]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c
Upgrade to OpenSSH 6.5p1.
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / dtrace / dtrace.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Copyright (c) 2012 by Delphix. All rights reserved
27  * Use is subject to license terms.
28  */
29
30 #pragma ident   "%Z%%M% %I%     %E% SMI"
31
32 /*
33  * DTrace - Dynamic Tracing for Solaris
34  *
35  * This is the implementation of the Solaris Dynamic Tracing framework
36  * (DTrace).  The user-visible interface to DTrace is described at length in
37  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
38  * library, the in-kernel DTrace framework, and the DTrace providers are
39  * described in the block comments in the <sys/dtrace.h> header file.  The
40  * internal architecture of DTrace is described in the block comments in the
41  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
42  * implementation very much assume mastery of all of these sources; if one has
43  * an unanswered question about the implementation, one should consult them
44  * first.
45  *
46  * The functions here are ordered roughly as follows:
47  *
48  *   - Probe context functions
49  *   - Probe hashing functions
50  *   - Non-probe context utility functions
51  *   - Matching functions
52  *   - Provider-to-Framework API functions
53  *   - Probe management functions
54  *   - DIF object functions
55  *   - Format functions
56  *   - Predicate functions
57  *   - ECB functions
58  *   - Buffer functions
59  *   - Enabling functions
60  *   - DOF functions
61  *   - Anonymous enabling functions
62  *   - Consumer state functions
63  *   - Helper functions
64  *   - Hook functions
65  *   - Driver cookbook functions
66  *
67  * Each group of functions begins with a block comment labelled the "DTrace
68  * [Group] Functions", allowing one to find each block by searching forward
69  * on capital-f functions.
70  */
71 #include <sys/errno.h>
72 #if !defined(sun)
73 #include <sys/time.h>
74 #endif
75 #include <sys/stat.h>
76 #include <sys/modctl.h>
77 #include <sys/conf.h>
78 #include <sys/systm.h>
79 #if defined(sun)
80 #include <sys/ddi.h>
81 #include <sys/sunddi.h>
82 #endif
83 #include <sys/cpuvar.h>
84 #include <sys/kmem.h>
85 #if defined(sun)
86 #include <sys/strsubr.h>
87 #endif
88 #include <sys/sysmacros.h>
89 #include <sys/dtrace_impl.h>
90 #include <sys/atomic.h>
91 #include <sys/cmn_err.h>
92 #if defined(sun)
93 #include <sys/mutex_impl.h>
94 #include <sys/rwlock_impl.h>
95 #endif
96 #include <sys/ctf_api.h>
97 #if defined(sun)
98 #include <sys/panic.h>
99 #include <sys/priv_impl.h>
100 #endif
101 #include <sys/policy.h>
102 #if defined(sun)
103 #include <sys/cred_impl.h>
104 #include <sys/procfs_isa.h>
105 #endif
106 #include <sys/taskq.h>
107 #if defined(sun)
108 #include <sys/mkdev.h>
109 #include <sys/kdi.h>
110 #endif
111 #include <sys/zone.h>
112 #include <sys/socket.h>
113 #include <netinet/in.h>
114
115 /* FreeBSD includes: */
116 #if !defined(sun)
117 #include <sys/callout.h>
118 #include <sys/ctype.h>
119 #include <sys/eventhandler.h>
120 #include <sys/limits.h>
121 #include <sys/kdb.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/sysctl.h>
125 #include <sys/lock.h>
126 #include <sys/mutex.h>
127 #include <sys/rwlock.h>
128 #include <sys/sx.h>
129 #include <sys/dtrace_bsd.h>
130 #include <netinet/in.h>
131 #include "dtrace_cddl.h"
132 #include "dtrace_debug.c"
133 #endif
134
135 /*
136  * DTrace Tunable Variables
137  *
138  * The following variables may be tuned by adding a line to /etc/system that
139  * includes both the name of the DTrace module ("dtrace") and the name of the
140  * variable.  For example:
141  *
142  *   set dtrace:dtrace_destructive_disallow = 1
143  *
144  * In general, the only variables that one should be tuning this way are those
145  * that affect system-wide DTrace behavior, and for which the default behavior
146  * is undesirable.  Most of these variables are tunable on a per-consumer
147  * basis using DTrace options, and need not be tuned on a system-wide basis.
148  * When tuning these variables, avoid pathological values; while some attempt
149  * is made to verify the integrity of these variables, they are not considered
150  * part of the supported interface to DTrace, and they are therefore not
151  * checked comprehensively.  Further, these variables should not be tuned
152  * dynamically via "mdb -kw" or other means; they should only be tuned via
153  * /etc/system.
154  */
155 int             dtrace_destructive_disallow = 0;
156 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
157 size_t          dtrace_difo_maxsize = (256 * 1024);
158 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
159 size_t          dtrace_global_maxsize = (16 * 1024);
160 size_t          dtrace_actions_max = (16 * 1024);
161 size_t          dtrace_retain_max = 1024;
162 dtrace_optval_t dtrace_helper_actions_max = 128;
163 dtrace_optval_t dtrace_helper_providers_max = 32;
164 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
165 size_t          dtrace_strsize_default = 256;
166 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
167 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
168 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
169 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
170 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
171 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
172 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
173 dtrace_optval_t dtrace_nspec_default = 1;
174 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
175 dtrace_optval_t dtrace_stackframes_default = 20;
176 dtrace_optval_t dtrace_ustackframes_default = 20;
177 dtrace_optval_t dtrace_jstackframes_default = 50;
178 dtrace_optval_t dtrace_jstackstrsize_default = 512;
179 int             dtrace_msgdsize_max = 128;
180 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
181 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
182 int             dtrace_devdepth_max = 32;
183 int             dtrace_err_verbose;
184 hrtime_t        dtrace_deadman_interval = NANOSEC;
185 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
186 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
187 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
188 #if !defined(sun)
189 int             dtrace_memstr_max = 4096;
190 #endif
191
192 /*
193  * DTrace External Variables
194  *
195  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
196  * available to DTrace consumers via the backtick (`) syntax.  One of these,
197  * dtrace_zero, is made deliberately so:  it is provided as a source of
198  * well-known, zero-filled memory.  While this variable is not documented,
199  * it is used by some translators as an implementation detail.
200  */
201 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
202
203 /*
204  * DTrace Internal Variables
205  */
206 #if defined(sun)
207 static dev_info_t       *dtrace_devi;           /* device info */
208 #endif
209 #if defined(sun)
210 static vmem_t           *dtrace_arena;          /* probe ID arena */
211 static vmem_t           *dtrace_minor;          /* minor number arena */
212 #else
213 static taskq_t          *dtrace_taskq;          /* task queue */
214 static struct unrhdr    *dtrace_arena;          /* Probe ID number.     */
215 #endif
216 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
217 static int              dtrace_nprobes;         /* number of probes */
218 static dtrace_provider_t *dtrace_provider;      /* provider list */
219 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
220 static int              dtrace_opens;           /* number of opens */
221 static int              dtrace_helpers;         /* number of helpers */
222 #if defined(sun)
223 static void             *dtrace_softstate;      /* softstate pointer */
224 #endif
225 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
226 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
227 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
228 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
229 static int              dtrace_toxranges;       /* number of toxic ranges */
230 static int              dtrace_toxranges_max;   /* size of toxic range array */
231 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
232 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
233 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
234 static kthread_t        *dtrace_panicked;       /* panicking thread */
235 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
236 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
237 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
238 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
239 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
240 #if !defined(sun)
241 static struct mtx       dtrace_unr_mtx;
242 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
243 int             dtrace_in_probe;        /* non-zero if executing a probe */
244 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
245 uintptr_t       dtrace_in_probe_addr;   /* Address of invop when already in probe */
246 #endif
247 static eventhandler_tag dtrace_kld_load_tag;
248 static eventhandler_tag dtrace_kld_unload_try_tag;
249 #endif
250
251 /*
252  * DTrace Locking
253  * DTrace is protected by three (relatively coarse-grained) locks:
254  *
255  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
256  *     including enabling state, probes, ECBs, consumer state, helper state,
257  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
258  *     probe context is lock-free -- synchronization is handled via the
259  *     dtrace_sync() cross call mechanism.
260  *
261  * (2) dtrace_provider_lock is required when manipulating provider state, or
262  *     when provider state must be held constant.
263  *
264  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
265  *     when meta provider state must be held constant.
266  *
267  * The lock ordering between these three locks is dtrace_meta_lock before
268  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
269  * several places where dtrace_provider_lock is held by the framework as it
270  * calls into the providers -- which then call back into the framework,
271  * grabbing dtrace_lock.)
272  *
273  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
274  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
275  * role as a coarse-grained lock; it is acquired before both of these locks.
276  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
277  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
278  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
279  * acquired _between_ dtrace_provider_lock and dtrace_lock.
280  */
281 static kmutex_t         dtrace_lock;            /* probe state lock */
282 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
283 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
284
285 #if !defined(sun)
286 /* XXX FreeBSD hacks. */
287 #define cr_suid         cr_svuid
288 #define cr_sgid         cr_svgid
289 #define ipaddr_t        in_addr_t
290 #define mod_modname     pathname
291 #define vuprintf        vprintf
292 #define ttoproc(_a)     ((_a)->td_proc)
293 #define crgetzoneid(_a) 0
294 #define NCPU            MAXCPU
295 #define SNOCD           0
296 #define CPU_ON_INTR(_a) 0
297
298 #define PRIV_EFFECTIVE          (1 << 0)
299 #define PRIV_DTRACE_KERNEL      (1 << 1)
300 #define PRIV_DTRACE_PROC        (1 << 2)
301 #define PRIV_DTRACE_USER        (1 << 3)
302 #define PRIV_PROC_OWNER         (1 << 4)
303 #define PRIV_PROC_ZONE          (1 << 5)
304 #define PRIV_ALL                ~0
305
306 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
307 #endif
308
309 #if defined(sun)
310 #define curcpu  CPU->cpu_id
311 #endif
312
313
314 /*
315  * DTrace Provider Variables
316  *
317  * These are the variables relating to DTrace as a provider (that is, the
318  * provider of the BEGIN, END, and ERROR probes).
319  */
320 static dtrace_pattr_t   dtrace_provider_attr = {
321 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
322 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
323 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
324 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
325 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
326 };
327
328 static void
329 dtrace_nullop(void)
330 {}
331
332 static dtrace_pops_t    dtrace_provider_ops = {
333         (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
334         (void (*)(void *, modctl_t *))dtrace_nullop,
335         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
336         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
337         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
338         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
339         NULL,
340         NULL,
341         NULL,
342         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
343 };
344
345 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
346 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
347 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
348
349 /*
350  * DTrace Helper Tracing Variables
351  */
352 uint32_t dtrace_helptrace_next = 0;
353 uint32_t dtrace_helptrace_nlocals;
354 char    *dtrace_helptrace_buffer;
355 int     dtrace_helptrace_bufsize = 512 * 1024;
356
357 #ifdef DEBUG
358 int     dtrace_helptrace_enabled = 1;
359 #else
360 int     dtrace_helptrace_enabled = 0;
361 #endif
362
363 /*
364  * DTrace Error Hashing
365  *
366  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
367  * table.  This is very useful for checking coverage of tests that are
368  * expected to induce DIF or DOF processing errors, and may be useful for
369  * debugging problems in the DIF code generator or in DOF generation .  The
370  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
371  */
372 #ifdef DEBUG
373 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
374 static const char *dtrace_errlast;
375 static kthread_t *dtrace_errthread;
376 static kmutex_t dtrace_errlock;
377 #endif
378
379 /*
380  * DTrace Macros and Constants
381  *
382  * These are various macros that are useful in various spots in the
383  * implementation, along with a few random constants that have no meaning
384  * outside of the implementation.  There is no real structure to this cpp
385  * mishmash -- but is there ever?
386  */
387 #define DTRACE_HASHSTR(hash, probe)     \
388         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
389
390 #define DTRACE_HASHNEXT(hash, probe)    \
391         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
392
393 #define DTRACE_HASHPREV(hash, probe)    \
394         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
395
396 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
397         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
398             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
399
400 #define DTRACE_AGGHASHSIZE_SLEW         17
401
402 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
403
404 /*
405  * The key for a thread-local variable consists of the lower 61 bits of the
406  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
407  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
408  * equal to a variable identifier.  This is necessary (but not sufficient) to
409  * assure that global associative arrays never collide with thread-local
410  * variables.  To guarantee that they cannot collide, we must also define the
411  * order for keying dynamic variables.  That order is:
412  *
413  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
414  *
415  * Because the variable-key and the tls-key are in orthogonal spaces, there is
416  * no way for a global variable key signature to match a thread-local key
417  * signature.
418  */
419 #if defined(sun)
420 #define DTRACE_TLS_THRKEY(where) { \
421         uint_t intr = 0; \
422         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
423         for (; actv; actv >>= 1) \
424                 intr++; \
425         ASSERT(intr < (1 << 3)); \
426         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
427             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
428 }
429 #else
430 #define DTRACE_TLS_THRKEY(where) { \
431         solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
432         uint_t intr = 0; \
433         uint_t actv = _c->cpu_intr_actv; \
434         for (; actv; actv >>= 1) \
435                 intr++; \
436         ASSERT(intr < (1 << 3)); \
437         (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
438             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
439 }
440 #endif
441
442 #define DT_BSWAP_8(x)   ((x) & 0xff)
443 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
444 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
445 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
446
447 #define DT_MASK_LO 0x00000000FFFFFFFFULL
448
449 #define DTRACE_STORE(type, tomax, offset, what) \
450         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
451
452 #ifndef __x86
453 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
454         if (addr & (size - 1)) {                                        \
455                 *flags |= CPU_DTRACE_BADALIGN;                          \
456                 cpu_core[curcpu].cpuc_dtrace_illval = addr;     \
457                 return (0);                                             \
458         }
459 #else
460 #define DTRACE_ALIGNCHECK(addr, size, flags)
461 #endif
462
463 /*
464  * Test whether a range of memory starting at testaddr of size testsz falls
465  * within the range of memory described by addr, sz.  We take care to avoid
466  * problems with overflow and underflow of the unsigned quantities, and
467  * disallow all negative sizes.  Ranges of size 0 are allowed.
468  */
469 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
470         ((testaddr) - (baseaddr) < (basesz) && \
471         (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
472         (testaddr) + (testsz) >= (testaddr))
473
474 /*
475  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
476  * alloc_sz on the righthand side of the comparison in order to avoid overflow
477  * or underflow in the comparison with it.  This is simpler than the INRANGE
478  * check above, because we know that the dtms_scratch_ptr is valid in the
479  * range.  Allocations of size zero are allowed.
480  */
481 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
482         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
483         (mstate)->dtms_scratch_ptr >= (alloc_sz))
484
485 #define DTRACE_LOADFUNC(bits)                                           \
486 /*CSTYLED*/                                                             \
487 uint##bits##_t                                                          \
488 dtrace_load##bits(uintptr_t addr)                                       \
489 {                                                                       \
490         size_t size = bits / NBBY;                                      \
491         /*CSTYLED*/                                                     \
492         uint##bits##_t rval;                                            \
493         int i;                                                          \
494         volatile uint16_t *flags = (volatile uint16_t *)                \
495             &cpu_core[curcpu].cpuc_dtrace_flags;                        \
496                                                                         \
497         DTRACE_ALIGNCHECK(addr, size, flags);                           \
498                                                                         \
499         for (i = 0; i < dtrace_toxranges; i++) {                        \
500                 if (addr >= dtrace_toxrange[i].dtt_limit)               \
501                         continue;                                       \
502                                                                         \
503                 if (addr + size <= dtrace_toxrange[i].dtt_base)         \
504                         continue;                                       \
505                                                                         \
506                 /*                                                      \
507                  * This address falls within a toxic region; return 0.  \
508                  */                                                     \
509                 *flags |= CPU_DTRACE_BADADDR;                           \
510                 cpu_core[curcpu].cpuc_dtrace_illval = addr;             \
511                 return (0);                                             \
512         }                                                               \
513                                                                         \
514         *flags |= CPU_DTRACE_NOFAULT;                                   \
515         /*CSTYLED*/                                                     \
516         rval = *((volatile uint##bits##_t *)addr);                      \
517         *flags &= ~CPU_DTRACE_NOFAULT;                                  \
518                                                                         \
519         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);               \
520 }
521
522 #ifdef _LP64
523 #define dtrace_loadptr  dtrace_load64
524 #else
525 #define dtrace_loadptr  dtrace_load32
526 #endif
527
528 #define DTRACE_DYNHASH_FREE     0
529 #define DTRACE_DYNHASH_SINK     1
530 #define DTRACE_DYNHASH_VALID    2
531
532 #define DTRACE_MATCH_NEXT       0
533 #define DTRACE_MATCH_DONE       1
534 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
535 #define DTRACE_STATE_ALIGN      64
536
537 #define DTRACE_FLAGS2FLT(flags)                                         \
538         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :           \
539         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :                \
540         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :            \
541         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :                \
542         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :                \
543         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :         \
544         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :         \
545         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :       \
546         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :         \
547         DTRACEFLT_UNKNOWN)
548
549 #define DTRACEACT_ISSTRING(act)                                         \
550         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                        \
551         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
552
553 /* Function prototype definitions: */
554 static size_t dtrace_strlen(const char *, size_t);
555 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
556 static void dtrace_enabling_provide(dtrace_provider_t *);
557 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
558 static void dtrace_enabling_matchall(void);
559 static void dtrace_enabling_reap(void);
560 static dtrace_state_t *dtrace_anon_grab(void);
561 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
562     dtrace_state_t *, uint64_t, uint64_t);
563 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
564 static void dtrace_buffer_drop(dtrace_buffer_t *);
565 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
566 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
567     dtrace_state_t *, dtrace_mstate_t *);
568 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
569     dtrace_optval_t);
570 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
571 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
572 uint16_t dtrace_load16(uintptr_t);
573 uint32_t dtrace_load32(uintptr_t);
574 uint64_t dtrace_load64(uintptr_t);
575 uint8_t dtrace_load8(uintptr_t);
576 void dtrace_dynvar_clean(dtrace_dstate_t *);
577 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
578     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
579 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
580
581 /*
582  * DTrace Probe Context Functions
583  *
584  * These functions are called from probe context.  Because probe context is
585  * any context in which C may be called, arbitrarily locks may be held,
586  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
587  * As a result, functions called from probe context may only call other DTrace
588  * support functions -- they may not interact at all with the system at large.
589  * (Note that the ASSERT macro is made probe-context safe by redefining it in
590  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
591  * loads are to be performed from probe context, they _must_ be in terms of
592  * the safe dtrace_load*() variants.
593  *
594  * Some functions in this block are not actually called from probe context;
595  * for these functions, there will be a comment above the function reading
596  * "Note:  not called from probe context."
597  */
598 void
599 dtrace_panic(const char *format, ...)
600 {
601         va_list alist;
602
603         va_start(alist, format);
604         dtrace_vpanic(format, alist);
605         va_end(alist);
606 }
607
608 int
609 dtrace_assfail(const char *a, const char *f, int l)
610 {
611         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
612
613         /*
614          * We just need something here that even the most clever compiler
615          * cannot optimize away.
616          */
617         return (a[(uintptr_t)f]);
618 }
619
620 /*
621  * Atomically increment a specified error counter from probe context.
622  */
623 static void
624 dtrace_error(uint32_t *counter)
625 {
626         /*
627          * Most counters stored to in probe context are per-CPU counters.
628          * However, there are some error conditions that are sufficiently
629          * arcane that they don't merit per-CPU storage.  If these counters
630          * are incremented concurrently on different CPUs, scalability will be
631          * adversely affected -- but we don't expect them to be white-hot in a
632          * correctly constructed enabling...
633          */
634         uint32_t oval, nval;
635
636         do {
637                 oval = *counter;
638
639                 if ((nval = oval + 1) == 0) {
640                         /*
641                          * If the counter would wrap, set it to 1 -- assuring
642                          * that the counter is never zero when we have seen
643                          * errors.  (The counter must be 32-bits because we
644                          * aren't guaranteed a 64-bit compare&swap operation.)
645                          * To save this code both the infamy of being fingered
646                          * by a priggish news story and the indignity of being
647                          * the target of a neo-puritan witch trial, we're
648                          * carefully avoiding any colorful description of the
649                          * likelihood of this condition -- but suffice it to
650                          * say that it is only slightly more likely than the
651                          * overflow of predicate cache IDs, as discussed in
652                          * dtrace_predicate_create().
653                          */
654                         nval = 1;
655                 }
656         } while (dtrace_cas32(counter, oval, nval) != oval);
657 }
658
659 /*
660  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
661  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
662  */
663 DTRACE_LOADFUNC(8)
664 DTRACE_LOADFUNC(16)
665 DTRACE_LOADFUNC(32)
666 DTRACE_LOADFUNC(64)
667
668 static int
669 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
670 {
671         if (dest < mstate->dtms_scratch_base)
672                 return (0);
673
674         if (dest + size < dest)
675                 return (0);
676
677         if (dest + size > mstate->dtms_scratch_ptr)
678                 return (0);
679
680         return (1);
681 }
682
683 static int
684 dtrace_canstore_statvar(uint64_t addr, size_t sz,
685     dtrace_statvar_t **svars, int nsvars)
686 {
687         int i;
688
689         for (i = 0; i < nsvars; i++) {
690                 dtrace_statvar_t *svar = svars[i];
691
692                 if (svar == NULL || svar->dtsv_size == 0)
693                         continue;
694
695                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
696                         return (1);
697         }
698
699         return (0);
700 }
701
702 /*
703  * Check to see if the address is within a memory region to which a store may
704  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
705  * region.  The caller of dtrace_canstore() is responsible for performing any
706  * alignment checks that are needed before stores are actually executed.
707  */
708 static int
709 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
710     dtrace_vstate_t *vstate)
711 {
712         /*
713          * First, check to see if the address is in scratch space...
714          */
715         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
716             mstate->dtms_scratch_size))
717                 return (1);
718
719         /*
720          * Now check to see if it's a dynamic variable.  This check will pick
721          * up both thread-local variables and any global dynamically-allocated
722          * variables.
723          */
724         if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
725             vstate->dtvs_dynvars.dtds_size)) {
726                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
727                 uintptr_t base = (uintptr_t)dstate->dtds_base +
728                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
729                 uintptr_t chunkoffs;
730
731                 /*
732                  * Before we assume that we can store here, we need to make
733                  * sure that it isn't in our metadata -- storing to our
734                  * dynamic variable metadata would corrupt our state.  For
735                  * the range to not include any dynamic variable metadata,
736                  * it must:
737                  *
738                  *      (1) Start above the hash table that is at the base of
739                  *      the dynamic variable space
740                  *
741                  *      (2) Have a starting chunk offset that is beyond the
742                  *      dtrace_dynvar_t that is at the base of every chunk
743                  *
744                  *      (3) Not span a chunk boundary
745                  *
746                  */
747                 if (addr < base)
748                         return (0);
749
750                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
751
752                 if (chunkoffs < sizeof (dtrace_dynvar_t))
753                         return (0);
754
755                 if (chunkoffs + sz > dstate->dtds_chunksize)
756                         return (0);
757
758                 return (1);
759         }
760
761         /*
762          * Finally, check the static local and global variables.  These checks
763          * take the longest, so we perform them last.
764          */
765         if (dtrace_canstore_statvar(addr, sz,
766             vstate->dtvs_locals, vstate->dtvs_nlocals))
767                 return (1);
768
769         if (dtrace_canstore_statvar(addr, sz,
770             vstate->dtvs_globals, vstate->dtvs_nglobals))
771                 return (1);
772
773         return (0);
774 }
775
776
777 /*
778  * Convenience routine to check to see if the address is within a memory
779  * region in which a load may be issued given the user's privilege level;
780  * if not, it sets the appropriate error flags and loads 'addr' into the
781  * illegal value slot.
782  *
783  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
784  * appropriate memory access protection.
785  */
786 static int
787 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
788     dtrace_vstate_t *vstate)
789 {
790         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
791
792         /*
793          * If we hold the privilege to read from kernel memory, then
794          * everything is readable.
795          */
796         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
797                 return (1);
798
799         /*
800          * You can obviously read that which you can store.
801          */
802         if (dtrace_canstore(addr, sz, mstate, vstate))
803                 return (1);
804
805         /*
806          * We're allowed to read from our own string table.
807          */
808         if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
809             mstate->dtms_difo->dtdo_strlen))
810                 return (1);
811
812         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
813         *illval = addr;
814         return (0);
815 }
816
817 /*
818  * Convenience routine to check to see if a given string is within a memory
819  * region in which a load may be issued given the user's privilege level;
820  * this exists so that we don't need to issue unnecessary dtrace_strlen()
821  * calls in the event that the user has all privileges.
822  */
823 static int
824 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
825     dtrace_vstate_t *vstate)
826 {
827         size_t strsz;
828
829         /*
830          * If we hold the privilege to read from kernel memory, then
831          * everything is readable.
832          */
833         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
834                 return (1);
835
836         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
837         if (dtrace_canload(addr, strsz, mstate, vstate))
838                 return (1);
839
840         return (0);
841 }
842
843 /*
844  * Convenience routine to check to see if a given variable is within a memory
845  * region in which a load may be issued given the user's privilege level.
846  */
847 static int
848 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
849     dtrace_vstate_t *vstate)
850 {
851         size_t sz;
852         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
853
854         /*
855          * If we hold the privilege to read from kernel memory, then
856          * everything is readable.
857          */
858         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
859                 return (1);
860
861         if (type->dtdt_kind == DIF_TYPE_STRING)
862                 sz = dtrace_strlen(src,
863                     vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
864         else
865                 sz = type->dtdt_size;
866
867         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
868 }
869
870 /*
871  * Compare two strings using safe loads.
872  */
873 static int
874 dtrace_strncmp(char *s1, char *s2, size_t limit)
875 {
876         uint8_t c1, c2;
877         volatile uint16_t *flags;
878
879         if (s1 == s2 || limit == 0)
880                 return (0);
881
882         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
883
884         do {
885                 if (s1 == NULL) {
886                         c1 = '\0';
887                 } else {
888                         c1 = dtrace_load8((uintptr_t)s1++);
889                 }
890
891                 if (s2 == NULL) {
892                         c2 = '\0';
893                 } else {
894                         c2 = dtrace_load8((uintptr_t)s2++);
895                 }
896
897                 if (c1 != c2)
898                         return (c1 - c2);
899         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
900
901         return (0);
902 }
903
904 /*
905  * Compute strlen(s) for a string using safe memory accesses.  The additional
906  * len parameter is used to specify a maximum length to ensure completion.
907  */
908 static size_t
909 dtrace_strlen(const char *s, size_t lim)
910 {
911         uint_t len;
912
913         for (len = 0; len != lim; len++) {
914                 if (dtrace_load8((uintptr_t)s++) == '\0')
915                         break;
916         }
917
918         return (len);
919 }
920
921 /*
922  * Check if an address falls within a toxic region.
923  */
924 static int
925 dtrace_istoxic(uintptr_t kaddr, size_t size)
926 {
927         uintptr_t taddr, tsize;
928         int i;
929
930         for (i = 0; i < dtrace_toxranges; i++) {
931                 taddr = dtrace_toxrange[i].dtt_base;
932                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
933
934                 if (kaddr - taddr < tsize) {
935                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
936                         cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
937                         return (1);
938                 }
939
940                 if (taddr - kaddr < size) {
941                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
942                         cpu_core[curcpu].cpuc_dtrace_illval = taddr;
943                         return (1);
944                 }
945         }
946
947         return (0);
948 }
949
950 /*
951  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
952  * memory specified by the DIF program.  The dst is assumed to be safe memory
953  * that we can store to directly because it is managed by DTrace.  As with
954  * standard bcopy, overlapping copies are handled properly.
955  */
956 static void
957 dtrace_bcopy(const void *src, void *dst, size_t len)
958 {
959         if (len != 0) {
960                 uint8_t *s1 = dst;
961                 const uint8_t *s2 = src;
962
963                 if (s1 <= s2) {
964                         do {
965                                 *s1++ = dtrace_load8((uintptr_t)s2++);
966                         } while (--len != 0);
967                 } else {
968                         s2 += len;
969                         s1 += len;
970
971                         do {
972                                 *--s1 = dtrace_load8((uintptr_t)--s2);
973                         } while (--len != 0);
974                 }
975         }
976 }
977
978 /*
979  * Copy src to dst using safe memory accesses, up to either the specified
980  * length, or the point that a nul byte is encountered.  The src is assumed to
981  * be unsafe memory specified by the DIF program.  The dst is assumed to be
982  * safe memory that we can store to directly because it is managed by DTrace.
983  * Unlike dtrace_bcopy(), overlapping regions are not handled.
984  */
985 static void
986 dtrace_strcpy(const void *src, void *dst, size_t len)
987 {
988         if (len != 0) {
989                 uint8_t *s1 = dst, c;
990                 const uint8_t *s2 = src;
991
992                 do {
993                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
994                 } while (--len != 0 && c != '\0');
995         }
996 }
997
998 /*
999  * Copy src to dst, deriving the size and type from the specified (BYREF)
1000  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1001  * program.  The dst is assumed to be DTrace variable memory that is of the
1002  * specified type; we assume that we can store to directly.
1003  */
1004 static void
1005 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1006 {
1007         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1008
1009         if (type->dtdt_kind == DIF_TYPE_STRING) {
1010                 dtrace_strcpy(src, dst, type->dtdt_size);
1011         } else {
1012                 dtrace_bcopy(src, dst, type->dtdt_size);
1013         }
1014 }
1015
1016 /*
1017  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1018  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1019  * safe memory that we can access directly because it is managed by DTrace.
1020  */
1021 static int
1022 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1023 {
1024         volatile uint16_t *flags;
1025
1026         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1027
1028         if (s1 == s2)
1029                 return (0);
1030
1031         if (s1 == NULL || s2 == NULL)
1032                 return (1);
1033
1034         if (s1 != s2 && len != 0) {
1035                 const uint8_t *ps1 = s1;
1036                 const uint8_t *ps2 = s2;
1037
1038                 do {
1039                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1040                                 return (1);
1041                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1042         }
1043         return (0);
1044 }
1045
1046 /*
1047  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1048  * is for safe DTrace-managed memory only.
1049  */
1050 static void
1051 dtrace_bzero(void *dst, size_t len)
1052 {
1053         uchar_t *cp;
1054
1055         for (cp = dst; len != 0; len--)
1056                 *cp++ = 0;
1057 }
1058
1059 static void
1060 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1061 {
1062         uint64_t result[2];
1063
1064         result[0] = addend1[0] + addend2[0];
1065         result[1] = addend1[1] + addend2[1] +
1066             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1067
1068         sum[0] = result[0];
1069         sum[1] = result[1];
1070 }
1071
1072 /*
1073  * Shift the 128-bit value in a by b. If b is positive, shift left.
1074  * If b is negative, shift right.
1075  */
1076 static void
1077 dtrace_shift_128(uint64_t *a, int b)
1078 {
1079         uint64_t mask;
1080
1081         if (b == 0)
1082                 return;
1083
1084         if (b < 0) {
1085                 b = -b;
1086                 if (b >= 64) {
1087                         a[0] = a[1] >> (b - 64);
1088                         a[1] = 0;
1089                 } else {
1090                         a[0] >>= b;
1091                         mask = 1LL << (64 - b);
1092                         mask -= 1;
1093                         a[0] |= ((a[1] & mask) << (64 - b));
1094                         a[1] >>= b;
1095                 }
1096         } else {
1097                 if (b >= 64) {
1098                         a[1] = a[0] << (b - 64);
1099                         a[0] = 0;
1100                 } else {
1101                         a[1] <<= b;
1102                         mask = a[0] >> (64 - b);
1103                         a[1] |= mask;
1104                         a[0] <<= b;
1105                 }
1106         }
1107 }
1108
1109 /*
1110  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1111  * use native multiplication on those, and then re-combine into the
1112  * resulting 128-bit value.
1113  *
1114  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1115  *     hi1 * hi2 << 64 +
1116  *     hi1 * lo2 << 32 +
1117  *     hi2 * lo1 << 32 +
1118  *     lo1 * lo2
1119  */
1120 static void
1121 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1122 {
1123         uint64_t hi1, hi2, lo1, lo2;
1124         uint64_t tmp[2];
1125
1126         hi1 = factor1 >> 32;
1127         hi2 = factor2 >> 32;
1128
1129         lo1 = factor1 & DT_MASK_LO;
1130         lo2 = factor2 & DT_MASK_LO;
1131
1132         product[0] = lo1 * lo2;
1133         product[1] = hi1 * hi2;
1134
1135         tmp[0] = hi1 * lo2;
1136         tmp[1] = 0;
1137         dtrace_shift_128(tmp, 32);
1138         dtrace_add_128(product, tmp, product);
1139
1140         tmp[0] = hi2 * lo1;
1141         tmp[1] = 0;
1142         dtrace_shift_128(tmp, 32);
1143         dtrace_add_128(product, tmp, product);
1144 }
1145
1146 /*
1147  * This privilege check should be used by actions and subroutines to
1148  * verify that the user credentials of the process that enabled the
1149  * invoking ECB match the target credentials
1150  */
1151 static int
1152 dtrace_priv_proc_common_user(dtrace_state_t *state)
1153 {
1154         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1155
1156         /*
1157          * We should always have a non-NULL state cred here, since if cred
1158          * is null (anonymous tracing), we fast-path bypass this routine.
1159          */
1160         ASSERT(s_cr != NULL);
1161
1162         if ((cr = CRED()) != NULL &&
1163             s_cr->cr_uid == cr->cr_uid &&
1164             s_cr->cr_uid == cr->cr_ruid &&
1165             s_cr->cr_uid == cr->cr_suid &&
1166             s_cr->cr_gid == cr->cr_gid &&
1167             s_cr->cr_gid == cr->cr_rgid &&
1168             s_cr->cr_gid == cr->cr_sgid)
1169                 return (1);
1170
1171         return (0);
1172 }
1173
1174 /*
1175  * This privilege check should be used by actions and subroutines to
1176  * verify that the zone of the process that enabled the invoking ECB
1177  * matches the target credentials
1178  */
1179 static int
1180 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1181 {
1182 #if defined(sun)
1183         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1184
1185         /*
1186          * We should always have a non-NULL state cred here, since if cred
1187          * is null (anonymous tracing), we fast-path bypass this routine.
