static  d_kqfilter_t    passkqfilter;
159 static  void            passreadfiltdetach(struct knote *kn);
160 static  int             passreadfilt(struct knote *kn, long hint);
161
162 static  periph_init_t   passinit;
163 static  periph_ctor_t   passregister;
164 static  periph_oninv_t  passoninvalidate;
165 static  periph_dtor_t   passcleanup;
166 static  periph_start_t  passstart;
167 static  void            pass_shutdown_kqueue(void *context, int pending);
168 static  void            pass_add_physpath(void *context, int pending);
169 static  void            passasync(void *callback_arg, u_int32_t code,
170                                   struct cam_path *path, void *arg);
171 static  void            passdone(struct cam_periph *periph, 
172                                  union ccb *done_ccb);
173 static  int             passcreatezone(struct cam_periph *periph);
174 static  void            passiocleanup(struct pass_softc *softc, 
175                                       struct pass_io_req *io_req);
176 static  int             passcopysglist(struct cam_periph *periph,
177                                        struct pass_io_req *io_req,
178                                        ccb_flags direction);
179 static  int             passmemsetup(struct cam_periph *periph,
180                                      struct pass_io_req *io_req);
181 static  int             passmemdone(struct cam_periph *periph,
182                                     struct pass_io_req *io_req);
183 static  int             passerror(union ccb *ccb, u_int32_t cam_flags, 
184                                   u_int32_t sense_flags);
185 static  int             passsendccb(struct cam_periph *periph, union ccb *ccb,
186                                     union ccb *inccb);
187
188 static struct periph_driver passdriver =
189 {
190         passinit, "pass",
191         TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
192 };
193
194 PERIPHDRIVER_DECLARE(pass, passdriver);
195
196 static struct cdevsw pass_cdevsw = {
197         .d_version =    D_VERSION,
198         .d_flags =      D_TRACKCLOSE,
199         .d_open =       passopen,
200         .d_close =      passclose,
201         .d_ioctl =      passioctl,
202         .d_poll =       passpoll,
203         .d_kqfilter =   passkqfilter,
204         .d_name =       "pass",
205 };
206
207 static struct filterops passread_filtops = {
208         .f_isfd =       1,
209         .f_detach =     passreadfiltdetach,
210         .f_event =      passreadfilt
211 };
212
213 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
214
215 static void
216 passinit(void)
217 {
218         cam_status status;
219
220         /*
221          * Install a global async callback.  This callback will
222          * receive async callbacks like "new device found".
223          */
224         status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
225
226         if (status != CAM_REQ_CMP) {
227                 printf("pass: Failed to attach master async callback "
228                        "due to status 0x%x!\n", status);
229         }
230
231 }
232
233 static void
234 passrejectios(struct cam_periph *periph)
235 {
236         struct pass_io_req *io_req, *io_req2;
237         struct pass_softc *softc;
238
239         softc = (struct pass_softc *)periph->softc;
240
241         /*
242          * The user can no longer get status for I/O on the done queue, so
243          * clean up all outstanding I/O on the done queue.
244          */
245         TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
246                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
247                 passiocleanup(softc, io_req);
248                 uma_zfree(softc->pass_zone, io_req);
249         }
250
251         /*
252          * The underlying device is gone, so we can't issue these I/Os.
253          * The devfs node has been shut down, so we can't return status to
254          * the user.  Free any I/O left on the incoming queue.
255          */
256         TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
257                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
258                 passiocleanup(softc, io_req);
259                 uma_zfree(softc->pass_zone, io_req);
260         }
261
262         /*
263          * Normally we would put I/Os on the abandoned queue and acquire a
264          * reference when we saw the final close.  But, the device went
265          * away and devfs may have moved everything off to deadfs by the
266          * time the I/O done callback is called; as a result, we won't see
267          * any more closes.  So, if we have any active I/Os, we need to put
268          * them on the abandoned queue.  When the abandoned queue is empty,
269          * we'll release the remaining reference (see below) to the peripheral.
270          */
271         TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
272                 TAILQ_REMOVE(&softc->active_queue, io_req, links);
273                 io_req->flags |= PASS_IO_ABANDONED;
274                 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
275         }
276
277         /*
278          * If we put any I/O on the abandoned queue, acquire a reference.
279          */
280         if ((!TAILQ_EMPTY(&softc->abandoned_queue))
281          && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
282                 cam_periph_doacquire(periph);
283                 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
284         }
285 }
286
287 static void
288 passdevgonecb(void *arg)
289 {
290         struct cam_periph *periph;
291         struct mtx *mtx;
292         struct pass_softc *softc;
293         int i;
294
295         periph = (struct cam_periph *)arg;
296         mtx = cam_periph_mtx(periph);
297         mtx_lock(mtx);
298
299         softc = (struct pass_softc *)periph->softc;
300         KASSERT(softc->open_count >= 0, ("Negative open count %d",
301                 softc->open_count));
302
303         /*
304          * When we get this callback, we will get no more close calls from
305          * devfs.  So if we have any dangling opens, we need to release the
306          * reference held for that particular context.
307          */
308         for (i = 0; i < softc->open_count; i++)
309                 cam_periph_release_locked(periph);
310
311         softc->open_count = 0;
312
313         /*
314          * Release the reference held for the device node, it is gone now.
315          * Accordingly, inform all queued I/Os of their fate.
316          */
317         cam_periph_release_locked(periph);
318         passrejectios(periph);
319
320         /*
321          * We reference the SIM lock directly here, instead of using
322          * cam_periph_unlock().  The reason is that the final call to
323          * cam_periph_release_locked() above could result in the periph
324          * getting freed.  If that is the case, dereferencing the periph
325          * with a cam_periph_unlock() call would cause a page fault.
326          */
327         mtx_unlock(mtx);
328
329         /*
330          * We have to remove our kqueue context from a thread because it
331          * may sleep.  It would be nice if we could get a callback from
332          * kqueue when it is done cleaning up resources.
333          */
334         taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
335 }
336
337 static void
338 passoninvalidate(struct cam_periph *periph)
339 {
340         struct pass_softc *softc;
341
342         softc = (struct pass_softc *)periph->softc;
343
344         /*
345          * De-register any async callbacks.
346          */
347         xpt_register_async(0, passasync, periph, periph->path);
348
349         softc->flags |= PASS_FLAG_INVALID;
350
351         /*
352          * Tell devfs this device has gone away, and ask for a callback
353          * when it has cleaned up its state.
354          */
355         destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
356 }
357
358 static void
359 passcleanup(struct cam_periph *periph)
360 {
361         struct pass_softc *softc;
362
363         softc = (struct pass_softc *)periph->softc;
364
365         cam_periph_assert(periph, MA_OWNED);
366         KASSERT(TAILQ_EMPTY(&softc->active_queue),
367                 ("%s called when there are commands on the active queue!\n",
368                 __func__));
369         KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
370                 ("%s called when there are commands on the abandoned queue!\n",
371                 __func__));
372         KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
373                 ("%s called when there are commands on the incoming queue!\n",
374                 __func__));
375         KASSERT(TAILQ_EMPTY(&softc->done_queue),
376                 ("%s called when there are commands on the done queue!\n",
377                 __func__));
378
379         devstat_remove_entry(softc->device_stats);
380
381         cam_periph_unlock(periph);
382
383         /*
384          * We call taskqueue_drain() for the physpath task to make sure it
385          * is complete.  We drop the lock because this can potentially
386          * sleep.  XXX KDM that is bad.  Need a way to get a callback when
387          * a taskqueue is drained.
388          *
389          * Note that we don't drain the kqueue shutdown task queue.  This
390          * is because we hold a reference on the periph for kqueue, and
391          * release that reference from the kqueue shutdown task queue.  So
392          * we cannot come into this routine unless we've released that
393          * reference.  Also, because that could be the last reference, we
394          * could be called from the cam_periph_release() call in
395          * pass_shutdown_kqueue().  In that case, the taskqueue_drain()
396          * would deadlock.  It would be preferable if we had a way to
397          * get a callback when a taskqueue is done.
398          */
399         taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
400
401         cam_periph_lock(periph);
402
403         free(softc, M_DEVBUF);
404 }
405
406 static void
407 pass_shutdown_kqueue(void *context, int pending)
408 {
409         struct cam_periph *periph;
410         struct pass_softc *softc;
411
412         periph = context;
413         softc = periph->softc;
414
415         knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
416         knlist_destroy(&softc->read_select.si_note);
417
418         /*
419          * Release the reference we held for kqueue.