1188          */
1189         ASSERT(s_cr != NULL);
1190
1191         if ((cr = CRED()) != NULL &&
1192             s_cr->cr_zone == cr->cr_zone)
1193                 return (1);
1194
1195         return (0);
1196 #else
1197         return (1);
1198 #endif
1199 }
1200
1201 /*
1202  * This privilege check should be used by actions and subroutines to
1203  * verify that the process has not setuid or changed credentials.
1204  */
1205 static int
1206 dtrace_priv_proc_common_nocd(void)
1207 {
1208         proc_t *proc;
1209
1210         if ((proc = ttoproc(curthread)) != NULL &&
1211             !(proc->p_flag & SNOCD))
1212                 return (1);
1213
1214         return (0);
1215 }
1216
1217 static int
1218 dtrace_priv_proc_destructive(dtrace_state_t *state)
1219 {
1220         int action = state->dts_cred.dcr_action;
1221
1222         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1223             dtrace_priv_proc_common_zone(state) == 0)
1224                 goto bad;
1225
1226         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1227             dtrace_priv_proc_common_user(state) == 0)
1228                 goto bad;
1229
1230         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1231             dtrace_priv_proc_common_nocd() == 0)
1232                 goto bad;
1233
1234         return (1);
1235
1236 bad:
1237         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1238
1239         return (0);
1240 }
1241
1242 static int
1243 dtrace_priv_proc_control(dtrace_state_t *state)
1244 {
1245         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1246                 return (1);
1247
1248         if (dtrace_priv_proc_common_zone(state) &&
1249             dtrace_priv_proc_common_user(state) &&
1250             dtrace_priv_proc_common_nocd())
1251                 return (1);
1252
1253         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1254
1255         return (0);
1256 }
1257
1258 static int
1259 dtrace_priv_proc(dtrace_state_t *state)
1260 {
1261         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1262                 return (1);
1263
1264         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1265
1266         return (0);
1267 }
1268
1269 static int
1270 dtrace_priv_kernel(dtrace_state_t *state)
1271 {
1272         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1273                 return (1);
1274
1275         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1276
1277         return (0);
1278 }
1279
1280 static int
1281 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1282 {
1283         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1284                 return (1);
1285
1286         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1287
1288         return (0);
1289 }
1290
1291 /*
1292  * Note:  not called from probe context.  This function is called
1293  * asynchronously (and at a regular interval) from outside of probe context to
1294  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1295  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1296  */
1297 void
1298 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1299 {
1300         dtrace_dynvar_t *dirty;
1301         dtrace_dstate_percpu_t *dcpu;
1302         int i, work = 0;
1303
1304         for (i = 0; i < NCPU; i++) {
1305                 dcpu = &dstate->dtds_percpu[i];
1306
1307                 ASSERT(dcpu->dtdsc_rinsing == NULL);
1308
1309                 /*
1310                  * If the dirty list is NULL, there is no dirty work to do.
1311                  */
1312                 if (dcpu->dtdsc_dirty == NULL)
1313                         continue;
1314
1315                 /*
1316                  * If the clean list is non-NULL, then we're not going to do
1317                  * any work for this CPU -- it means that there has not been
1318                  * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1319                  * since the last time we cleaned house.
1320                  */
1321                 if (dcpu->dtdsc_clean != NULL)
1322                         continue;
1323
1324                 work = 1;
1325
1326                 /*
1327                  * Atomically move the dirty list aside.
1328                  */
1329                 do {
1330                         dirty = dcpu->dtdsc_dirty;
1331
1332                         /*
1333                          * Before we zap the dirty list, set the rinsing list.
1334                          * (This allows for a potential assertion in
1335                          * dtrace_dynvar():  if a free dynamic variable appears
1336                          * on a hash chain, either the dirty list or the
1337                          * rinsing list for some CPU must be non-NULL.)
1338                          */
1339                         dcpu->dtdsc_rinsing = dirty;
1340                         dtrace_membar_producer();
1341                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1342                     dirty, NULL) != dirty);
1343         }
1344
1345         if (!work) {
1346                 /*
1347                  * We have no work to do; we can simply return.
1348                  */
1349                 return;
1350         }
1351
1352         dtrace_sync();
1353
1354         for (i = 0; i < NCPU; i++) {
1355                 dcpu = &dstate->dtds_percpu[i];
1356
1357                 if (dcpu->dtdsc_rinsing == NULL)
1358                         continue;
1359
1360                 /*
1361                  * We are now guaranteed that no hash chain contains a pointer
1362                  * into this dirty list; we can make it clean.
1363                  */
1364                 ASSERT(dcpu->dtdsc_clean == NULL);
1365                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1366                 dcpu->dtdsc_rinsing = NULL;
1367         }
1368
1369         /*
1370          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1371          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1372          * This prevents a race whereby a CPU incorrectly decides that
1373          * the state should be something other than DTRACE_DSTATE_CLEAN
1374          * after dtrace_dynvar_clean() has completed.
1375          */
1376         dtrace_sync();
1377
1378         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1379 }
1380
1381 /*
1382  * Depending on the value of the op parameter, this function looks-up,
1383  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1384  * allocation is requested, this function will return a pointer to a
1385  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1386  * variable can be allocated.  If NULL is returned, the appropriate counter
1387  * will be incremented.
1388  */
1389 dtrace_dynvar_t *
1390 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1391     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1392     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1393 {
1394         uint64_t hashval = DTRACE_DYNHASH_VALID;
1395         dtrace_dynhash_t *hash = dstate->dtds_hash;
1396         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1397         processorid_t me = curcpu, cpu = me;
1398         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1399         size_t bucket, ksize;
1400         size_t chunksize = dstate->dtds_chunksize;
1401         uintptr_t kdata, lock, nstate;
1402         uint_t i;
1403
1404         ASSERT(nkeys != 0);
1405
1406         /*
1407          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1408          * algorithm.  For the by-value portions, we perform the algorithm in
1409          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1410          * bit, and seems to have only a minute effect on distribution.  For
1411          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1412          * over each referenced byte.  It's painful to do this, but it's much
1413          * better than pathological hash distribution.  The efficacy of the
1414          * hashing algorithm (and a comparison with other algorithms) may be
1415          * found by running the ::dtrace_dynstat MDB dcmd.
1416          */
1417         for (i = 0; i < nkeys; i++) {
1418                 if (key[i].dttk_size == 0) {
1419                         uint64_t val = key[i].dttk_value;
1420
1421                         hashval += (val >> 48) & 0xffff;
1422                         hashval += (hashval << 10);
1423                         hashval ^= (hashval >> 6);
1424
1425                         hashval += (val >> 32) & 0xffff;
1426                         hashval += (hashval << 10);
1427                         hashval ^= (hashval >> 6);
1428
1429                         hashval += (val >> 16) & 0xffff;
1430                         hashval += (hashval << 10);
1431                         hashval ^= (hashval >> 6);
1432
1433                         hashval += val & 0xffff;
1434                         hashval += (hashval << 10);
1435                         hashval ^= (hashval >> 6);
1436                 } else {
1437                         /*
1438                          * This is incredibly painful, but it beats the hell
1439                          * out of the alternative.
1440                          */
1441                         uint64_t j, size = key[i].dttk_size;
1442                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1443
1444                         if (!dtrace_canload(base, size, mstate, vstate))
1445                                 break;
1446
1447                         for (j = 0; j < size; j++) {
1448                                 hashval += dtrace_load8(base + j);
1449                                 hashval += (hashval << 10);
1450                                 hashval ^= (hashval >> 6);
1451                         }
1452                 }
1453         }
1454
1455         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1456                 return (NULL);
1457
1458         hashval += (hashval << 3);
1459         hashval ^= (hashval >> 11);
1460         hashval += (hashval << 15);
1461
1462         /*
1463          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1464          * comes out to be one of our two sentinel hash values.  If this
1465          * actually happens, we set the hashval to be a value known to be a
1466          * non-sentinel value.
1467          */
1468         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1469                 hashval = DTRACE_DYNHASH_VALID;
1470
1471         /*
1472          * Yes, it's painful to do a divide here.  If the cycle count becomes
1473          * important here, tricks can be pulled to reduce it.  (However, it's
1474          * critical that hash collisions be kept to an absolute minimum;
1475          * they're much more painful than a divide.)  It's better to have a
1476          * solution that generates few collisions and still keeps things
1477          * relatively simple.
1478          */
1479         bucket = hashval % dstate->dtds_hashsize;
1480
1481         if (op == DTRACE_DYNVAR_DEALLOC) {
1482                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1483
1484                 for (;;) {
1485                         while ((lock = *lockp) & 1)
1486                                 continue;
1487
1488                         if (dtrace_casptr((volatile void *)lockp,
1489                             (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1490                                 break;
1491                 }
1492
1493                 dtrace_membar_producer();
1494         }
1495
1496 top:
1497         prev = NULL;
1498         lock = hash[bucket].dtdh_lock;
1499
1500         dtrace_membar_consumer();
1501
1502         start = hash[bucket].dtdh_chain;
1503         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1504             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1505             op != DTRACE_DYNVAR_DEALLOC));
1506
1507         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1508                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1509                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1510
1511                 if (dvar->dtdv_hashval != hashval) {
1512                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1513                                 /*
1514                                  * We've reached the sink, and therefore the
1515                                  * end of the hash chain; we can kick out of
1516                                  * the loop knowing that we have seen a valid
1517                                  * snapshot of state.
1518                                  */
1519                                 ASSERT(dvar->dtdv_next == NULL);
1520                                 ASSERT(dvar == &dtrace_dynhash_sink);
1521                                 break;
1522                         }
1523
1524                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1525                                 /*
1526                                  * We've gone off the rails:  somewhere along
1527                                  * the line, one of the members of this hash
1528                                  * chain was deleted.  Note that we could also
1529                                  * detect this by simply letting this loop run
1530                                  * to completion, as we would eventually hit
1531                                  * the end of the dirty list.  However, we
1532                                  * want to avoid running the length of the
1533                                  * dirty list unnecessarily (it might be quite
1534                                  * long), so we catch this as early as
1535                                  * possible by detecting the hash marker.  In
1536                                  * this case, we simply set dvar to NULL and
1537                                  * break; the conditional after the loop will
1538                                  * send us back to top.
1539                                  */
1540                                 dvar = NULL;
1541                                 break;
1542                         }
1543
1544                         goto next;
1545                 }
1546
1547                 if (dtuple->dtt_nkeys != nkeys)
1548                         goto next;
1549
1550                 for (i = 0; i < nkeys; i++, dkey++) {
1551                         if (dkey->dttk_size != key[i].dttk_size)
1552                                 goto next; /* size or type mismatch */
1553
1554                         if (dkey->dttk_size != 0) {
1555                                 if (dtrace_bcmp(
1556                                     (void *)(uintptr_t)key[i].dttk_value,
1557                                     (void *)(uintptr_t)dkey->dttk_value,
1558                                     dkey->dttk_size))
1559                                         goto next;
1560                         } else {
1561                                 if (dkey->dttk_value != key[i].dttk_value)
1562                                         goto next;
1563                         }
1564                 }
1565
1566                 if (op != DTRACE_DYNVAR_DEALLOC)
1567                         return (dvar);
1568
1569                 ASSERT(dvar->dtdv_next == NULL ||
1570                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1571
1572                 if (prev != NULL) {
1573                         ASSERT(hash[bucket].dtdh_chain != dvar);
1574                         ASSERT(start != dvar);
1575                         ASSERT(prev->dtdv_next == dvar);
1576                         prev->dtdv_next = dvar->dtdv_next;
1577                 } else {
1578                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1579                             start, dvar->dtdv_next) != start) {
1580                                 /*
1581                                  * We have failed to atomically swing the
1582                                  * hash table head pointer, presumably because
1583                                  * of a conflicting allocation on another CPU.
1584                                  * We need to reread the hash chain and try
1585                                  * again.
1586                                  */
1587                                 goto top;
1588                         }
1589                 }
1590
1591                 dtrace_membar_producer();
1592
1593                 /*
1594                  * Now set the hash value to indicate that it's free.
1595                  */
1596                 ASSERT(hash[bucket].dtdh_chain != dvar);
1597                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1598
1599                 dtrace_membar_producer();
1600
1601                 /*
1602                  * Set the next pointer to point at the dirty list, and
1603                  * atomically swing the dirty pointer to the newly freed dvar.
1604                  */
1605                 do {
1606                         next = dcpu->dtdsc_dirty;
1607                         dvar->dtdv_next = next;
1608                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1609
1610                 /*
1611                  * Finally, unlock this hash bucket.
1612                  */
1613                 ASSERT(hash[bucket].dtdh_lock == lock);
1614                 ASSERT(lock & 1);
1615                 hash[bucket].dtdh_lock++;
1616
1617                 return (NULL);
1618 next:
1619                 prev = dvar;
1620                 continue;
1621         }
1622
1623         if (dvar == NULL) {
1624                 /*
1625                  * If dvar is NULL, it is because we went off the rails:
1626                  * one of the elements that we traversed in the hash chain
1627                  * was deleted while we were traversing it.  In this case,
1628                  * we assert that we aren't doing a dealloc (deallocs lock
1629                  * the hash bucket to prevent themselves from racing with
1630                  * one another), and retry the hash chain traversal.
1631                  */
1632                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1633                 goto top;
1634         }
1635
1636         if (op != DTRACE_DYNVAR_ALLOC) {
1637                 /*
1638                  * If we are not to allocate a new variable, we want to
1639                  * return NULL now.  Before we return, check that the value
1640                  * of the lock word hasn't changed.  If it has, we may have
1641                  * seen an inconsistent snapshot.
1642                  */
1643                 if (op == DTRACE_DYNVAR_NOALLOC) {
1644                         if (hash[bucket].dtdh_lock != lock)
1645                                 goto top;
1646                 } else {
1647                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1648                         ASSERT(hash[bucket].dtdh_lock == lock);
1649                         ASSERT(lock & 1);
1650                         hash[bucket].dtdh_lock++;
1651                 }
1652
1653                 return (NULL);
1654         }
1655
1656         /*
1657          * We need to allocate a new dynamic variable.  The size we need is the
1658          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1659          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1660          * the size of any referred-to data (dsize).  We then round the final
1661          * size up to the chunksize for allocation.
1662          */
1663         for (ksize = 0, i = 0; i < nkeys; i++)
1664                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1665
1666         /*
1667          * This should be pretty much impossible, but could happen if, say,
1668          * strange DIF specified the tuple.  Ideally, this should be an
1669          * assertion and not an error condition -- but that requires that the
1670          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1671          * bullet-proof.  (That is, it must not be able to be fooled by
1672          * malicious DIF.)  Given the lack of backwards branches in DIF,
1673          * solving this would presumably not amount to solving the Halting
1674          * Problem -- but it still seems awfully hard.
1675          */
1676         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1677             ksize + dsize > chunksize) {
1678                 dcpu->dtdsc_drops++;
1679                 return (NULL);
1680         }
1681
1682         nstate = DTRACE_DSTATE_EMPTY;
1683
1684         do {
1685 retry:
1686                 free = dcpu->dtdsc_free;
1687
1688                 if (free == NULL) {
1689                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1690                         void *rval;
1691
1692                         if (clean == NULL) {
1693                                 /*
1694                                  * We're out of dynamic variable space on
1695                                  * this CPU.  Unless we have tried all CPUs,
1696                                  * we'll try to allocate from a different
1697                                  * CPU.
1698                                  */
1699                                 switch (dstate->dtds_state) {
1700                                 case DTRACE_DSTATE_CLEAN: {
1701                                         void *sp = &dstate->dtds_state;
1702
1703                                         if (++cpu >= NCPU)
1704                                                 cpu = 0;
1705
1706                                         if (dcpu->dtdsc_dirty != NULL &&
1707                                             nstate == DTRACE_DSTATE_EMPTY)
1708                                                 nstate = DTRACE_DSTATE_DIRTY;
1709
1710                                         if (dcpu->dtdsc_rinsing != NULL)
1711                                                 nstate = DTRACE_DSTATE_RINSING;
1712
1713                                         dcpu = &dstate->dtds_percpu[cpu];
1714
1715                                         if (cpu != me)
1716                                                 goto retry;
1717
1718                                         (void) dtrace_cas32(sp,
1719                                             DTRACE_DSTATE_CLEAN, nstate);
1720
1721                                         /*
1722                                          * To increment the correct bean
1723                                          * counter, take another lap.
1724                                          */
1725                                         goto retry;
1726                                 }
1727
1728                                 case DTRACE_DSTATE_DIRTY:
1729                                         dcpu->dtdsc_dirty_drops++;
1730                                         break;
1731
1732                                 case DTRACE_DSTATE_RINSING:
1733                                         dcpu->dtdsc_rinsing_drops++;
1734                                         break;
1735
1736                                 case DTRACE_DSTATE_EMPTY:
1737                                         dcpu->dtdsc_drops++;
1738                                         break;
1739                                 }
1740
1741                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1742                                 return (NULL);
1743                         }
1744
1745                         /*
1746                          * The clean list appears to be non-empty.  We want to
1747                          * move the clean list to the free list; we start by
1748                          * moving the clean pointer aside.
1749                          */
1750                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1751                             clean, NULL) != clean) {
1752                                 /*
1753                                  * We are in one of two situations:
1754                                  *
1755                                  *  (a) The clean list was switched to the
1756                                  *      free list by another CPU.
1757                                  *
1758                                  *  (b) The clean list was added to by the
1759                                  *      cleansing cyclic.
1760                                  *
1761                                  * In either of these situations, we can
1762                                  * just reattempt the free list allocation.
1763                                  */
1764                                 goto retry;
1765                         }
1766
1767                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1768
1769                         /*
1770                          * Now we'll move the clean list to the free list.
1771                          * It's impossible for this to fail:  the only way
1772                          * the free list can be updated is through this
1773                          * code path, and only one CPU can own the clean list.
1774                          * Thus, it would only be possible for this to fail if
1775                          * this code were racing with dtrace_dynvar_clean().
1776                          * (That is, if dtrace_dynvar_clean() updated the clean
1777                          * list, and we ended up racing to update the free
1778                          * list.)  This race is prevented by the dtrace_sync()
1779                          * in dtrace_dynvar_clean() -- which flushes the
1780                          * owners of the clean lists out before resetting
1781                          * the clean lists.
1782                          */
1783                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1784                         ASSERT(rval == NULL);
1785                         goto retry;
1786                 }
1787
1788                 dvar = free;
1789                 new_free = dvar->dtdv_next;
1790         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1791
1792         /*
1793          * We have now allocated a new chunk.  We copy the tuple keys into the
1794          * tuple array and copy any referenced key data into the data space
1795          * following the tuple array.  As we do this, we relocate dttk_value
1796          * in the final tuple to point to the key data address in the chunk.
1797          */
1798         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1799         dvar->dtdv_data = (void *)(kdata + ksize);
1800         dvar->dtdv_tuple.dtt_nkeys = nkeys;
1801
1802         for (i = 0; i < nkeys; i++) {
1803                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1804                 size_t kesize = key[i].dttk_size;
1805
1806                 if (kesize != 0) {
1807                         dtrace_bcopy(
1808                             (const void *)(uintptr_t)key[i].dttk_value,
1809                             (void *)kdata, kesize);
1810                         dkey->dttk_value = kdata;
1811                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1812                 } else {
1813                         dkey->dttk_value = key[i].dttk_value;
1814                 }
1815
1816                 dkey->dttk_size = kesize;
1817         }
1818
1819         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1820         dvar->dtdv_hashval = hashval;
1821         dvar->dtdv_next = start;
1822
1823         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1824                 return (dvar);
1825
1826         /*
1827          * The cas has failed.  Either another CPU is adding an element to
1828          * this hash chain, or another CPU is deleting an element from this
1829          * hash chain.  The simplest way to deal with both of these cases
1830          * (though not necessarily the most efficient) is to free our
1831          * allocated block and tail-call ourselves.  Note that the free is
1832          * to the dirty list and _not_ to the free list.  This is to prevent
1833          * races with allocators, above.
1834          */
1835         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1836
1837         dtrace_membar_producer();
1838
1839         do {
1840                 free = dcpu->dtdsc_dirty;
1841                 dvar->dtdv_next = free;
1842         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1843
1844         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1845 }
1846
1847 /*ARGSUSED*/
1848 static void
1849 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1850 {
1851         if ((int64_t)nval < (int64_t)*oval)
1852                 *oval = nval;
1853 }
1854
1855 /*ARGSUSED*/
1856 static void
1857 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1858 {
1859         if ((int64_t)nval > (int64_t)*oval)
1860                 *oval = nval;
1861 }
1862
1863 static void
1864 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1865 {
1866         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1867         int64_t val = (int64_t)nval;
1868
1869         if (val < 0) {
1870                 for (i = 0; i < zero; i++) {
1871                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1872                                 quanta[i] += incr;
1873                                 return;
1874                         }
1875                 }
1876         } else {
1877                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1878                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1879                                 quanta[i - 1] += incr;
1880                                 return;
1881                         }
1882                 }
1883
1884                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1885                 return;
1886         }
1887
1888         ASSERT(0);
1889 }
1890
1891 static void
1892 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1893 {
1894         uint64_t arg = *lquanta++;
1895         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1896         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1897         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1898         int32_t val = (int32_t)nval, level;
1899
1900         ASSERT(step != 0);
1901         ASSERT(levels != 0);
1902
1903         if (val < base) {
1904                 /*
1905                  * This is an underflow.
1906                  */
1907                 lquanta[0] += incr;
1908                 return;
1909         }
1910
1911         level = (val - base) / step;
1912
1913         if (level < levels) {
1914                 lquanta[level + 1] += incr;
1915                 return;
1916         }
1917
1918         /*
1919          * This is an overflow.
1920          */
1921         lquanta[levels + 1] += incr;
1922 }
1923
1924 static int
1925 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1926     uint16_t high, uint16_t nsteps, int64_t value)
1927 {
1928         int64_t this = 1, last, next;
1929         int base = 1, order;
1930
1931         ASSERT(factor <= nsteps);
1932         ASSERT(nsteps % factor == 0);
1933
1934         for (order = 0; order < low; order++)
1935                 this *= factor;
1936
1937         /*
1938          * If our value is less than our factor taken to the power of the
1939          * low order of magnitude, it goes into the zeroth bucket.
1940          */
1941         if (value < (last = this))
1942                 return (0);
1943
1944         for (this *= factor; order <= high; order++) {
1945                 int nbuckets = this > nsteps ? nsteps : this;
1946
1947                 if ((next = this * factor) < this) {
1948                         /*
1949                          * We should not generally get log/linear quantizations
1950                          * with a high magnitude that allows 64-bits to
1951                          * overflow, but we nonetheless protect against this
1952                          * by explicitly checking for overflow, and clamping
1953                          * our value accordingly.
1954                          */
1955                         value = this - 1;
1956                 }
1957
1958                 if (value < this) {
1959                         /*
1960                          * If our value lies within this order of magnitude,
1961                          * determine its position by taking the offset within
1962                          * the order of magnitude, dividing by the bucket
1963                          * width, and adding to our (accumulated) base.
1964                          */
1965                         return (base + (value - last) / (this / nbuckets));
1966                 }
1967
1968                 base += nbuckets - (nbuckets / factor);
1969                 last = this;
1970                 this = next;
1971         }
1972
1973         /*
1974          * Our value is greater than or equal to our factor taken to the
1975          * power of one plus the high magnitude -- return the top bucket.
1976          */
1977         return (base);
1978 }
1979
1980 static void
1981 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1982 {
1983         uint64_t arg = *llquanta++;
1984         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1985         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1986         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1987         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1988
1989         llquanta[dtrace_aggregate_llquantize_bucket(factor,
1990             low, high, nsteps, nval)] += incr;
1991 }
1992
1993 /*ARGSUSED*/
1994 static void
1995 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1996 {
1997         data[0]++;
1998         data[1] += nval;
1999 }
2000
2001 /*ARGSUSED*/
2002 static void
2003 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2004 {
2005         int64_t snval = (int64_t)nval;
2006         uint64_t tmp[2];
2007
2008         data[0]++;
2009         data[1] += nval;
2010
2011         /*
2012          * What we want to say here is:
2013          *
2014          * data[2] += nval * nval;
2015          *
2016          * But given that nval is 64-bit, we could easily overflow, so
2017          * we do this as 128-bit arithmetic.
2018          */
2019         if (snval < 0)
2020                 snval = -snval;
2021
2022         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2023         dtrace_add_128(data + 2, tmp, data + 2);
2024 }
2025
2026 /*ARGSUSED*/
2027 static void
2028 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2029 {
2030         *oval = *oval + 1;
2031 }
2032
2033 /*ARGSUSED*/
2034 static void
2035 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2036 {
2037         *oval += nval;
2038 }
2039
2040 /*
2041  * Aggregate given the tuple in the principal data buffer, and the aggregating
2042  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2043  * buffer is specified as the buf parameter.  This routine does not return
2044  * failure; if there is no space in the aggregation buffer, the data will be
2045  * dropped, and a corresponding counter incremented.
2046  */
2047 static void
2048 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2049     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2050 {
2051         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2052         uint32_t i, ndx, size, fsize;
2053         uint32_t align = sizeof (uint64_t) - 1;
2054         dtrace_aggbuffer_t *agb;
2055         dtrace_aggkey_t *key;
2056         uint32_t hashval = 0, limit, isstr;
2057         caddr_t tomax, data, kdata;
2058         dtrace_actkind_t action;
2059         dtrace_action_t *act;
2060         uintptr_t offs;
2061
2062         if (buf == NULL)
2063                 return;
2064
2065         if (!agg->dtag_hasarg) {
2066                 /*
2067                  * Currently, only quantize() and lquantize() take additional
2068                  * arguments, and they have the same semantics:  an increment
2069                  * value that defaults to 1 when not present.  If additional
2070                  * aggregating actions take arguments, the setting of the
2071                  * default argument value will presumably have to become more
2072                  * sophisticated...
2073                  */
2074                 arg = 1;
2075         }
2076
2077         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2078         size = rec->dtrd_offset - agg->dtag_base;
2079         fsize = size + rec->dtrd_size;
2080
2081         ASSERT(dbuf->dtb_tomax != NULL);
2082         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2083
2084         if ((tomax = buf->dtb_tomax) == NULL) {
2085                 dtrace_buffer_drop(buf);
2086                 return;
2087         }
2088
2089         /*
2090          * The metastructure is always at the bottom of the buffer.
2091          */
2092         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2093             sizeof (dtrace_aggbuffer_t));
2094
2095         if (buf->dtb_offset == 0) {
2096                 /*
2097                  * We just kludge up approximately 1/8th of the size to be
2098                  * buckets.  If this guess ends up being routinely
2099                  * off-the-mark, we may need to dynamically readjust this
2100                  * based on past performance.
2101                  */
2102                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2103
2104                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2105                     (uintptr_t)tomax || hashsize == 0) {
2106                         /*
2107                          * We've been given a ludicrously small buffer;
2108                          * increment our drop count and leave.
2109                          */
2110                         dtrace_buffer_drop(buf);
2111                         return;
2112                 }
2113
2114                 /*
2115                  * And now, a pathetic attempt to try to get a an odd (or
2116                  * perchance, a prime) hash size for better hash distribution.
2117                  */
2118                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2119                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2120
2121                 agb->dtagb_hashsize = hashsize;
2122                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2123                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2124                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2125
2126                 for (i = 0; i < agb->dtagb_hashsize; i++)
2127                         agb->dtagb_hash[i] = NULL;
2128         }
2129
2130         ASSERT(agg->dtag_first != NULL);
2131         ASSERT(agg->dtag_first->dta_intuple);
2132
2133         /*
2134          * Calculate the hash value based on the key.  Note that we _don't_
2135          * include the aggid in the hashing (but we will store it as part of
2136          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2137          * algorithm: a simple, quick algorithm that has no known funnels, and
2138          * gets good distribution in practice.  The efficacy of the hashing
2139          * algorithm (and a comparison with other algorithms) may be found by
2140          * running the ::dtrace_aggstat MDB dcmd.
2141          */
2142         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2143                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2144                 limit = i + act->dta_rec.dtrd_size;
2145                 ASSERT(limit <= size);
2146                 isstr = DTRACEACT_ISSTRING(act);
2147
2148                 for (; i < limit; i++) {
2149                         hashval += data[i];
2150                         hashval += (hashval << 10);
2151                         hashval ^= (hashval >> 6);
2152
2153                         if (isstr && data[i] == '\0')
2154                                 break;
2155                 }
2156         }
2157
2158         hashval += (hashval << 3);
2159         hashval ^= (hashval >> 11);
2160         hashval += (hashval << 15);
2161
2162         /*
2163          * Yes, the divide here is expensive -- but it's generally the least
2164          * of the performance issues given the amount of data that we iterate
2165          * over to compute hash values, compare data, etc.
2166          */
2167         ndx = hashval % agb->dtagb_hashsize;
2168
2169         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2170                 ASSERT((caddr_t)key >= tomax);
2171                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2172
2173                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2174                         continue;
2175
2176                 kdata = key->dtak_data;
2177                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2178
2179                 for (act = agg->dtag_first; act->dta_intuple;
2180                     act = act->dta_next) {
2181                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2182                         limit = i + act->dta_rec.dtrd_size;
2183                         ASSERT(limit <= size);
2184                         isstr = DTRACEACT_ISSTRING(act);
2185
2186                         for (; i < limit; i++) {
2187                                 if (kdata[i] != data[i])
2188                                         goto next;
2189
2190                                 if (isstr && data[i] == '\0')
2191                                         break;
2192                         }
2193                 }
2194
2195                 if (action != key->dtak_action) {
2196                         /*
2197                          * We are aggregating on the same value in the same
2198                          * aggregation with two different aggregating actions.
2199                          * (This should have been picked up in the compiler,
2200                          * so we may be dealing with errant or devious DIF.)
2201                          * This is an error condition; we indicate as much,
2202                          * and return.
2203                          */
2204                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2205                         return;
2206                 }
2207
2208                 /*
2209                  * This is a hit:  we need to apply the aggregator to
2210                  * the value at this key.
2211                  */
2212                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2213                 return;
2214 next:
2215                 continue;
2216         }
2217
2218         /*
2219          * We didn't find it.  We need to allocate some zero-filled space,
2220          * link it into the hash table appropriately, and apply the aggregator
2221          * to the (zero-filled) value.
2222          */
2223         offs = buf->dtb_offset;
2224         while (offs & (align - 1))
2225                 offs += sizeof (uint32_t);
2226
2227         /*
2228          * If we don't have enough room to both allocate a new key _and_
2229          * its associated data, increment the drop count and return.
2230          */
2231         if ((uintptr_t)tomax + offs + fsize >
2232             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2233                 dtrace_buffer_drop(buf);
2234                 return;
2235         }
2236
2237         /*CONSTCOND*/
2238         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2239         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2240         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2241
2242         key->dtak_data = kdata = tomax + offs;
2243         buf->dtb_offset = offs + fsize;
2244
2245         /*
2246          * Now copy the data across.
2247          */
2248         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2249
2250         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2251                 kdata[i] = data[i];
2252
2253         /*
2254          * Because strings are not zeroed out by default, we need to iterate
2255          * looking for actions that store strings, and we need to explicitly
2256          * pad these strings out with zeroes.
2257          */
2258         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2259                 int nul;
2260
2261                 if (!DTRACEACT_ISSTRING(act))
2262                         continue;
2263
2264                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2265                 limit = i + act->dta_rec.dtrd_size;
2266                 ASSERT(limit <= size);
2267
2268                 for (nul = 0; i < limit; i++) {
2269                         if (nul) {
2270                                 kdata[i] = '\0';
2271                                 continue;
2272                         }
2273
2274                         if (data[i] != '\0')
2275                                 continue;
2276
2277                         nul = 1;
2278                 }
2279         }
2280
2281         for (i = size; i < fsize; i++)
2282                 kdata[i] = 0;
2283
2284         key->dtak_hashval = hashval;
2285         key->dtak_size = size;
2286         key->dtak_action = action;
2287         key->dtak_next = agb->dtagb_hash[ndx];
2288         agb->dtagb_hash[ndx] = key;
2289
2290         /*
2291          * Finally, apply the aggregator.
2292          */
2293         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2294         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2295 }
2296
2297 /*
2298  * Given consumer state, this routine finds a speculation in the INACTIVE
2299  * state and transitions it into the ACTIVE state.  If there is no speculation
2300  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2301  * incremented -- it is up to the caller to take appropriate action.
2302  */
2303 static int
2304 dtrace_speculation(dtrace_state_t *state)
2305 {
2306         int i = 0;
2307         dtrace_speculation_state_t current;
2308         uint32_t *stat = &state->dts_speculations_unavail, count;
2309
2310         while (i < state->dts_nspeculations) {
2311                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2312
2313                 current = spec->dtsp_state;
2314
2315                 if (current != DTRACESPEC_INACTIVE) {
2316                         if (current == DTRACESPEC_COMMITTINGMANY ||
2317                             current == DTRACESPEC_COMMITTING ||
2318                             current == DTRACESPEC_DISCARDING)
2319                                 stat = &state->dts_speculations_busy;
2320                         i++;
2321                         continue;
2322                 }
2323
2324                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2325                     current, DTRACESPEC_ACTIVE) == current)
2326                         return (i + 1);
2327         }
2328
2329         /*
2330          * We couldn't find a speculation.  If we found as much as a single
2331          * busy speculation buffer, we'll attribute this failure as "busy"
2332          * instead of "unavail".
2333          */
2334         do {
2335                 count = *stat;
2336         } while (dtrace_cas32(stat, count, count + 1) != count);
2337
2338         return (0);
2339 }
2340
2341 /*
2342  * This routine commits an active speculation.  If the specified speculation
2343  * is not in a valid state to perform a commit(), this routine will silently do
2344  * nothing.  The state of the specified speculation is transitioned according
2345  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2346  */
2347 static void
2348 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2349     dtrace_specid_t which)
2350 {
2351         dtrace_speculation_t *spec;
2352         dtrace_buffer_t *src, *dest;
2353         uintptr_t daddr, saddr, dlimit, slimit;
2354         dtrace_speculation_state_t current, new = 0;
2355         intptr_t offs;
2356         uint64_t timestamp;
2357
2358         if (which == 0)
2359                 return;
2360
2361         if (which > state->dts_nspeculations) {
2362                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2363                 return;
2364         }
2365
2366         spec = &state->dts_speculations[which - 1];
2367         src = &spec->dtsp_buffer[cpu];
2368         dest = &state->dts_buffer[cpu];
2369
2370         do {
2371                 current = spec->dtsp_state;
2372
2373                 if (current == DTRACESPEC_COMMITTINGMANY)
2374                         break;
2375
2376                 switch (current) {
2377                 case DTRACESPEC_INACTIVE:
2378                 case DTRACESPEC_DISCARDING:
2379                         return;
2380
2381                 case DTRACESPEC_COMMITTING:
2382                         /*
2383                          * This is only possible if we are (a) commit()'ing
2384                          * without having done a prior speculate() on this CPU
2385                          * and (b) racing with another commit() on a different
2386                          * CPU.  There's nothing to do -- we just assert that
2387                          * our offset is 0.
2388                          */
2389                         ASSERT(src->dtb_offset == 0);
2390                         return;
2391
2392                 case DTRACESPEC_ACTIVE:
2393                         new = DTRACESPEC_COMMITTING;
2394                         break;
2395
2396                 case DTRACESPEC_ACTIVEONE:
2397                         /*
2398                          * This speculation is active on one CPU.  If our
2399                          * buffer offset is non-zero, we know that the one CPU
2400                          * must be us.  Otherwise, we are committing on a
2401                          * different CPU from the speculate(), and we must
2402                          * rely on being asynchronously cleaned.
2403                          */
2404                         if (src->dtb_offset != 0) {
2405                                 new = DTRACESPEC_COMMITTING;
2406                                 break;
2407                         }
2408                         /*FALLTHROUGH*/
2409
2410                 case DTRACESPEC_ACTIVEMANY:
2411                         new = DTRACESPEC_COMMITTINGMANY;
2412                         break;
2413
2414                 default:
2415                         ASSERT(0);
2416                 }
2417         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2418             current, new) != current);
2419
2420         /*
2421          * We have set the state to indicate that we are committing this
2422          * speculation.  Now reserve the necessary space in the destination
2423          * buffer.
2424          */
2425         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2426             sizeof (uint64_t), state, NULL)) < 0) {
2427                 dtrace_buffer_drop(dest);
2428                 goto out;
2429         }
2430
2431         /*
2432          * We have sufficient space to copy the speculative buffer into the
2433          * primary buffer.  First, modify the speculative buffer, filling
2434          * in the timestamp of all entries with the current time.  The data
2435          * must have the commit() time rather than the time it was traced,
2436          * so that all entries in the primary buffer are in timestamp order.
2437          */
2438         timestamp = dtrace_gethrtime();
2439         saddr = (uintptr_t)src->dtb_tomax;
2440         slimit = saddr + src->dtb_offset;
2441         while (saddr < slimit) {
2442                 size_t size;
2443                 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2444
2445                 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2446                         saddr += sizeof (dtrace_epid_t);
2447                         continue;
2448                 }
2449                 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2450                 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2451
2452                 ASSERT3U(saddr + size, <=, slimit);
2453                 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2454                 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2455
2456                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2457
2458                 saddr += size;
2459         }
2460
2461         /*
2462          * Copy the buffer across.  (Note that this is a
2463          * highly subobtimal bcopy(); in the unlikely event that this becomes
2464          * a serious performance issue, a high-performance DTrace-specific
2465          * bcopy() should obviously be invented.)
2466          */
2467         daddr = (uintptr_t)dest->dtb_tomax + offs;
2468         dlimit = daddr + src->dtb_offset;
2469         saddr = (uintptr_t)src->dtb_tomax;
2470
2471         /*
2472          * First, the aligned portion.
2473          */
2474         while (dlimit - daddr >= sizeof (uint64_t)) {
2475                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2476
2477                 daddr += sizeof (uint64_t);
2478                 saddr += sizeof (uint64_t);
2479         }
2480
2481         /*
2482          * Now any left-over bit...
2483          */
2484         while (dlimit - daddr)
2485                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2486
2487         /*
2488          * Finally, commit the reserved space in the destination buffer.
2489          */
2490         dest->dtb_offset = offs + src->dtb_offset;
2491
2492 out:
2493         /*
2494          * If we're lucky enough to be the only active CPU on this speculation
2495          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2496          */
2497         if (current == DTRACESPEC_ACTIVE ||
2498             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2499                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2500                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2501
2502                 ASSERT(rval == DTRACESPEC_COMMITTING);
2503         }
2504
2505         src->dtb_offset = 0;
2506         src->dtb_xamot_drops += src->dtb_drops;
2507         src->dtb_drops = 0;
2508 }
2509
2510 /*
2511  * This routine discards an active speculation.  If the specified speculation
2512  * is not in a valid state to perform a discard(), this routine will silently
2513  * do nothing.  The state of the specified speculation is transitioned
2514  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2515  */
2516 static void
2517 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2518     dtrace_specid_t which)
2519 {
2520         dtrace_speculation_t *spec;
2521         dtrace_speculation_state_t current, new = 0;
2522         dtrace_buffer_t *buf;
2523
2524         if (which == 0)
2525                 return;
2526
2527         if (which > state->dts_nspeculations) {
2528                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2529                 return;
2530         }
2531
2532         spec = &state->dts_speculations[which - 1];
2533         buf = &spec->dtsp_buffer[cpu];
2534
2535         do {
2536                 current = spec->dtsp_state;
2537
2538                 switch (current) {
2539                 case DTRACESPEC_INACTIVE:
2540                 case DTRACESPEC_COMMITTINGMANY:
2541                 case DTRACESPEC_COMMITTING:
2542                 case DTRACESPEC_DISCARDING:
2543                         return;
2544
2545                 case DTRACESPEC_ACTIVE:
2546                 case DTRACESPEC_ACTIVEMANY:
2547                         new = DTRACESPEC_DISCARDING;
2548                         break;
2549
2550                 case DTRACESPEC_ACTIVEONE:
2551                         if (buf->dtb_offset != 0) {
2552                                 new = DTRACESPEC_INACTIVE;
2553                         } else {
2554                                 new = DTRACESPEC_DISCARDING;
2555                         }
2556                         break;
2557
2558                 default:
2559                         ASSERT(0);
2560                 }
2561         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2562             current, new) != current);
2563
2564         buf->dtb_offset = 0;
2565         buf->dtb_drops = 0;
2566 }
2567
2568 /*
2569  * Note:  not called from probe context.  This function is called
2570  * asynchronously from cross call context to clean any speculations that are
2571  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2572  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2573  * speculation.
2574  */
2575 static void
2576 dtrace_speculation_clean_here(dtrace_state_t *state)
2577 {
2578         dtrace_icookie_t cookie;
2579         processorid_t cpu = curcpu;
2580         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2581         dtrace_specid_t i;
2582
2583         cookie = dtrace_interrupt_disable();
2584
2585         if (dest->dtb_tomax == NULL) {
2586                 dtrace_interrupt_enable(cookie);
2587                 return;
2588         }
2589
2590         for (i = 0; i < state->dts_nspeculations; i++) {
2591                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2592                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2593
2594                 if (src->dtb_tomax == NULL)
2595                         continue;
2596
2597                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2598                         src->dtb_offset = 0;
2599                         continue;
2600                 }
2601
2602                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2603                         continue;
2604
2605                 if (src->dtb_offset == 0)
2606                         continue;
2607
2608                 dtrace_speculation_commit(state, cpu, i + 1);
2609         }
2610
2611         dtrace_interrupt_enable(cookie);
2612 }
2613
2614 /*
2615  * Note:  not called from probe context.  This function is called
2616  * asynchronously (and at a regular interval) to clean any speculations that
2617  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2618  * is work to be done, it cross calls all CPUs to perform that work;
2619  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2620  * INACTIVE state until they have been cleaned by all CPUs.
2621  */
2622 static void
2623 dtrace_speculation_clean(dtrace_state_t *state)
2624 {
2625         int work = 0, rv;
2626         dtrace_specid_t i;
2627
2628         for (i = 0; i < state->dts_nspeculations; i++) {
2629                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2630
2631                 ASSERT(!spec->dtsp_cleaning);
2632
2633                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2634                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2635                         continue;
2636
2637                 work++;
2638                 spec->dtsp_cleaning = 1;
2639         }
2640
2641         if (!work)
2642                 return;
2643
2644         dtrace_xcall(DTRACE_CPUALL,
2645             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2646
2647         /*
2648          * We now know that all CPUs have committed or discarded their
2649          * speculation buffers, as appropriate.  We can now set the state
2650          * to inactive.
2651          */
2652         for (i = 0; i < state->dts_nspeculations; i++) {
2653                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2654                 dtrace_speculation_state_t current, new;
2655
2656                 if (!spec->dtsp_cleaning)
2657                         continue;
2658
2659                 current = spec->dtsp_state;
2660                 ASSERT(current == DTRACESPEC_DISCARDING ||
2661                     current == DTRACESPEC_COMMITTINGMANY);
2662
2663                 new = DTRACESPEC_INACTIVE;
2664
2665                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2666                 ASSERT(rv == current);
2667                 spec->dtsp_cleaning = 0;
2668         }
2669 }
2670
2671 /*
2672  * Called as part of a speculate() to get the speculative buffer associated
2673  * with a given speculation.  Returns NULL if the specified speculation is not
2674  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2675  * the active CPU is not the specified CPU -- the speculation will be
2676  * atomically transitioned into the ACTIVEMANY state.
2677  */
2678 static dtrace_buffer_t *
2679 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2680     dtrace_specid_t which)
2681 {
2682         dtrace_speculation_t *spec;
2683         dtrace_speculation_state_t current, new = 0;
2684         dtrace_buffer_t *buf;
2685
2686         if (which == 0)
2687                 return (NULL);
2688
2689         if (which > state->dts_nspeculations) {
2690                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2691                 return (NULL);
2692         }
2693
2694         spec = &state->dts_speculations[which - 1];
2695         buf = &spec->dtsp_buffer[cpuid];
2696
2697         do {
2698                 current = spec->dtsp_state;
2699
2700                 switch (current) {
2701                 case DTRACESPEC_INACTIVE:
2702                 case DTRACESPEC_COMMITTINGMANY:
2703                 case DTRACESPEC_DISCARDING:
2704                         return (NULL);
2705
2706                 case DTRACESPEC_COMMITTING:
2707                         ASSERT(buf->dtb_offset == 0);
2708                         return (NULL);
2709
2710                 case DTRACESPEC_ACTIVEONE:
2711                         /*
2712                          * This speculation is currently active on one CPU.
2713                          * Check the offset in the buffer; if it's non-zero,
2714                          * that CPU must be us (and we leave the state alone).
2715                          * If it's zero, assume that we're starting on a new
2716                          * CPU -- and change the state to indicate that the
2717                          * speculation is active on more than one CPU.
2718                          */
2719                         if (buf->dtb_offset != 0)
2720                                 return (buf);
2721
2722                         new = DTRACESPEC_ACTIVEMANY;
2723                         break;
2724
2725                 case DTRACESPEC_ACTIVEMANY:
2726                         return (buf);
2727
2728                 case DTRACESPEC_ACTIVE:
2729                         new = DTRACESPEC_ACTIVEONE;
2730                         break;
2731
2732                 default:
2733                         ASSERT(0);
2734                 }
2735         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2736             current, new) != current);
2737
2738         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2739         return (buf);
2740 }
2741
2742 /*
2743  * Return a string.  In the event that the user lacks the privilege to access
2744  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2745  * don't fail access checking.
2746  *
2747  * dtrace_dif_variable() uses this routine as a helper for various
2748  * builtin values such as 'execname' and 'probefunc.'
2749  */
2750 uintptr_t
2751 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2752     dtrace_mstate_t *mstate)
2753 {
2754         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2755         uintptr_t ret;
2756         size_t strsz;
2757
2758         /*
2759          * The easy case: this probe is allowed to read all of memory, so
2760          * we can just return this as a vanilla pointer.
2761          */
2762         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2763                 return (addr);
2764
2765         /*
2766          * This is the tougher case: we copy the string in question from
2767          * kernel memory into scratch memory and return it that way: this
2768          * ensures that we won't trip up when access checking tests the
2769          * BYREF return value.
2770          */
2771         strsz = dtrace_strlen((char *)addr, size) + 1;
2772
2773         if (mstate->dtms_scratch_ptr + strsz >
2774             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2775                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2776                 return (0);
2777         }
2778
2779         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2780             strsz);
2781         ret = mstate->dtms_scratch_ptr;
2782         mstate->dtms_scratch_ptr += strsz;
2783         return (ret);
2784 }
2785
2786 /*
2787  * Return a string from a memoy address which is known to have one or
2788  * more concatenated, individually zero terminated, sub-strings.
2789  * In the event that the user lacks the privilege to access
2790  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2791  * don't fail access checking.
2792  *
2793  * dtrace_dif_variable() uses this routine as a helper for various
2794  * builtin values such as 'execargs'.
2795  */
2796 static uintptr_t
2797 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2798     dtrace_mstate_t *mstate)
2799 {
2800         char *p;
2801         size_t i;
2802         uintptr_t ret;
2803
2804         if (mstate->dtms_scratch_ptr + strsz >
2805             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2806                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2807                 return (0);
2808         }
2809
2810         dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2811             strsz);
2812
2813         /* Replace sub-string termination characters with a space. */
2814         for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2815             p++, i++)
2816                 if (*p == '\0')
2817                         *p = ' ';
2818
2819         ret = mstate->dtms_scratch_ptr;
2820         mstate->dtms_scratch_ptr += strsz;
2821         return (ret);
2822 }
2823
2824 /*
2825  * This function implements the DIF emulator's variable lookups.  The emulator
2826  * passes a reserved variable identifier and optional built-in array index.
2827  */
2828 static uint64_t
2829 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2830     uint64_t ndx)
2831 {
2832         /*
2833          * If we're accessing one of the uncached arguments, we'll turn this
2834          * into a reference in the args array.
2835          */
2836         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2837                 ndx = v - DIF_VAR_ARG0;
2838                 v = DIF_VAR_ARGS;
2839         }
2840
2841         switch (v) {
2842         case DIF_VAR_ARGS:
2843                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2844                 if (ndx >= sizeof (mstate->dtms_arg) /
2845                     sizeof (mstate->dtms_arg[0])) {
2846                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2847                         dtrace_provider_t *pv;
2848                         uint64_t val;
2849
2850                         pv = mstate->dtms_probe->dtpr_provider;
2851                         if (pv->dtpv_pops.dtps_getargval != NULL)
2852                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2853                                     mstate->dtms_probe->dtpr_id,
2854                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
2855                         else
2856                                 val = dtrace_getarg(ndx, aframes);
2857
2858                         /*
2859                          * This is regrettably required to keep the compiler
2860                          * from tail-optimizing the call to dtrace_getarg().
2861                          * The condition always evaluates to true, but the
2862                          * compiler has no way of figuring that out a priori.
2863                          * (None of this would be necessary if the compiler
2864                          * could be relied upon to _always_ tail-optimize
2865                          * the call to dtrace_getarg() -- but it can't.)
2866                          */
2867                         if (mstate->dtms_probe != NULL)
2868                                 return (val);
2869
2870                         ASSERT(0);
2871                 }
2872
2873                 return (mstate->dtms_arg[ndx]);
2874
2875 #if defined(sun)
2876         case DIF_VAR_UREGS: {
2877                 klwp_t *lwp;
2878
2879                 if (!dtrace_priv_proc(state))
2880                         return (0);
2881
2882                 if ((lwp = curthread->t_lwp) == NULL) {
2883                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2884                         cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2885                         return (0);
2886                 }
2887
2888                 return (dtrace_getreg(lwp->lwp_regs, ndx));
2889                 return (0);
2890         }
2891 #else
2892         case DIF_VAR_UREGS: {
2893                 struct trapframe *tframe;
2894
2895                 if (!dtrace_priv_proc(state))
2896                         return (0);
2897
2898                 if ((tframe = curthread->td_frame) == NULL) {
2899                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2900                         cpu_core[curcpu].cpuc_dtrace_illval = 0;
2901                         return (0);
2902                 }
2903
2904                 return (dtrace_getreg(tframe, ndx));
2905         }
2906 #endif
2907
2908         case DIF_VAR_CURTHREAD:
2909                 if (!dtrace_priv_kernel(state))
2910                         return (0);
2911                 return ((uint64_t)(uintptr_t)curthread);
2912
2913         case DIF_VAR_TIMESTAMP:
2914                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2915                         mstate->dtms_timestamp = dtrace_gethrtime();
2916                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2917                 }
2918                 return (mstate->dtms_timestamp);
2919
2920         case DIF_VAR_VTIMESTAMP:
2921                 ASSERT(dtrace_vtime_references != 0);
2922                 return (curthread->t_dtrace_vtime);
2923
2924         case DIF_VAR_WALLTIMESTAMP:
2925                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2926                         mstate->dtms_walltimestamp = dtrace_gethrestime();
2927                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2928                 }
2929                 return (mstate->dtms_walltimestamp);
2930
2931 #if defined(sun)
2932         case DIF_VAR_IPL:
2933                 if (!dtrace_priv_kernel(state))
2934                         return (0);
2935                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2936                         mstate->dtms_ipl = dtrace_getipl();
2937                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
2938                 }
2939                 return (mstate->dtms_ipl);
2940 #endif
2941
2942         case DIF_VAR_EPID:
2943                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2944                 return (mstate->dtms_epid);
2945
2946         case DIF_VAR_ID:
2947                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2948                 return (mstate->dtms_probe->dtpr_id);
2949
2950         case DIF_VAR_STACKDEPTH:
2951                 if (!dtrace_priv_kernel(state))
2952                         return (0);
2953                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2954                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2955
2956                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2957                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2958                 }
2959                 return (mstate->dtms_stackdepth);
2960
2961         case DIF_VAR_USTACKDEPTH:
2962                 if (!dtrace_priv_proc(state))
2963                         return (0);
2964                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2965                         /*
2966                          * See comment in DIF_VAR_PID.
2967                          */
2968                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2969                             CPU_ON_INTR(CPU)) {
2970                                 mstate->dtms_ustackdepth = 0;
2971                         } else {
2972                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2973                                 mstate->dtms_ustackdepth =
2974                                     dtrace_getustackdepth();
2975                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2976                         }
2977                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2978                 }
2979                 return (mstate->dtms_ustackdepth);
2980
2981         case DIF_VAR_CALLER:
2982                 if (!dtrace_priv_kernel(state))
2983                         return (0);
2984                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2985                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2986
2987                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2988                                 /*
2989                                  * If this is an unanchored probe, we are
2990                                  * required to go through the slow path:
2991                                  * dtrace_caller() only guarantees correct
2992                                  * results for anchored probes.
2993                                  */
2994                                 pc_t caller[2] = {0, 0};
2995
2996                                 dtrace_getpcstack(caller, 2, aframes,
2997                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2998                                 mstate->dtms_caller = caller[1];
2999                         } else if ((mstate->dtms_caller =
3000                             dtrace_caller(aframes)) == -1) {
3001                                 /*
3002                                  * We have failed to do this the quick way;
3003                                  * we must resort to the slower approach of
3004                                  * calling dtrace_getpcstack().
3005                                  */
3006                                 pc_t caller = 0;
3007
3008                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
3009                                 mstate->dtms_caller = caller;
3010                         }
3011
3012                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3013                 }
3014                 return (mstate->dtms_caller);
3015
3016         case DIF_VAR_UCALLER:
3017                 if (!dtrace_priv_proc(state))
3018                         return (0);
3019
3020                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3021                         uint64_t ustack[3];
3022
3023                         /*
3024                          * dtrace_getupcstack() fills in the first uint64_t
3025                          * with the current PID.  The second uint64_t will
3026                          * be the program counter at user-level.  The third
3027                          * uint64_t will contain the caller, which is what
3028                          * we're after.
3029                          */
3030                         ustack[2] = 0;
3031                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3032                         dtrace_getupcstack(ustack, 3);
3033                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3034                         mstate->dtms_ucaller = ustack[2];
3035                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3036                 }
3037
3038                 return (mstate->dtms_ucaller);
3039
3040         case DIF_VAR_PROBEPROV:
3041                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3042                 return (dtrace_dif_varstr(
3043                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3044                     state, mstate));
3045
3046         case DIF_VAR_PROBEMOD:
3047                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3048                 return (dtrace_dif_varstr(
3049                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3050                     state, mstate));
3051
3052         case DIF_VAR_PROBEFUNC:
3053                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3054                 return (dtrace_dif_varstr(
3055                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3056                     state, mstate));
3057
3058         case DIF_VAR_PROBENAME:
3059                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3060                 return (dtrace_dif_varstr(
3061                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3062                     state, mstate));
3063
3064         case DIF_VAR_PID:
3065                 if (!dtrace_priv_proc(state))
3066                         return (0);
3067
3068 #if defined(sun)
3069                 /*
3070                  * Note that we are assuming that an unanchored probe is
3071                  * always due to a high-level interrupt.  (And we're assuming
3072                  * that there is only a single high level interrupt.)
3073                  */
3074                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3075                         return (pid0.pid_id);
3076
3077                 /*
3078                  * It is always safe to dereference one's own t_procp pointer:
3079                  * it always points to a valid, allocated proc structure.
3080                  * Further, it is always safe to dereference the p_pidp member
3081                  * of one's own proc structure.  (These are truisms becuase
3082                  * threads and processes don't clean up their own state --
3083                  * they leave that task to whomever reaps them.)
3084                  */
3085                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3086 #else
3087                 return ((uint64_t)curproc->p_pid);
3088 #endif
3089
3090         case DIF_VAR_PPID:
3091                 if (!dtrace_priv_proc(state))
3092                         return (0);
3093
3094 #if defined(sun)
3095                 /*
3096                  * See comment in DIF_VAR_PID.
3097                  */
3098                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3099                         return (pid0.pid_id);
3100
3101                 /*
3102                  * It is always safe to dereference one's own t_procp pointer:
3103                  * it always points to a valid, allocated proc structure.
3104                  * (This is true because threads don't clean up their own
3105                  * state -- they leave that task to whomever reaps them.)
3106                  */
3107                 return ((uint64_t)curthread->t_procp->p_ppid);
3108 #else
3109                 return ((uint64_t)curproc->p_pptr->p_pid);
3110 #endif
3111
3112         case DIF_VAR_TID:
3113 #if defined(sun)
3114                 /*
3115                  * See comment in DIF_VAR_PID.
3116                  */
3117                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3118                         return (0);
3119 #endif
3120
3121                 return ((uint64_t)curthread->t_tid);
3122
3123         case DIF_VAR_EXECARGS: {
3124                 struct pargs *p_args = curthread->td_proc->p_args;
3125
3126                 if (p_args == NULL)
3127                         return(0);
3128
3129                 return (dtrace_dif_varstrz(
3130                     (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3131         }
3132
3133         case DIF_VAR_EXECNAME:
3134 #if defined(sun)
3135                 if (!dtrace_priv_proc(state))
3136                         return (0);
3137
3138                 /*
3139                  * See comment in DIF_VAR_PID.
3140                  */
3141                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3142                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3143
3144                 /*
3145                  * It is always safe to dereference one's own t_procp pointer:
3146                  * it always points to a valid, allocated proc structure.
3147                  * (This is true because threads don't clean up their own
3148                  * state -- they leave that task to whomever reaps them.)
3149                  */
3150                 return (dtrace_dif_varstr(
3151                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3152                     state, mstate));
3153 #else
3154                 return (dtrace_dif_varstr(
3155                     (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3156 #endif
3157
3158         case DIF_VAR_ZONENAME:
3159 #if defined(sun)
3160                 if (!dtrace_priv_proc(state))
3161                         return (0);
3162
3163                 /*
3164                  * See comment in DIF_VAR_PID.
3165                  */
3166                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3167                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3168
3169                 /*
3170                  * It is always safe to dereference one's own t_procp pointer:
3171                  * it always points to a valid, allocated proc structure.
3172                  * (This is true because threads don't clean up their own
3173                  * state -- they leave that task to whomever reaps them.)
3174                  */
3175                 return (dtrace_dif_varstr(
3176                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3177                     state, mstate));
3178 #else
3179                 return (0);
3180 #endif
3181
3182         case DIF_VAR_UID:
3183                 if (!dtrace_priv_proc(state))
3184                         return (0);
3185
3186 #if defined(sun)
3187                 /*
3188                  * See comment in DIF_VAR_PID.
3189                  */
3190                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3191                         return ((uint64_t)p0.p_cred->cr_uid);
3192 #endif
3193
3194                 /*
3195                  * It is always safe to dereference one's own t_procp pointer:
3196                  * it always points to a valid, allocated proc structure.
3197                  * (This is true because threads don't clean up their own
3198                  * state -- they leave that task to whomever reaps them.)
3199                  *
3200                  * Additionally, it is safe to dereference one's own process
3201                  * credential, since this is never NULL after process birth.
3202                  */
3203                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3204
3205         case DIF_VAR_GID:
3206                 if (!dtrace_priv_proc(state))
3207                         return (0);
3208
3209 #if defined(sun)
3210                 /*
3211                  * See comment in DIF_VAR_PID.
3212                  */
3213                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3214                         return ((uint64_t)p0.p_cred->cr_gid);
3215 #endif
3216
3217                 /*
3218                  * It is always safe to dereference one's own t_procp pointer:
3219                  * it always points to a valid, allocated proc structure.
3220                  * (This is true because threads don't clean up their own
3221                  * state -- they leave that task to whomever reaps them.)
3222                  *
3223                  * Additionally, it is safe to dereference one's own process
3224                  * credential, since this is never NULL after process birth.
3225                  */
3226                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3227
3228         case DIF_VAR_ERRNO: {
3229 #if defined(sun)
3230                 klwp_t *lwp;
3231                 if (!dtrace_priv_proc(state))
3232                         return (0);
3233
3234                 /*
3235                  * See comment in DIF_VAR_PID.
3236                  */
3237                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3238                         return (0);
3239
3240                 /*
3241                  * It is always safe to dereference one's own t_lwp pointer in
3242                  * the event that this pointer is non-NULL.  (This is true
3243                  * because threads and lwps don't clean up their own state --
3244                  * they leave that task to whomever reaps them.)
3245                  */
3246                 if ((lwp = curthread->t_lwp) == NULL)
3247                         return (0);
3248
3249                 return ((uint64_t)lwp->lwp_errno);
3250 #else
3251                 return (curthread->td_errno);
3252 #endif
3253         }
3254 #if !defined(sun)
3255         case DIF_VAR_CPU: {
3256                 return curcpu;
3257         }
3258 #endif
3259         default:
3260                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3261                 return (0);
3262         }
3263 }
3264
3265 /*
3266  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3267  * Notice that we don't bother validating the proper number of arguments or
3268  * their types in the tuple stack.  This isn't needed because all argument
3269  * interpretation is safe because of our load safety -- the worst that can
3270  * happen is that a bogus program can obtain bogus results.
3271  */
3272 static void
3273 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3274     dtrace_key_t *tupregs, int nargs,
3275     dtrace_mstate_t *mstate, dtrace_state_t *state)
3276 {
3277         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3278         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3279         dtrace_vstate_t *vstate = &state->dts_vstate;
3280
3281 #if defined(sun)
3282         union {
3283                 mutex_impl_t mi;
3284                 uint64_t mx;
3285         } m;
3286
3287         union {
3288                 krwlock_t ri;
3289                 uintptr_t rw;
3290         } r;
3291 #else
3292         struct thread *lowner;
3293         union {
3294                 struct lock_object *li;
3295                 uintptr_t lx;
3296         } l;
3297 #endif
3298
3299         switch (subr) {
3300         case DIF_SUBR_RAND:
3301                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3302                 break;
3303
3304 #if defined(sun)
3305         case DIF_SUBR_MUTEX_OWNED:
3306                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3307                     mstate, vstate)) {
3308                         regs[rd] = 0;
3309                         break;
3310                 }
3311
3312                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3313                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3314                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3315                 else
3316                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3317                 break;
3318
3319         case DIF_SUBR_MUTEX_OWNER:
3320                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3321                     mstate, vstate)) {
3322                         regs[rd] = 0;
3323                         break;
3324                 }
3325
3326                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3327                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3328                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3329                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3330                 else
3331                         regs[rd] = 0;
3332                 break;
3333
3334         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3335                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3336                     mstate, vstate)) {
3337                         regs[rd] = 0;
3338                         break;
3339                 }
3340
3341                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3342                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3343                 break;
3344
3345         case DIF_SUBR_MUTEX_TYPE_SPIN:
3346                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3347                     mstate, vstate)) {
3348                         regs[rd] = 0;
3349                         break;
3350                 }
3351
3352                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3353                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3354                 break;
3355
3356         case DIF_SUBR_RW_READ_HELD: {
3357                 uintptr_t tmp;
3358
3359                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3360                     mstate, vstate)) {
3361                         regs[rd] = 0;
3362                         break;
3363                 }
3364
3365                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3366                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3367                 break;
3368         }
3369
3370         case DIF_SUBR_RW_WRITE_HELD:
3371                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3372                     mstate, vstate)) {
3373                         regs[rd] = 0;
3374                         break;
3375                 }
3376
3377                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3378                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3379                 break;
3380
3381         case DIF_SUBR_RW_ISWRITER:
3382                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3383                     mstate, vstate)) {
3384                         regs[rd] = 0;
3385                         break;
3386                 }
3387
3388                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3389                 regs[rd] = _RW_ISWRITER(&r.ri);
3390                 break;
3391
3392 #else
3393         case DIF_SUBR_MUTEX_OWNED:
3394                 if (!dtrace_canload(tupregs[0].dttk_value,
3395                         sizeof (struct lock_object), mstate, vstate)) {
3396                         regs[rd] = 0;
3397                         break;
3398                 }
3399                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3400                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3401                 break;
3402
3403         case DIF_SUBR_MUTEX_OWNER:
3404                 if (!dtrace_canload(tupregs[0].dttk_value,
3405                         sizeof (struct lock_object), mstate, vstate)) {
3406                         regs[rd] = 0;
3407                         break;
3408                 }
3409                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3410                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3411                 regs[rd] = (uintptr_t)lowner;
3412                 break;
3413
3414         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3415                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3416                     mstate, vstate)) {
3417                         regs[rd] = 0;
3418                         break;
3419                 }
3420                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3421                 /* XXX - should be only LC_SLEEPABLE? */
3422                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3423                     (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3424                 break;
3425
3426         case DIF_SUBR_MUTEX_TYPE_SPIN:
3427                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3428                     mstate, vstate)) {
3429                         regs[rd] = 0;
3430                         break;
3431                 }
3432                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3433                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3434                 break;
3435
3436         case DIF_SUBR_RW_READ_HELD: 
3437         case DIF_SUBR_SX_SHARED_HELD: 
3438                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3439                     mstate, vstate)) {
3440                         regs[rd] = 0;
3441                         break;
3442                 }
3443                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3444                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3445                     lowner == NULL;
3446                 break;
3447
3448         case DIF_SUBR_RW_WRITE_HELD:
3449         case DIF_SUBR_SX_EXCLUSIVE_HELD:
3450                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3451                     mstate, vstate)) {
3452                         regs[rd] = 0;
3453                         break;
3454                 }
3455                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3456                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3457                 regs[rd] = (lowner == curthread);
3458                 break;
3459
3460         case DIF_SUBR_RW_ISWRITER:
3461         case DIF_SUBR_SX_ISEXCLUSIVE:
3462                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3463                     mstate, vstate)) {
3464                         regs[rd] = 0;
3465                         break;
3466                 }
3467                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3468                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3469                     lowner != NULL;
3470                 break;
3471 #endif /* ! defined(sun) */
3472
3473         case DIF_SUBR_BCOPY: {
3474                 /*
3475                  * We need to be sure that the destination is in the scratch
3476                  * region -- no other region is allowed.
3477                  */
3478                 uintptr_t src = tupregs[0].dttk_value;
3479                 uintptr_t dest = tupregs[1].dttk_value;
3480                 size_t size = tupregs[2].dttk_value;
3481
3482                 if (!dtrace_inscratch(dest, size, mstate)) {
3483                         *flags |= CPU_DTRACE_BADADDR;
3484                         *illval = regs[rd];
3485                         break;
3486                 }
3487
3488                 if (!dtrace_canload(src, size, mstate, vstate)) {
3489                         regs[rd] = 0;
3490                         break;
3491                 }
3492
3493                 dtrace_bcopy((void *)src, (void *)dest, size);
3494                 break;
3495         }
3496
3497         case DIF_SUBR_ALLOCA:
3498         case DIF_SUBR_COPYIN: {
3499                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3500                 uint64_t size =
3501                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3502                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3503
3504                 /*
3505                  * This action doesn't require any credential checks since
3506                  * probes will not activate in user contexts to which the
3507                  * enabling user does not have permissions.
3508                  */
3509
3510                 /*
3511                  * Rounding up the user allocation size could have overflowed
3512                  * a large, bogus allocation (like -1ULL) to 0.
3513                  */
3514                 if (scratch_size < size ||
3515                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
3516                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3517                         regs[rd] = 0;
3518                         break;
3519                 }
3520
3521                 if (subr == DIF_SUBR_COPYIN) {
3522                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3523                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3524                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3525                 }
3526
3527                 mstate->dtms_scratch_ptr += scratch_size;
3528                 regs[rd] = dest;
3529                 break;
3530         }
3531
3532         case DIF_SUBR_COPYINTO: {
3533                 uint64_t size = tupregs[1].dttk_value;
3534                 uintptr_t dest = tupregs[2].dttk_value;
3535
3536                 /*
3537                  * This action doesn't require any credential checks since
3538                  * probes will not activate in user contexts to which the
3539                  * enabling user does not have permissions.
3540                  */
3541                 if (!dtrace_inscratch(dest, size, mstate)) {
3542                         *flags |= CPU_DTRACE_BADADDR;
3543                         *illval = regs[rd];
3544                         break;
3545                 }
3546
3547                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3548                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3549                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3550                 break;
3551         }
3552
3553         case DIF_SUBR_COPYINSTR: {
3554                 uintptr_t dest = mstate->dtms_scratch_ptr;
3555                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3556
3557                 if (nargs > 1 && tupregs[1].dttk_value < size)
3558                         size = tupregs[1].dttk_value + 1;
3559
3560                 /*
3561                  * This action doesn't require any credential checks since
3562                  * probes will not activate in user contexts to which the
3563                  * enabling user does not have permissions.