420          */
421         cam_periph_release(periph);
422 }
423
424 static void
425 pass_add_physpath(void *context, int pending)
426 {
427         struct cam_periph *periph;
428         struct pass_softc *softc;
429         struct mtx *mtx;
430         char *physpath;
431
432         /*
433          * If we have one, create a devfs alias for our
434          * physical path.
435          */
436         periph = context;
437         softc = periph->softc;
438         physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
439         mtx = cam_periph_mtx(periph);
440         mtx_lock(mtx);
441
442         if (periph->flags & CAM_PERIPH_INVALID)
443                 goto out;
444
445         if (xpt_getattr(physpath, MAXPATHLEN,
446                         "GEOM::physpath", periph->path) == 0
447          && strlen(physpath) != 0) {
448
449                 mtx_unlock(mtx);
450                 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
451                                         softc->dev, softc->alias_dev, physpath);
452                 mtx_lock(mtx);
453         }
454
455 out:
456         /*
457          * Now that we've made our alias, we no longer have to have a
458          * reference to the device.
459          */
460         if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
461                 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
462
463         /*
464          * We always acquire a reference to the periph before queueing this
465          * task queue function, so it won't go away before we run.
466          */
467         while (pending-- > 0)
468                 cam_periph_release_locked(periph);
469         mtx_unlock(mtx);
470
471         free(physpath, M_DEVBUF);
472 }
473
474 static void
475 passasync(void *callback_arg, u_int32_t code,
476           struct cam_path *path, void *arg)
477 {
478         struct cam_periph *periph;
479
480         periph = (struct cam_periph *)callback_arg;
481
482         switch (code) {
483         case AC_FOUND_DEVICE:
484         {
485                 struct ccb_getdev *cgd;
486                 cam_status status;
487  
488                 cgd = (struct ccb_getdev *)arg;
489                 if (cgd == NULL)
490                         break;
491
492                 /*
493                  * Allocate a peripheral instance for
494                  * this device and start the probe
495                  * process.
496                  */
497                 status = cam_periph_alloc(passregister, passoninvalidate,
498                                           passcleanup, passstart, "pass",
499                                           CAM_PERIPH_BIO, path,
500                                           passasync, AC_FOUND_DEVICE, cgd);
501
502                 if (status != CAM_REQ_CMP
503                  && status != CAM_REQ_INPROG) {
504                         const struct cam_status_entry *entry;
505
506                         entry = cam_fetch_status_entry(status);
507
508                         printf("passasync: Unable to attach new device "
509                                "due to status %#x: %s\n", status, entry ?
510                                entry->status_text : "Unknown");
511                 }
512
513                 break;
514         }
515         case AC_ADVINFO_CHANGED:
516         {
517                 uintptr_t buftype;
518
519                 buftype = (uintptr_t)arg;
520                 if (buftype == CDAI_TYPE_PHYS_PATH) {
521                         struct pass_softc *softc;
522
523                         softc = (struct pass_softc *)periph->softc;
524                         /*
525                          * Acquire a reference to the periph before we
526                          * start the taskqueue, so that we don't run into
527                          * a situation where the periph goes away before
528                          * the task queue has a chance to run.
529                          */
530                         if (cam_periph_acquire(periph) != 0)
531                                 break;
532
533                         taskqueue_enqueue(taskqueue_thread,
534                                           &softc->add_physpath_task);
535                 }
536                 break;
537         }
538         default:
539                 cam_periph_async(periph, code, path, arg);
540                 break;
541         }
542 }
543
544 static cam_status
545 passregister(struct cam_periph *periph, void *arg)
546 {
547         struct pass_softc *softc;
548         struct ccb_getdev *cgd;
549         struct ccb_pathinq cpi;
550         struct make_dev_args args;
551         int error, no_tags;
552
553         cgd = (struct ccb_getdev *)arg;
554         if (cgd == NULL) {
555                 printf("%s: no getdev CCB, can't register device\n", __func__);
556                 return(CAM_REQ_CMP_ERR);
557         }
558
559         softc = (struct pass_softc *)malloc(sizeof(*softc),
560                                             M_DEVBUF, M_NOWAIT);
561
562         if (softc == NULL) {
563                 printf("%s: Unable to probe new device. "
564                        "Unable to allocate softc\n", __func__);
565                 return(CAM_REQ_CMP_ERR);
566         }
567
568         bzero(softc, sizeof(*softc));
569         softc->state = PASS_STATE_NORMAL;
570         if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
571                 softc->pd_type = SID_TYPE(&cgd->inq_data);
572         else if (cgd->protocol == PROTO_SATAPM)
573                 softc->pd_type = T_ENCLOSURE;
574         else
575                 softc->pd_type = T_DIRECT;
576
577         periph->softc = softc;
578         softc->periph = periph;
579         TAILQ_INIT(&softc->incoming_queue);
580         TAILQ_INIT(&softc->active_queue);
581         TAILQ_INIT(&softc->abandoned_queue);
582         TAILQ_INIT(&softc->done_queue);
583         snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
584                  periph->periph_name, periph->unit_number);
585         snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
586                  periph->periph_name, periph->unit_number);
587         softc->io_zone_size = MAXPHYS;
588         knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
589
590         xpt_path_inq(&cpi, periph->path);
591
592         if (cpi.maxio == 0)
593                 softc->maxio = DFLTPHYS;        /* traditional default */
594         else if (cpi.maxio > MAXPHYS)
595                 softc->maxio = MAXPHYS;         /* for safety */
596         else
597                 softc->maxio = cpi.maxio;       /* real value */
598
599         if (cpi.hba_misc & PIM_UNMAPPED)
600                 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
601
602         /*
603          * We pass in 0 for a blocksize, since we don't 
604          * know what the blocksize of this device is, if 
605          * it even has a blocksize.
606          */
607         cam_periph_unlock(periph);
608         no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
609         softc->device_stats = devstat_new_entry("pass",
610                           periph->unit_number, 0,
611                           DEVSTAT_NO_BLOCKSIZE
612                           | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
613                           softc->pd_type |
614                           XPORT_DEVSTAT_TYPE(cpi.transport) |
615                           DEVSTAT_TYPE_PASS,
616                           DEVSTAT_PRIORITY_PASS);
617
618         /*
619          * Initialize the taskqueue handler for shutting down kqueue.
620          */
621         TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
622                   pass_shutdown_kqueue, periph);
623
624         /*
625          * Acquire a reference to the periph that we can release once we've
626          * cleaned up the kqueue.
627          */
628         if (cam_periph_acquire(periph) != 0) {
629                 xpt_print(periph->path, "%s: lost periph during "
630                           "registration!\n", __func__);
631                 cam_periph_lock(periph);
632                 return (CAM_REQ_CMP_ERR);
633         }
634
635         /*
636          * Acquire a reference to the periph before we create the devfs
637          * instance for it.  We'll release this reference once the devfs
638          * instance has been freed.
639          */
640         if (cam_periph_acquire(periph) != 0) {
641                 xpt_print(periph->path, "%s: lost periph during "
642                           "registration!\n", __func__);
643                 cam_periph_lock(periph);
644                 return (CAM_REQ_CMP_ERR);
645         }
646
647         /* Register the device */
648         make_dev_args_init(&args);
649         args.mda_devsw = &pass_cdevsw;
650         args.mda_unit = periph->unit_number;
651         args.mda_uid = UID_ROOT;
652         args.mda_gid = GID_OPERATOR;
653         args.mda_mode = 0600;
654         args.mda_si_drv1 = periph;
655         error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
656             periph->unit_number);
657         if (error != 0) {
658                 cam_periph_lock(periph);
659                 cam_periph_release_locked(periph);
660                 return (CAM_REQ_CMP_ERR);
661         }
662
663         /*
664          * Hold a reference to the periph before we create the physical
665          * path alias so it can't go away.
666          */
667         if (cam_periph_acquire(periph) != 0) {
668                 xpt_print(periph->path, "%s: lost periph during "
669                           "registration!\n", __func__);
670                 cam_periph_lock(periph);
671                 return (CAM_REQ_CMP_ERR);
672         }
673
674         cam_periph_lock(periph);
675
676         TASK_INIT(&softc->add_physpath_task, /*priority*/0,
677                   pass_add_physpath, periph);
678
679         /*
680          * See if physical path information is already available.
681          */
682         taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
683
684         /*
685          * Add an async callback so that we get notified if
686          * this device goes away or its physical path
687          * (stored in the advanced info data of the EDT) has
688          * changed.