3564                  */
3565                 if (!DTRACE_INSCRATCH(mstate, size)) {
3566                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3567                         regs[rd] = 0;
3568                         break;
3569                 }
3570
3571                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3572                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3573                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3574
3575                 ((char *)dest)[size - 1] = '\0';
3576                 mstate->dtms_scratch_ptr += size;
3577                 regs[rd] = dest;
3578                 break;
3579         }
3580
3581 #if defined(sun)
3582         case DIF_SUBR_MSGSIZE:
3583         case DIF_SUBR_MSGDSIZE: {
3584                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3585                 uintptr_t wptr, rptr;
3586                 size_t count = 0;
3587                 int cont = 0;
3588
3589                 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3590
3591                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3592                             vstate)) {
3593                                 regs[rd] = 0;
3594                                 break;
3595                         }
3596
3597                         wptr = dtrace_loadptr(baddr +
3598                             offsetof(mblk_t, b_wptr));
3599
3600                         rptr = dtrace_loadptr(baddr +
3601                             offsetof(mblk_t, b_rptr));
3602
3603                         if (wptr < rptr) {
3604                                 *flags |= CPU_DTRACE_BADADDR;
3605                                 *illval = tupregs[0].dttk_value;
3606                                 break;
3607                         }
3608
3609                         daddr = dtrace_loadptr(baddr +
3610                             offsetof(mblk_t, b_datap));
3611
3612                         baddr = dtrace_loadptr(baddr +
3613                             offsetof(mblk_t, b_cont));
3614
3615                         /*
3616                          * We want to prevent against denial-of-service here,
3617                          * so we're only going to search the list for
3618                          * dtrace_msgdsize_max mblks.
3619                          */
3620                         if (cont++ > dtrace_msgdsize_max) {
3621                                 *flags |= CPU_DTRACE_ILLOP;
3622                                 break;
3623                         }
3624
3625                         if (subr == DIF_SUBR_MSGDSIZE) {
3626                                 if (dtrace_load8(daddr +
3627                                     offsetof(dblk_t, db_type)) != M_DATA)
3628                                         continue;
3629                         }
3630
3631                         count += wptr - rptr;
3632                 }
3633
3634                 if (!(*flags & CPU_DTRACE_FAULT))
3635                         regs[rd] = count;
3636
3637                 break;
3638         }
3639 #endif
3640
3641         case DIF_SUBR_PROGENYOF: {
3642                 pid_t pid = tupregs[0].dttk_value;
3643                 proc_t *p;
3644                 int rval = 0;
3645
3646                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3647
3648                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3649 #if defined(sun)
3650                         if (p->p_pidp->pid_id == pid) {
3651 #else
3652                         if (p->p_pid == pid) {
3653 #endif
3654                                 rval = 1;
3655                                 break;
3656                         }
3657                 }
3658
3659                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3660
3661                 regs[rd] = rval;
3662                 break;
3663         }
3664
3665         case DIF_SUBR_SPECULATION:
3666                 regs[rd] = dtrace_speculation(state);
3667                 break;
3668
3669         case DIF_SUBR_COPYOUT: {
3670                 uintptr_t kaddr = tupregs[0].dttk_value;
3671                 uintptr_t uaddr = tupregs[1].dttk_value;
3672                 uint64_t size = tupregs[2].dttk_value;
3673
3674                 if (!dtrace_destructive_disallow &&
3675                     dtrace_priv_proc_control(state) &&
3676                     !dtrace_istoxic(kaddr, size)) {
3677                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3678                         dtrace_copyout(kaddr, uaddr, size, flags);
3679                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3680                 }
3681                 break;
3682         }
3683
3684         case DIF_SUBR_COPYOUTSTR: {
3685                 uintptr_t kaddr = tupregs[0].dttk_value;
3686                 uintptr_t uaddr = tupregs[1].dttk_value;
3687                 uint64_t size = tupregs[2].dttk_value;
3688
3689                 if (!dtrace_destructive_disallow &&
3690                     dtrace_priv_proc_control(state) &&
3691                     !dtrace_istoxic(kaddr, size)) {
3692                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3693                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
3694                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3695                 }
3696                 break;
3697         }
3698
3699         case DIF_SUBR_STRLEN: {
3700                 size_t sz;
3701                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3702                 sz = dtrace_strlen((char *)addr,
3703                     state->dts_options[DTRACEOPT_STRSIZE]);
3704
3705                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3706                         regs[rd] = 0;
3707                         break;
3708                 }
3709
3710                 regs[rd] = sz;
3711
3712                 break;
3713         }
3714
3715         case DIF_SUBR_STRCHR:
3716         case DIF_SUBR_STRRCHR: {
3717                 /*
3718                  * We're going to iterate over the string looking for the
3719                  * specified character.  We will iterate until we have reached
3720                  * the string length or we have found the character.  If this
3721                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3722                  * of the specified character instead of the first.
3723                  */
3724                 uintptr_t saddr = tupregs[0].dttk_value;
3725                 uintptr_t addr = tupregs[0].dttk_value;
3726                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3727                 char c, target = (char)tupregs[1].dttk_value;
3728
3729                 for (regs[rd] = 0; addr < limit; addr++) {
3730                         if ((c = dtrace_load8(addr)) == target) {
3731                                 regs[rd] = addr;
3732
3733                                 if (subr == DIF_SUBR_STRCHR)
3734                                         break;
3735                         }
3736
3737                         if (c == '\0')
3738                                 break;
3739                 }
3740
3741                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3742                         regs[rd] = 0;
3743                         break;
3744                 }
3745
3746                 break;
3747         }
3748
3749         case DIF_SUBR_STRSTR:
3750         case DIF_SUBR_INDEX:
3751         case DIF_SUBR_RINDEX: {
3752                 /*
3753                  * We're going to iterate over the string looking for the
3754                  * specified string.  We will iterate until we have reached
3755                  * the string length or we have found the string.  (Yes, this
3756                  * is done in the most naive way possible -- but considering
3757                  * that the string we're searching for is likely to be
3758                  * relatively short, the complexity of Rabin-Karp or similar
3759                  * hardly seems merited.)
3760                  */
3761                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3762                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3763                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3764                 size_t len = dtrace_strlen(addr, size);
3765                 size_t sublen = dtrace_strlen(substr, size);
3766                 char *limit = addr + len, *orig = addr;
3767                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3768                 int inc = 1;
3769
3770                 regs[rd] = notfound;
3771
3772                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3773                         regs[rd] = 0;
3774                         break;
3775                 }
3776
3777                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3778                     vstate)) {
3779                         regs[rd] = 0;
3780                         break;
3781                 }
3782
3783                 /*
3784                  * strstr() and index()/rindex() have similar semantics if
3785                  * both strings are the empty string: strstr() returns a
3786                  * pointer to the (empty) string, and index() and rindex()
3787                  * both return index 0 (regardless of any position argument).
3788                  */
3789                 if (sublen == 0 && len == 0) {
3790                         if (subr == DIF_SUBR_STRSTR)
3791                                 regs[rd] = (uintptr_t)addr;
3792                         else
3793                                 regs[rd] = 0;
3794                         break;
3795                 }
3796
3797                 if (subr != DIF_SUBR_STRSTR) {
3798                         if (subr == DIF_SUBR_RINDEX) {
3799                                 limit = orig - 1;
3800                                 addr += len;
3801                                 inc = -1;
3802                         }
3803
3804                         /*
3805                          * Both index() and rindex() take an optional position
3806                          * argument that denotes the starting position.
3807                          */
3808                         if (nargs == 3) {
3809                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
3810
3811                                 /*
3812                                  * If the position argument to index() is
3813                                  * negative, Perl implicitly clamps it at
3814                                  * zero.  This semantic is a little surprising
3815                                  * given the special meaning of negative
3816                                  * positions to similar Perl functions like
3817                                  * substr(), but it appears to reflect a
3818                                  * notion that index() can start from a
3819                                  * negative index and increment its way up to
3820                                  * the string.  Given this notion, Perl's
3821                                  * rindex() is at least self-consistent in
3822                                  * that it implicitly clamps positions greater
3823                                  * than the string length to be the string
3824                                  * length.  Where Perl completely loses
3825                                  * coherence, however, is when the specified
3826                                  * substring is the empty string ("").  In
3827                                  * this case, even if the position is
3828                                  * negative, rindex() returns 0 -- and even if
3829                                  * the position is greater than the length,
3830                                  * index() returns the string length.  These
3831                                  * semantics violate the notion that index()
3832                                  * should never return a value less than the
3833                                  * specified position and that rindex() should
3834                                  * never return a value greater than the
3835                                  * specified position.  (One assumes that
3836                                  * these semantics are artifacts of Perl's
3837                                  * implementation and not the results of
3838                                  * deliberate design -- it beggars belief that
3839                                  * even Larry Wall could desire such oddness.)
3840                                  * While in the abstract one would wish for
3841                                  * consistent position semantics across
3842                                  * substr(), index() and rindex() -- or at the
3843                                  * very least self-consistent position
3844                                  * semantics for index() and rindex() -- we
3845                                  * instead opt to keep with the extant Perl
3846                                  * semantics, in all their broken glory.  (Do
3847                                  * we have more desire to maintain Perl's
3848                                  * semantics than Perl does?  Probably.)
3849                                  */
3850                                 if (subr == DIF_SUBR_RINDEX) {
3851                                         if (pos < 0) {
3852                                                 if (sublen == 0)
3853                                                         regs[rd] = 0;
3854                                                 break;
3855                                         }
3856
3857                                         if (pos > len)
3858                                                 pos = len;
3859                                 } else {
3860                                         if (pos < 0)
3861                                                 pos = 0;
3862
3863                                         if (pos >= len) {
3864                                                 if (sublen == 0)
3865                                                         regs[rd] = len;
3866                                                 break;
3867                                         }
3868                                 }
3869
3870                                 addr = orig + pos;
3871                         }
3872                 }
3873
3874                 for (regs[rd] = notfound; addr != limit; addr += inc) {
3875                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
3876                                 if (subr != DIF_SUBR_STRSTR) {
3877                                         /*
3878                                          * As D index() and rindex() are
3879                                          * modeled on Perl (and not on awk),
3880                                          * we return a zero-based (and not a
3881                                          * one-based) index.  (For you Perl
3882                                          * weenies: no, we're not going to add
3883                                          * $[ -- and shouldn't you be at a con
3884                                          * or something?)
3885                                          */
3886                                         regs[rd] = (uintptr_t)(addr - orig);
3887                                         break;
3888                                 }
3889
3890                                 ASSERT(subr == DIF_SUBR_STRSTR);
3891                                 regs[rd] = (uintptr_t)addr;
3892                                 break;
3893                         }
3894                 }
3895
3896                 break;
3897         }
3898
3899         case DIF_SUBR_STRTOK: {
3900                 uintptr_t addr = tupregs[0].dttk_value;
3901                 uintptr_t tokaddr = tupregs[1].dttk_value;
3902                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3903                 uintptr_t limit, toklimit = tokaddr + size;
3904                 uint8_t c = 0, tokmap[32];       /* 256 / 8 */
3905                 char *dest = (char *)mstate->dtms_scratch_ptr;
3906                 int i;
3907
3908                 /*
3909                  * Check both the token buffer and (later) the input buffer,
3910                  * since both could be non-scratch addresses.
3911                  */
3912                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3913                         regs[rd] = 0;
3914                         break;
3915                 }
3916
3917                 if (!DTRACE_INSCRATCH(mstate, size)) {
3918                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3919                         regs[rd] = 0;
3920                         break;
3921                 }
3922
3923                 if (addr == 0) {
3924                         /*
3925                          * If the address specified is NULL, we use our saved
3926                          * strtok pointer from the mstate.  Note that this
3927                          * means that the saved strtok pointer is _only_
3928                          * valid within multiple enablings of the same probe --
3929                          * it behaves like an implicit clause-local variable.
3930                          */
3931                         addr = mstate->dtms_strtok;
3932                 } else {
3933                         /*
3934                          * If the user-specified address is non-NULL we must
3935                          * access check it.  This is the only time we have
3936                          * a chance to do so, since this address may reside
3937                          * in the string table of this clause-- future calls
3938                          * (when we fetch addr from mstate->dtms_strtok)
3939                          * would fail this access check.
3940                          */
3941                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3942                                 regs[rd] = 0;
3943                                 break;
3944                         }
3945                 }
3946
3947                 /*
3948                  * First, zero the token map, and then process the token
3949                  * string -- setting a bit in the map for every character
3950                  * found in the token string.
3951                  */
3952                 for (i = 0; i < sizeof (tokmap); i++)
3953                         tokmap[i] = 0;
3954
3955                 for (; tokaddr < toklimit; tokaddr++) {
3956                         if ((c = dtrace_load8(tokaddr)) == '\0')
3957                                 break;
3958
3959                         ASSERT((c >> 3) < sizeof (tokmap));
3960                         tokmap[c >> 3] |= (1 << (c & 0x7));
3961                 }
3962
3963                 for (limit = addr + size; addr < limit; addr++) {
3964                         /*
3965                          * We're looking for a character that is _not_ contained
3966                          * in the token string.
3967                          */
3968                         if ((c = dtrace_load8(addr)) == '\0')
3969                                 break;
3970
3971                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3972                                 break;
3973                 }
3974
3975                 if (c == '\0') {
3976                         /*
3977                          * We reached the end of the string without finding
3978                          * any character that was not in the token string.
3979                          * We return NULL in this case, and we set the saved
3980                          * address to NULL as well.
3981                          */
3982                         regs[rd] = 0;
3983                         mstate->dtms_strtok = 0;
3984                         break;
3985                 }
3986
3987                 /*
3988                  * From here on, we're copying into the destination string.
3989                  */
3990                 for (i = 0; addr < limit && i < size - 1; addr++) {
3991                         if ((c = dtrace_load8(addr)) == '\0')
3992                                 break;
3993
3994                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
3995                                 break;
3996
3997                         ASSERT(i < size);
3998                         dest[i++] = c;
3999                 }
4000
4001                 ASSERT(i < size);
4002                 dest[i] = '\0';
4003                 regs[rd] = (uintptr_t)dest;
4004                 mstate->dtms_scratch_ptr += size;
4005                 mstate->dtms_strtok = addr;
4006                 break;
4007         }
4008
4009         case DIF_SUBR_SUBSTR: {
4010                 uintptr_t s = tupregs[0].dttk_value;
4011                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4012                 char *d = (char *)mstate->dtms_scratch_ptr;
4013                 int64_t index = (int64_t)tupregs[1].dttk_value;
4014                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4015                 size_t len = dtrace_strlen((char *)s, size);
4016                 int64_t i = 0;
4017
4018                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4019                         regs[rd] = 0;
4020                         break;
4021                 }
4022
4023                 if (!DTRACE_INSCRATCH(mstate, size)) {
4024                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4025                         regs[rd] = 0;
4026                         break;
4027                 }
4028
4029                 if (nargs <= 2)
4030                         remaining = (int64_t)size;
4031
4032                 if (index < 0) {
4033                         index += len;
4034
4035                         if (index < 0 && index + remaining > 0) {
4036                                 remaining += index;
4037                                 index = 0;
4038                         }
4039                 }
4040
4041                 if (index >= len || index < 0) {
4042                         remaining = 0;
4043                 } else if (remaining < 0) {
4044                         remaining += len - index;
4045                 } else if (index + remaining > size) {
4046                         remaining = size - index;
4047                 }
4048
4049                 for (i = 0; i < remaining; i++) {
4050                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4051                                 break;
4052                 }
4053
4054                 d[i] = '\0';
4055
4056                 mstate->dtms_scratch_ptr += size;
4057                 regs[rd] = (uintptr_t)d;
4058                 break;
4059         }
4060
4061         case DIF_SUBR_TOUPPER:
4062         case DIF_SUBR_TOLOWER: {
4063                 uintptr_t s = tupregs[0].dttk_value;
4064                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4065                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4066                 size_t len = dtrace_strlen((char *)s, size);
4067                 char lower, upper, convert;
4068                 int64_t i;
4069
4070                 if (subr == DIF_SUBR_TOUPPER) {
4071                         lower = 'a';
4072                         upper = 'z';
4073                         convert = 'A';
4074                 } else {
4075                         lower = 'A';
4076                         upper = 'Z';
4077                         convert = 'a';
4078                 }
4079
4080                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4081                         regs[rd] = 0;
4082                         break;
4083                 }
4084
4085                 if (!DTRACE_INSCRATCH(mstate, size)) {
4086                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4087                         regs[rd] = 0;
4088                         break;
4089                 }
4090
4091                 for (i = 0; i < size - 1; i++) {
4092                         if ((c = dtrace_load8(s + i)) == '\0')
4093                                 break;
4094
4095                         if (c >= lower && c <= upper)
4096                                 c = convert + (c - lower);
4097
4098                         dest[i] = c;
4099                 }
4100
4101                 ASSERT(i < size);
4102                 dest[i] = '\0';
4103                 regs[rd] = (uintptr_t)dest;
4104                 mstate->dtms_scratch_ptr += size;
4105                 break;
4106         }
4107
4108 #if defined(sun)
4109         case DIF_SUBR_GETMAJOR:
4110 #ifdef _LP64
4111                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4112 #else
4113                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4114 #endif
4115                 break;
4116
4117         case DIF_SUBR_GETMINOR:
4118 #ifdef _LP64
4119                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4120 #else
4121                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4122 #endif
4123                 break;
4124
4125         case DIF_SUBR_DDI_PATHNAME: {
4126                 /*
4127                  * This one is a galactic mess.  We are going to roughly
4128                  * emulate ddi_pathname(), but it's made more complicated
4129                  * by the fact that we (a) want to include the minor name and
4130                  * (b) must proceed iteratively instead of recursively.
4131                  */
4132                 uintptr_t dest = mstate->dtms_scratch_ptr;
4133                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4134                 char *start = (char *)dest, *end = start + size - 1;
4135                 uintptr_t daddr = tupregs[0].dttk_value;
4136                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4137                 char *s;
4138                 int i, len, depth = 0;
4139
4140                 /*
4141                  * Due to all the pointer jumping we do and context we must
4142                  * rely upon, we just mandate that the user must have kernel
4143                  * read privileges to use this routine.
4144                  */
4145                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4146                         *flags |= CPU_DTRACE_KPRIV;
4147                         *illval = daddr;
4148                         regs[rd] = 0;
4149                 }
4150
4151                 if (!DTRACE_INSCRATCH(mstate, size)) {
4152                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4153                         regs[rd] = 0;
4154                         break;
4155                 }
4156
4157                 *end = '\0';
4158
4159                 /*
4160                  * We want to have a name for the minor.  In order to do this,
4161                  * we need to walk the minor list from the devinfo.  We want
4162                  * to be sure that we don't infinitely walk a circular list,
4163                  * so we check for circularity by sending a scout pointer
4164                  * ahead two elements for every element that we iterate over;
4165                  * if the list is circular, these will ultimately point to the
4166                  * same element.  You may recognize this little trick as the
4167                  * answer to a stupid interview question -- one that always
4168                  * seems to be asked by those who had to have it laboriously
4169                  * explained to them, and who can't even concisely describe
4170                  * the conditions under which one would be forced to resort to
4171                  * this technique.  Needless to say, those conditions are
4172                  * found here -- and probably only here.  Is this the only use
4173                  * of this infamous trick in shipping, production code?  If it
4174                  * isn't, it probably should be...
4175                  */
4176                 if (minor != -1) {
4177                         uintptr_t maddr = dtrace_loadptr(daddr +
4178                             offsetof(struct dev_info, devi_minor));
4179
4180                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4181                         uintptr_t name = offsetof(struct ddi_minor_data,
4182                             d_minor) + offsetof(struct ddi_minor, name);
4183                         uintptr_t dev = offsetof(struct ddi_minor_data,
4184                             d_minor) + offsetof(struct ddi_minor, dev);
4185                         uintptr_t scout;
4186
4187                         if (maddr != NULL)
4188                                 scout = dtrace_loadptr(maddr + next);
4189
4190                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4191                                 uint64_t m;
4192 #ifdef _LP64
4193                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4194 #else
4195                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4196 #endif
4197                                 if (m != minor) {
4198                                         maddr = dtrace_loadptr(maddr + next);
4199
4200                                         if (scout == NULL)
4201                                                 continue;
4202
4203                                         scout = dtrace_loadptr(scout + next);
4204
4205                                         if (scout == NULL)
4206                                                 continue;
4207
4208                                         scout = dtrace_loadptr(scout + next);
4209
4210                                         if (scout == NULL)
4211                                                 continue;
4212
4213                                         if (scout == maddr) {
4214                                                 *flags |= CPU_DTRACE_ILLOP;
4215                                                 break;
4216                                         }
4217
4218                                         continue;
4219                                 }
4220
4221                                 /*
4222                                  * We have the minor data.  Now we need to
4223                                  * copy the minor's name into the end of the
4224                                  * pathname.
4225                                  */
4226                                 s = (char *)dtrace_loadptr(maddr + name);
4227                                 len = dtrace_strlen(s, size);
4228
4229                                 if (*flags & CPU_DTRACE_FAULT)
4230                                         break;
4231
4232                                 if (len != 0) {
4233                                         if ((end -= (len + 1)) < start)
4234                                                 break;
4235
4236                                         *end = ':';
4237                                 }
4238
4239                                 for (i = 1; i <= len; i++)
4240                                         end[i] = dtrace_load8((uintptr_t)s++);
4241                                 break;
4242                         }
4243                 }
4244
4245                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4246                         ddi_node_state_t devi_state;
4247
4248                         devi_state = dtrace_load32(daddr +
4249                             offsetof(struct dev_info, devi_node_state));
4250
4251                         if (*flags & CPU_DTRACE_FAULT)
4252                                 break;
4253
4254                         if (devi_state >= DS_INITIALIZED) {
4255                                 s = (char *)dtrace_loadptr(daddr +
4256                                     offsetof(struct dev_info, devi_addr));
4257                                 len = dtrace_strlen(s, size);
4258
4259                                 if (*flags & CPU_DTRACE_FAULT)
4260                                         break;
4261
4262                                 if (len != 0) {
4263                                         if ((end -= (len + 1)) < start)
4264                                                 break;
4265
4266                                         *end = '@';
4267                                 }
4268
4269                                 for (i = 1; i <= len; i++)
4270                                         end[i] = dtrace_load8((uintptr_t)s++);
4271                         }
4272
4273                         /*
4274                          * Now for the node name...
4275                          */
4276                         s = (char *)dtrace_loadptr(daddr +
4277                             offsetof(struct dev_info, devi_node_name));
4278
4279                         daddr = dtrace_loadptr(daddr +
4280                             offsetof(struct dev_info, devi_parent));
4281
4282                         /*
4283                          * If our parent is NULL (that is, if we're the root
4284                          * node), we're going to use the special path
4285                          * "devices".
4286                          */
4287                         if (daddr == 0)
4288                                 s = "devices";
4289
4290                         len = dtrace_strlen(s, size);
4291                         if (*flags & CPU_DTRACE_FAULT)
4292                                 break;
4293
4294                         if ((end -= (len + 1)) < start)
4295                                 break;
4296
4297                         for (i = 1; i <= len; i++)
4298                                 end[i] = dtrace_load8((uintptr_t)s++);
4299                         *end = '/';
4300
4301                         if (depth++ > dtrace_devdepth_max) {
4302                                 *flags |= CPU_DTRACE_ILLOP;
4303                                 break;
4304                         }
4305                 }
4306
4307                 if (end < start)
4308                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4309
4310                 if (daddr == 0) {
4311                         regs[rd] = (uintptr_t)end;
4312                         mstate->dtms_scratch_ptr += size;
4313                 }
4314
4315                 break;
4316         }
4317 #endif
4318
4319         case DIF_SUBR_STRJOIN: {
4320                 char *d = (char *)mstate->dtms_scratch_ptr;
4321                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4322                 uintptr_t s1 = tupregs[0].dttk_value;
4323                 uintptr_t s2 = tupregs[1].dttk_value;
4324                 int i = 0;
4325
4326                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4327                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4328                         regs[rd] = 0;
4329                         break;
4330                 }
4331
4332                 if (!DTRACE_INSCRATCH(mstate, size)) {
4333                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4334                         regs[rd] = 0;
4335                         break;
4336                 }
4337
4338                 for (;;) {
4339                         if (i >= size) {
4340                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4341                                 regs[rd] = 0;
4342                                 break;
4343                         }
4344
4345                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4346                                 i--;
4347                                 break;
4348                         }
4349                 }
4350
4351                 for (;;) {
4352                         if (i >= size) {
4353                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4354                                 regs[rd] = 0;
4355                                 break;
4356                         }
4357
4358                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4359                                 break;
4360                 }
4361
4362                 if (i < size) {
4363                         mstate->dtms_scratch_ptr += i;
4364                         regs[rd] = (uintptr_t)d;
4365                 }
4366
4367                 break;
4368         }
4369
4370         case DIF_SUBR_LLTOSTR: {
4371                 int64_t i = (int64_t)tupregs[0].dttk_value;
4372                 uint64_t val, digit;
4373                 uint64_t size = 65;     /* enough room for 2^64 in binary */
4374                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4375                 int base = 10;
4376
4377                 if (nargs > 1) {
4378                         if ((base = tupregs[1].dttk_value) <= 1 ||
4379                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4380                                 *flags |= CPU_DTRACE_ILLOP;
4381                                 break;
4382                         }
4383                 }
4384
4385                 val = (base == 10 && i < 0) ? i * -1 : i;
4386
4387                 if (!DTRACE_INSCRATCH(mstate, size)) {
4388                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4389                         regs[rd] = 0;
4390                         break;
4391                 }
4392
4393                 for (*end-- = '\0'; val; val /= base) {
4394                         if ((digit = val % base) <= '9' - '0') {
4395                                 *end-- = '0' + digit;
4396                         } else {
4397                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
4398                         }
4399                 }
4400
4401                 if (i == 0 && base == 16)
4402                         *end-- = '0';
4403
4404                 if (base == 16)
4405                         *end-- = 'x';
4406
4407                 if (i == 0 || base == 8 || base == 16)
4408                         *end-- = '0';
4409
4410                 if (i < 0 && base == 10)
4411                         *end-- = '-';
4412
4413                 regs[rd] = (uintptr_t)end + 1;
4414                 mstate->dtms_scratch_ptr += size;
4415                 break;
4416         }
4417
4418         case DIF_SUBR_HTONS:
4419         case DIF_SUBR_NTOHS:
4420 #if BYTE_ORDER == BIG_ENDIAN
4421                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4422 #else
4423                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4424 #endif
4425                 break;
4426
4427
4428         case DIF_SUBR_HTONL:
4429         case DIF_SUBR_NTOHL:
4430 #if BYTE_ORDER == BIG_ENDIAN
4431                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4432 #else
4433                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4434 #endif
4435                 break;
4436
4437
4438         case DIF_SUBR_HTONLL:
4439         case DIF_SUBR_NTOHLL:
4440 #if BYTE_ORDER == BIG_ENDIAN
4441                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4442 #else
4443                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4444 #endif
4445                 break;
4446
4447
4448         case DIF_SUBR_DIRNAME:
4449         case DIF_SUBR_BASENAME: {
4450                 char *dest = (char *)mstate->dtms_scratch_ptr;
4451                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4452                 uintptr_t src = tupregs[0].dttk_value;
4453                 int i, j, len = dtrace_strlen((char *)src, size);
4454                 int lastbase = -1, firstbase = -1, lastdir = -1;
4455                 int start, end;
4456
4457                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4458                         regs[rd] = 0;
4459                         break;
4460                 }
4461
4462                 if (!DTRACE_INSCRATCH(mstate, size)) {
4463                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4464                         regs[rd] = 0;
4465                         break;
4466                 }
4467
4468                 /*
4469                  * The basename and dirname for a zero-length string is
4470                  * defined to be "."
4471                  */
4472                 if (len == 0) {
4473                         len = 1;
4474                         src = (uintptr_t)".";
4475                 }
4476
4477                 /*
4478                  * Start from the back of the string, moving back toward the
4479                  * front until we see a character that isn't a slash.  That
4480                  * character is the last character in the basename.
4481                  */
4482                 for (i = len - 1; i >= 0; i--) {
4483                         if (dtrace_load8(src + i) != '/')
4484                                 break;
4485                 }
4486
4487                 if (i >= 0)
4488                         lastbase = i;
4489
4490                 /*
4491                  * Starting from the last character in the basename, move
4492                  * towards the front until we find a slash.  The character
4493                  * that we processed immediately before that is the first
4494                  * character in the basename.
4495                  */
4496                 for (; i >= 0; i--) {
4497                         if (dtrace_load8(src + i) == '/')
4498                                 break;
4499                 }
4500
4501                 if (i >= 0)
4502                         firstbase = i + 1;
4503
4504                 /*
4505                  * Now keep going until we find a non-slash character.  That
4506                  * character is the last character in the dirname.
4507                  */
4508                 for (; i >= 0; i--) {
4509                         if (dtrace_load8(src + i) != '/')
4510                                 break;
4511                 }
4512
4513                 if (i >= 0)
4514                         lastdir = i;
4515
4516                 ASSERT(!(lastbase == -1 && firstbase != -1));
4517                 ASSERT(!(firstbase == -1 && lastdir != -1));
4518
4519                 if (lastbase == -1) {
4520                         /*
4521                          * We didn't find a non-slash character.  We know that
4522                          * the length is non-zero, so the whole string must be
4523                          * slashes.  In either the dirname or the basename
4524                          * case, we return '/'.
4525                          */
4526                         ASSERT(firstbase == -1);
4527                         firstbase = lastbase = lastdir = 0;
4528                 }
4529
4530                 if (firstbase == -1) {
4531                         /*
4532                          * The entire string consists only of a basename
4533                          * component.  If we're looking for dirname, we need
4534                          * to change our string to be just "."; if we're
4535                          * looking for a basename, we'll just set the first
4536                          * character of the basename to be 0.
4537                          */
4538                         if (subr == DIF_SUBR_DIRNAME) {
4539                                 ASSERT(lastdir == -1);
4540                                 src = (uintptr_t)".";
4541                                 lastdir = 0;
4542                         } else {
4543                                 firstbase = 0;
4544                         }
4545                 }
4546
4547                 if (subr == DIF_SUBR_DIRNAME) {
4548                         if (lastdir == -1) {
4549                                 /*
4550                                  * We know that we have a slash in the name --
4551                                  * or lastdir would be set to 0, above.  And
4552                                  * because lastdir is -1, we know that this
4553                                  * slash must be the first character.  (That
4554                                  * is, the full string must be of the form
4555                                  * "/basename".)  In this case, the last
4556                                  * character of the directory name is 0.
4557                                  */
4558                                 lastdir = 0;
4559                         }
4560
4561                         start = 0;
4562                         end = lastdir;
4563                 } else {
4564                         ASSERT(subr == DIF_SUBR_BASENAME);
4565                         ASSERT(firstbase != -1 && lastbase != -1);
4566                         start = firstbase;
4567                         end = lastbase;
4568                 }
4569
4570                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4571                         dest[j] = dtrace_load8(src + i);
4572
4573                 dest[j] = '\0';
4574                 regs[rd] = (uintptr_t)dest;
4575                 mstate->dtms_scratch_ptr += size;
4576                 break;
4577         }
4578
4579         case DIF_SUBR_CLEANPATH: {
4580                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4581                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4582                 uintptr_t src = tupregs[0].dttk_value;
4583                 int i = 0, j = 0;
4584
4585                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4586                         regs[rd] = 0;
4587                         break;
4588                 }
4589
4590                 if (!DTRACE_INSCRATCH(mstate, size)) {
4591                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4592                         regs[rd] = 0;
4593                         break;
4594                 }
4595
4596                 /*
4597                  * Move forward, loading each character.
4598                  */
4599                 do {
4600                         c = dtrace_load8(src + i++);
4601 next:
4602                         if (j + 5 >= size)      /* 5 = strlen("/..c\0") */
4603                                 break;
4604
4605                         if (c != '/') {
4606                                 dest[j++] = c;
4607                                 continue;
4608                         }
4609
4610                         c = dtrace_load8(src + i++);
4611
4612                         if (c == '/') {
4613                                 /*
4614                                  * We have two slashes -- we can just advance
4615                                  * to the next character.
4616                                  */
4617                                 goto next;
4618                         }
4619
4620                         if (c != '.') {
4621                                 /*
4622                                  * This is not "." and it's not ".." -- we can
4623                                  * just store the "/" and this character and
4624                                  * drive on.
4625                                  */
4626                                 dest[j++] = '/';
4627                                 dest[j++] = c;
4628                                 continue;
4629                         }
4630
4631                         c = dtrace_load8(src + i++);
4632
4633                         if (c == '/') {
4634                                 /*
4635                                  * This is a "/./" component.  We're not going
4636                                  * to store anything in the destination buffer;
4637                                  * we're just going to go to the next component.
4638                                  */
4639                                 goto next;
4640                         }
4641
4642                         if (c != '.') {
4643                                 /*
4644                                  * This is not ".." -- we can just store the
4645                                  * "/." and this character and continue
4646                                  * processing.
4647                                  */
4648                                 dest[j++] = '/';
4649                                 dest[j++] = '.';
4650                                 dest[j++] = c;
4651                                 continue;
4652                         }
4653
4654                         c = dtrace_load8(src + i++);
4655
4656                         if (c != '/' && c != '\0') {
4657                                 /*
4658                                  * This is not ".." -- it's "..[mumble]".
4659                                  * We'll store the "/.." and this character
4660                                  * and continue processing.
4661                                  */
4662                                 dest[j++] = '/';
4663                                 dest[j++] = '.';
4664                                 dest[j++] = '.';
4665                                 dest[j++] = c;
4666                                 continue;
4667                         }
4668
4669                         /*
4670                          * This is "/../" or "/..\0".  We need to back up
4671                          * our destination pointer until we find a "/".
4672                          */
4673                         i--;
4674                         while (j != 0 && dest[--j] != '/')
4675                                 continue;
4676
4677                         if (c == '\0')
4678                                 dest[++j] = '/';
4679                 } while (c != '\0');
4680
4681                 dest[j] = '\0';
4682                 regs[rd] = (uintptr_t)dest;
4683                 mstate->dtms_scratch_ptr += size;
4684                 break;
4685         }
4686
4687         case DIF_SUBR_INET_NTOA:
4688         case DIF_SUBR_INET_NTOA6:
4689         case DIF_SUBR_INET_NTOP: {
4690                 size_t size;
4691                 int af, argi, i;
4692                 char *base, *end;
4693
4694                 if (subr == DIF_SUBR_INET_NTOP) {
4695                         af = (int)tupregs[0].dttk_value;
4696                         argi = 1;
4697                 } else {
4698                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4699                         argi = 0;
4700                 }
4701
4702                 if (af == AF_INET) {
4703                         ipaddr_t ip4;
4704                         uint8_t *ptr8, val;
4705
4706                         /*
4707                          * Safely load the IPv4 address.
4708                          */
4709                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
4710
4711                         /*
4712                          * Check an IPv4 string will fit in scratch.
4713                          */
4714                         size = INET_ADDRSTRLEN;
4715                         if (!DTRACE_INSCRATCH(mstate, size)) {
4716                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4717                                 regs[rd] = 0;
4718                                 break;
4719                         }
4720                         base = (char *)mstate->dtms_scratch_ptr;
4721                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4722
4723                         /*
4724                          * Stringify as a dotted decimal quad.
4725                          */
4726                         *end-- = '\0';
4727                         ptr8 = (uint8_t *)&ip4;
4728                         for (i = 3; i >= 0; i--) {
4729                                 val = ptr8[i];
4730
4731                                 if (val == 0) {
4732                                         *end-- = '0';
4733                                 } else {
4734                                         for (; val; val /= 10) {
4735                                                 *end-- = '0' + (val % 10);
4736                                         }
4737                                 }
4738
4739                                 if (i > 0)
4740                                         *end-- = '.';
4741                         }
4742                         ASSERT(end + 1 >= base);
4743
4744                 } else if (af == AF_INET6) {
4745                         struct in6_addr ip6;
4746                         int firstzero, tryzero, numzero, v6end;
4747                         uint16_t val;
4748                         const char digits[] = "0123456789abcdef";
4749
4750                         /*
4751                          * Stringify using RFC 1884 convention 2 - 16 bit
4752                          * hexadecimal values with a zero-run compression.
4753                          * Lower case hexadecimal digits are used.
4754                          *      eg, fe80::214:4fff:fe0b:76c8.
4755                          * The IPv4 embedded form is returned for inet_ntop,
4756                          * just the IPv4 string is returned for inet_ntoa6.
4757                          */
4758
4759                         /*
4760                          * Safely load the IPv6 address.
4761                          */
4762                         dtrace_bcopy(
4763                             (void *)(uintptr_t)tupregs[argi].dttk_value,
4764                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4765
4766                         /*
4767                          * Check an IPv6 string will fit in scratch.
4768                          */
4769                         size = INET6_ADDRSTRLEN;
4770                         if (!DTRACE_INSCRATCH(mstate, size)) {
4771                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4772                                 regs[rd] = 0;
4773                                 break;
4774                         }
4775                         base = (char *)mstate->dtms_scratch_ptr;
4776                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4777                         *end-- = '\0';
4778
4779                         /*
4780                          * Find the longest run of 16 bit zero values
4781                          * for the single allowed zero compression - "::".
4782                          */
4783                         firstzero = -1;
4784                         tryzero = -1;
4785                         numzero = 1;
4786                         for (i = 0; i < sizeof (struct in6_addr); i++) {
4787 #if defined(sun)
4788                                 if (ip6._S6_un._S6_u8[i] == 0 &&
4789 #else
4790                                 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4791 #endif
4792                                     tryzero == -1 && i % 2 == 0) {
4793                                         tryzero = i;
4794                                         continue;
4795                                 }
4796
4797                                 if (tryzero != -1 &&
4798 #if defined(sun)
4799                                     (ip6._S6_un._S6_u8[i] != 0 ||
4800 #else
4801                                     (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4802 #endif
4803                                     i == sizeof (struct in6_addr) - 1)) {
4804
4805                                         if (i - tryzero <= numzero) {
4806                                                 tryzero = -1;
4807                                                 continue;
4808                                         }
4809
4810                                         firstzero = tryzero;
4811                                         numzero = i - i % 2 - tryzero;
4812                                         tryzero = -1;
4813
4814 #if defined(sun)
4815                                         if (ip6._S6_un._S6_u8[i] == 0 &&
4816 #else
4817                                         if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4818 #endif
4819                                             i == sizeof (struct in6_addr) - 1)
4820                                                 numzero += 2;
4821                                 }
4822                         }
4823                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4824
4825                         /*
4826                          * Check for an IPv4 embedded address.
4827                          */
4828                         v6end = sizeof (struct in6_addr) - 2;
4829                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4830                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
4831                                 for (i = sizeof (struct in6_addr) - 1;
4832                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
4833                                         ASSERT(end >= base);
4834
4835 #if defined(sun)
4836                                         val = ip6._S6_un._S6_u8[i];
4837 #else
4838                                         val = ip6.__u6_addr.__u6_addr8[i];
4839 #endif
4840
4841                                         if (val == 0) {
4842                                                 *end-- = '0';
4843                                         } else {
4844                                                 for (; val; val /= 10) {
4845                                                         *end-- = '0' + val % 10;
4846                                                 }
4847                                         }
4848
4849                                         if (i > DTRACE_V4MAPPED_OFFSET)
4850                                                 *end-- = '.';
4851                                 }
4852
4853                                 if (subr == DIF_SUBR_INET_NTOA6)
4854                                         goto inetout;
4855
4856                                 /*
4857                                  * Set v6end to skip the IPv4 address that
4858                                  * we have already stringified.
4859                                  */
4860                                 v6end = 10;
4861                         }
4862
4863                         /*
4864                          * Build the IPv6 string by working through the
4865                          * address in reverse.
4866                          */
4867                         for (i = v6end; i >= 0; i -= 2) {
4868                                 ASSERT(end >= base);
4869
4870                                 if (i == firstzero + numzero - 2) {
4871                                         *end-- = ':';
4872                                         *end-- = ':';
4873                                         i -= numzero - 2;
4874                                         continue;
4875                                 }
4876
4877                                 if (i < 14 && i != firstzero - 2)
4878                                         *end-- = ':';
4879
4880 #if defined(sun)
4881                                 val = (ip6._S6_un._S6_u8[i] << 8) +
4882                                     ip6._S6_un._S6_u8[i + 1];
4883 #else
4884                                 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4885                                     ip6.__u6_addr.__u6_addr8[i + 1];
4886 #endif
4887
4888                                 if (val == 0) {
4889                                         *end-- = '0';
4890                                 } else {
4891                                         for (; val; val /= 16) {
4892                                                 *end-- = digits[val % 16];
4893                                         }
4894                                 }
4895                         }
4896                         ASSERT(end + 1 >= base);
4897
4898                 } else {
4899                         /*
4900                          * The user didn't use AH_INET or AH_INET6.
4901                          */
4902                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4903                         regs[rd] = 0;
4904                         break;
4905                 }
4906
4907 inetout:        regs[rd] = (uintptr_t)end + 1;
4908                 mstate->dtms_scratch_ptr += size;
4909                 break;
4910         }
4911
4912         case DIF_SUBR_MEMREF: {
4913                 uintptr_t size = 2 * sizeof(uintptr_t);
4914                 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4915                 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4916
4917                 /* address and length */
4918                 memref[0] = tupregs[0].dttk_value;
4919                 memref[1] = tupregs[1].dttk_value;
4920
4921                 regs[rd] = (uintptr_t) memref;
4922                 mstate->dtms_scratch_ptr += scratch_size;
4923                 break;
4924         }
4925
4926 #if !defined(sun)
4927         case DIF_SUBR_MEMSTR: {
4928                 char *str = (char *)mstate->dtms_scratch_ptr;
4929                 uintptr_t mem = tupregs[0].dttk_value;
4930                 char c = tupregs[1].dttk_value;
4931                 size_t size = tupregs[2].dttk_value;
4932                 uint8_t n;
4933                 int i;
4934
4935                 regs[rd] = 0;
4936
4937                 if (size == 0)
4938                         break;
4939
4940                 if (!dtrace_canload(mem, size - 1, mstate, vstate))
4941                         break;
4942
4943                 if (!DTRACE_INSCRATCH(mstate, size)) {
4944                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4945                         break;
4946                 }
4947
4948                 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
4949                         *flags |= CPU_DTRACE_ILLOP;
4950                         break;
4951                 }
4952
4953                 for (i = 0; i < size - 1; i++) {
4954                         n = dtrace_load8(mem++);
4955                         str[i] = (n == 0) ? c : n;
4956                 }
4957                 str[size - 1] = 0;
4958
4959                 regs[rd] = (uintptr_t)str;
4960                 mstate->dtms_scratch_ptr += size;
4961                 break;
4962         }
4963 #endif
4964
4965         case DIF_SUBR_TYPEREF: {
4966                 uintptr_t size = 4 * sizeof(uintptr_t);
4967                 uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4968                 size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4969
4970                 /* address, num_elements, type_str, type_len */
4971                 typeref[0] = tupregs[0].dttk_value;
4972                 typeref[1] = tupregs[1].dttk_value;
4973                 typeref[2] = tupregs[2].dttk_value;
4974                 typeref[3] = tupregs[3].dttk_value;
4975
4976                 regs[rd] = (uintptr_t) typeref;
4977                 mstate->dtms_scratch_ptr += scratch_size;
4978                 break;
4979         }
4980         }
4981 }
4982
4983 /*
4984  * Emulate the execution of DTrace IR instructions specified by the given
4985  * DIF object.  This function is deliberately void of assertions as all of
4986  * the necessary checks are handled by a call to dtrace_difo_validate().
4987  */
4988 static uint64_t
4989 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4990     dtrace_vstate_t *vstate, dtrace_state_t *state)
4991 {
4992         const dif_instr_t *text = difo->dtdo_buf;
4993         const uint_t textlen = difo->dtdo_len;
4994         const char *strtab = difo->dtdo_strtab;
4995         const uint64_t *inttab = difo->dtdo_inttab;
4996
4997         uint64_t rval = 0;
4998         dtrace_statvar_t *svar;
4999         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5000         dtrace_difv_t *v;
5001         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5002         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5003
5004         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5005         uint64_t regs[DIF_DIR_NREGS];
5006         uint64_t *tmp;
5007
5008         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5009         int64_t cc_r;
5010         uint_t pc = 0, id, opc = 0;
5011         uint8_t ttop = 0;
5012         dif_instr_t instr;
5013         uint_t r1, r2, rd;
5014
5015         /*
5016          * We stash the current DIF object into the machine state: we need it
5017          * for subsequent access checking.
5018          */
5019         mstate->dtms_difo = difo;
5020
5021         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
5022
5023         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5024                 opc = pc;
5025
5026                 instr = text[pc++];
5027                 r1 = DIF_INSTR_R1(instr);
5028                 r2 = DIF_INSTR_R2(instr);
5029                 rd = DIF_INSTR_RD(instr);
5030
5031                 switch (DIF_INSTR_OP(instr)) {
5032                 case DIF_OP_OR:
5033                         regs[rd] = regs[r1] | regs[r2];
5034                         break;
5035                 case DIF_OP_XOR:
5036                         regs[rd] = regs[r1] ^ regs[r2];
5037                         break;
5038                 case DIF_OP_AND:
5039                         regs[rd] = regs[r1] & regs[r2];
5040                         break;
5041                 case DIF_OP_SLL:
5042                         regs[rd] = regs[r1] << regs[r2];
5043                         break;
5044                 case DIF_OP_SRL:
5045                         regs[rd] = regs[r1] >> regs[r2];
5046                         break;
5047                 case DIF_OP_SUB:
5048                         regs[rd] = regs[r1] - regs[r2];
5049                         break;
5050                 case DIF_OP_ADD:
5051                         regs[rd] = regs[r1] + regs[r2];
5052                         break;
5053                 case DIF_OP_MUL:
5054                         regs[rd] = regs[r1] * regs[r2];
5055                         break;
5056                 case DIF_OP_SDIV:
5057                         if (regs[r2] == 0) {
5058                                 regs[rd] = 0;
5059                                 *flags |= CPU_DTRACE_DIVZERO;
5060                         } else {
5061                                 regs[rd] = (int64_t)regs[r1] /
5062                                     (int64_t)regs[r2];
5063                         }
5064                         break;
5065
5066                 case DIF_OP_UDIV:
5067                         if (regs[r2] == 0) {
5068                                 regs[rd] = 0;
5069                                 *flags |= CPU_DTRACE_DIVZERO;
5070                         } else {
5071                                 regs[rd] = regs[r1] / regs[r2];
5072                         }
5073                         break;
5074
5075                 case DIF_OP_SREM:
5076                         if (regs[r2] == 0) {
5077                                 regs[rd] = 0;
5078                                 *flags |= CPU_DTRACE_DIVZERO;
5079                         } else {
5080                                 regs[rd] = (int64_t)regs[r1] %
5081                                     (int64_t)regs[r2];
5082                         }
5083                         break;
5084
5085                 case DIF_OP_UREM:
5086                         if (regs[r2] == 0) {
5087                                 regs[rd] = 0;
5088                                 *flags |= CPU_DTRACE_DIVZERO;
5089                         } else {
5090                                 regs[rd] = regs[r1] % regs[r2];
5091                         }
5092                         break;
5093
5094                 case DIF_OP_NOT:
5095                         regs[rd] = ~regs[r1];
5096                         break;
5097                 case DIF_OP_MOV:
5098                         regs[rd] = regs[r1];
5099                         break;
5100                 case DIF_OP_CMP:
5101                         cc_r = regs[r1] - regs[r2];
5102                         cc_n = cc_r < 0;
5103                         cc_z = cc_r == 0;
5104                         cc_v = 0;
5105                         cc_c = regs[r1] < regs[r2];
5106                         break;
5107                 case DIF_OP_TST:
5108                         cc_n = cc_v = cc_c = 0;
5109                         cc_z = regs[r1] == 0;
5110                         break;
5111                 case DIF_OP_BA:
5112                         pc = DIF_INSTR_LABEL(instr);
5113                         break;
5114                 case DIF_OP_BE:
5115                         if (cc_z)
5116                                 pc = DIF_INSTR_LABEL(instr);
5117                         break;
5118                 case DIF_OP_BNE:
5119                         if (cc_z == 0)
5120                                 pc = DIF_INSTR_LABEL(instr);
5121                         break;
5122                 case DIF_OP_BG:
5123                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5124                                 pc = DIF_INSTR_LABEL(instr);
5125                         break;
5126                 case DIF_OP_BGU:
5127                         if ((cc_c | cc_z) == 0)
5128                                 pc = DIF_INSTR_LABEL(instr);
5129                         break;
5130                 case DIF_OP_BGE:
5131                         if ((cc_n ^ cc_v) == 0)
5132                                 pc = DIF_INSTR_LABEL(instr);
5133                         break;
5134                 case DIF_OP_BGEU:
5135                         if (cc_c == 0)
5136                                 pc = DIF_INSTR_LABEL(instr);
5137                         break;
5138                 case DIF_OP_BL:
5139                         if (cc_n ^ cc_v)
5140                                 pc = DIF_INSTR_LABEL(instr);
5141                         break;
5142                 case DIF_OP_BLU:
5143                         if (cc_c)
5144                                 pc = DIF_INSTR_LABEL(instr);
5145                         break;
5146                 case DIF_OP_BLE:
5147                         if (cc_z | (cc_n ^ cc_v))
5148                                 pc = DIF_INSTR_LABEL(instr);
5149                         break;
5150                 case DIF_OP_BLEU:
5151                         if (cc_c | cc_z)
5152                                 pc = DIF_INSTR_LABEL(instr);
5153                         break;
5154                 case DIF_OP_RLDSB:
5155                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5156                                 *flags |= CPU_DTRACE_KPRIV;
5157                                 *illval = regs[r1];
5158                                 break;
5159                         }
5160                         /*FALLTHROUGH*/
5161                 case DIF_OP_LDSB:
5162                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5163                         break;
5164                 case DIF_OP_RLDSH:
5165                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5166                                 *flags |= CPU_DTRACE_KPRIV;
5167                                 *illval = regs[r1];
5168                                 break;
5169                         }
5170                         /*FALLTHROUGH*/
5171                 case DIF_OP_LDSH:
5172                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5173                         break;
5174                 case DIF_OP_RLDSW:
5175                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5176                                 *flags |= CPU_DTRACE_KPRIV;
5177                                 *illval = regs[r1];
5178                                 break;
5179                         }
5180                         /*FALLTHROUGH*/
5181                 case DIF_OP_LDSW:
5182                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5183                         break;
5184                 case DIF_OP_RLDUB:
5185                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5186                                 *flags |= CPU_DTRACE_KPRIV;
5187                                 *illval = regs[r1];
5188                                 break;
5189                         }
5190                         /*FALLTHROUGH*/
5191                 case DIF_OP_LDUB:
5192                         regs[rd] = dtrace_load8(regs[r1]);
5193                         break;
5194                 case DIF_OP_RLDUH:
5195                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5196                                 *flags |= CPU_DTRACE_KPRIV;
5197                                 *illval = regs[r1];
5198                                 break;
5199                         }
5200                         /*FALLTHROUGH*/
5201                 case DIF_OP_LDUH:
5202                         regs[rd] = dtrace_load16(regs[r1]);
5203                         break;
5204                 case DIF_OP_RLDUW:
5205                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5206                                 *flags |= CPU_DTRACE_KPRIV;
5207                                 *illval = regs[r1];
5208                                 break;
5209                         }
5210                         /*FALLTHROUGH*/
5211                 case DIF_OP_LDUW:
5212                         regs[rd] = dtrace_load32(regs[r1]);
5213                         break;
5214                 case DIF_OP_RLDX:
5215                         if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5216                                 *flags |= CPU_DTRACE_KPRIV;
5217                                 *illval = regs[r1];
5218                                 break;
5219                         }
5220                         /*FALLTHROUGH*/
5221                 case DIF_OP_LDX:
5222                         regs[rd] = dtrace_load64(regs[r1]);
5223                         break;
5224                 case DIF_OP_ULDSB:
5225                         regs[rd] = (int8_t)
5226                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5227                         break;
5228                 case DIF_OP_ULDSH:
5229                         regs[rd] = (int16_t)
5230                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5231                         break;
5232                 case DIF_OP_ULDSW:
5233                         regs[rd] = (int32_t)
5234                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5235                         break;
5236                 case DIF_OP_ULDUB:
5237                         regs[rd] =
5238                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5239                         break;
5240                 case DIF_OP_ULDUH:
5241                         regs[rd] =
5242                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5243                         break;
5244                 case DIF_OP_ULDUW:
5245                         regs[rd] =
5246                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5247                         break;
5248                 case DIF_OP_ULDX:
5249                         regs[rd] =
5250                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5251                         break;
5252                 case DIF_OP_RET:
5253                         rval = regs[rd];
5254                         pc = textlen;
5255                         break;
5256                 case DIF_OP_NOP:
5257                         break;
5258                 case DIF_OP_SETX:
5259                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5260                         break;
5261                 case DIF_OP_SETS:
5262                         regs[rd] = (uint64_t)(uintptr_t)
5263                             (strtab + DIF_INSTR_STRING(instr));
5264                         break;
5265                 case DIF_OP_SCMP: {
5266                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5267                         uintptr_t s1 = regs[r1];
5268                         uintptr_t s2 = regs[r2];
5269
5270                         if (s1 != 0 &&
5271                             !dtrace_strcanload(s1, sz, mstate, vstate))
5272                                 break;
5273                         if (s2 != 0 &&
5274                             !dtrace_strcanload(s2, sz, mstate, vstate))
5275                                 break;
5276
5277                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5278
5279                         cc_n = cc_r < 0;
5280                         cc_z = cc_r == 0;
5281                         cc_v = cc_c = 0;
5282                         break;
5283                 }
5284                 case DIF_OP_LDGA:
5285                         regs[rd] = dtrace_dif_variable(mstate, state,
5286                             r1, regs[r2]);
5287                         break;
5288                 case DIF_OP_LDGS:
5289                         id = DIF_INSTR_VAR(instr);
5290
5291                         if (id >= DIF_VAR_OTHER_UBASE) {
5292                                 uintptr_t a;
5293
5294                                 id -= DIF_VAR_OTHER_UBASE;
5295                                 svar = vstate->dtvs_globals[id];
5296                                 ASSERT(svar != NULL);
5297                                 v = &svar->dtsv_var;
5298
5299                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5300                                         regs[rd] = svar->dtsv_data;
5301                                         break;
5302                                 }
5303
5304                                 a = (uintptr_t)svar->dtsv_data;
5305
5306                                 if (*(uint8_t *)a == UINT8_MAX) {
5307                                         /*
5308                                          * If the 0th byte is set to UINT8_MAX
5309                                          * then this is to be treated as a
5310                                          * reference to a NULL variable.
5311                                          */
5312                                         regs[rd] = 0;
5313                                 } else {
5314                                         regs[rd] = a + sizeof (uint64_t);
5315                                 }
5316
5317                                 break;
5318                         }
5319
5320                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5321                         break;
5322
5323                 case DIF_OP_STGS:
5324                         id = DIF_INSTR_VAR(instr);
5325
5326                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5327                         id -= DIF_VAR_OTHER_UBASE;
5328
5329                         svar = vstate->dtvs_globals[id];
5330                         ASSERT(svar != NULL);
5331                         v = &svar->dtsv_var;
5332
5333                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5334                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5335
5336                                 ASSERT(a != 0);
5337                                 ASSERT(svar->dtsv_size != 0);
5338
5339                                 if (regs[rd] == 0) {
5340                                         *(uint8_t *)a = UINT8_MAX;
5341                                         break;
5342                                 } else {
5343                                         *(uint8_t *)a = 0;
5344                                         a += sizeof (uint64_t);
5345                                 }
5346                                 if (!dtrace_vcanload(
5347                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5348                                     mstate, vstate))
5349                                         break;
5350
5351                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5352                                     (void *)a, &v->dtdv_type);
5353                                 break;
5354                         }
5355
5356                         svar->dtsv_data = regs[rd];
5357                         break;
5358
5359                 case DIF_OP_LDTA:
5360                         /*
5361                          * There are no DTrace built-in thread-local arrays at
5362                          * present.  This opcode is saved for future work.
5363                          */
5364                         *flags |= CPU_DTRACE_ILLOP;
5365                         regs[rd] = 0;
5366                         break;
5367
5368                 case DIF_OP_LDLS:
5369                         id = DIF_INSTR_VAR(instr);
5370
5371                         if (id < DIF_VAR_OTHER_UBASE) {
5372                                 /*
5373                                  * For now, this has no meaning.
5374                                  */
5375                                 regs[rd] = 0;
5376                                 break;
5377                         }
5378
5379                         id -= DIF_VAR_OTHER_UBASE;
5380
5381                         ASSERT(id < vstate->dtvs_nlocals);
5382                         ASSERT(vstate->dtvs_locals != NULL);
5383
5384                         svar = vstate->dtvs_locals[id];
5385                         ASSERT(svar != NULL);
5386                         v = &svar->dtsv_var;
5387
5388                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5389                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5390                                 size_t sz = v->dtdv_type.dtdt_size;
5391
5392                                 sz += sizeof (uint64_t);
5393                                 ASSERT(svar->dtsv_size == NCPU * sz);
5394                                 a += curcpu * sz;
5395
5396                                 if (*(uint8_t *)a == UINT8_MAX) {
5397                                         /*
5398                                          * If the 0th byte is set to UINT8_MAX
5399                                          * then this is to be treated as a
5400                                          * reference to a NULL variable.
5401                                          */
5402                                         regs[rd] = 0;
5403                                 } else {
5404                                         regs[rd] = a + sizeof (uint64_t);
5405                                 }
5406
5407                                 break;
5408                         }
5409
5410                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5411                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5412                         regs[rd] = tmp[curcpu];
5413                         break;
5414
5415                 case DIF_OP_STLS:
5416                         id = DIF_INSTR_VAR(instr);
5417
5418                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5419                         id -= DIF_VAR_OTHER_UBASE;
5420                         ASSERT(id < vstate->dtvs_nlocals);
5421
5422                         ASSERT(vstate->dtvs_locals != NULL);
5423                         svar = vstate->dtvs_locals[id];
5424                         ASSERT(svar != NULL);
5425                         v = &svar->dtsv_var;
5426
5427                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5428                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5429                                 size_t sz = v->dtdv_type.dtdt_size;
5430
5431                                 sz += sizeof (uint64_t);
5432                                 ASSERT(svar->dtsv_size == NCPU * sz);
5433                                 a += curcpu * sz;
5434
5435                                 if (regs[rd] == 0) {
5436                                         *(uint8_t *)a = UINT8_MAX;
5437                                         break;
5438                                 } else {
5439                                         *(uint8_t *)a = 0;
5440                                         a += sizeof (uint64_t);
5441                                 }
5442
5443                                 if (!dtrace_vcanload(
5444                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5445                                     mstate, vstate))
5446                                         break;
5447
5448                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5449                                     (void *)a, &v->dtdv_type);
5450                                 break;
5451                         }
5452
5453                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5454                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5455                         tmp[curcpu] = regs[rd];
5456                         break;
5457
5458                 case DIF_OP_LDTS: {
5459                         dtrace_dynvar_t *dvar;
5460                         dtrace_key_t *key;
5461
5462                         id = DIF_INSTR_VAR(instr);
5463                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5464                         id -= DIF_VAR_OTHER_UBASE;
5465                         v = &vstate->dtvs_tlocals[id];
5466
5467                         key = &tupregs[DIF_DTR_NREGS];
5468                         key[0].dttk_value = (uint64_t)id;
5469                         key[0].dttk_size = 0;
5470                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5471                         key[1].dttk_size = 0;
5472
5473                         dvar = dtrace_dynvar(dstate, 2, key,
5474                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5475                             mstate, vstate);
5476
5477                         if (dvar == NULL) {
5478                                 regs[rd] = 0;
5479                                 break;
5480                         }
5481
5482                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5483                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5484                         } else {
5485                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5486                         }
5487
5488                         break;
5489                 }
5490
5491                 case DIF_OP_STTS: {
5492                         dtrace_dynvar_t *dvar;
5493                         dtrace_key_t *key;
5494
5495                         id = DIF_INSTR_VAR(instr);
5496                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5497                         id -= DIF_VAR_OTHER_UBASE;
5498
5499                         key = &tupregs[DIF_DTR_NREGS];
5500                         key[0].dttk_value = (uint64_t)id;
5501                         key[0].dttk_size = 0;
5502                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5503                         key[1].dttk_size = 0;
5504                         v = &vstate->dtvs_tlocals[id];
5505
5506                         dvar = dtrace_dynvar(dstate, 2, key,
5507                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5508                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5509                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5510                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5511
5512                         /*
5513                          * Given that we're storing to thread-local data,
5514                          * we need to flush our predicate cache.
5515                          */
5516                         curthread->t_predcache = 0;
5517
5518                         if (dvar == NULL)
5519                                 break;
5520
5521                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5522                                 if (!dtrace_vcanload(
5523                                     (void *)(uintptr_t)regs[rd],
5524                                     &v->dtdv_type, mstate, vstate))
5525                                         break;
5526
5527                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5528                                     dvar->dtdv_data, &v->dtdv_type);
5529                         } else {
5530                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5531                         }
5532
5533                         break;
5534                 }
5535
5536                 case DIF_OP_SRA:
5537                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
5538                         break;
5539
5540                 case DIF_OP_CALL:
5541                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5542                             regs, tupregs, ttop, mstate, state);
5543                         break;
5544
5545                 case DIF_OP_PUSHTR:
5546                         if (ttop == DIF_DTR_NREGS) {
5547                                 *flags |= CPU_DTRACE_TUPOFLOW;
5548                                 break;
5549                         }
5550
5551                         if (r1 == DIF_TYPE_STRING) {
5552                                 /*
5553                                  * If this is a string type and the size is 0,
5554                                  * we'll use the system-wide default string
5555                                  * size.  Note that we are _not_ looking at
5556                                  * the value of the DTRACEOPT_STRSIZE option;
5557                                  * had this been set, we would expect to have
5558                                  * a non-zero size value in the "pushtr".
5559                                  */
5560                                 tupregs[ttop].dttk_size =
5561                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
5562                                     regs[r2] ? regs[r2] :
5563                                     dtrace_strsize_default) + 1;
5564                         } else {
5565                                 tupregs[ttop].dttk_size = regs[r2];
5566                         }
5567
5568                         tupregs[ttop++].dttk_value = regs[rd];
5569                         break;
5570
5571                 case DIF_OP_PUSHTV:
5572                         if (ttop == DIF_DTR_NREGS) {
5573                                 *flags |= CPU_DTRACE_TUPOFLOW;
5574                                 break;
5575                         }
5576
5577                         tupregs[ttop].dttk_value = regs[rd];
5578                         tupregs[ttop++].dttk_size = 0;
5579                         break;
5580
5581                 case DIF_OP_POPTS:
5582                         if (ttop != 0)
5583                                 ttop--;
5584                         break;
5585
5586                 case DIF_OP_FLUSHTS:
5587                         ttop = 0;
5588                         break;
5589
5590                 case DIF_OP_LDGAA:
5591                 case DIF_OP_LDTAA: {
5592                         dtrace_dynvar_t *dvar;
5593                         dtrace_key_t *key = tupregs;
5594                         uint_t nkeys = ttop;
5595
5596                         id = DIF_INSTR_VAR(instr);
5597                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5598                         id -= DIF_VAR_OTHER_UBASE;
5599
5600                         key[nkeys].dttk_value = (uint64_t)id;
5601                         key[nkeys++].dttk_size = 0;
5602
5603                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5604                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5605                                 key[nkeys++].dttk_size = 0;
5606                                 v = &vstate->dtvs_tlocals[id];
5607                         } else {
5608                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5609                         }
5610
5611                         dvar = dtrace_dynvar(dstate, nkeys, key,
5612                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5613                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5614                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5615
5616                         if (dvar == NULL) {
5617                                 regs[rd] = 0;
5618                                 break;
5619                         }
5620
5621                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5622                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5623                         } else {
5624                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5625                         }
5626
5627                         break;
5628                 }
5629
5630                 case DIF_OP_STGAA:
5631                 case DIF_OP_STTAA: {
5632                         dtrace_dynvar_t *dvar;
5633                         dtrace_key_t *key = tupregs;
5634                         uint_t nkeys = ttop;
5635
5636                         id = DIF_INSTR_VAR(instr);
5637                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5638                         id -= DIF_VAR_OTHER_UBASE;
5639
5640                         key[nkeys].dttk_value = (uint64_t)id;
5641                         key[nkeys++].dttk_size = 0;
5642
5643                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5644                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5645                                 key[nkeys++].dttk_size = 0;
5646                                 v = &vstate->dtvs_tlocals[id];
5647                         } else {
5648                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5649                         }
5650
5651                         dvar = dtrace_dynvar(dstate, nkeys, key,
5652                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5653                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5654                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5655                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5656
5657                         if (dvar == NULL)
5658                                 break;
5659
5660                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5661                                 if (!dtrace_vcanload(
5662                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5663                                     mstate, vstate))
5664                                         break;
5665
5666                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5667                                     dvar->dtdv_data, &v->dtdv_type);
5668                         } else {
5669                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5670                         }
5671
5672                         break;
5673                 }
5674
5675                 case DIF_OP_ALLOCS: {
5676                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5677                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5678
5679                         /*
5680                          * Rounding up the user allocation size could have
5681                          * overflowed large, bogus allocations (like -1ULL) to
5682                          * 0.
5683                          */
5684                         if (size < regs[r1] ||
5685                             !DTRACE_INSCRATCH(mstate, size)) {
5686                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5687                                 regs[rd] = 0;
5688                                 break;
5689                         }
5690
5691                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5692                         mstate->dtms_scratch_ptr += size;
5693                         regs[rd] = ptr;
5694                         break;
5695                 }
5696
5697                 case DIF_OP_COPYS:
5698                         if (!dtrace_canstore(regs[rd], regs[r2],
5699                             mstate, vstate)) {
5700                                 *flags |= CPU_DTRACE_BADADDR;
5701                                 *illval = regs[rd];
5702                                 break;
5703                         }
5704
5705                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5706                                 break;
5707
5708                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
5709                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5710                         break;
5711
5712                 case DIF_OP_STB:
5713                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5714                                 *flags |= CPU_DTRACE_BADADDR;
5715                                 *illval = regs[rd];
5716                                 break;
5717                         }
5718                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5719                         break;
5720
5721                 case DIF_OP_STH:
5722                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5723                                 *flags |= CPU_DTRACE_BADADDR;
5724                                 *illval = regs[rd];
5725                                 break;
5726                         }
5727                         if (regs[rd] & 1) {
5728                                 *flags |= CPU_DTRACE_BADALIGN;
5729                                 *illval = regs[rd];
5730                                 break;
5731                         }
5732                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5733                         break;
5734
5735                 case DIF_OP_STW:
5736                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5737                                 *flags |= CPU_DTRACE_BADADDR;
5738                                 *illval = regs[rd];
5739                                 break;
5740                         }
5741                         if (regs[rd] & 3) {
5742                                 *flags |= CPU_DTRACE_BADALIGN;
5743                                 *illval = regs[rd];
5744                                 break;
5745                         }
5746                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5747                         break;
5748
5749                 case DIF_OP_STX:
5750                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5751                                 *flags |= CPU_DTRACE_BADADDR;
5752                                 *illval = regs[rd];
5753                                 break;
5754                         }
5755                         if (regs[rd] & 7) {
5756                                 *flags |= CPU_DTRACE_BADALIGN;
5757                                 *illval = regs[rd];
5758                                 break;
5759                         }
5760                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5761                         break;
5762                 }
5763         }
5764
5765         if (!(*flags & CPU_DTRACE_FAULT))
5766                 return (rval);
5767
5768         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5769         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5770
5771         return (0);
5772 }
5773
5774 static void
5775 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5776 {
5777         dtrace_probe_t *probe = ecb->dte_probe;
5778         dtrace_provider_t *prov = probe->dtpr_provider;
5779         char c[DTRACE_FULLNAMELEN + 80], *str;
5780         char *msg = "dtrace: breakpoint action at probe ";
5781         char *ecbmsg = " (ecb ";
5782         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5783         uintptr_t val = (uintptr_t)ecb;
5784         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5785
5786         if (dtrace_destructive_disallow)
5787                 return;
5788
5789         /*
5790          * It's impossible to be taking action on the NULL probe.