689          */
690         xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
691                            passasync, periph, periph->path);
692
693         if (bootverbose)
694                 xpt_announce_periph(periph, NULL);
695
696         return(CAM_REQ_CMP);
697 }
698
699 static int
700 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
701 {
702         struct cam_periph *periph;
703         struct pass_softc *softc;
704         int error;
705
706         periph = (struct cam_periph *)dev->si_drv1;
707         if (cam_periph_acquire(periph) != 0)
708                 return (ENXIO);
709
710         cam_periph_lock(periph);
711
712         softc = (struct pass_softc *)periph->softc;
713
714         if (softc->flags & PASS_FLAG_INVALID) {
715                 cam_periph_release_locked(periph);
716                 cam_periph_unlock(periph);
717                 return(ENXIO);
718         }
719
720         /*
721          * Don't allow access when we're running at a high securelevel.
722          */
723         error = securelevel_gt(td->td_ucred, 1);
724         if (error) {
725                 cam_periph_release_locked(periph);
726                 cam_periph_unlock(periph);
727                 return(error);
728         }
729
730         /*
731          * Only allow read-write access.
732          */
733         if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
734                 cam_periph_release_locked(periph);
735                 cam_periph_unlock(periph);
736                 return(EPERM);
737         }
738
739         /*
740          * We don't allow nonblocking access.
741          */
742         if ((flags & O_NONBLOCK) != 0) {
743                 xpt_print(periph->path, "can't do nonblocking access\n");
744                 cam_periph_release_locked(periph);
745                 cam_periph_unlock(periph);
746                 return(EINVAL);
747         }
748
749         softc->open_count++;
750
751         cam_periph_unlock(periph);
752
753         return (error);
754 }
755
756 static int
757 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
758 {
759         struct  cam_periph *periph;
760         struct  pass_softc *softc;
761         struct mtx *mtx;
762
763         periph = (struct cam_periph *)dev->si_drv1;
764         mtx = cam_periph_mtx(periph);
765         mtx_lock(mtx);
766
767         softc = periph->softc;
768         softc->open_count--;
769
770         if (softc->open_count == 0) {
771                 struct pass_io_req *io_req, *io_req2;
772
773                 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
774                         TAILQ_REMOVE(&softc->done_queue, io_req, links);
775                         passiocleanup(softc, io_req);
776                         uma_zfree(softc->pass_zone, io_req);
777                 }
778
779                 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
780                                    io_req2) {
781                         TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
782                         passiocleanup(softc, io_req);
783                         uma_zfree(softc->pass_zone, io_req);
784                 }
785
786                 /*
787                  * If there are any active I/Os, we need to forcibly acquire a
788                  * reference to the peripheral so that we don't go away
789                  * before they complete.  We'll release the reference when
790                  * the abandoned queue is empty.
791                  */
792                 io_req = TAILQ_FIRST(&softc->active_queue);
793                 if ((io_req != NULL)
794                  && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
795                         cam_periph_doacquire(periph);
796                         softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
797                 }
798
799                 /*
800                  * Since the I/O in the active queue is not under our
801                  * control, just set a flag so that we can clean it up when
802                  * it completes and put it on the abandoned queue.  This
803                  * will prevent our sending spurious completions in the
804                  * event that the device is opened again before these I/Os
805                  * complete.
806                  */
807                 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
808                                    io_req2) {
809                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
810                         io_req->flags |= PASS_IO_ABANDONED;
811                         TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
812                                           links);
813                 }
814         }
815
816         cam_periph_release_locked(periph);
817
818         /*
819          * We reference the lock directly here, instead of using
820          * cam_periph_unlock().  The reason is that the call to
821          * cam_periph_release_locked() above could result in the periph
822          * getting freed.  If that is the case, dereferencing the periph
823          * with a cam_periph_unlock() call would cause a page fault.
824          *
825          * cam_periph_release() avoids this problem using the same method,
826          * but we're manually acquiring and dropping the lock here to
827          * protect the open count and avoid another lock acquisition and
828          * release.
829          */
830         mtx_unlock(mtx);
831
832         return (0);
833 }
834
835
836 static void
837 passstart(struct cam_periph *periph, union ccb *start_ccb)
838 {
839         struct pass_softc *softc;
840
841         softc = (struct pass_softc *)periph->softc;
842
843         switch (softc->state) {
844         case PASS_STATE_NORMAL: {
845                 struct pass_io_req *io_req;
846
847                 /*
848                  * Check for any queued I/O requests that require an
849                  * allocated slot.
850                  */
851                 io_req = TAILQ_FIRST(&softc->incoming_queue);
852                 if (io_req == NULL) {
853                         xpt_release_ccb(start_ccb);
854                         break;
855                 }
856                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
857                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
858                 /*
859                  * Merge the user's CCB into the allocated CCB.
860                  */
861                 xpt_merge_ccb(start_ccb, &io_req->ccb);
862                 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
863                 start_ccb->ccb_h.ccb_ioreq = io_req;
864                 start_ccb->ccb_h.cbfcnp = passdone;
865                 io_req->alloced_ccb = start_ccb;
866                 binuptime(&io_req->start_time);
867                 devstat_start_transaction(softc->device_stats,
868                                           &io_req->start_time);
869
870                 xpt_action(start_ccb);
871
872                 /*
873                  * If we have any more I/O waiting, schedule ourselves again.
874                  */
875                 if (!TAILQ_EMPTY(&softc->incoming_queue))
876                         xpt_schedule(periph, CAM_PRIORITY_NORMAL);
877                 break;
878         }
879         default:
880                 break;
881         }
882 }
883
884 static void
885 passdone(struct cam_periph *periph, union ccb *done_ccb)
886
887         struct pass_softc *softc;
888         struct ccb_scsiio *csio;
889
890         softc = (struct pass_softc *)periph->softc;
891
892         cam_periph_assert(periph, MA_OWNED);
893
894         csio = &done_ccb->csio;
895         switch (csio->ccb_h.ccb_type) {
896         case PASS_CCB_QUEUED_IO: {
897                 struct pass_io_req *io_req;
898
899                 io_req = done_ccb->ccb_h.ccb_ioreq;
900 #if 0
901                 xpt_print(periph->path, "%s: called for user CCB %p\n",
902                           __func__, io_req->user_ccb_ptr);
903 #endif
904                 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
905                  && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
906                  && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
907                         int error;
908
909                         error = passerror(done_ccb, CAM_RETRY_SELTO,
910                                           SF_RETRY_UA | SF_NO_PRINT);
911
912                         if (error == ERESTART) {
913                                 /*
914                                  * A retry was scheduled, so
915                                  * just return.
916                                  */
917                                 return;
918                         }
919                 }
920
921                 /*
922                  * Copy the allocated CCB contents back to the malloced CCB
923                  * so we can give status back to the user when he requests it.
924                  */
925                 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
926
927                 /*
928                  * Log data/transaction completion with devstat(9).
929                  */
930                 switch (done_ccb->ccb_h.func_code) {
931                 case XPT_SCSI_IO:
932                         devstat_end_transaction(softc->device_stats,
933                             done_ccb->csio.dxfer_len - done_ccb->csio.resid,
934                             done_ccb->csio.tag_action & 0x3,
935                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
936                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
937                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
938                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
939                             &io_req->start_time);
940                         break;
941                 case XPT_ATA_IO:
942                         devstat_end_transaction(softc->device_stats,
943                             done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
944                             0, /* Not used in ATA */
945                             ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
946                             CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 
947                             (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
948                             DEVSTAT_WRITE : DEVSTAT_READ, NULL,
949                             &io_req->start_time);
950                         break;
951                 case XPT_SMP_IO:
952                         /*
953                          * XXX KDM this isn't quite right, but there isn't
954                          * currently an easy way to represent a bidirectional 
955                          * transfer in devstat.  The only way to do it
956                          * and have the byte counts come out right would
957                          * mean that we would have to record two
958                          * transactions, one for the request and one for the
959                          * response.  For now, so that we report something,
960                          * just treat the entire thing as a read.
961                          */
962                         devstat_end_transaction(softc->device_stats,
963                             done_ccb->smpio.smp_request_len +
964                             done_ccb->smpio.smp_response_len,
965                             DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
966                             &io_req->start_time);
967                         break;
968                 default:
969                         devstat_end_transaction(softc->device_stats, 0,
970                             DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
971                             &io_req->start_time);
972                         break;
973                 }
974
975                 /*
976                  * In the normal case, take the completed I/O off of the
977                  * active queue and put it on the done queue.  Notitfy the
978                  * user that we have a completed I/O.