5791          */
5792         ASSERT(probe != NULL);
5793
5794         /*
5795          * This is a poor man's (destitute man's?) sprintf():  we want to
5796          * print the provider name, module name, function name and name of
5797          * the probe, along with the hex address of the ECB with the breakpoint
5798          * action -- all of which we must place in the character buffer by
5799          * hand.
5800          */
5801         while (*msg != '\0')
5802                 c[i++] = *msg++;
5803
5804         for (str = prov->dtpv_name; *str != '\0'; str++)
5805                 c[i++] = *str;
5806         c[i++] = ':';
5807
5808         for (str = probe->dtpr_mod; *str != '\0'; str++)
5809                 c[i++] = *str;
5810         c[i++] = ':';
5811
5812         for (str = probe->dtpr_func; *str != '\0'; str++)
5813                 c[i++] = *str;
5814         c[i++] = ':';
5815
5816         for (str = probe->dtpr_name; *str != '\0'; str++)
5817                 c[i++] = *str;
5818
5819         while (*ecbmsg != '\0')
5820                 c[i++] = *ecbmsg++;
5821
5822         while (shift >= 0) {
5823                 mask = (uintptr_t)0xf << shift;
5824
5825                 if (val >= ((uintptr_t)1 << shift))
5826                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5827                 shift -= 4;
5828         }
5829
5830         c[i++] = ')';
5831         c[i] = '\0';
5832
5833 #if defined(sun)
5834         debug_enter(c);
5835 #else
5836         kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5837 #endif
5838 }
5839
5840 static void
5841 dtrace_action_panic(dtrace_ecb_t *ecb)
5842 {
5843         dtrace_probe_t *probe = ecb->dte_probe;
5844
5845         /*
5846          * It's impossible to be taking action on the NULL probe.
5847          */
5848         ASSERT(probe != NULL);
5849
5850         if (dtrace_destructive_disallow)
5851                 return;
5852
5853         if (dtrace_panicked != NULL)
5854                 return;
5855
5856         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5857                 return;
5858
5859         /*
5860          * We won the right to panic.  (We want to be sure that only one
5861          * thread calls panic() from dtrace_probe(), and that panic() is
5862          * called exactly once.)
5863          */
5864         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5865             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5866             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5867 }
5868
5869 static void
5870 dtrace_action_raise(uint64_t sig)
5871 {
5872         if (dtrace_destructive_disallow)
5873                 return;
5874
5875         if (sig >= NSIG) {
5876                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5877                 return;
5878         }
5879
5880 #if defined(sun)
5881         /*
5882          * raise() has a queue depth of 1 -- we ignore all subsequent
5883          * invocations of the raise() action.
5884          */
5885         if (curthread->t_dtrace_sig == 0)
5886                 curthread->t_dtrace_sig = (uint8_t)sig;
5887
5888         curthread->t_sig_check = 1;
5889         aston(curthread);
5890 #else
5891         struct proc *p = curproc;
5892         PROC_LOCK(p);
5893         kern_psignal(p, sig);
5894         PROC_UNLOCK(p);
5895 #endif
5896 }
5897
5898 static void
5899 dtrace_action_stop(void)
5900 {
5901         if (dtrace_destructive_disallow)
5902                 return;
5903
5904 #if defined(sun)
5905         if (!curthread->t_dtrace_stop) {
5906                 curthread->t_dtrace_stop = 1;
5907                 curthread->t_sig_check = 1;
5908                 aston(curthread);
5909         }
5910 #else
5911         struct proc *p = curproc;
5912         PROC_LOCK(p);
5913         kern_psignal(p, SIGSTOP);
5914         PROC_UNLOCK(p);
5915 #endif
5916 }
5917
5918 static void
5919 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5920 {
5921         hrtime_t now;
5922         volatile uint16_t *flags;
5923 #if defined(sun)
5924         cpu_t *cpu = CPU;
5925 #else
5926         cpu_t *cpu = &solaris_cpu[curcpu];
5927 #endif
5928
5929         if (dtrace_destructive_disallow)
5930                 return;
5931
5932         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5933
5934         now = dtrace_gethrtime();
5935
5936         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5937                 /*
5938                  * We need to advance the mark to the current time.
5939                  */
5940                 cpu->cpu_dtrace_chillmark = now;
5941                 cpu->cpu_dtrace_chilled = 0;
5942         }
5943
5944         /*
5945          * Now check to see if the requested chill time would take us over
5946          * the maximum amount of time allowed in the chill interval.  (Or
5947          * worse, if the calculation itself induces overflow.)
5948          */
5949         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5950             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5951                 *flags |= CPU_DTRACE_ILLOP;
5952                 return;
5953         }
5954
5955         while (dtrace_gethrtime() - now < val)
5956                 continue;
5957
5958         /*
5959          * Normally, we assure that the value of the variable "timestamp" does
5960          * not change within an ECB.  The presence of chill() represents an
5961          * exception to this rule, however.
5962          */
5963         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5964         cpu->cpu_dtrace_chilled += val;
5965 }
5966
5967 static void
5968 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5969     uint64_t *buf, uint64_t arg)
5970 {
5971         int nframes = DTRACE_USTACK_NFRAMES(arg);
5972         int strsize = DTRACE_USTACK_STRSIZE(arg);
5973         uint64_t *pcs = &buf[1], *fps;
5974         char *str = (char *)&pcs[nframes];
5975         int size, offs = 0, i, j;
5976         uintptr_t old = mstate->dtms_scratch_ptr, saved;
5977         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5978         char *sym;
5979
5980         /*
5981          * Should be taking a faster path if string space has not been
5982          * allocated.
5983          */
5984         ASSERT(strsize != 0);
5985
5986         /*
5987          * We will first allocate some temporary space for the frame pointers.
5988          */
5989         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5990         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5991             (nframes * sizeof (uint64_t));
5992
5993         if (!DTRACE_INSCRATCH(mstate, size)) {
5994                 /*
5995                  * Not enough room for our frame pointers -- need to indicate
5996                  * that we ran out of scratch space.
5997                  */
5998                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5999                 return;
6000         }
6001
6002         mstate->dtms_scratch_ptr += size;
6003         saved = mstate->dtms_scratch_ptr;
6004
6005         /*
6006          * Now get a stack with both program counters and frame pointers.
6007          */
6008         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6009         dtrace_getufpstack(buf, fps, nframes + 1);
6010         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6011
6012         /*
6013          * If that faulted, we're cooked.
6014          */
6015         if (*flags & CPU_DTRACE_FAULT)
6016                 goto out;
6017
6018         /*
6019          * Now we want to walk up the stack, calling the USTACK helper.  For
6020          * each iteration, we restore the scratch pointer.
6021          */
6022         for (i = 0; i < nframes; i++) {
6023                 mstate->dtms_scratch_ptr = saved;
6024
6025                 if (offs >= strsize)
6026                         break;
6027
6028                 sym = (char *)(uintptr_t)dtrace_helper(
6029                     DTRACE_HELPER_ACTION_USTACK,
6030                     mstate, state, pcs[i], fps[i]);
6031
6032                 /*
6033                  * If we faulted while running the helper, we're going to
6034                  * clear the fault and null out the corresponding string.
6035                  */
6036                 if (*flags & CPU_DTRACE_FAULT) {
6037                         *flags &= ~CPU_DTRACE_FAULT;
6038                         str[offs++] = '\0';
6039                         continue;
6040                 }
6041
6042                 if (sym == NULL) {
6043                         str[offs++] = '\0';
6044                         continue;
6045                 }
6046
6047                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6048
6049                 /*
6050                  * Now copy in the string that the helper returned to us.
6051                  */
6052                 for (j = 0; offs + j < strsize; j++) {
6053                         if ((str[offs + j] = sym[j]) == '\0')
6054                                 break;
6055                 }
6056
6057                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6058
6059                 offs += j + 1;
6060         }
6061
6062         if (offs >= strsize) {
6063                 /*
6064                  * If we didn't have room for all of the strings, we don't
6065                  * abort processing -- this needn't be a fatal error -- but we
6066                  * still want to increment a counter (dts_stkstroverflows) to
6067                  * allow this condition to be warned about.  (If this is from
6068                  * a jstack() action, it is easily tuned via jstackstrsize.)
6069                  */
6070                 dtrace_error(&state->dts_stkstroverflows);
6071         }
6072
6073         while (offs < strsize)
6074                 str[offs++] = '\0';
6075
6076 out:
6077         mstate->dtms_scratch_ptr = old;
6078 }
6079
6080 /*
6081  * If you're looking for the epicenter of DTrace, you just found it.  This
6082  * is the function called by the provider to fire a probe -- from which all
6083  * subsequent probe-context DTrace activity emanates.
6084  */
6085 void
6086 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6087     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6088 {
6089         processorid_t cpuid;
6090         dtrace_icookie_t cookie;
6091         dtrace_probe_t *probe;
6092         dtrace_mstate_t mstate;
6093         dtrace_ecb_t *ecb;
6094         dtrace_action_t *act;
6095         intptr_t offs;
6096         size_t size;
6097         int vtime, onintr;
6098         volatile uint16_t *flags;
6099         hrtime_t now;
6100
6101         if (panicstr != NULL)
6102                 return;
6103
6104 #if defined(sun)
6105         /*
6106          * Kick out immediately if this CPU is still being born (in which case
6107          * curthread will be set to -1) or the current thread can't allow
6108          * probes in its current context.
6109          */
6110         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6111                 return;
6112 #endif
6113
6114         cookie = dtrace_interrupt_disable();
6115         probe = dtrace_probes[id - 1];
6116         cpuid = curcpu;
6117         onintr = CPU_ON_INTR(CPU);
6118
6119         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6120             probe->dtpr_predcache == curthread->t_predcache) {
6121                 /*
6122                  * We have hit in the predicate cache; we know that
6123                  * this predicate would evaluate to be false.
6124                  */
6125                 dtrace_interrupt_enable(cookie);
6126                 return;
6127         }
6128
6129 #if defined(sun)
6130         if (panic_quiesce) {
6131 #else
6132         if (panicstr != NULL) {
6133 #endif
6134                 /*
6135                  * We don't trace anything if we're panicking.
6136                  */
6137                 dtrace_interrupt_enable(cookie);
6138                 return;
6139         }
6140
6141         now = dtrace_gethrtime();
6142         vtime = dtrace_vtime_references != 0;
6143
6144         if (vtime && curthread->t_dtrace_start)
6145                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6146
6147         mstate.dtms_difo = NULL;
6148         mstate.dtms_probe = probe;
6149         mstate.dtms_strtok = 0;
6150         mstate.dtms_arg[0] = arg0;
6151         mstate.dtms_arg[1] = arg1;
6152         mstate.dtms_arg[2] = arg2;
6153         mstate.dtms_arg[3] = arg3;
6154         mstate.dtms_arg[4] = arg4;
6155
6156         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6157
6158         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6159                 dtrace_predicate_t *pred = ecb->dte_predicate;
6160                 dtrace_state_t *state = ecb->dte_state;
6161                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6162                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6163                 dtrace_vstate_t *vstate = &state->dts_vstate;
6164                 dtrace_provider_t *prov = probe->dtpr_provider;
6165                 uint64_t tracememsize = 0;
6166                 int committed = 0;
6167                 caddr_t tomax;
6168
6169                 /*
6170                  * A little subtlety with the following (seemingly innocuous)
6171                  * declaration of the automatic 'val':  by looking at the
6172                  * code, you might think that it could be declared in the
6173                  * action processing loop, below.  (That is, it's only used in
6174                  * the action processing loop.)  However, it must be declared
6175                  * out of that scope because in the case of DIF expression
6176                  * arguments to aggregating actions, one iteration of the
6177                  * action loop will use the last iteration's value.
6178                  */
6179                 uint64_t val = 0;
6180
6181                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6182                 *flags &= ~CPU_DTRACE_ERROR;
6183
6184                 if (prov == dtrace_provider) {
6185                         /*
6186                          * If dtrace itself is the provider of this probe,
6187                          * we're only going to continue processing the ECB if
6188                          * arg0 (the dtrace_state_t) is equal to the ECB's
6189                          * creating state.  (This prevents disjoint consumers
6190                          * from seeing one another's metaprobes.)
6191                          */
6192                         if (arg0 != (uint64_t)(uintptr_t)state)
6193                                 continue;
6194                 }
6195
6196                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6197                         /*
6198                          * We're not currently active.  If our provider isn't
6199                          * the dtrace pseudo provider, we're not interested.
6200                          */
6201                         if (prov != dtrace_provider)
6202                                 continue;
6203
6204                         /*
6205                          * Now we must further check if we are in the BEGIN
6206                          * probe.  If we are, we will only continue processing
6207                          * if we're still in WARMUP -- if one BEGIN enabling
6208                          * has invoked the exit() action, we don't want to
6209                          * evaluate subsequent BEGIN enablings.
6210                          */
6211                         if (probe->dtpr_id == dtrace_probeid_begin &&
6212                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6213                                 ASSERT(state->dts_activity ==
6214                                     DTRACE_ACTIVITY_DRAINING);
6215                                 continue;
6216                         }
6217                 }
6218
6219                 if (ecb->dte_cond) {
6220                         /*
6221                          * If the dte_cond bits indicate that this
6222                          * consumer is only allowed to see user-mode firings
6223                          * of this probe, call the provider's dtps_usermode()
6224                          * entry point to check that the probe was fired
6225                          * while in a user context. Skip this ECB if that's
6226                          * not the case.
6227                          */
6228                         if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6229                             prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6230                             probe->dtpr_id, probe->dtpr_arg) == 0)
6231                                 continue;
6232
6233 #if defined(sun)
6234                         /*
6235                          * This is more subtle than it looks. We have to be
6236                          * absolutely certain that CRED() isn't going to
6237                          * change out from under us so it's only legit to
6238                          * examine that structure if we're in constrained
6239                          * situations. Currently, the only times we'll this
6240                          * check is if a non-super-user has enabled the
6241                          * profile or syscall providers -- providers that
6242                          * allow visibility of all processes. For the
6243                          * profile case, the check above will ensure that
6244                          * we're examining a user context.
6245                          */
6246                         if (ecb->dte_cond & DTRACE_COND_OWNER) {
6247                                 cred_t *cr;
6248                                 cred_t *s_cr =
6249                                     ecb->dte_state->dts_cred.dcr_cred;
6250                                 proc_t *proc;
6251
6252                                 ASSERT(s_cr != NULL);
6253
6254                                 if ((cr = CRED()) == NULL ||
6255                                     s_cr->cr_uid != cr->cr_uid ||
6256                                     s_cr->cr_uid != cr->cr_ruid ||
6257                                     s_cr->cr_uid != cr->cr_suid ||
6258                                     s_cr->cr_gid != cr->cr_gid ||
6259                                     s_cr->cr_gid != cr->cr_rgid ||
6260                                     s_cr->cr_gid != cr->cr_sgid ||
6261                                     (proc = ttoproc(curthread)) == NULL ||
6262                                     (proc->p_flag & SNOCD))
6263                                         continue;
6264                         }
6265
6266                         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6267                                 cred_t *cr;
6268                                 cred_t *s_cr =
6269                                     ecb->dte_state->dts_cred.dcr_cred;
6270
6271                                 ASSERT(s_cr != NULL);
6272
6273                                 if ((cr = CRED()) == NULL ||
6274                                     s_cr->cr_zone->zone_id !=
6275                                     cr->cr_zone->zone_id)
6276                                         continue;
6277                         }
6278 #endif
6279                 }
6280
6281                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6282                         /*
6283                          * We seem to be dead.  Unless we (a) have kernel
6284                          * destructive permissions (b) have explicitly enabled
6285                          * destructive actions and (c) destructive actions have
6286                          * not been disabled, we're going to transition into
6287                          * the KILLED state, from which no further processing
6288                          * on this state will be performed.
6289                          */
6290                         if (!dtrace_priv_kernel_destructive(state) ||
6291                             !state->dts_cred.dcr_destructive ||
6292                             dtrace_destructive_disallow) {
6293                                 void *activity = &state->dts_activity;
6294                                 dtrace_activity_t current;
6295
6296                                 do {
6297                                         current = state->dts_activity;
6298                                 } while (dtrace_cas32(activity, current,
6299                                     DTRACE_ACTIVITY_KILLED) != current);
6300
6301                                 continue;
6302                         }
6303                 }
6304
6305                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6306                     ecb->dte_alignment, state, &mstate)) < 0)
6307                         continue;
6308
6309                 tomax = buf->dtb_tomax;
6310                 ASSERT(tomax != NULL);
6311
6312                 if (ecb->dte_size != 0) {
6313                         dtrace_rechdr_t dtrh;
6314                         if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6315                                 mstate.dtms_timestamp = dtrace_gethrtime();
6316                                 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6317                         }
6318                         ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6319                         dtrh.dtrh_epid = ecb->dte_epid;
6320                         DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6321                             mstate.dtms_timestamp);
6322                         *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6323                 }
6324
6325                 mstate.dtms_epid = ecb->dte_epid;
6326                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6327
6328                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6329                         mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6330                 else
6331                         mstate.dtms_access = 0;
6332
6333                 if (pred != NULL) {
6334                         dtrace_difo_t *dp = pred->dtp_difo;
6335                         int rval;
6336
6337                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6338
6339                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6340                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
6341
6342                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6343                                         /*
6344                                          * Update the predicate cache...
6345                                          */
6346                                         ASSERT(cid == pred->dtp_cacheid);
6347                                         curthread->t_predcache = cid;
6348                                 }
6349
6350                                 continue;
6351                         }
6352                 }
6353
6354                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6355                     act != NULL; act = act->dta_next) {
6356                         size_t valoffs;
6357                         dtrace_difo_t *dp;
6358                         dtrace_recdesc_t *rec = &act->dta_rec;
6359
6360                         size = rec->dtrd_size;
6361                         valoffs = offs + rec->dtrd_offset;
6362
6363                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6364                                 uint64_t v = 0xbad;
6365                                 dtrace_aggregation_t *agg;
6366
6367                                 agg = (dtrace_aggregation_t *)act;
6368
6369                                 if ((dp = act->dta_difo) != NULL)
6370                                         v = dtrace_dif_emulate(dp,
6371                                             &mstate, vstate, state);
6372
6373                                 if (*flags & CPU_DTRACE_ERROR)
6374                                         continue;
6375
6376                                 /*
6377                                  * Note that we always pass the expression
6378                                  * value from the previous iteration of the
6379                                  * action loop.  This value will only be used
6380                                  * if there is an expression argument to the
6381                                  * aggregating action, denoted by the
6382                                  * dtag_hasarg field.
6383                                  */
6384                                 dtrace_aggregate(agg, buf,
6385                                     offs, aggbuf, v, val);
6386                                 continue;
6387                         }
6388
6389                         switch (act->dta_kind) {
6390                         case DTRACEACT_STOP:
6391                                 if (dtrace_priv_proc_destructive(state))
6392                                         dtrace_action_stop();
6393                                 continue;
6394
6395                         case DTRACEACT_BREAKPOINT:
6396                                 if (dtrace_priv_kernel_destructive(state))
6397                                         dtrace_action_breakpoint(ecb);
6398                                 continue;
6399
6400                         case DTRACEACT_PANIC:
6401                                 if (dtrace_priv_kernel_destructive(state))
6402                                         dtrace_action_panic(ecb);
6403                                 continue;
6404
6405                         case DTRACEACT_STACK:
6406                                 if (!dtrace_priv_kernel(state))
6407                                         continue;
6408
6409                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6410                                     size / sizeof (pc_t), probe->dtpr_aframes,
6411                                     DTRACE_ANCHORED(probe) ? NULL :
6412                                     (uint32_t *)arg0);
6413                                 continue;
6414
6415                         case DTRACEACT_JSTACK:
6416                         case DTRACEACT_USTACK:
6417                                 if (!dtrace_priv_proc(state))
6418                                         continue;
6419
6420                                 /*
6421                                  * See comment in DIF_VAR_PID.
6422                                  */
6423                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6424                                     CPU_ON_INTR(CPU)) {
6425                                         int depth = DTRACE_USTACK_NFRAMES(
6426                                             rec->dtrd_arg) + 1;
6427
6428                                         dtrace_bzero((void *)(tomax + valoffs),
6429                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6430                                             + depth * sizeof (uint64_t));
6431
6432                                         continue;
6433                                 }
6434
6435                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6436                                     curproc->p_dtrace_helpers != NULL) {
6437                                         /*
6438                                          * This is the slow path -- we have
6439                                          * allocated string space, and we're
6440                                          * getting the stack of a process that
6441                                          * has helpers.  Call into a separate
6442                                          * routine to perform this processing.
6443                                          */
6444                                         dtrace_action_ustack(&mstate, state,
6445                                             (uint64_t *)(tomax + valoffs),
6446                                             rec->dtrd_arg);
6447                                         continue;
6448                                 }
6449
6450                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6451                                 dtrace_getupcstack((uint64_t *)
6452                                     (tomax + valoffs),
6453                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6454                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6455                                 continue;
6456
6457                         default:
6458                                 break;
6459                         }
6460
6461                         dp = act->dta_difo;
6462                         ASSERT(dp != NULL);
6463
6464                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6465
6466                         if (*flags & CPU_DTRACE_ERROR)
6467                                 continue;
6468
6469                         switch (act->dta_kind) {
6470                         case DTRACEACT_SPECULATE: {
6471                                 dtrace_rechdr_t *dtrh;
6472
6473                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6474                                 buf = dtrace_speculation_buffer(state,
6475                                     cpuid, val);
6476
6477                                 if (buf == NULL) {
6478                                         *flags |= CPU_DTRACE_DROP;
6479                                         continue;
6480                                 }
6481
6482                                 offs = dtrace_buffer_reserve(buf,
6483                                     ecb->dte_needed, ecb->dte_alignment,
6484                                     state, NULL);
6485
6486                                 if (offs < 0) {
6487                                         *flags |= CPU_DTRACE_DROP;
6488                                         continue;
6489                                 }
6490
6491                                 tomax = buf->dtb_tomax;
6492                                 ASSERT(tomax != NULL);
6493
6494                                 if (ecb->dte_size == 0)
6495                                         continue;
6496
6497                                 ASSERT3U(ecb->dte_size, >=,
6498                                     sizeof (dtrace_rechdr_t));
6499                                 dtrh = ((void *)(tomax + offs));
6500                                 dtrh->dtrh_epid = ecb->dte_epid;
6501                                 /*
6502                                  * When the speculation is committed, all of
6503                                  * the records in the speculative buffer will
6504                                  * have their timestamps set to the commit
6505                                  * time.  Until then, it is set to a sentinel
6506                                  * value, for debugability.
6507                                  */
6508                                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6509                                 continue;
6510                         }
6511
6512                         case DTRACEACT_PRINTM: {
6513                                 /* The DIF returns a 'memref'. */
6514                                 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6515
6516                                 /* Get the size from the memref. */
6517                                 size = memref[1];
6518
6519                                 /*
6520                                  * Check if the size exceeds the allocated
6521                                  * buffer size.
6522                                  */
6523                                 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6524                                         /* Flag a drop! */
6525                                         *flags |= CPU_DTRACE_DROP;
6526                                         continue;
6527                                 }
6528
6529                                 /* Store the size in the buffer first. */
6530                                 DTRACE_STORE(uintptr_t, tomax,
6531                                     valoffs, size);
6532
6533                                 /*
6534                                  * Offset the buffer address to the start
6535                                  * of the data.
6536                                  */
6537                                 valoffs += sizeof(uintptr_t);
6538
6539                                 /*
6540                                  * Reset to the memory address rather than
6541                                  * the memref array, then let the BYREF
6542                                  * code below do the work to store the 
6543                                  * memory data in the buffer.
6544                                  */
6545                                 val = memref[0];
6546                                 break;
6547                         }
6548
6549                         case DTRACEACT_PRINTT: {
6550                                 /* The DIF returns a 'typeref'. */
6551                                 uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6552                                 char c = '\0' + 1;
6553                                 size_t s;
6554
6555                                 /*
6556                                  * Get the type string length and round it
6557                                  * up so that the data that follows is
6558                                  * aligned for easy access.
6559                                  */
6560                                 size_t typs = strlen((char *) typeref[2]) + 1;
6561                                 typs = roundup(typs,  sizeof(uintptr_t));
6562
6563                                 /*
6564                                  *Get the size from the typeref using the
6565                                  * number of elements and the type size.
6566                                  */
6567                                 size = typeref[1] * typeref[3];
6568
6569                                 /*
6570                                  * Check if the size exceeds the allocated
6571                                  * buffer size.
6572                                  */
6573                                 if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6574                                         /* Flag a drop! */
6575                                         *flags |= CPU_DTRACE_DROP;
6576                                 
6577                                 }
6578
6579                                 /* Store the size in the buffer first. */
6580                                 DTRACE_STORE(uintptr_t, tomax,
6581                                     valoffs, size);
6582                                 valoffs += sizeof(uintptr_t);
6583
6584                                 /* Store the type size in the buffer. */
6585                                 DTRACE_STORE(uintptr_t, tomax,
6586                                     valoffs, typeref[3]);
6587                                 valoffs += sizeof(uintptr_t);
6588
6589                                 val = typeref[2];
6590
6591                                 for (s = 0; s < typs; s++) {
6592                                         if (c != '\0')
6593                                                 c = dtrace_load8(val++);
6594
6595                                         DTRACE_STORE(uint8_t, tomax,
6596                                             valoffs++, c);
6597                                 }
6598
6599                                 /*
6600                                  * Reset to the memory address rather than
6601                                  * the typeref array, then let the BYREF
6602                                  * code below do the work to store the 
6603                                  * memory data in the buffer.
6604                                  */
6605                                 val = typeref[0];
6606                                 break;
6607                         }
6608
6609                         case DTRACEACT_CHILL:
6610                                 if (dtrace_priv_kernel_destructive(state))
6611                                         dtrace_action_chill(&mstate, val);
6612                                 continue;
6613
6614                         case DTRACEACT_RAISE:
6615                                 if (dtrace_priv_proc_destructive(state))
6616                                         dtrace_action_raise(val);
6617                                 continue;
6618
6619                         case DTRACEACT_COMMIT:
6620                                 ASSERT(!committed);
6621
6622                                 /*
6623                                  * We need to commit our buffer state.
6624                                  */
6625                                 if (ecb->dte_size)
6626                                         buf->dtb_offset = offs + ecb->dte_size;
6627                                 buf = &state->dts_buffer[cpuid];
6628                                 dtrace_speculation_commit(state, cpuid, val);
6629                                 committed = 1;
6630                                 continue;
6631
6632                         case DTRACEACT_DISCARD:
6633                                 dtrace_speculation_discard(state, cpuid, val);
6634                                 continue;
6635
6636                         case DTRACEACT_DIFEXPR:
6637                         case DTRACEACT_LIBACT:
6638                         case DTRACEACT_PRINTF:
6639                         case DTRACEACT_PRINTA:
6640                         case DTRACEACT_SYSTEM:
6641                         case DTRACEACT_FREOPEN:
6642                         case DTRACEACT_TRACEMEM:
6643                                 break;
6644
6645                         case DTRACEACT_TRACEMEM_DYNSIZE:
6646                                 tracememsize = val;
6647                                 break;
6648
6649                         case DTRACEACT_SYM:
6650                         case DTRACEACT_MOD:
6651                                 if (!dtrace_priv_kernel(state))
6652                                         continue;
6653                                 break;
6654
6655                         case DTRACEACT_USYM:
6656                         case DTRACEACT_UMOD:
6657                         case DTRACEACT_UADDR: {
6658 #if defined(sun)
6659                                 struct pid *pid = curthread->t_procp->p_pidp;
6660 #endif
6661
6662                                 if (!dtrace_priv_proc(state))
6663                                         continue;
6664
6665                                 DTRACE_STORE(uint64_t, tomax,
6666 #if defined(sun)
6667                                     valoffs, (uint64_t)pid->pid_id);
6668 #else
6669                                     valoffs, (uint64_t) curproc->p_pid);
6670 #endif
6671                                 DTRACE_STORE(uint64_t, tomax,
6672                                     valoffs + sizeof (uint64_t), val);
6673
6674                                 continue;
6675                         }
6676
6677                         case DTRACEACT_EXIT: {
6678                                 /*
6679                                  * For the exit action, we are going to attempt
6680                                  * to atomically set our activity to be
6681                                  * draining.  If this fails (either because
6682                                  * another CPU has beat us to the exit action,
6683                                  * or because our current activity is something
6684                                  * other than ACTIVE or WARMUP), we will
6685                                  * continue.  This assures that the exit action
6686                                  * can be successfully recorded at most once
6687                                  * when we're in the ACTIVE state.  If we're
6688                                  * encountering the exit() action while in
6689                                  * COOLDOWN, however, we want to honor the new
6690                                  * status code.  (We know that we're the only
6691                                  * thread in COOLDOWN, so there is no race.)
6692                                  */
6693                                 void *activity = &state->dts_activity;
6694                                 dtrace_activity_t current = state->dts_activity;
6695
6696                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
6697                                         break;
6698
6699                                 if (current != DTRACE_ACTIVITY_WARMUP)
6700                                         current = DTRACE_ACTIVITY_ACTIVE;
6701
6702                                 if (dtrace_cas32(activity, current,
6703                                     DTRACE_ACTIVITY_DRAINING) != current) {
6704                                         *flags |= CPU_DTRACE_DROP;
6705                                         continue;
6706                                 }
6707
6708                                 break;
6709                         }
6710
6711                         default:
6712                                 ASSERT(0);
6713                         }
6714
6715                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6716                                 uintptr_t end = valoffs + size;
6717
6718                                 if (tracememsize != 0 &&
6719                                     valoffs + tracememsize < end) {
6720                                         end = valoffs + tracememsize;
6721                                         tracememsize = 0;
6722                                 }
6723
6724                                 if (!dtrace_vcanload((void *)(uintptr_t)val,
6725                                     &dp->dtdo_rtype, &mstate, vstate))
6726                                         continue;
6727
6728                                 /*
6729                                  * If this is a string, we're going to only
6730                                  * load until we find the zero byte -- after
6731                                  * which we'll store zero bytes.
6732                                  */
6733                                 if (dp->dtdo_rtype.dtdt_kind ==
6734                                     DIF_TYPE_STRING) {
6735                                         char c = '\0' + 1;
6736                                         int intuple = act->dta_intuple;
6737                                         size_t s;
6738
6739                                         for (s = 0; s < size; s++) {
6740                                                 if (c != '\0')
6741                                                         c = dtrace_load8(val++);
6742
6743                                                 DTRACE_STORE(uint8_t, tomax,
6744                                                     valoffs++, c);
6745
6746                                                 if (c == '\0' && intuple)
6747                                                         break;
6748                                         }
6749
6750                                         continue;
6751                                 }
6752
6753                                 while (valoffs < end) {
6754                                         DTRACE_STORE(uint8_t, tomax, valoffs++,
6755                                             dtrace_load8(val++));
6756                                 }
6757
6758                                 continue;
6759                         }
6760
6761                         switch (size) {
6762                         case 0:
6763                                 break;
6764
6765                         case sizeof (uint8_t):
6766                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6767                                 break;
6768                         case sizeof (uint16_t):
6769                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6770                                 break;
6771                         case sizeof (uint32_t):
6772                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6773                                 break;
6774                         case sizeof (uint64_t):
6775                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6776                                 break;
6777                         default:
6778                                 /*
6779                                  * Any other size should have been returned by
6780                                  * reference, not by value.
6781                                  */
6782                                 ASSERT(0);
6783                                 break;
6784                         }
6785                 }
6786
6787                 if (*flags & CPU_DTRACE_DROP)
6788                         continue;
6789
6790                 if (*flags & CPU_DTRACE_FAULT) {
6791                         int ndx;
6792                         dtrace_action_t *err;
6793
6794                         buf->dtb_errors++;
6795
6796                         if (probe->dtpr_id == dtrace_probeid_error) {
6797                                 /*
6798                                  * There's nothing we can do -- we had an
6799                                  * error on the error probe.  We bump an
6800                                  * error counter to at least indicate that
6801                                  * this condition happened.
6802                                  */
6803                                 dtrace_error(&state->dts_dblerrors);
6804                                 continue;
6805                         }
6806
6807                         if (vtime) {
6808                                 /*
6809                                  * Before recursing on dtrace_probe(), we
6810                                  * need to explicitly clear out our start
6811                                  * time to prevent it from being accumulated
6812                                  * into t_dtrace_vtime.
6813                                  */
6814                                 curthread->t_dtrace_start = 0;
6815                         }
6816
6817                         /*
6818                          * Iterate over the actions to figure out which action
6819                          * we were processing when we experienced the error.
6820                          * Note that act points _past_ the faulting action; if
6821                          * act is ecb->dte_action, the fault was in the
6822                          * predicate, if it's ecb->dte_action->dta_next it's
6823                          * in action #1, and so on.
6824                          */
6825                         for (err = ecb->dte_action, ndx = 0;
6826                             err != act; err = err->dta_next, ndx++)
6827                                 continue;
6828
6829                         dtrace_probe_error(state, ecb->dte_epid, ndx,
6830                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6831                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6832                             cpu_core[cpuid].cpuc_dtrace_illval);
6833
6834                         continue;
6835                 }
6836
6837                 if (!committed)
6838                         buf->dtb_offset = offs + ecb->dte_size;
6839         }
6840
6841         if (vtime)
6842                 curthread->t_dtrace_start = dtrace_gethrtime();
6843
6844         dtrace_interrupt_enable(cookie);
6845 }
6846
6847 /*
6848  * DTrace Probe Hashing Functions
6849  *
6850  * The functions in this section (and indeed, the functions in remaining
6851  * sections) are not _called_ from probe context.  (Any exceptions to this are
6852  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6853  * DTrace framework to look-up probes in, add probes to and remove probes from
6854  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6855  * probe tuple -- allowing for fast lookups, regardless of what was
6856  * specified.)