979                  */
980                 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
981                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
982                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
983                         selwakeuppri(&softc->read_select, PRIBIO);
984                         KNOTE_LOCKED(&softc->read_select.si_note, 0);
985                 } else {
986                         /*
987                          * In the case of an abandoned I/O (final close
988                          * without fetching the I/O), take it off of the
989                          * abandoned queue and free it.
990                          */
991                         TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
992                         passiocleanup(softc, io_req);
993                         uma_zfree(softc->pass_zone, io_req);
994
995                         /*
996                          * Release the done_ccb here, since we may wind up
997                          * freeing the peripheral when we decrement the
998                          * reference count below.
999                          */
1000                         xpt_release_ccb(done_ccb);
1001
1002                         /*
1003                          * If the abandoned queue is empty, we can release
1004                          * our reference to the periph since we won't have
1005                          * any more completions coming.
1006                          */
1007                         if ((TAILQ_EMPTY(&softc->abandoned_queue))
1008                          && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1009                                 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1010                                 cam_periph_release_locked(periph);
1011                         }
1012
1013                         /*
1014                          * We have already released the CCB, so we can
1015                          * return.
1016                          */
1017                         return;
1018                 }
1019                 break;
1020         }
1021         }
1022         xpt_release_ccb(done_ccb);
1023 }
1024
1025 static int
1026 passcreatezone(struct cam_periph *periph)
1027 {
1028         struct pass_softc *softc;
1029         int error;
1030
1031         error = 0;
1032         softc = (struct pass_softc *)periph->softc;
1033
1034         cam_periph_assert(periph, MA_OWNED);
1035         KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 
1036                 ("%s called when the pass(4) zone is valid!\n", __func__));
1037         KASSERT((softc->pass_zone == NULL), 
1038                 ("%s called when the pass(4) zone is allocated!\n", __func__));
1039
1040         if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1041
1042                 /*
1043                  * We're the first context through, so we need to create
1044                  * the pass(4) UMA zone for I/O requests.
1045                  */
1046                 softc->flags |= PASS_FLAG_ZONE_INPROG;
1047
1048                 /*
1049                  * uma_zcreate() does a blocking (M_WAITOK) allocation,
1050                  * so we cannot hold a mutex while we call it.
1051                  */
1052                 cam_periph_unlock(periph);
1053
1054                 softc->pass_zone = uma_zcreate(softc->zone_name,
1055                     sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1056                     /*align*/ 0, /*flags*/ 0);
1057
1058                 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1059                     softc->io_zone_size, NULL, NULL, NULL, NULL,
1060                     /*align*/ 0, /*flags*/ 0);
1061
1062                 cam_periph_lock(periph);
1063
1064                 if ((softc->pass_zone == NULL)
1065                  || (softc->pass_io_zone == NULL)) {
1066                         if (softc->pass_zone == NULL)
1067                                 xpt_print(periph->path, "unable to allocate "
1068                                     "IO Req UMA zone\n");
1069                         else
1070                                 xpt_print(periph->path, "unable to allocate "
1071                                     "IO UMA zone\n");
1072                         softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1073                         goto bailout;
1074                 }
1075
1076                 /*
1077                  * Set the flags appropriately and notify any other waiters.
1078                  */
1079                 softc->flags &= PASS_FLAG_ZONE_INPROG;
1080                 softc->flags |= PASS_FLAG_ZONE_VALID;
1081                 wakeup(&softc->pass_zone);
1082         } else {
1083                 /*
1084                  * In this case, the UMA zone has not yet been created, but
1085                  * another context is in the process of creating it.  We
1086                  * need to sleep until the creation is either done or has
1087                  * failed.
1088                  */
1089                 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1090                     && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1091                         error = msleep(&softc->pass_zone,
1092                                        cam_periph_mtx(periph), PRIBIO,
1093                                        "paszon", 0);
1094                         if (error != 0)
1095                                 goto bailout;
1096                 }
1097                 /*
1098                  * If the zone creation failed, no luck for the user.
1099                  */
1100                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1101                         error = ENOMEM;
1102                         goto bailout;
1103                 }
1104         }
1105 bailout:
1106         return (error);
1107 }
1108
1109 static void
1110 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1111 {
1112         union ccb *ccb;
1113         u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1114         int i, numbufs;
1115
1116         ccb = &io_req->ccb;
1117
1118         switch (ccb->ccb_h.func_code) {
1119         case XPT_DEV_MATCH:
1120                 numbufs = min(io_req->num_bufs, 2);
1121
1122                 if (numbufs == 1) {
1123                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1124                 } else {
1125                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1126                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1127                 }
1128                 break;
1129         case XPT_SCSI_IO:
1130         case XPT_CONT_TARGET_IO:
1131                 data_ptrs[0] = &ccb->csio.data_ptr;
1132                 numbufs = min(io_req->num_bufs, 1);
1133                 break;
1134         case XPT_ATA_IO:
1135                 data_ptrs[0] = &ccb->ataio.data_ptr;
1136                 numbufs = min(io_req->num_bufs, 1);
1137                 break;
1138         case XPT_SMP_IO:
1139                 numbufs = min(io_req->num_bufs, 2);
1140                 data_ptrs[0] = &ccb->smpio.smp_request;
1141                 data_ptrs[1] = &ccb->smpio.smp_response;
1142                 break;
1143         case XPT_DEV_ADVINFO:
1144                 numbufs = min(io_req->num_bufs, 1);
1145                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1146                 break;
1147         case XPT_NVME_IO:
1148         case XPT_NVME_ADMIN:
1149                 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1150                 numbufs = min(io_req->num_bufs, 1);
1151                 break;
1152         default:
1153                 /* allow ourselves to be swapped once again */
1154                 return;
1155                 break; /* NOTREACHED */ 
1156         }
1157
1158         if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1159                 free(io_req->user_segptr, M_SCSIPASS);
1160                 io_req->user_segptr = NULL;
1161         }
1162
1163         /*
1164          * We only want to free memory we malloced.
1165          */
1166         if (io_req->data_flags == CAM_DATA_VADDR) {
1167                 for (i = 0; i < io_req->num_bufs; i++) {
1168                         if (io_req->kern_bufs[i] == NULL)
1169                                 continue;
1170
1171                         free(io_req->kern_bufs[i], M_SCSIPASS);
1172                         io_req->kern_bufs[i] = NULL;
1173                 }
1174         } else if (io_req->data_flags == CAM_DATA_SG) {
1175                 for (i = 0; i < io_req->num_kern_segs; i++) {
1176                         if ((uint8_t *)(uintptr_t)
1177                             io_req->kern_segptr[i].ds_addr == NULL)
1178                                 continue;
1179
1180                         uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1181                             io_req->kern_segptr[i].ds_addr);
1182                         io_req->kern_segptr[i].ds_addr = 0;
1183                 }
1184         }
1185
1186         if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1187                 free(io_req->kern_segptr, M_SCSIPASS);
1188                 io_req->kern_segptr = NULL;
1189         }
1190
1191         if (io_req->data_flags != CAM_DATA_PADDR) {
1192                 for (i = 0; i < numbufs; i++) {
1193                         /*
1194                          * Restore the user's buffer pointers to their
1195                          * previous values.