6857  */
6858 static uint_t
6859 dtrace_hash_str(const char *p)
6860 {
6861         unsigned int g;
6862         uint_t hval = 0;
6863
6864         while (*p) {
6865                 hval = (hval << 4) + *p++;
6866                 if ((g = (hval & 0xf0000000)) != 0)
6867                         hval ^= g >> 24;
6868                 hval &= ~g;
6869         }
6870         return (hval);
6871 }
6872
6873 static dtrace_hash_t *
6874 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6875 {
6876         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6877
6878         hash->dth_stroffs = stroffs;
6879         hash->dth_nextoffs = nextoffs;
6880         hash->dth_prevoffs = prevoffs;
6881
6882         hash->dth_size = 1;
6883         hash->dth_mask = hash->dth_size - 1;
6884
6885         hash->dth_tab = kmem_zalloc(hash->dth_size *
6886             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6887
6888         return (hash);
6889 }
6890
6891 static void
6892 dtrace_hash_destroy(dtrace_hash_t *hash)
6893 {
6894 #ifdef DEBUG
6895         int i;
6896
6897         for (i = 0; i < hash->dth_size; i++)
6898                 ASSERT(hash->dth_tab[i] == NULL);
6899 #endif
6900
6901         kmem_free(hash->dth_tab,
6902             hash->dth_size * sizeof (dtrace_hashbucket_t *));
6903         kmem_free(hash, sizeof (dtrace_hash_t));
6904 }
6905
6906 static void
6907 dtrace_hash_resize(dtrace_hash_t *hash)
6908 {
6909         int size = hash->dth_size, i, ndx;
6910         int new_size = hash->dth_size << 1;
6911         int new_mask = new_size - 1;
6912         dtrace_hashbucket_t **new_tab, *bucket, *next;
6913
6914         ASSERT((new_size & new_mask) == 0);
6915
6916         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6917
6918         for (i = 0; i < size; i++) {
6919                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6920                         dtrace_probe_t *probe = bucket->dthb_chain;
6921
6922                         ASSERT(probe != NULL);
6923                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6924
6925                         next = bucket->dthb_next;
6926                         bucket->dthb_next = new_tab[ndx];
6927                         new_tab[ndx] = bucket;
6928                 }
6929         }
6930
6931         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6932         hash->dth_tab = new_tab;
6933         hash->dth_size = new_size;
6934         hash->dth_mask = new_mask;
6935 }
6936
6937 static void
6938 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6939 {
6940         int hashval = DTRACE_HASHSTR(hash, new);
6941         int ndx = hashval & hash->dth_mask;
6942         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6943         dtrace_probe_t **nextp, **prevp;
6944
6945         for (; bucket != NULL; bucket = bucket->dthb_next) {
6946                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6947                         goto add;
6948         }
6949
6950         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6951                 dtrace_hash_resize(hash);
6952                 dtrace_hash_add(hash, new);
6953                 return;
6954         }
6955
6956         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6957         bucket->dthb_next = hash->dth_tab[ndx];
6958         hash->dth_tab[ndx] = bucket;
6959         hash->dth_nbuckets++;
6960
6961 add:
6962         nextp = DTRACE_HASHNEXT(hash, new);
6963         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6964         *nextp = bucket->dthb_chain;
6965
6966         if (bucket->dthb_chain != NULL) {
6967                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6968                 ASSERT(*prevp == NULL);
6969                 *prevp = new;
6970         }
6971
6972         bucket->dthb_chain = new;
6973         bucket->dthb_len++;
6974 }
6975
6976 static dtrace_probe_t *
6977 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6978 {
6979         int hashval = DTRACE_HASHSTR(hash, template);
6980         int ndx = hashval & hash->dth_mask;
6981         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6982
6983         for (; bucket != NULL; bucket = bucket->dthb_next) {
6984                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6985                         return (bucket->dthb_chain);
6986         }
6987
6988         return (NULL);
6989 }
6990
6991 static int
6992 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6993 {
6994         int hashval = DTRACE_HASHSTR(hash, template);
6995         int ndx = hashval & hash->dth_mask;
6996         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6997
6998         for (; bucket != NULL; bucket = bucket->dthb_next) {
6999                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7000                         return (bucket->dthb_len);
7001         }
7002
7003         return (0);
7004 }
7005
7006 static void
7007 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7008 {
7009         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7010         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7011
7012         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7013         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7014
7015         /*
7016          * Find the bucket that we're removing this probe from.
7017          */
7018         for (; bucket != NULL; bucket = bucket->dthb_next) {
7019                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7020                         break;
7021         }
7022
7023         ASSERT(bucket != NULL);
7024
7025         if (*prevp == NULL) {
7026                 if (*nextp == NULL) {
7027                         /*
7028                          * The removed probe was the only probe on this
7029                          * bucket; we need to remove the bucket.
7030                          */
7031                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7032
7033                         ASSERT(bucket->dthb_chain == probe);
7034                         ASSERT(b != NULL);
7035
7036                         if (b == bucket) {
7037                                 hash->dth_tab[ndx] = bucket->dthb_next;
7038                         } else {
7039                                 while (b->dthb_next != bucket)
7040                                         b = b->dthb_next;
7041                                 b->dthb_next = bucket->dthb_next;
7042                         }
7043
7044                         ASSERT(hash->dth_nbuckets > 0);
7045                         hash->dth_nbuckets--;
7046                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7047                         return;
7048                 }
7049
7050                 bucket->dthb_chain = *nextp;
7051         } else {
7052                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7053         }
7054
7055         if (*nextp != NULL)
7056                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7057 }
7058
7059 /*
7060  * DTrace Utility Functions
7061  *
7062  * These are random utility functions that are _not_ called from probe context.
7063  */
7064 static int
7065 dtrace_badattr(const dtrace_attribute_t *a)
7066 {
7067         return (a->dtat_name > DTRACE_STABILITY_MAX ||
7068             a->dtat_data > DTRACE_STABILITY_MAX ||
7069             a->dtat_class > DTRACE_CLASS_MAX);
7070 }
7071
7072 /*
7073  * Return a duplicate copy of a string.  If the specified string is NULL,
7074  * this function returns a zero-length string.
7075  */
7076 static char *
7077 dtrace_strdup(const char *str)
7078 {
7079         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7080
7081         if (str != NULL)
7082                 (void) strcpy(new, str);
7083
7084         return (new);
7085 }
7086
7087 #define DTRACE_ISALPHA(c)       \
7088         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7089
7090 static int
7091 dtrace_badname(const char *s)
7092 {
7093         char c;
7094
7095         if (s == NULL || (c = *s++) == '\0')
7096                 return (0);
7097
7098         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7099                 return (1);
7100
7101         while ((c = *s++) != '\0') {
7102                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7103                     c != '-' && c != '_' && c != '.' && c != '`')
7104                         return (1);
7105         }
7106
7107         return (0);
7108 }
7109
7110 static void
7111 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7112 {
7113         uint32_t priv;
7114
7115 #if defined(sun)
7116         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7117                 /*
7118                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7119                  */
7120                 priv = DTRACE_PRIV_ALL;
7121         } else {
7122                 *uidp = crgetuid(cr);
7123                 *zoneidp = crgetzoneid(cr);
7124
7125                 priv = 0;
7126                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7127                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7128                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7129                         priv |= DTRACE_PRIV_USER;
7130                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7131                         priv |= DTRACE_PRIV_PROC;
7132                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7133                         priv |= DTRACE_PRIV_OWNER;
7134                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7135                         priv |= DTRACE_PRIV_ZONEOWNER;
7136         }
7137 #else
7138         priv = DTRACE_PRIV_ALL;
7139 #endif
7140
7141         *privp = priv;
7142 }
7143
7144 #ifdef DTRACE_ERRDEBUG
7145 static void
7146 dtrace_errdebug(const char *str)
7147 {
7148         int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7149         int occupied = 0;
7150
7151         mutex_enter(&dtrace_errlock);
7152         dtrace_errlast = str;
7153         dtrace_errthread = curthread;
7154
7155         while (occupied++ < DTRACE_ERRHASHSZ) {
7156                 if (dtrace_errhash[hval].dter_msg == str) {
7157                         dtrace_errhash[hval].dter_count++;
7158                         goto out;
7159                 }
7160
7161                 if (dtrace_errhash[hval].dter_msg != NULL) {
7162                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
7163                         continue;
7164                 }
7165
7166                 dtrace_errhash[hval].dter_msg = str;
7167                 dtrace_errhash[hval].dter_count = 1;
7168                 goto out;
7169         }
7170
7171         panic("dtrace: undersized error hash");
7172 out:
7173         mutex_exit(&dtrace_errlock);
7174 }
7175 #endif
7176
7177 /*
7178  * DTrace Matching Functions
7179  *
7180  * These functions are used to match groups of probes, given some elements of
7181  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7182  */
7183 static int
7184 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7185     zoneid_t zoneid)
7186 {
7187         if (priv != DTRACE_PRIV_ALL) {
7188                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7189                 uint32_t match = priv & ppriv;
7190
7191                 /*
7192                  * No PRIV_DTRACE_* privileges...
7193                  */
7194                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7195                     DTRACE_PRIV_KERNEL)) == 0)
7196                         return (0);
7197
7198                 /*
7199                  * No matching bits, but there were bits to match...
7200                  */
7201                 if (match == 0 && ppriv != 0)
7202                         return (0);
7203
7204                 /*
7205                  * Need to have permissions to the process, but don't...
7206                  */
7207                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7208                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7209                         return (0);
7210                 }
7211
7212                 /*
7213                  * Need to be in the same zone unless we possess the
7214                  * privilege to examine all zones.
7215                  */
7216                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7217                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7218                         return (0);
7219                 }
7220         }
7221
7222         return (1);
7223 }
7224
7225 /*
7226  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7227  * consists of input pattern strings and an ops-vector to evaluate them.
7228  * This function returns >0 for match, 0 for no match, and <0 for error.
7229  */
7230 static int
7231 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7232     uint32_t priv, uid_t uid, zoneid_t zoneid)
7233 {
7234         dtrace_provider_t *pvp = prp->dtpr_provider;
7235         int rv;
7236
7237         if (pvp->dtpv_defunct)
7238                 return (0);
7239
7240         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7241                 return (rv);
7242
7243         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7244                 return (rv);
7245
7246         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7247                 return (rv);
7248
7249         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7250                 return (rv);
7251
7252         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7253                 return (0);
7254
7255         return (rv);
7256 }
7257
7258 /*
7259  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7260  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7261  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7262  * In addition, all of the recursion cases except for '*' matching have been
7263  * unwound.  For '*', we still implement recursive evaluation, but a depth
7264  * counter is maintained and matching is aborted if we recurse too deep.
7265  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7266  */
7267 static int
7268 dtrace_match_glob(const char *s, const char *p, int depth)
7269 {
7270         const char *olds;
7271         char s1, c;
7272         int gs;
7273
7274         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7275                 return (-1);
7276
7277         if (s == NULL)
7278                 s = ""; /* treat NULL as empty string */
7279
7280 top:
7281         olds = s;
7282         s1 = *s++;
7283
7284         if (p == NULL)
7285                 return (0);
7286
7287         if ((c = *p++) == '\0')
7288                 return (s1 == '\0');
7289
7290         switch (c) {
7291         case '[': {
7292                 int ok = 0, notflag = 0;
7293                 char lc = '\0';
7294
7295                 if (s1 == '\0')
7296                         return (0);
7297
7298                 if (*p == '!') {
7299                         notflag = 1;
7300                         p++;
7301                 }
7302
7303                 if ((c = *p++) == '\0')
7304                         return (0);
7305
7306                 do {
7307                         if (c == '-' && lc != '\0' && *p != ']') {
7308                                 if ((c = *p++) == '\0')
7309                                         return (0);
7310                                 if (c == '\\' && (c = *p++) == '\0')
7311                                         return (0);
7312
7313                                 if (notflag) {
7314                                         if (s1 < lc || s1 > c)
7315                                                 ok++;
7316                                         else
7317                                                 return (0);
7318                                 } else if (lc <= s1 && s1 <= c)
7319                                         ok++;
7320
7321                         } else if (c == '\\' && (c = *p++) == '\0')
7322                                 return (0);
7323
7324                         lc = c; /* save left-hand 'c' for next iteration */
7325
7326                         if (notflag) {
7327                                 if (s1 != c)
7328                                         ok++;
7329                                 else
7330                                         return (0);
7331                         } else if (s1 == c)
7332                                 ok++;
7333
7334                         if ((c = *p++) == '\0')
7335                                 return (0);
7336
7337                 } while (c != ']');
7338
7339                 if (ok)
7340                         goto top;
7341
7342                 return (0);
7343         }
7344
7345         case '\\':
7346                 if ((c = *p++) == '\0')
7347                         return (0);
7348                 /*FALLTHRU*/
7349
7350         default:
7351                 if (c != s1)
7352                         return (0);
7353                 /*FALLTHRU*/
7354
7355         case '?':
7356                 if (s1 != '\0')
7357                         goto top;
7358                 return (0);
7359
7360         case '*':
7361                 while (*p == '*')
7362                         p++; /* consecutive *'s are identical to a single one */
7363
7364                 if (*p == '\0')
7365                         return (1);
7366
7367                 for (s = olds; *s != '\0'; s++) {
7368                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7369                                 return (gs);
7370                 }
7371
7372                 return (0);
7373         }
7374 }
7375
7376 /*ARGSUSED*/
7377 static int
7378 dtrace_match_string(const char *s, const char *p, int depth)
7379 {
7380         return (s != NULL && strcmp(s, p) == 0);
7381 }
7382
7383 /*ARGSUSED*/
7384 static int
7385 dtrace_match_nul(const char *s, const char *p, int depth)
7386 {
7387         return (1); /* always match the empty pattern */
7388 }
7389
7390 /*ARGSUSED*/
7391 static int
7392 dtrace_match_nonzero(const char *s, const char *p, int depth)
7393 {
7394         return (s != NULL && s[0] != '\0');
7395 }
7396
7397 static int
7398 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7399     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7400 {
7401         dtrace_probe_t template, *probe;
7402         dtrace_hash_t *hash = NULL;
7403         int len, best = INT_MAX, nmatched = 0;
7404         dtrace_id_t i;
7405
7406         ASSERT(MUTEX_HELD(&dtrace_lock));
7407
7408         /*
7409          * If the probe ID is specified in the key, just lookup by ID and
7410          * invoke the match callback once if a matching probe is found.
7411          */
7412         if (pkp->dtpk_id != DTRACE_IDNONE) {
7413                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7414                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7415                         (void) (*matched)(probe, arg);
7416                         nmatched++;
7417                 }
7418                 return (nmatched);
7419         }
7420
7421         template.dtpr_mod = (char *)pkp->dtpk_mod;
7422         template.dtpr_func = (char *)pkp->dtpk_func;
7423         template.dtpr_name = (char *)pkp->dtpk_name;
7424
7425         /*
7426          * We want to find the most distinct of the module name, function
7427          * name, and name.  So for each one that is not a glob pattern or
7428          * empty string, we perform a lookup in the corresponding hash and
7429          * use the hash table with the fewest collisions to do our search.
7430          */
7431         if (pkp->dtpk_mmatch == &dtrace_match_string &&
7432             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7433                 best = len;
7434                 hash = dtrace_bymod;
7435         }
7436
7437         if (pkp->dtpk_fmatch == &dtrace_match_string &&
7438             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7439                 best = len;
7440                 hash = dtrace_byfunc;
7441         }
7442
7443         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7444             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7445                 best = len;
7446                 hash = dtrace_byname;
7447         }
7448
7449         /*
7450          * If we did not select a hash table, iterate over every probe and
7451          * invoke our callback for each one that matches our input probe key.
7452          */
7453         if (hash == NULL) {
7454                 for (i = 0; i < dtrace_nprobes; i++) {
7455                         if ((probe = dtrace_probes[i]) == NULL ||
7456                             dtrace_match_probe(probe, pkp, priv, uid,
7457                             zoneid) <= 0)
7458                                 continue;
7459
7460                         nmatched++;
7461
7462                         if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7463                                 break;
7464                 }
7465
7466                 return (nmatched);
7467         }
7468
7469         /*
7470          * If we selected a hash table, iterate over each probe of the same key
7471          * name and invoke the callback for every probe that matches the other
7472          * attributes of our input probe key.
7473          */
7474         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7475             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7476
7477                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7478                         continue;
7479
7480                 nmatched++;
7481
7482                 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7483                         break;
7484         }
7485
7486         return (nmatched);
7487 }
7488
7489 /*
7490  * Return the function pointer dtrace_probecmp() should use to compare the
7491  * specified pattern with a string.  For NULL or empty patterns, we select
7492  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7493  * For non-empty non-glob strings, we use dtrace_match_string().
7494  */
7495 static dtrace_probekey_f *
7496 dtrace_probekey_func(const char *p)
7497 {
7498         char c;
7499
7500         if (p == NULL || *p == '\0')
7501                 return (&dtrace_match_nul);
7502
7503         while ((c = *p++) != '\0') {
7504                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7505                         return (&dtrace_match_glob);
7506         }
7507
7508         return (&dtrace_match_string);
7509 }
7510
7511 /*
7512  * Build a probe comparison key for use with dtrace_match_probe() from the
7513  * given probe description.  By convention, a null key only matches anchored
7514  * probes: if each field is the empty string, reset dtpk_fmatch to
7515  * dtrace_match_nonzero().
7516  */
7517 static void
7518 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7519 {
7520         pkp->dtpk_prov = pdp->dtpd_provider;
7521         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7522
7523         pkp->dtpk_mod = pdp->dtpd_mod;
7524         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7525
7526         pkp->dtpk_func = pdp->dtpd_func;
7527         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7528
7529         pkp->dtpk_name = pdp->dtpd_name;
7530         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7531
7532         pkp->dtpk_id = pdp->dtpd_id;
7533
7534         if (pkp->dtpk_id == DTRACE_IDNONE &&
7535             pkp->dtpk_pmatch == &dtrace_match_nul &&
7536             pkp->dtpk_mmatch == &dtrace_match_nul &&
7537             pkp->dtpk_fmatch == &dtrace_match_nul &&
7538             pkp->dtpk_nmatch == &dtrace_match_nul)
7539                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7540 }
7541
7542 /*
7543  * DTrace Provider-to-Framework API Functions
7544  *
7545  * These functions implement much of the Provider-to-Framework API, as
7546  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7547  * the functions in the API for probe management (found below), and
7548  * dtrace_probe() itself (found above).
7549  */
7550
7551 /*
7552  * Register the calling provider with the DTrace framework.  This should
7553  * generally be called by DTrace providers in their attach(9E) entry point.
7554  */
7555 int
7556 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7557     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7558 {
7559         dtrace_provider_t *provider;
7560
7561         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7562                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7563                     "arguments", name ? name : "<NULL>");
7564                 return (EINVAL);
7565         }
7566
7567         if (name[0] == '\0' || dtrace_badname(name)) {
7568                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7569                     "provider name", name);
7570                 return (EINVAL);
7571         }
7572
7573         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7574             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7575             pops->dtps_destroy == NULL ||
7576             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7577                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7578                     "provider ops", name);
7579                 return (EINVAL);
7580         }
7581
7582         if (dtrace_badattr(&pap->dtpa_provider) ||
7583             dtrace_badattr(&pap->dtpa_mod) ||
7584             dtrace_badattr(&pap->dtpa_func) ||
7585             dtrace_badattr(&pap->dtpa_name) ||
7586             dtrace_badattr(&pap->dtpa_args)) {
7587                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7588                     "provider attributes", name);
7589                 return (EINVAL);
7590         }
7591
7592         if (priv & ~DTRACE_PRIV_ALL) {
7593                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7594                     "privilege attributes", name);
7595                 return (EINVAL);
7596         }
7597
7598         if ((priv & DTRACE_PRIV_KERNEL) &&
7599             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7600             pops->dtps_usermode == NULL) {
7601                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7602                     "dtps_usermode() op for given privilege attributes", name);
7603                 return (EINVAL);
7604         }
7605
7606         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7607         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7608         (void) strcpy(provider->dtpv_name, name);
7609
7610         provider->dtpv_attr = *pap;
7611         provider->dtpv_priv.dtpp_flags = priv;
7612         if (cr != NULL) {
7613                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7614                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7615         }
7616         provider->dtpv_pops = *pops;
7617
7618         if (pops->dtps_provide == NULL) {
7619                 ASSERT(pops->dtps_provide_module != NULL);
7620                 provider->dtpv_pops.dtps_provide =
7621                     (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7622         }
7623
7624         if (pops->dtps_provide_module == NULL) {
7625                 ASSERT(pops->dtps_provide != NULL);
7626                 provider->dtpv_pops.dtps_provide_module =
7627                     (void (*)(void *, modctl_t *))dtrace_nullop;
7628         }
7629
7630         if (pops->dtps_suspend == NULL) {
7631                 ASSERT(pops->dtps_resume == NULL);
7632                 provider->dtpv_pops.dtps_suspend =
7633                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7634                 provider->dtpv_pops.dtps_resume =
7635                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7636         }
7637
7638         provider->dtpv_arg = arg;
7639         *idp = (dtrace_provider_id_t)provider;
7640
7641         if (pops == &dtrace_provider_ops) {
7642                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7643                 ASSERT(MUTEX_HELD(&dtrace_lock));
7644                 ASSERT(dtrace_anon.dta_enabling == NULL);
7645
7646                 /*
7647                  * We make sure that the DTrace provider is at the head of
7648                  * the provider chain.
7649                  */
7650                 provider->dtpv_next = dtrace_provider;
7651                 dtrace_provider = provider;
7652                 return (0);
7653         }
7654
7655         mutex_enter(&dtrace_provider_lock);
7656         mutex_enter(&dtrace_lock);
7657
7658         /*
7659          * If there is at least one provider registered, we'll add this
7660          * provider after the first provider.
7661          */
7662         if (dtrace_provider != NULL) {
7663                 provider->dtpv_next = dtrace_provider->dtpv_next;
7664                 dtrace_provider->dtpv_next = provider;
7665         } else {
7666                 dtrace_provider = provider;
7667         }
7668
7669         if (dtrace_retained != NULL) {
7670                 dtrace_enabling_provide(provider);
7671
7672                 /*
7673                  * Now we need to call dtrace_enabling_matchall() -- which
7674                  * will acquire cpu_lock and dtrace_lock.  We therefore need
7675                  * to drop all of our locks before calling into it...
7676                  */
7677                 mutex_exit(&dtrace_lock);
7678                 mutex_exit(&dtrace_provider_lock);
7679                 dtrace_enabling_matchall();
7680
7681                 return (0);
7682         }
7683
7684         mutex_exit(&dtrace_lock);
7685         mutex_exit(&dtrace_provider_lock);
7686
7687         return (0);
7688 }
7689
7690 /*
7691  * Unregister the specified provider from the DTrace framework.  This should
7692  * generally be called by DTrace providers in their detach(9E) entry point.
7693  */
7694 int
7695 dtrace_unregister(dtrace_provider_id_t id)
7696 {
7697         dtrace_provider_t *old = (dtrace_provider_t *)id;
7698         dtrace_provider_t *prev = NULL;
7699         int i, self = 0, noreap = 0;
7700         dtrace_probe_t *probe, *first = NULL;
7701
7702         if (old->dtpv_pops.dtps_enable ==
7703             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7704                 /*
7705                  * If DTrace itself is the provider, we're called with locks
7706                  * already held.
7707                  */
7708                 ASSERT(old == dtrace_provider);
7709 #if defined(sun)
7710                 ASSERT(dtrace_devi != NULL);
7711 #endif
7712                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7713                 ASSERT(MUTEX_HELD(&dtrace_lock));
7714                 self = 1;
7715
7716                 if (dtrace_provider->dtpv_next != NULL) {
7717                         /*
7718                          * There's another provider here; return failure.
7719                          */
7720                         return (EBUSY);
7721                 }
7722         } else {
7723                 mutex_enter(&dtrace_provider_lock);
7724 #if defined(sun)
7725                 mutex_enter(&mod_lock);
7726 #endif
7727                 mutex_enter(&dtrace_lock);
7728         }
7729
7730         /*
7731          * If anyone has /dev/dtrace open, or if there are anonymous enabled
7732          * probes, we refuse to let providers slither away, unless this
7733          * provider has already been explicitly invalidated.
7734          */
7735         if (!old->dtpv_defunct &&
7736             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7737             dtrace_anon.dta_state->dts_necbs > 0))) {
7738                 if (!self) {
7739                         mutex_exit(&dtrace_lock);
7740 #if defined(sun)
7741                         mutex_exit(&mod_lock);
7742 #endif
7743                         mutex_exit(&dtrace_provider_lock);
7744                 }
7745                 return (EBUSY);
7746         }
7747
7748         /*
7749          * Attempt to destroy the probes associated with this provider.
7750          */
7751         for (i = 0; i < dtrace_nprobes; i++) {
7752                 if ((probe = dtrace_probes[i]) == NULL)
7753                         continue;
7754
7755                 if (probe->dtpr_provider != old)
7756                         continue;
7757
7758                 if (probe->dtpr_ecb == NULL)
7759                         continue;
7760
7761                 /*
7762                  * If we are trying to unregister a defunct provider, and the
7763                  * provider was made defunct within the interval dictated by
7764                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
7765                  * attempt to reap our enablings.  To denote that the provider
7766                  * should reattempt to unregister itself at some point in the
7767                  * future, we will return a differentiable error code (EAGAIN
7768                  * instead of EBUSY) in this case.
7769                  */
7770                 if (dtrace_gethrtime() - old->dtpv_defunct >
7771                     dtrace_unregister_defunct_reap)
7772                         noreap = 1;
7773
7774                 if (!self) {
7775                         mutex_exit(&dtrace_lock);
7776 #if defined(sun)
7777                         mutex_exit(&mod_lock);
7778 #endif
7779                         mutex_exit(&dtrace_provider_lock);
7780                 }
7781
7782                 if (noreap)
7783                         return (EBUSY);
7784
7785                 (void) taskq_dispatch(dtrace_taskq,
7786                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7787
7788                 return (EAGAIN);
7789         }
7790
7791         /*
7792          * All of the probes for this provider are disabled; we can safely
7793          * remove all of them from their hash chains and from the probe array.
7794          */
7795         for (i = 0; i < dtrace_nprobes; i++) {
7796                 if ((probe = dtrace_probes[i]) == NULL)
7797                         continue;
7798
7799                 if (probe->dtpr_provider != old)
7800                         continue;
7801
7802                 dtrace_probes[i] = NULL;
7803
7804                 dtrace_hash_remove(dtrace_bymod, probe);
7805                 dtrace_hash_remove(dtrace_byfunc, probe);
7806                 dtrace_hash_remove(dtrace_byname, probe);
7807
7808                 if (first == NULL) {
7809                         first = probe;
7810                         probe->dtpr_nextmod = NULL;
7811                 } else {
7812                         probe->dtpr_nextmod = first;
7813                         first = probe;
7814                 }
7815         }
7816
7817         /*
7818          * The provider's probes have been removed from the hash chains and
7819          * from the probe array.  Now issue a dtrace_sync() to be sure that
7820          * everyone has cleared out from any probe array processing.
7821          */
7822         dtrace_sync();
7823
7824         for (probe = first; probe != NULL; probe = first) {
7825                 first = probe->dtpr_nextmod;
7826
7827                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7828                     probe->dtpr_arg);
7829                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7830                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7831                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7832 #if defined(sun)
7833                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7834 #else
7835                 free_unr(dtrace_arena, probe->dtpr_id);
7836 #endif
7837                 kmem_free(probe, sizeof (dtrace_probe_t));
7838         }
7839
7840         if ((prev = dtrace_provider) == old) {
7841 #if defined(sun)
7842                 ASSERT(self || dtrace_devi == NULL);
7843                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7844 #endif
7845                 dtrace_provider = old->dtpv_next;
7846         } else {
7847                 while (prev != NULL && prev->dtpv_next != old)
7848                         prev = prev->dtpv_next;
7849
7850                 if (prev == NULL) {
7851                         panic("attempt to unregister non-existent "
7852                             "dtrace provider %p\n", (void *)id);
7853                 }
7854
7855                 prev->dtpv_next = old->dtpv_next;
7856         }
7857
7858         if (!self) {
7859                 mutex_exit(&dtrace_lock);
7860 #if defined(sun)
7861                 mutex_exit(&mod_lock);
7862 #endif
7863                 mutex_exit(&dtrace_provider_lock);
7864         }
7865
7866         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7867         kmem_free(old, sizeof (dtrace_provider_t));
7868
7869         return (0);
7870 }
7871
7872 /*
7873  * Invalidate the specified provider.  All subsequent probe lookups for the
7874  * specified provider will fail, but its probes will not be removed.
7875  */
7876 void
7877 dtrace_invalidate(dtrace_provider_id_t id)
7878 {
7879         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7880
7881         ASSERT(pvp->dtpv_pops.dtps_enable !=
7882             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7883
7884         mutex_enter(&dtrace_provider_lock);
7885         mutex_enter(&dtrace_lock);
7886
7887         pvp->dtpv_defunct = dtrace_gethrtime();
7888
7889         mutex_exit(&dtrace_lock);
7890         mutex_exit(&dtrace_provider_lock);
7891 }
7892
7893 /*
7894  * Indicate whether or not DTrace has attached.
7895  */
7896 int
7897 dtrace_attached(void)
7898 {
7899         /*
7900          * dtrace_provider will be non-NULL iff the DTrace driver has
7901          * attached.  (It's non-NULL because DTrace is always itself a
7902          * provider.)
7903          */
7904         return (dtrace_provider != NULL);
7905 }
7906
7907 /*
7908  * Remove all the unenabled probes for the given provider.  This function is
7909  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7910  * -- just as many of its associated probes as it can.
7911  */
7912 int
7913 dtrace_condense(dtrace_provider_id_t id)
7914 {
7915         dtrace_provider_t *prov = (dtrace_provider_t *)id;
7916         int i;
7917         dtrace_probe_t *probe;
7918
7919         /*
7920          * Make sure this isn't the dtrace provider itself.
7921          */
7922         ASSERT(prov->dtpv_pops.dtps_enable !=
7923             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7924
7925         mutex_enter(&dtrace_provider_lock);
7926         mutex_enter(&dtrace_lock);
7927
7928         /*
7929          * Attempt to destroy the probes associated with this provider.
7930          */
7931         for (i = 0; i < dtrace_nprobes; i++) {
7932                 if ((probe = dtrace_probes[i]) == NULL)
7933                         continue;
7934
7935                 if (probe->dtpr_provider != prov)
7936                         continue;
7937
7938                 if (probe->dtpr_ecb != NULL)
7939                         continue;
7940
7941                 dtrace_probes[i] = NULL;
7942
7943                 dtrace_hash_remove(dtrace_bymod, probe);
7944                 dtrace_hash_remove(dtrace_byfunc, probe);
7945                 dtrace_hash_remove(dtrace_byname, probe);
7946
7947                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7948                     probe->dtpr_arg);
7949                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7950                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7951                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7952                 kmem_free(probe, sizeof (dtrace_probe_t));
7953 #if defined(sun)
7954                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7955 #else
7956                 free_unr(dtrace_arena, i + 1);
7957 #endif
7958         }
7959
7960         mutex_exit(&dtrace_lock);
7961         mutex_exit(&dtrace_provider_lock);
7962
7963         return (0);
7964 }
7965
7966 /*
7967  * DTrace Probe Management Functions
7968  *
7969  * The functions in this section perform the DTrace probe management,
7970  * including functions to create probes, look-up probes, and call into the
7971  * providers to request that probes be provided.  Some of these functions are
7972  * in the Provider-to-Framework API; these functions can be identified by the
7973  * fact that they are not declared "static".
7974  */
7975
7976 /*
7977  * Create a probe with the specified module name, function name, and name.
7978  */
7979 dtrace_id_t
7980 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7981     const char *func, const char *name, int aframes, void *arg)
7982 {
7983         dtrace_probe_t *probe, **probes;
7984         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7985         dtrace_id_t id;
7986
7987         if (provider == dtrace_provider) {
7988                 ASSERT(MUTEX_HELD(&dtrace_lock));
7989         } else {
7990                 mutex_enter(&dtrace_lock);
7991         }
7992
7993 #if defined(sun)
7994         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7995             VM_BESTFIT | VM_SLEEP);
7996 #else
7997         id = alloc_unr(dtrace_arena);
7998 #endif
7999         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8000
8001         probe->dtpr_id = id;
8002         probe->dtpr_gen = dtrace_probegen++;
8003         probe->dtpr_mod = dtrace_strdup(mod);
8004         probe->dtpr_func = dtrace_strdup(func);
8005         probe->dtpr_name = dtrace_strdup(name);
8006         probe->dtpr_arg = arg;
8007         probe->dtpr_aframes = aframes;
8008         probe->dtpr_provider = provider;
8009
8010         dtrace_hash_add(dtrace_bymod, probe);
8011         dtrace_hash_add(dtrace_byfunc, probe);
8012         dtrace_hash_add(dtrace_byname, probe);
8013
8014         if (id - 1 >= dtrace_nprobes) {
8015                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8016                 size_t nsize = osize << 1;
8017
8018                 if (nsize == 0) {
8019                         ASSERT(osize == 0);
8020                         ASSERT(dtrace_probes == NULL);
8021                         nsize = sizeof (dtrace_probe_t *);
8022                 }
8023
8024                 probes = kmem_zalloc(nsize, KM_SLEEP);
8025
8026                 if (dtrace_probes == NULL) {
8027                         ASSERT(osize == 0);
8028                         dtrace_probes = probes;
8029                         dtrace_nprobes = 1;
8030                 } else {
8031                         dtrace_probe_t **oprobes = dtrace_probes;
8032
8033                         bcopy(oprobes, probes, osize);
8034                         dtrace_membar_producer();
8035                         dtrace_probes = probes;
8036
8037                         dtrace_sync();
8038
8039                         /*
8040                          * All CPUs are now seeing the new probes array; we can
8041                          * safely free the old array.