1196                          */
1197                         if (io_req->user_bufs[i] != NULL)
1198                                 *data_ptrs[i] = io_req->user_bufs[i];
1199                 }
1200         }
1201
1202 }
1203
1204 static int
1205 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1206                ccb_flags direction)
1207 {
1208         bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
1209         bus_dma_segment_t *user_sglist, *kern_sglist;
1210         int i, j, error;
1211
1212         error = 0;
1213         kern_watermark = 0;
1214         user_watermark = 0;
1215         len_to_copy = 0;
1216         len_copied = 0;
1217         user_sglist = io_req->user_segptr;
1218         kern_sglist = io_req->kern_segptr;
1219
1220         for (i = 0, j = 0; i < io_req->num_user_segs &&
1221              j < io_req->num_kern_segs;) {
1222                 uint8_t *user_ptr, *kern_ptr;
1223
1224                 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1225                     kern_sglist[j].ds_len - kern_watermark);
1226
1227                 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1228                 user_ptr = user_ptr + user_watermark;
1229                 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1230                 kern_ptr = kern_ptr + kern_watermark;
1231
1232                 user_watermark += len_to_copy;
1233                 kern_watermark += len_to_copy;
1234
1235                 if (!useracc(user_ptr, len_to_copy,
1236                     (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
1237                         xpt_print(periph->path, "%s: unable to access user "
1238                                   "S/G list element %p len %zu\n", __func__,
1239                                   user_ptr, len_to_copy);
1240                         error = EFAULT;
1241                         goto bailout;
1242                 }
1243
1244                 if (direction == CAM_DIR_IN) {
1245                         error = copyout(kern_ptr, user_ptr, len_to_copy);
1246                         if (error != 0) {
1247                                 xpt_print(periph->path, "%s: copyout of %u "
1248                                           "bytes from %p to %p failed with "
1249                                           "error %d\n", __func__, len_to_copy,
1250                                           kern_ptr, user_ptr, error);
1251                                 goto bailout;
1252                         }
1253                 } else {
1254                         error = copyin(user_ptr, kern_ptr, len_to_copy);
1255                         if (error != 0) {
1256                                 xpt_print(periph->path, "%s: copyin of %u "
1257                                           "bytes from %p to %p failed with "
1258                                           "error %d\n", __func__, len_to_copy,
1259                                           user_ptr, kern_ptr, error);
1260                                 goto bailout;
1261                         }
1262                 }
1263
1264                 len_copied += len_to_copy;
1265
1266                 if (user_sglist[i].ds_len == user_watermark) {
1267                         i++;
1268                         user_watermark = 0;
1269                 }
1270
1271                 if (kern_sglist[j].ds_len == kern_watermark) {
1272                         j++;
1273                         kern_watermark = 0;
1274                 }
1275         }
1276
1277 bailout:
1278
1279         return (error);
1280 }
1281
1282 static int
1283 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1284 {
1285         union ccb *ccb;
1286         struct pass_softc *softc;
1287         int numbufs, i;
1288         uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1289         uint32_t lengths[CAM_PERIPH_MAXMAPS];
1290         uint32_t dirs[CAM_PERIPH_MAXMAPS];
1291         uint32_t num_segs;
1292         uint16_t *seg_cnt_ptr;
1293         size_t maxmap;
1294         int error;
1295
1296         cam_periph_assert(periph, MA_NOTOWNED);
1297
1298         softc = periph->softc;
1299
1300         error = 0;
1301         ccb = &io_req->ccb;
1302         maxmap = 0;
1303         num_segs = 0;
1304         seg_cnt_ptr = NULL;
1305
1306         switch(ccb->ccb_h.func_code) {
1307         case XPT_DEV_MATCH:
1308                 if (ccb->cdm.match_buf_len == 0) {
1309                         printf("%s: invalid match buffer length 0\n", __func__);
1310                         return(EINVAL);
1311                 }
1312                 if (ccb->cdm.pattern_buf_len > 0) {
1313                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1314                         lengths[0] = ccb->cdm.pattern_buf_len;
1315                         dirs[0] = CAM_DIR_OUT;
1316                         data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1317                         lengths[1] = ccb->cdm.match_buf_len;
1318                         dirs[1] = CAM_DIR_IN;
1319                         numbufs = 2;
1320                 } else {
1321                         data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1322                         lengths[0] = ccb->cdm.match_buf_len;
1323                         dirs[0] = CAM_DIR_IN;
1324                         numbufs = 1;
1325                 }
1326                 io_req->data_flags = CAM_DATA_VADDR;
1327                 break;
1328         case XPT_SCSI_IO:
1329         case XPT_CONT_TARGET_IO:
1330                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1331                         return(0);
1332
1333                 /*
1334                  * The user shouldn't be able to supply a bio.
1335                  */
1336                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1337                         return (EINVAL);
1338
1339                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1340
1341                 data_ptrs[0] = &ccb->csio.data_ptr;
1342                 lengths[0] = ccb->csio.dxfer_len;
1343                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1344                 num_segs = ccb->csio.sglist_cnt;
1345                 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1346                 numbufs = 1;
1347                 maxmap = softc->maxio;
1348                 break;
1349         case XPT_ATA_IO:
1350                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1351                         return(0);
1352
1353                 /*
1354                  * We only support a single virtual address for ATA I/O.
1355                  */
1356                 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1357                         return (EINVAL);
1358
1359                 io_req->data_flags = CAM_DATA_VADDR;
1360
1361                 data_ptrs[0] = &ccb->ataio.data_ptr;
1362                 lengths[0] = ccb->ataio.dxfer_len;
1363                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1364                 numbufs = 1;
1365                 maxmap = softc->maxio;
1366                 break;
1367         case XPT_SMP_IO:
1368                 io_req->data_flags = CAM_DATA_VADDR;
1369
1370                 data_ptrs[0] = &ccb->smpio.smp_request;
1371                 lengths[0] = ccb->smpio.smp_request_len;
1372                 dirs[0] = CAM_DIR_OUT;
1373                 data_ptrs[1] = &ccb->smpio.smp_response;
1374                 lengths[1] = ccb->smpio.smp_response_len;
1375                 dirs[1] = CAM_DIR_IN;
1376                 numbufs = 2;
1377                 maxmap = softc->maxio;
1378                 break;
1379         case XPT_DEV_ADVINFO:
1380                 if (ccb->cdai.bufsiz == 0)
1381                         return (0);
1382
1383                 io_req->data_flags = CAM_DATA_VADDR;
1384
1385                 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1386                 lengths[0] = ccb->cdai.bufsiz;
1387                 dirs[0] = CAM_DIR_IN;
1388                 numbufs = 1;
1389                 break;
1390         case XPT_NVME_ADMIN:
1391         case XPT_NVME_IO:
1392                 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1393                         return (0);
1394
1395                 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1396
1397                 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1398                 lengths[0] = ccb->nvmeio.dxfer_len;
1399                 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1400                 num_segs = ccb->nvmeio.sglist_cnt;
1401                 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1402                 numbufs = 1;
1403                 maxmap = softc->maxio;
1404                 break;
1405         default:
1406                 return(EINVAL);
1407                 break; /* NOTREACHED */
1408         }
1409
1410         io_req->num_bufs = numbufs;
1411
1412         /*
1413          * If there is a maximum, check to make sure that the user's
1414          * request fits within the limit.  In general, we should only have
1415          * a maximum length for requests that go to hardware.  Otherwise it
1416          * is whatever we're able to malloc.
1417          */
1418         for (i = 0; i < numbufs; i++) {
1419                 io_req->user_bufs[i] = *data_ptrs[i];
1420                 io_req->dirs[i] = dirs[i];
1421                 io_req->lengths[i] = lengths[i];
1422
1423                 if (maxmap == 0)
1424                         continue;
1425
1426                 if (lengths[i] <= maxmap)
1427                         continue;
1428
1429                 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1430                           "bytes\n", __func__, lengths[i], maxmap);
1431                 error = EINVAL;
1432                 goto bailout;
1433         }
1434
1435         switch (io_req->data_flags) {
1436         case CAM_DATA_VADDR:
1437                 /* Map or copy the buffer into kernel address space */
1438                 for (i = 0; i < numbufs; i++) {
1439                         uint8_t *tmp_buf;
1440
1441                         /*
1442                          * If for some reason no length is specified, we
1443                          * don't need to allocate anything.
1444                          */
1445                         if (io_req->lengths[i] == 0)
1446                                 continue;
1447
1448                         /*
1449                          * Make sure that the user's buffer is accessible
1450                          * to that process.
1451                          */
1452                         if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
1453                             (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
1454                              VM_PROT_READ)) {
1455                                 xpt_print(periph->path, "%s: user address %p "
1456                                     "length %u is not accessible\n", __func__,
1457                                     io_req->user_bufs[i], io_req->lengths[i]);
1458                                 error = EFAULT;
1459                                 goto bailout;
1460                         }
1461
1462                         tmp_buf = malloc(lengths[i], M_SCSIPASS,
1463                                          M_WAITOK | M_ZERO);
1464                         io_req->kern_bufs[i] = tmp_buf;
1465                         *data_ptrs[i] = tmp_buf;
1466
1467 #if 0
1468                         xpt_print(periph->path, "%s: malloced %p len %u, user "
1469                                   "buffer %p, operation: %s\n", __func__,
1470                                   tmp_buf, lengths[i], io_req->user_bufs[i],
1471                                   (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1472 #endif
1473                         /*
1474                          * We only need to copy in if the user is writing.
1475                          */
1476                         if (dirs[i] != CAM_DIR_OUT)
1477                                 continue;
1478
1479                         error = copyin(io_req->user_bufs[i],
1480                                        io_req->kern_bufs[i], lengths[i]);
1481                         if (error != 0) {
1482                                 xpt_print(periph->path, "%s: copy of user "
1483                                           "buffer from %p to %p failed with "
1484                                           "error %d\n", __func__,
1485                                           io_req->user_bufs[i],
1486                                           io_req->kern_bufs[i], error);
1487                                 goto bailout;
1488                         }
1489                 }
1490                 break;
1491         case CAM_DATA_PADDR:
1492                 /* Pass down the pointer as-is */
1493                 break;
1494         case CAM_DATA_SG: {
1495                 size_t sg_length, size_to_go, alloc_size;
1496                 uint32_t num_segs_needed;
1497
1498                 /*
1499                  * Copy the user S/G list in, and then copy in the
1500                  * individual segments.
1501                  */
1502                 /*
1503                  * We shouldn't see this, but check just in case.
1504                  */
1505                 if (numbufs != 1) {
1506                         xpt_print(periph->path, "%s: cannot currently handle "
1507                                   "more than one S/G list per CCB\n", __func__);
1508                         error = EINVAL;
1509                         goto bailout;
1510                 }
1511
1512                 /*
1513                  * We have to have at least one segment.
1514                  */
1515                 if (num_segs == 0) {
1516                         xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1517                                   "but sglist_cnt=0!\n", __func__);
1518                         error = EINVAL;
1519                         goto bailout;
1520                 }
1521
1522                 /*
1523                  * Make sure the user specified the total length and didn't
1524                  * just leave it to us to decode the S/G list.
1525                  */
1526                 if (lengths[0] == 0) {
1527                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1528                                   "but CAM_DATA_SG flag is set!\n", __func__);
1529                         error = EINVAL;
1530                         goto bailout;
1531                 }
1532
1533                 /*
1534                  * We allocate buffers in io_zone_size increments for an
1535                  * S/G list.  This will generally be MAXPHYS.
1536                  */
1537                 if (lengths[0] <= softc->io_zone_size)
1538                         num_segs_needed = 1;
1539                 else {
1540                         num_segs_needed = lengths[0] / softc->io_zone_size;
1541                         if ((lengths[0] % softc->io_zone_size) != 0)
1542                                 num_segs_needed++;
1543                 }
1544
1545                 /* Figure out the size of the S/G list */
1546                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1547                 io_req->num_user_segs = num_segs;
1548                 io_req->num_kern_segs = num_segs_needed;
1549
1550                 /* Save the user's S/G list pointer for later restoration */
1551                 io_req->user_bufs[0] = *data_ptrs[0];
1552
1553                 /*
1554                  * If we have enough segments allocated by default to handle
1555                  * the length of the user's S/G list,
1556                  */
1557                 if (num_segs > PASS_MAX_SEGS) {
1558                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1559                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1560                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1561                 } else
1562                         io_req->user_segptr = io_req->user_segs;
1563
1564                 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
1565                         xpt_print(periph->path, "%s: unable to access user "
1566                                   "S/G list at %p\n", __func__, *data_ptrs[0]);
1567                         error = EFAULT;
1568                         goto bailout;
1569                 }
1570
1571                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1572                 if (error != 0) {
1573                         xpt_print(periph->path, "%s: copy of user S/G list "
1574                                   "from %p to %p failed with error %d\n",
1575                                   __func__, *data_ptrs[0], io_req->user_segptr,
1576                                   error);
1577                         goto bailout;
1578                 }
1579
1580                 if (num_segs_needed > PASS_MAX_SEGS) {
1581                         io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1582                             num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1583                         io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1584                 } else {
1585                         io_req->kern_segptr = io_req->kern_segs;
1586                 }
1587
1588                 /*
1589                  * Allocate the kernel S/G list.
1590                  */
1591                 for (size_to_go = lengths[0], i = 0;
1592                      size_to_go > 0 && i < num_segs_needed;
1593                      i++, size_to_go -= alloc_size) {
1594                         uint8_t *kern_ptr;
1595
1596                         alloc_size = min(size_to_go, softc->io_zone_size);
1597                         kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1598                         io_req->kern_segptr[i].ds_addr =
1599                             (bus_addr_t)(uintptr_t)kern_ptr;
1600                         io_req->kern_segptr[i].ds_len = alloc_size;
1601                 }
1602                 if (size_to_go > 0) {
1603                         printf("%s: size_to_go = %zu, software error!\n",
1604                                __func__, size_to_go);
1605                         error = EINVAL;
1606                         goto bailout;
1607                 }
1608
1609                 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1610                 *seg_cnt_ptr = io_req->num_kern_segs;
1611
1612                 /*
1613                  * We only need to copy data here if the user is writing.
1614                  */
1615                 if (dirs[0] == CAM_DIR_OUT)
1616                         error = passcopysglist(periph, io_req, dirs[0]);
1617                 break;
1618         }
1619         case CAM_DATA_SG_PADDR: {
1620                 size_t sg_length;
1621
1622                 /*
1623                  * We shouldn't see this, but check just in case.
1624                  */
1625                 if (numbufs != 1) {
1626                         printf("%s: cannot currently handle more than one "
1627                                "S/G list per CCB\n", __func__);
1628                         error = EINVAL;
1629                         goto bailout;
1630                 }
1631
1632                 /*
1633                  * We have to have at least one segment.
1634                  */
1635                 if (num_segs == 0) {
1636                         xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1637                                   "set, but sglist_cnt=0!\n", __func__);
1638                         error = EINVAL;
1639                         goto bailout;
1640                 }
1641
1642                 /*
1643                  * Make sure the user specified the total length and didn't
1644                  * just leave it to us to decode the S/G list.
1645                  */
1646                 if (lengths[0] == 0) {
1647                         xpt_print(periph->path, "%s: no dxfer_len specified, "
1648                                   "but CAM_DATA_SG flag is set!\n", __func__);
1649                         error = EINVAL;
1650                         goto bailout;
1651                 }
1652
1653                 /* Figure out the size of the S/G list */
1654                 sg_length = num_segs * sizeof(bus_dma_segment_t);
1655                 io_req->num_user_segs = num_segs;
1656                 io_req->num_kern_segs = io_req->num_user_segs;
1657
1658                 /* Save the user's S/G list pointer for later restoration */
1659                 io_req->user_bufs[0] = *data_ptrs[0];
1660
1661                 if (num_segs > PASS_MAX_SEGS) {
1662                         io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1663                             num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1664                         io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1665                 } else
1666                         io_req->user_segptr = io_req->user_segs;
1667
1668                 io_req->kern_segptr = io_req->user_segptr;
1669
1670                 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1671                 if (error != 0) {
1672                         xpt_print(periph->path, "%s: copy of user S/G list "
1673                                   "from %p to %p failed with error %d\n",
1674                                   __func__, *data_ptrs[0], io_req->user_segptr,
1675                                   error);
1676                         goto bailout;
1677                 }
1678                 break;
1679         }
1680         default:
1681         case CAM_DATA_BIO:
1682                 /*
1683                  * A user shouldn't be attaching a bio to the CCB.  It
1684                  * isn't a user-accessible structure.
1685                  */
1686                 error = EINVAL;
1687                 break;
1688         }
1689
1690 bailout:
1691         if (error != 0)
1692                 passiocleanup(softc, io_req);
1693
1694         return (error);
1695 }
1696
1697 static int
1698 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1699 {
1700         struct pass_softc *softc;
1701         int error;
1702         int i;
1703
1704         error = 0;
1705         softc = (struct pass_softc *)periph->softc;
1706
1707         switch (io_req->data_flags) {
1708         case CAM_DATA_VADDR:
1709                 /*
1710                  * Copy back to the user buffer if this was a read.
1711                  */
1712                 for (i = 0; i < io_req->num_bufs; i++) {
1713                         if (io_req->dirs[i] != CAM_DIR_IN)
1714                                 continue;
1715
1716                         error = copyout(io_req->kern_bufs[i],
1717                             io_req->user_bufs[i], io_req->lengths[i]);
1718                         if (error != 0) {
1719                                 xpt_print(periph->path, "Unable to copy %u "
1720                                           "bytes from %p to user address %p\n",
1721                                           io_req->lengths[i],
1722                                           io_req->kern_bufs[i],
1723                                           io_req->user_bufs[i]);
1724                                 goto bailout;
1725                         }
1726
1727                 }
1728                 break;
1729         case CAM_DATA_PADDR:
1730                 /* Do nothing.  The pointer is a physical address already */
1731                 break;
1732         case CAM_DATA_SG:
1733                 /*
1734                  * Copy back to the user buffer if this was a read.
1735                  * Restore the user's S/G list buffer pointer.
1736                  */
1737                 if (io_req->dirs[0] == CAM_DIR_IN)
1738                         error = passcopysglist(periph, io_req, io_req->dirs[0]);
1739                 break;
1740         case CAM_DATA_SG_PADDR:
1741                 /*
1742                  * Restore the user's S/G list buffer pointer.  No need to
1743                  * copy.
1744                  */
1745                 break;
1746         default:
1747         case CAM_DATA_BIO:
1748                 error = EINVAL;
1749                 break;
1750         }
1751
1752 bailout:
1753         /*
1754          * Reset the user's pointers to their original values and free
1755          * allocated memory.
1756          */
1757         passiocleanup(softc, io_req);
1758
1759         return (error);
1760 }
1761
1762 static int
1763 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1764 {
1765         int error;
1766
1767         if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1768                 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1769         }
1770         return (error);
1771 }
1772
1773 static int
1774 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1775 {
1776         struct  cam_periph *periph;
1777         struct  pass_softc *softc;
1778         int     error;
1779         uint32_t priority;
1780
1781         periph = (struct cam_periph *)dev->si_drv1;
1782         cam_periph_lock(periph);
1783         softc = (struct pass_softc *)periph->softc;
1784
1785         error = 0;
1786
1787         switch (cmd) {
1788
1789         case CAMIOCOMMAND:
1790         {
1791                 union ccb *inccb;
1792                 union ccb *ccb;
1793                 int ccb_malloced;
1794
1795                 inccb = (union ccb *)addr;
1796 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1797                 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
1798                         inccb->csio.bio = NULL;
1799 #endif
1800
1801                 if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1802                         error = EINVAL;
1803                         break;
1804                 }
1805
1806                 /*
1807                  * Some CCB types, like scan bus and scan lun can only go
1808                  * through the transport layer device.
1809                  */
1810                 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1811                         xpt_print(periph->path, "CCB function code %#x is "
1812                             "restricted to the XPT device\n",
1813                             inccb->ccb_h.func_code);
1814                         error = ENODEV;
1815                         break;
1816                 }
1817
1818                 /* Compatibility for RL/priority-unaware code. */
1819                 priority = inccb->ccb_h.pinfo.priority;
1820                 if (priority <= CAM_PRIORITY_OOB)
1821                     priority += CAM_PRIORITY_OOB + 1;
1822
1823                 /*
1824                  * Non-immediate CCBs need a CCB from the per-device pool
1825                  * of CCBs, which is scheduled by the transport layer.
1826                  * Immediate CCBs and user-supplied CCBs should just be
1827                  * malloced.
1828                  */
1829                 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1830                  && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1831                         ccb = cam_periph_getccb(periph, priority);
1832                         ccb_malloced = 0;
1833                 } else {
1834                         ccb = xpt_alloc_ccb_nowait();
1835
1836                         if (ccb != NULL)
1837                                 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1838                                               priority);
1839                         ccb_malloced = 1;
1840                 }
1841
1842                 if (ccb == NULL) {
1843                         xpt_print(periph->path, "unable to allocate CCB\n");
1844                         error = ENOMEM;
1845                         break;
1846                 }
1847
1848                 error = passsendccb(periph, ccb, inccb);
1849
1850                 if (ccb_malloced)
1851                         xpt_free_ccb(ccb);
1852                 else
1853                         xpt_release_ccb(ccb);
1854
1855                 break;
1856         }
1857         case CAMIOQUEUE:
1858         {
1859                 struct pass_io_req *io_req;
1860                 union ccb **user_ccb, *ccb;
1861                 xpt_opcode fc;
1862
1863 #ifdef COMPAT_FREEBSD32
1864                 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1865                         error = ENOTTY;
1866                         goto bailout;
1867                 }
1868 #endif
1869                 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1870                         error = passcreatezone(periph);
1871                         if (error != 0)
1872                                 goto bailout;
1873                 }
1874
1875                 /*
1876                  * We're going to do a blocking allocation for this I/O
1877                  * request, so we have to drop the lock.
1878                  */
1879                 cam_periph_unlock(periph);
1880
1881                 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1882                 ccb = &io_req->ccb;
1883                 user_ccb = (union ccb **)addr;
1884
1885                 /*
1886                  * Unlike the CAMIOCOMMAND ioctl above, we only have a
1887                  * pointer to the user's CCB, so we have to copy the whole
1888                  * thing in to a buffer we have allocated (above) instead
1889                  * of allowing the ioctl code to malloc a buffer and copy
1890                  * it in.
1891                  *
1892                  * This is an advantage for this asynchronous interface,
1893                  * since we don't want the memory to get freed while the
1894                  * CCB is outstanding.
1895                  */
1896 #if 0
1897                 xpt_print(periph->path, "Copying user CCB %p to "
1898                           "kernel address %p\n", *user_ccb, ccb);
1899 #endif
1900                 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1901                 if (error != 0) {
1902                         xpt_print(periph->path, "Copy of user CCB %p to "
1903                                   "kernel address %p failed with error %d\n",
1904                                   *user_ccb, ccb, error);
1905                         goto camioqueue_error;
1906                 }
1907 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1908                 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
1909                         ccb->csio.bio = NULL;
1910 #endif
1911
1912                 if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1913                         error = EINVAL;
1914                         goto camioqueue_error;
1915                 }
1916
1917                 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1918                         if (ccb->csio.cdb_len > IOCDBLEN) {
1919                                 error = EINVAL;
1920                                 goto camioqueue_error;
1921                         }
1922                         error = copyin(ccb->csio.cdb_io.cdb_ptr,
1923                             ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1924                         if (error != 0)
1925                                 goto camioqueue_error;
1926                         ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1927                 }
1928
1929                 /*
1930                  * Some CCB types, like scan bus and scan lun can only go
1931                  * through the transport layer device.
1932                  */
1933                 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1934                         xpt_print(periph->path, "CCB function code %#x is "
1935                             "restricted to the XPT device\n",
1936                             ccb->ccb_h.func_code);
1937                         error = ENODEV;
1938                         goto camioqueue_error;
1939                 }
1940
1941                 /*
1942                  * Save the user's CCB pointer as well as his linked list
1943                  * pointers and peripheral private area so that we can
1944                  * restore these later.
1945                  */
1946                 io_req->user_ccb_ptr = *user_ccb;
1947                 io_req->user_periph_links = ccb->ccb_h.periph_links;
1948                 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1949
1950                 /*
1951                  * Now that we've saved the user's values, we can set our
1952                  * own peripheral private entry.
1953                  */
1954                 ccb->ccb_h.ccb_ioreq = io_req;
1955
1956                 /* Compatibility for RL/priority-unaware code. */
1957                 priority = ccb->ccb_h.pinfo.priority;
1958                 if (priority <= CAM_PRIORITY_OOB)
1959                     priority += CAM_PRIORITY_OOB + 1;
1960
1961                 /*
1962                  * Setup fields in the CCB like the path and the priority.
1963                  * The path in particular cannot be done in userland, since
1964                  * it is a pointer to a kernel data structure.
1965                  */
1966                 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1967                                     ccb->ccb_h.flags);
1968
1969                 /*
1970                  * Setup our done routine.  There is no way for the user to
1971                  * have a valid pointer here.
1972                  */
1973                 ccb->ccb_h.cbfcnp = passdone;
1974
1975                 fc = ccb->ccb_h.func_code;
1976                 /*
1977                  * If this function code has memory that can be mapped in
1978                  * or out, we need to call passmemsetup().
1979                  */
1980                 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1981                  || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1982                  || (fc == XPT_DEV_ADVINFO)
1983                  || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1984                         error = passmemsetup(periph, io_req);
1985                         if (error != 0)
1986                                 goto camioqueue_error;
1987                 } else
1988                         io_req->mapinfo.num_bufs_used = 0;
1989
1990                 cam_periph_lock(periph);
1991
1992                 /*
1993                  * Everything goes on the incoming queue initially.
1994                  */
1995                 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1996
1997                 /*
1998                  * If the CCB is queued, and is not a user CCB, then
1999                  * we need to allocate a slot for it.  Call xpt_schedule()
2000                  * so that our start routine will get called when a CCB is
2001                  * available.
2002                  */
2003                 if ((fc & XPT_FC_QUEUED)
2004                  && ((fc & XPT_FC_USER_CCB) == 0)) {
2005                         xpt_schedule(periph, priority);
2006                         break;
2007                 } 
2008
2009                 /*
2010                  * At this point, the CCB in question is either an
2011                  * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
2012                  * and therefore should be malloced, not allocated via a slot.
2013                  * Remove the CCB from the incoming queue and add it to the
2014                  * active queue.
2015                  */
2016                 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
2017                 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
2018
2019                 xpt_action(ccb);
2020
2021                 /*
2022                  * If this is not a queued CCB (i.e. it is an immediate CCB),
2023                  * then it is already done.  We need to put it on the done
2024                  * queue for the user to fetch.
2025                  */
2026                 if ((fc & XPT_FC_QUEUED) == 0) {
2027                         TAILQ_REMOVE(&softc->active_queue, io_req, links);
2028                         TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2029                 }
2030                 break;
2031
2032 camioqueue_error:
2033                 uma_zfree(softc->pass_zone, io_req);
2034                 cam_periph_lock(periph);
2035                 break;
2036         }
2037         case CAMIOGET:
2038         {
2039                 union ccb **user_ccb;
2040                 struct pass_io_req *io_req;
2041                 int old_error;
2042
2043 #ifdef COMPAT_FREEBSD32
2044                 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2045                         error = ENOTTY;
2046                         goto bailout;
2047                 }
2048 #endif
2049                 user_ccb = (union ccb **)addr;
2050                 old_error = 0;
2051
2052                 io_req = TAILQ_FIRST(&softc->done_queue);
2053                 if (io_req == NULL) {
2054                         error = ENOENT;
2055                         break;
2056                 }
2057
2058                 /*
2059                  * Remove the I/O from the done queue.
2060                  */
2061                 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2062
2063                 /*
2064                  * We have to drop the lock during the copyout because the
2065                  * copyout can result in VM faults that require sleeping.
2066                  */
2067                 cam_periph_unlock(periph);
2068
2069                 /*
2070                  * Do any needed copies (e.g. for reads) and revert the
2071                  * pointers in the CCB back to the user's pointers.
2072                  */
2073                 error = passmemdone(periph, io_req);
2074
2075                 old_error = error;
2076
2077                 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2078                 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2079
2080 #if 0
2081                 xpt_print(periph->path, "Copying to user CCB %p from "
2082                           "kernel address %p\n", *user_ccb, &io_req->ccb);
2083 #endif
2084
2085                 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2086                 if (error != 0) {
2087                         xpt_print(periph->path, "Copy to user CCB %p from "
2088                                   "kernel address %p failed with error %d\n",
2089                                   *user_ccb, &io_req->ccb, error);
2090                 }
2091
2092                 /*
2093                  * Prefer the first error we got back, and make sure we
2094                  * don't overwrite bad status with good.
2095                  */
2096                 if (old_error != 0)
2097                         error = old_error;
2098
2099                 cam_periph_lock(periph);
2100
2101                 /*
2102                  * At this point, if there was an error, we could potentially
2103                  * re-queue the I/O and try again.  But why?  The error
2104                  * would almost certainly happen again.  We might as well
2105                  * not leak memory.
2106                  */
2107                 uma_zfree(softc->pass_zone, io_req);
2108                 break;
2109         }
2110         default:
2111                 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2112                 break;
2113         }
2114
2115 bailout:
2116         cam_periph_unlock(periph);
2117
2118         return(error);
2119 }
2120
2121 static int
2122 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2123 {
2124         struct cam_periph *periph;
2125         struct pass_softc *softc;
2126         int revents;
2127
2128         periph = (struct cam_periph *)dev->si_drv1;
2129         softc = (struct pass_softc *)periph->softc;
2130
2131         revents = poll_events & (POLLOUT | POLLWRNORM);
2132         if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2133                 cam_periph_lock(periph);
2134
2135                 if (!TAILQ_EMPTY(&softc->done_queue)) {
2136                         revents |= poll_events & (POLLIN | POLLRDNORM);
2137                 }
2138                 cam_periph_unlock(periph);
2139                 if (revents == 0)
2140                         selrecord(td, &softc->read_select);
2141         }
2142
2143         return (revents);
2144 }
2145
2146 static int
2147 passkqfilter(struct cdev *dev, struct knote *kn)
2148 {
2149         struct cam_periph *periph;
2150         struct pass_softc *softc;
2151
2152         periph = (struct cam_periph *)dev->si_drv1;
2153         softc = (struct pass_softc *)periph->softc;
2154
2155         kn->kn_hook = (caddr_t)periph;
2156         kn->kn_fop = &passread_filtops;
2157         knlist_add(&softc->read_select.si_note, kn, 0);
2158
2159         return (0);
2160 }
2161
2162 static void
2163 passreadfiltdetach(struct knote *kn)
2164 {
2165         struct cam_periph *periph;
2166         struct pass_softc *softc;
2167
2168         periph = (struct cam_periph *)kn->kn_hook;
2169         softc = (struct pass_softc *)periph->softc;
2170
2171         knlist_remove(&softc->read_select.si_note, kn, 0);
2172 }
2173
2174 static int
2175 passreadfilt(struct knote *kn, long hint)
2176 {
2177         struct cam_periph *periph;
2178         struct pass_softc *softc;
2179         int retval;
2180
2181         periph = (struct cam_periph *)kn->kn_hook;
2182         softc = (struct pass_softc *)periph->softc;
2183
2184         cam_periph_assert(periph, MA_OWNED);
2185
2186         if (TAILQ_EMPTY(&softc->done_queue))
2187                 retval = 0;
2188         else
2189                 retval = 1;
2190
2191         return (retval);
2192 }
2193
2194 /*
2195  * Generally, "ccb" should be the CCB supplied by the kernel.  "inccb"
2196  * should be the CCB that is copied in from the user.
2197  */
2198 static int
2199 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2200 {
2201         struct pass_softc *softc;
2202         struct cam_periph_map_info mapinfo;
2203         uint8_t *cmd;
2204         xpt_opcode fc;
2205         int error;
2206
2207         softc = (struct pass_softc *)periph->softc;
2208
2209         /*
2210          * There are some fields in the CCB header that need to be
2211          * preserved, the rest we get from the user.
2212          */
2213         xpt_merge_ccb(ccb, inccb);
2214
2215         if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2216                 cmd = __builtin_alloca(ccb->csio.cdb_len);
2217                 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2218                 if (error)
2219                         return (error);
2220                 ccb->csio.cdb_io.cdb_ptr = cmd;
2221         }
2222
2223         /*
2224          * Let cam_periph_mapmem do a sanity check on the data pointer format.
2225          * Even if no data transfer is needed, it's a cheap check and it
2226          * simplifies the code.
2227          */
2228         fc = ccb->ccb_h.func_code;
2229         if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2230             || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
2231             || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
2232
2233                 bzero(&mapinfo, sizeof(mapinfo));
2234
2235                 /*
2236                  * cam_periph_mapmem calls into proc and vm functions that can
2237                  * sleep as well as trigger I/O, so we can't hold the lock.
2238                  * Dropping it here is reasonably safe.
2239                  */
2240                 cam_periph_unlock(periph);
2241                 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2242                 cam_periph_lock(periph);
2243
2244                 /*
2245                  * cam_periph_mapmem returned an error, we can't continue.
2246                  * Return the error to the user.
2247                  */
2248                 if (error)
2249                         return(error);
2250         } else
2251                 /* Ensure that the unmap call later on is a no-op. */
2252                 mapinfo.num_bufs_used = 0;
2253
2254         /*
2255          * If the user wants us to perform any error recovery, then honor
2256          * that request.  Otherwise, it's up to the user to perform any
2257          * error recovery.
2258          */
2259         cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 
2260             passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
2261             /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
2262             softc->device_stats);
2263
2264         cam_periph_unmapmem(ccb, &mapinfo);
2265
2266         ccb->ccb_h.cbfcnp = NULL;
2267         ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2268         bcopy(ccb, inccb, sizeof(union ccb));
2269
2270         return(0);
2271 }
2272
2273 static int
2274 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2275 {
2276         struct cam_periph *periph;
2277         struct pass_softc *softc;
2278
2279         periph = xpt_path_periph(ccb->ccb_h.path);
2280         softc = (struct pass_softc *)periph->softc;
2281         
2282         return(cam_periph_error(ccb, cam_flags, sense_flags));
2283 }