8042                          */
8043                         kmem_free(oprobes, osize);
8044                         dtrace_nprobes <<= 1;
8045                 }
8046
8047                 ASSERT(id - 1 < dtrace_nprobes);
8048         }
8049
8050         ASSERT(dtrace_probes[id - 1] == NULL);
8051         dtrace_probes[id - 1] = probe;
8052
8053         if (provider != dtrace_provider)
8054                 mutex_exit(&dtrace_lock);
8055
8056         return (id);
8057 }
8058
8059 static dtrace_probe_t *
8060 dtrace_probe_lookup_id(dtrace_id_t id)
8061 {
8062         ASSERT(MUTEX_HELD(&dtrace_lock));
8063
8064         if (id == 0 || id > dtrace_nprobes)
8065                 return (NULL);
8066
8067         return (dtrace_probes[id - 1]);
8068 }
8069
8070 static int
8071 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8072 {
8073         *((dtrace_id_t *)arg) = probe->dtpr_id;
8074
8075         return (DTRACE_MATCH_DONE);
8076 }
8077
8078 /*
8079  * Look up a probe based on provider and one or more of module name, function
8080  * name and probe name.
8081  */
8082 dtrace_id_t
8083 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8084     char *func, char *name)
8085 {
8086         dtrace_probekey_t pkey;
8087         dtrace_id_t id;
8088         int match;
8089
8090         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8091         pkey.dtpk_pmatch = &dtrace_match_string;
8092         pkey.dtpk_mod = mod;
8093         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8094         pkey.dtpk_func = func;
8095         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8096         pkey.dtpk_name = name;
8097         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8098         pkey.dtpk_id = DTRACE_IDNONE;
8099
8100         mutex_enter(&dtrace_lock);
8101         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8102             dtrace_probe_lookup_match, &id);
8103         mutex_exit(&dtrace_lock);
8104
8105         ASSERT(match == 1 || match == 0);
8106         return (match ? id : 0);
8107 }
8108
8109 /*
8110  * Returns the probe argument associated with the specified probe.
8111  */
8112 void *
8113 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8114 {
8115         dtrace_probe_t *probe;
8116         void *rval = NULL;
8117
8118         mutex_enter(&dtrace_lock);
8119
8120         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8121             probe->dtpr_provider == (dtrace_provider_t *)id)
8122                 rval = probe->dtpr_arg;
8123
8124         mutex_exit(&dtrace_lock);
8125
8126         return (rval);
8127 }
8128
8129 /*
8130  * Copy a probe into a probe description.
8131  */
8132 static void
8133 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8134 {
8135         bzero(pdp, sizeof (dtrace_probedesc_t));
8136         pdp->dtpd_id = prp->dtpr_id;
8137
8138         (void) strncpy(pdp->dtpd_provider,
8139             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8140
8141         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8142         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8143         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8144 }
8145
8146 /*
8147  * Called to indicate that a probe -- or probes -- should be provided by a
8148  * specfied provider.  If the specified description is NULL, the provider will
8149  * be told to provide all of its probes.  (This is done whenever a new
8150  * consumer comes along, or whenever a retained enabling is to be matched.) If
8151  * the specified description is non-NULL, the provider is given the
8152  * opportunity to dynamically provide the specified probe, allowing providers
8153  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8154  * probes.)  If the provider is NULL, the operations will be applied to all
8155  * providers; if the provider is non-NULL the operations will only be applied
8156  * to the specified provider.  The dtrace_provider_lock must be held, and the
8157  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8158  * will need to grab the dtrace_lock when it reenters the framework through
8159  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8160  */
8161 static void
8162 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8163 {
8164 #if defined(sun)
8165         modctl_t *ctl;
8166 #endif
8167         int all = 0;
8168
8169         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8170
8171         if (prv == NULL) {
8172                 all = 1;
8173                 prv = dtrace_provider;
8174         }
8175
8176         do {
8177                 /*
8178                  * First, call the blanket provide operation.
8179                  */
8180                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8181
8182 #if defined(sun)
8183                 /*
8184                  * Now call the per-module provide operation.  We will grab
8185                  * mod_lock to prevent the list from being modified.  Note
8186                  * that this also prevents the mod_busy bits from changing.
8187                  * (mod_busy can only be changed with mod_lock held.)
8188                  */
8189                 mutex_enter(&mod_lock);
8190
8191                 ctl = &modules;
8192                 do {
8193                         if (ctl->mod_busy || ctl->mod_mp == NULL)
8194                                 continue;
8195
8196                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8197
8198                 } while ((ctl = ctl->mod_next) != &modules);
8199
8200                 mutex_exit(&mod_lock);
8201 #endif
8202         } while (all && (prv = prv->dtpv_next) != NULL);
8203 }
8204
8205 #if defined(sun)
8206 /*
8207  * Iterate over each probe, and call the Framework-to-Provider API function
8208  * denoted by offs.
8209  */
8210 static void
8211 dtrace_probe_foreach(uintptr_t offs)
8212 {
8213         dtrace_provider_t *prov;
8214         void (*func)(void *, dtrace_id_t, void *);
8215         dtrace_probe_t *probe;
8216         dtrace_icookie_t cookie;
8217         int i;
8218
8219         /*
8220          * We disable interrupts to walk through the probe array.  This is
8221          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8222          * won't see stale data.
8223          */
8224         cookie = dtrace_interrupt_disable();
8225
8226         for (i = 0; i < dtrace_nprobes; i++) {
8227                 if ((probe = dtrace_probes[i]) == NULL)
8228                         continue;
8229
8230                 if (probe->dtpr_ecb == NULL) {
8231                         /*
8232                          * This probe isn't enabled -- don't call the function.
8233                          */
8234                         continue;
8235                 }
8236
8237                 prov = probe->dtpr_provider;
8238                 func = *((void(**)(void *, dtrace_id_t, void *))
8239                     ((uintptr_t)&prov->dtpv_pops + offs));
8240
8241                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8242         }
8243
8244         dtrace_interrupt_enable(cookie);
8245 }
8246 #endif
8247
8248 static int
8249 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8250 {
8251         dtrace_probekey_t pkey;
8252         uint32_t priv;
8253         uid_t uid;
8254         zoneid_t zoneid;
8255
8256         ASSERT(MUTEX_HELD(&dtrace_lock));
8257         dtrace_ecb_create_cache = NULL;
8258
8259         if (desc == NULL) {
8260                 /*
8261                  * If we're passed a NULL description, we're being asked to
8262                  * create an ECB with a NULL probe.
8263                  */
8264                 (void) dtrace_ecb_create_enable(NULL, enab);
8265                 return (0);
8266         }
8267
8268         dtrace_probekey(desc, &pkey);
8269         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8270             &priv, &uid, &zoneid);
8271
8272         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8273             enab));
8274 }
8275
8276 /*
8277  * DTrace Helper Provider Functions
8278  */
8279 static void
8280 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8281 {
8282         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8283         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8284         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8285 }
8286
8287 static void
8288 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8289     const dof_provider_t *dofprov, char *strtab)
8290 {
8291         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8292         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8293             dofprov->dofpv_provattr);
8294         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8295             dofprov->dofpv_modattr);
8296         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8297             dofprov->dofpv_funcattr);
8298         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8299             dofprov->dofpv_nameattr);
8300         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8301             dofprov->dofpv_argsattr);
8302 }
8303
8304 static void
8305 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8306 {
8307         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8308         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8309         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8310         dof_provider_t *provider;
8311         dof_probe_t *probe;
8312         uint32_t *off, *enoff;
8313         uint8_t *arg;
8314         char *strtab;
8315         uint_t i, nprobes;
8316         dtrace_helper_provdesc_t dhpv;
8317         dtrace_helper_probedesc_t dhpb;
8318         dtrace_meta_t *meta = dtrace_meta_pid;
8319         dtrace_mops_t *mops = &meta->dtm_mops;
8320         void *parg;
8321
8322         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8323         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8324             provider->dofpv_strtab * dof->dofh_secsize);
8325         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8326             provider->dofpv_probes * dof->dofh_secsize);
8327         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8328             provider->dofpv_prargs * dof->dofh_secsize);
8329         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8330             provider->dofpv_proffs * dof->dofh_secsize);
8331
8332         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8333         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8334         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8335         enoff = NULL;
8336
8337         /*
8338          * See dtrace_helper_provider_validate().
8339          */
8340         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8341             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8342                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8343                     provider->dofpv_prenoffs * dof->dofh_secsize);
8344                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8345         }
8346
8347         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8348
8349         /*
8350          * Create the provider.
8351          */
8352         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8353
8354         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8355                 return;
8356
8357         meta->dtm_count++;
8358
8359         /*
8360          * Create the probes.
8361          */
8362         for (i = 0; i < nprobes; i++) {
8363                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8364                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8365
8366                 dhpb.dthpb_mod = dhp->dofhp_mod;
8367                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8368                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8369                 dhpb.dthpb_base = probe->dofpr_addr;
8370                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8371                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8372                 if (enoff != NULL) {
8373                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8374                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8375                 } else {
8376                         dhpb.dthpb_enoffs = NULL;
8377                         dhpb.dthpb_nenoffs = 0;
8378                 }
8379                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8380                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8381                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8382                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8383                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8384
8385                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8386         }
8387 }
8388
8389 static void
8390 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8391 {
8392         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8393         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8394         int i;
8395
8396         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8397
8398         for (i = 0; i < dof->dofh_secnum; i++) {
8399                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8400                     dof->dofh_secoff + i * dof->dofh_secsize);
8401
8402                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8403                         continue;
8404
8405                 dtrace_helper_provide_one(dhp, sec, pid);
8406         }
8407
8408         /*
8409          * We may have just created probes, so we must now rematch against
8410          * any retained enablings.  Note that this call will acquire both
8411          * cpu_lock and dtrace_lock; the fact that we are holding
8412          * dtrace_meta_lock now is what defines the ordering with respect to
8413          * these three locks.
8414          */
8415         dtrace_enabling_matchall();
8416 }
8417
8418 static void
8419 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8420 {
8421         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8422         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8423         dof_sec_t *str_sec;
8424         dof_provider_t *provider;
8425         char *strtab;
8426         dtrace_helper_provdesc_t dhpv;
8427         dtrace_meta_t *meta = dtrace_meta_pid;
8428         dtrace_mops_t *mops = &meta->dtm_mops;
8429
8430         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8431         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8432             provider->dofpv_strtab * dof->dofh_secsize);
8433
8434         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8435
8436         /*
8437          * Create the provider.
8438          */
8439         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8440
8441         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8442
8443         meta->dtm_count--;
8444 }
8445
8446 static void
8447 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8448 {
8449         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8450         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8451         int i;
8452
8453         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8454
8455         for (i = 0; i < dof->dofh_secnum; i++) {
8456                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8457                     dof->dofh_secoff + i * dof->dofh_secsize);
8458
8459                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8460                         continue;
8461
8462                 dtrace_helper_provider_remove_one(dhp, sec, pid);
8463         }
8464 }
8465
8466 /*
8467  * DTrace Meta Provider-to-Framework API Functions
8468  *
8469  * These functions implement the Meta Provider-to-Framework API, as described
8470  * in <sys/dtrace.h>.
8471  */
8472 int
8473 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8474     dtrace_meta_provider_id_t *idp)
8475 {
8476         dtrace_meta_t *meta;
8477         dtrace_helpers_t *help, *next;
8478         int i;
8479
8480         *idp = DTRACE_METAPROVNONE;
8481
8482         /*
8483          * We strictly don't need the name, but we hold onto it for
8484          * debuggability. All hail error queues!
8485          */
8486         if (name == NULL) {
8487                 cmn_err(CE_WARN, "failed to register meta-provider: "
8488                     "invalid name");
8489                 return (EINVAL);
8490         }
8491
8492         if (mops == NULL ||
8493             mops->dtms_create_probe == NULL ||
8494             mops->dtms_provide_pid == NULL ||
8495             mops->dtms_remove_pid == NULL) {
8496                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8497                     "invalid ops", name);
8498                 return (EINVAL);
8499         }
8500
8501         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8502         meta->dtm_mops = *mops;
8503         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8504         (void) strcpy(meta->dtm_name, name);
8505         meta->dtm_arg = arg;
8506
8507         mutex_enter(&dtrace_meta_lock);
8508         mutex_enter(&dtrace_lock);
8509
8510         if (dtrace_meta_pid != NULL) {
8511                 mutex_exit(&dtrace_lock);
8512                 mutex_exit(&dtrace_meta_lock);
8513                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8514                     "user-land meta-provider exists", name);
8515                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8516                 kmem_free(meta, sizeof (dtrace_meta_t));
8517                 return (EINVAL);
8518         }
8519
8520         dtrace_meta_pid = meta;
8521         *idp = (dtrace_meta_provider_id_t)meta;
8522
8523         /*
8524          * If there are providers and probes ready to go, pass them
8525          * off to the new meta provider now.
8526          */
8527
8528         help = dtrace_deferred_pid;
8529         dtrace_deferred_pid = NULL;
8530
8531         mutex_exit(&dtrace_lock);
8532
8533         while (help != NULL) {
8534                 for (i = 0; i < help->dthps_nprovs; i++) {
8535                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8536                             help->dthps_pid);
8537                 }
8538
8539                 next = help->dthps_next;
8540                 help->dthps_next = NULL;
8541                 help->dthps_prev = NULL;
8542                 help->dthps_deferred = 0;
8543                 help = next;
8544         }
8545
8546         mutex_exit(&dtrace_meta_lock);
8547
8548         return (0);
8549 }
8550
8551 int
8552 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8553 {
8554         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8555
8556         mutex_enter(&dtrace_meta_lock);
8557         mutex_enter(&dtrace_lock);
8558
8559         if (old == dtrace_meta_pid) {
8560                 pp = &dtrace_meta_pid;
8561         } else {
8562                 panic("attempt to unregister non-existent "
8563                     "dtrace meta-provider %p\n", (void *)old);
8564         }
8565
8566         if (old->dtm_count != 0) {
8567                 mutex_exit(&dtrace_lock);
8568                 mutex_exit(&dtrace_meta_lock);
8569                 return (EBUSY);
8570         }
8571
8572         *pp = NULL;
8573
8574         mutex_exit(&dtrace_lock);
8575         mutex_exit(&dtrace_meta_lock);
8576
8577         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8578         kmem_free(old, sizeof (dtrace_meta_t));
8579
8580         return (0);
8581 }
8582
8583
8584 /*
8585  * DTrace DIF Object Functions
8586  */
8587 static int
8588 dtrace_difo_err(uint_t pc, const char *format, ...)
8589 {
8590         if (dtrace_err_verbose) {
8591                 va_list alist;
8592
8593                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8594                 va_start(alist, format);
8595                 (void) vuprintf(format, alist);
8596                 va_end(alist);
8597         }
8598
8599 #ifdef DTRACE_ERRDEBUG
8600         dtrace_errdebug(format);
8601 #endif
8602         return (1);
8603 }
8604
8605 /*
8606  * Validate a DTrace DIF object by checking the IR instructions.  The following
8607  * rules are currently enforced by dtrace_difo_validate():
8608  *
8609  * 1. Each instruction must have a valid opcode
8610  * 2. Each register, string, variable, or subroutine reference must be valid
8611  * 3. No instruction can modify register %r0 (must be zero)
8612  * 4. All instruction reserved bits must be set to zero
8613  * 5. The last instruction must be a "ret" instruction
8614  * 6. All branch targets must reference a valid instruction _after_ the branch
8615  */
8616 static int
8617 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8618     cred_t *cr)
8619 {
8620         int err = 0, i;
8621         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8622         int kcheckload;
8623         uint_t pc;
8624
8625         kcheckload = cr == NULL ||
8626             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8627
8628         dp->dtdo_destructive = 0;
8629
8630         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8631                 dif_instr_t instr = dp->dtdo_buf[pc];
8632
8633                 uint_t r1 = DIF_INSTR_R1(instr);
8634                 uint_t r2 = DIF_INSTR_R2(instr);
8635                 uint_t rd = DIF_INSTR_RD(instr);
8636                 uint_t rs = DIF_INSTR_RS(instr);
8637                 uint_t label = DIF_INSTR_LABEL(instr);
8638                 uint_t v = DIF_INSTR_VAR(instr);
8639                 uint_t subr = DIF_INSTR_SUBR(instr);
8640                 uint_t type = DIF_INSTR_TYPE(instr);
8641                 uint_t op = DIF_INSTR_OP(instr);
8642
8643                 switch (op) {
8644                 case DIF_OP_OR:
8645                 case DIF_OP_XOR:
8646                 case DIF_OP_AND:
8647                 case DIF_OP_SLL:
8648                 case DIF_OP_SRL:
8649                 case DIF_OP_SRA:
8650                 case DIF_OP_SUB:
8651                 case DIF_OP_ADD:
8652                 case DIF_OP_MUL:
8653                 case DIF_OP_SDIV:
8654                 case DIF_OP_UDIV:
8655                 case DIF_OP_SREM:
8656                 case DIF_OP_UREM:
8657                 case DIF_OP_COPYS:
8658                         if (r1 >= nregs)
8659                                 err += efunc(pc, "invalid register %u\n", r1);
8660                         if (r2 >= nregs)
8661                                 err += efunc(pc, "invalid register %u\n", r2);
8662                         if (rd >= nregs)
8663                                 err += efunc(pc, "invalid register %u\n", rd);
8664                         if (rd == 0)
8665                                 err += efunc(pc, "cannot write to %r0\n");
8666                         break;
8667                 case DIF_OP_NOT:
8668                 case DIF_OP_MOV:
8669                 case DIF_OP_ALLOCS:
8670                         if (r1 >= nregs)
8671                                 err += efunc(pc, "invalid register %u\n", r1);
8672                         if (r2 != 0)
8673                                 err += efunc(pc, "non-zero reserved bits\n");
8674                         if (rd >= nregs)
8675                                 err += efunc(pc, "invalid register %u\n", rd);
8676                         if (rd == 0)
8677                                 err += efunc(pc, "cannot write to %r0\n");
8678                         break;
8679                 case DIF_OP_LDSB:
8680                 case DIF_OP_LDSH:
8681                 case DIF_OP_LDSW:
8682                 case DIF_OP_LDUB:
8683                 case DIF_OP_LDUH:
8684                 case DIF_OP_LDUW:
8685                 case DIF_OP_LDX:
8686                         if (r1 >= nregs)
8687                                 err += efunc(pc, "invalid register %u\n", r1);
8688                         if (r2 != 0)
8689                                 err += efunc(pc, "non-zero reserved bits\n");
8690                         if (rd >= nregs)
8691                                 err += efunc(pc, "invalid register %u\n", rd);
8692                         if (rd == 0)
8693                                 err += efunc(pc, "cannot write to %r0\n");
8694                         if (kcheckload)
8695                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8696                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8697                         break;
8698                 case DIF_OP_RLDSB:
8699                 case DIF_OP_RLDSH:
8700                 case DIF_OP_RLDSW:
8701                 case DIF_OP_RLDUB:
8702                 case DIF_OP_RLDUH:
8703                 case DIF_OP_RLDUW:
8704                 case DIF_OP_RLDX:
8705                         if (r1 >= nregs)
8706                                 err += efunc(pc, "invalid register %u\n", r1);
8707                         if (r2 != 0)
8708                                 err += efunc(pc, "non-zero reserved bits\n");
8709                         if (rd >= nregs)
8710                                 err += efunc(pc, "invalid register %u\n", rd);
8711                         if (rd == 0)
8712                                 err += efunc(pc, "cannot write to %r0\n");
8713                         break;
8714                 case DIF_OP_ULDSB:
8715                 case DIF_OP_ULDSH:
8716                 case DIF_OP_ULDSW:
8717                 case DIF_OP_ULDUB:
8718                 case DIF_OP_ULDUH:
8719                 case DIF_OP_ULDUW:
8720                 case DIF_OP_ULDX:
8721                         if (r1 >= nregs)
8722                                 err += efunc(pc, "invalid register %u\n", r1);
8723                         if (r2 != 0)
8724                                 err += efunc(pc, "non-zero reserved bits\n");
8725                         if (rd >= nregs)
8726                                 err += efunc(pc, "invalid register %u\n", rd);
8727                         if (rd == 0)
8728                                 err += efunc(pc, "cannot write to %r0\n");
8729                         break;
8730                 case DIF_OP_STB:
8731                 case DIF_OP_STH:
8732                 case DIF_OP_STW:
8733                 case DIF_OP_STX:
8734                         if (r1 >= nregs)
8735                                 err += efunc(pc, "invalid register %u\n", r1);
8736                         if (r2 != 0)
8737                                 err += efunc(pc, "non-zero reserved bits\n");
8738                         if (rd >= nregs)
8739                                 err += efunc(pc, "invalid register %u\n", rd);
8740                         if (rd == 0)
8741                                 err += efunc(pc, "cannot write to 0 address\n");
8742                         break;
8743                 case DIF_OP_CMP:
8744                 case DIF_OP_SCMP:
8745                         if (r1 >= nregs)
8746                                 err += efunc(pc, "invalid register %u\n", r1);
8747                         if (r2 >= nregs)
8748                                 err += efunc(pc, "invalid register %u\n", r2);
8749                         if (rd != 0)
8750                                 err += efunc(pc, "non-zero reserved bits\n");
8751                         break;
8752                 case DIF_OP_TST:
8753                         if (r1 >= nregs)
8754                                 err += efunc(pc, "invalid register %u\n", r1);
8755                         if (r2 != 0 || rd != 0)
8756                                 err += efunc(pc, "non-zero reserved bits\n");
8757                         break;
8758                 case DIF_OP_BA:
8759                 case DIF_OP_BE:
8760                 case DIF_OP_BNE:
8761                 case DIF_OP_BG:
8762                 case DIF_OP_BGU:
8763                 case DIF_OP_BGE:
8764                 case DIF_OP_BGEU:
8765                 case DIF_OP_BL:
8766                 case DIF_OP_BLU:
8767                 case DIF_OP_BLE:
8768                 case DIF_OP_BLEU:
8769                         if (label >= dp->dtdo_len) {
8770                                 err += efunc(pc, "invalid branch target %u\n",
8771                                     label);
8772                         }
8773                         if (label <= pc) {
8774                                 err += efunc(pc, "backward branch to %u\n",
8775                                     label);
8776                         }
8777                         break;
8778                 case DIF_OP_RET:
8779                         if (r1 != 0 || r2 != 0)
8780                                 err += efunc(pc, "non-zero reserved bits\n");
8781                         if (rd >= nregs)
8782                                 err += efunc(pc, "invalid register %u\n", rd);
8783                         break;
8784                 case DIF_OP_NOP:
8785                 case DIF_OP_POPTS:
8786                 case DIF_OP_FLUSHTS:
8787                         if (r1 != 0 || r2 != 0 || rd != 0)
8788                                 err += efunc(pc, "non-zero reserved bits\n");
8789                         break;
8790                 case DIF_OP_SETX:
8791                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8792                                 err += efunc(pc, "invalid integer ref %u\n",
8793                                     DIF_INSTR_INTEGER(instr));
8794                         }
8795                         if (rd >= nregs)
8796                                 err += efunc(pc, "invalid register %u\n", rd);
8797                         if (rd == 0)
8798                                 err += efunc(pc, "cannot write to %r0\n");
8799                         break;
8800                 case DIF_OP_SETS:
8801                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8802                                 err += efunc(pc, "invalid string ref %u\n",
8803                                     DIF_INSTR_STRING(instr));
8804                         }
8805                         if (rd >= nregs)
8806                                 err += efunc(pc, "invalid register %u\n", rd);
8807                         if (rd == 0)
8808                                 err += efunc(pc, "cannot write to %r0\n");
8809                         break;
8810                 case DIF_OP_LDGA:
8811                 case DIF_OP_LDTA:
8812                         if (r1 > DIF_VAR_ARRAY_MAX)
8813                                 err += efunc(pc, "invalid array %u\n", r1);
8814                         if (r2 >= nregs)
8815                                 err += efunc(pc, "invalid register %u\n", r2);
8816                         if (rd >= nregs)
8817                                 err += efunc(pc, "invalid register %u\n", rd);
8818                         if (rd == 0)
8819                                 err += efunc(pc, "cannot write to %r0\n");
8820                         break;
8821                 case DIF_OP_LDGS:
8822                 case DIF_OP_LDTS:
8823                 case DIF_OP_LDLS:
8824                 case DIF_OP_LDGAA:
8825                 case DIF_OP_LDTAA:
8826                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8827                                 err += efunc(pc, "invalid variable %u\n", v);
8828                         if (rd >= nregs)
8829                                 err += efunc(pc, "invalid register %u\n", rd);
8830                         if (rd == 0)
8831                                 err += efunc(pc, "cannot write to %r0\n");
8832                         break;
8833                 case DIF_OP_STGS:
8834                 case DIF_OP_STTS:
8835                 case DIF_OP_STLS:
8836                 case DIF_OP_STGAA:
8837                 case DIF_OP_STTAA:
8838                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8839                                 err += efunc(pc, "invalid variable %u\n", v);
8840                         if (rs >= nregs)
8841                                 err += efunc(pc, "invalid register %u\n", rd);
8842                         break;
8843                 case DIF_OP_CALL:
8844                         if (subr > DIF_SUBR_MAX)
8845                                 err += efunc(pc, "invalid subr %u\n", subr);
8846                         if (rd >= nregs)
8847                                 err += efunc(pc, "invalid register %u\n", rd);
8848                         if (rd == 0)
8849                                 err += efunc(pc, "cannot write to %r0\n");
8850
8851                         if (subr == DIF_SUBR_COPYOUT ||
8852                             subr == DIF_SUBR_COPYOUTSTR) {
8853                                 dp->dtdo_destructive = 1;
8854                         }
8855                         break;
8856                 case DIF_OP_PUSHTR:
8857                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8858                                 err += efunc(pc, "invalid ref type %u\n", type);
8859                         if (r2 >= nregs)
8860                                 err += efunc(pc, "invalid register %u\n", r2);
8861                         if (rs >= nregs)
8862                                 err += efunc(pc, "invalid register %u\n", rs);
8863                         break;
8864                 case DIF_OP_PUSHTV:
8865                         if (type != DIF_TYPE_CTF)
8866                                 err += efunc(pc, "invalid val type %u\n", type);
8867                         if (r2 >= nregs)
8868                                 err += efunc(pc, "invalid register %u\n", r2);
8869                         if (rs >= nregs)
8870                                 err += efunc(pc, "invalid register %u\n", rs);
8871                         break;
8872                 default:
8873                         err += efunc(pc, "invalid opcode %u\n",
8874                             DIF_INSTR_OP(instr));
8875                 }
8876         }
8877
8878         if (dp->dtdo_len != 0 &&
8879             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8880                 err += efunc(dp->dtdo_len - 1,
8881                     "expected 'ret' as last DIF instruction\n");
8882         }
8883
8884         if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8885                 /*
8886                  * If we're not returning by reference, the size must be either
8887                  * 0 or the size of one of the base types.
8888                  */
8889                 switch (dp->dtdo_rtype.dtdt_size) {
8890                 case 0:
8891                 case sizeof (uint8_t):
8892                 case sizeof (uint16_t):
8893                 case sizeof (uint32_t):
8894                 case sizeof (uint64_t):
8895                         break;
8896
8897                 default:
8898                         err += efunc(dp->dtdo_len - 1, "bad return size");
8899                 }
8900         }
8901
8902         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8903                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8904                 dtrace_diftype_t *vt, *et;
8905                 uint_t id, ndx;
8906
8907                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8908                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
8909                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8910                         err += efunc(i, "unrecognized variable scope %d\n",
8911                             v->dtdv_scope);
8912                         break;
8913                 }
8914
8915                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8916                     v->dtdv_kind != DIFV_KIND_SCALAR) {
8917                         err += efunc(i, "unrecognized variable type %d\n",
8918                             v->dtdv_kind);
8919                         break;
8920                 }
8921
8922                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8923                         err += efunc(i, "%d exceeds variable id limit\n", id);
8924                         break;
8925                 }
8926
8927                 if (id < DIF_VAR_OTHER_UBASE)
8928                         continue;
8929
8930                 /*
8931                  * For user-defined variables, we need to check that this
8932                  * definition is identical to any previous definition that we
8933                  * encountered.
8934                  */
8935                 ndx = id - DIF_VAR_OTHER_UBASE;
8936
8937                 switch (v->dtdv_scope) {
8938                 case DIFV_SCOPE_GLOBAL:
8939                         if (ndx < vstate->dtvs_nglobals) {
8940                                 dtrace_statvar_t *svar;
8941
8942                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8943                                         existing = &svar->dtsv_var;
8944                         }
8945
8946                         break;
8947
8948                 case DIFV_SCOPE_THREAD:
8949                         if (ndx < vstate->dtvs_ntlocals)
8950                                 existing = &vstate->dtvs_tlocals[ndx];
8951                         break;
8952
8953                 case DIFV_SCOPE_LOCAL:
8954                         if (ndx < vstate->dtvs_nlocals) {
8955                                 dtrace_statvar_t *svar;
8956
8957                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8958                                         existing = &svar->dtsv_var;
8959                         }
8960
8961                         break;
8962                 }
8963
8964                 vt = &v->dtdv_type;
8965
8966                 if (vt->dtdt_flags & DIF_TF_BYREF) {
8967                         if (vt->dtdt_size == 0) {
8968                                 err += efunc(i, "zero-sized variable\n");
8969                                 break;
8970                         }
8971
8972                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8973                             vt->dtdt_size > dtrace_global_maxsize) {
8974                                 err += efunc(i, "oversized by-ref global\n");
8975                                 break;
8976                         }
8977                 }
8978
8979                 if (existing == NULL || existing->dtdv_id == 0)
8980                         continue;
8981
8982                 ASSERT(existing->dtdv_id == v->dtdv_id);
8983                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8984
8985                 if (existing->dtdv_kind != v->dtdv_kind)
8986                         err += efunc(i, "%d changed variable kind\n", id);
8987
8988                 et = &existing->dtdv_type;
8989
8990                 if (vt->dtdt_flags != et->dtdt_flags) {
8991                         err += efunc(i, "%d changed variable type flags\n", id);
8992                         break;
8993                 }
8994
8995                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8996                         err += efunc(i, "%d changed variable type size\n", id);
8997                         break;
8998                 }
8999         }
9000
9001         return (err);
9002 }
9003
9004 /*
9005  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9006  * are much more constrained than normal DIFOs.  Specifically, they may
9007  * not:
9008  *
9009  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9010  *    miscellaneous string routines
9011  * 2. Access DTrace variables other than the args[] array, and the
9012  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9013  * 3. Have thread-local variables.
9014  * 4. Have dynamic variables.
9015  */
9016 static int
9017 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9018 {
9019         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9020         int err = 0;
9021         uint_t pc;
9022
9023         for (pc = 0; pc < dp->dtdo_len; pc++) {
9024                 dif_instr_t instr = dp->dtdo_buf[pc];
9025
9026                 uint_t v = DIF_INSTR_VAR(instr);
9027                 uint_t subr = DIF_INSTR_SUBR(instr);
9028                 uint_t op = DIF_INSTR_OP(instr);
9029
9030                 switch (op) {
9031                 case DIF_OP_OR:
9032                 case DIF_OP_XOR:
9033                 case DIF_OP_AND:
9034                 case DIF_OP_SLL:
9035                 case DIF_OP_SRL:
9036                 case DIF_OP_SRA:
9037                 case DIF_OP_SUB:
9038                 case DIF_OP_ADD:
9039                 case DIF_OP_MUL:
9040                 case DIF_OP_SDIV:
9041                 case DIF_OP_UDIV:
9042                 case DIF_OP_SREM:
9043                 case DIF_OP_UREM:
9044                 case DIF_OP_COPYS:
9045                 case DIF_OP_NOT:
9046                 case DIF_OP_MOV:
9047                 case DIF_OP_RLDSB:
9048                 case DIF_OP_RLDSH:
9049                 case DIF_OP_RLDSW:
9050                 case DIF_OP_RLDUB:
9051                 case DIF_OP_RLDUH:
9052                 case DIF_OP_RLDUW:
9053                 case DIF_OP_RLDX:
9054                 case DIF_OP_ULDSB:
9055                 case DIF_OP_ULDSH:
9056                 case DIF_OP_ULDSW:
9057                 case DIF_OP_ULDUB:
9058                 case DIF_OP_ULDUH:
9059                 case DIF_OP_ULDUW:
9060                 case DIF_OP_ULDX:
9061                 case DIF_OP_STB:
9062                 case DIF_OP_STH:
9063                 case DIF_OP_STW:
9064                 case DIF_OP_STX:
9065                 case DIF_OP_ALLOCS:
9066                 case DIF_OP_CMP:
9067                 case DIF_OP_SCMP:
9068                 case DIF_OP_TST:
9069                 case DIF_OP_BA:
9070                 case DIF_OP_BE:
9071                 case DIF_OP_BNE:
9072                 case DIF_OP_BG:
9073                 case DIF_OP_BGU:
9074                 case DIF_OP_BGE:
9075                 case DIF_OP_BGEU:
9076                 case DIF_OP_BL:
9077                 case DIF_OP_BLU:
9078                 case DIF_OP_BLE:
9079                 case DIF_OP_BLEU:
9080                 case DIF_OP_RET:
9081                 case DIF_OP_NOP:
9082                 case DIF_OP_POPTS:
9083                 case DIF_OP_FLUSHTS:
9084                 case DIF_OP_SETX:
9085                 case DIF_OP_SETS:
9086                 case DIF_OP_LDGA:
9087                 case DIF_OP_LDLS:
9088                 case DIF_OP_STGS:
9089                 case DIF_OP_STLS:
9090                 case DIF_OP_PUSHTR:
9091                 case DIF_OP_PUSHTV:
9092                         break;
9093
9094                 case DIF_OP_LDGS:
9095                         if (v >= DIF_VAR_OTHER_UBASE)
9096                                 break;
9097
9098                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9099                                 break;
9100
9101                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9102                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9103                             v == DIF_VAR_EXECARGS ||
9104                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9105                             v == DIF_VAR_UID || v == DIF_VAR_GID)
9106                                 break;
9107
9108                         err += efunc(pc, "illegal variable %u\n", v);
9109                         break;
9110
9111                 case DIF_OP_LDTA:
9112                 case DIF_OP_LDTS:
9113                 case DIF_OP_LDGAA:
9114                 case DIF_OP_LDTAA:
9115                         err += efunc(pc, "illegal dynamic variable load\n");
9116                         break;
9117
9118                 case DIF_OP_STTS:
9119                 case DIF_OP_STGAA:
9120                 case DIF_OP_STTAA:
9121                         err += efunc(pc, "illegal dynamic variable store\n");
9122                         break;
9123
9124                 case DIF_OP_CALL:
9125                         if (subr == DIF_SUBR_ALLOCA ||
9126                             subr == DIF_SUBR_BCOPY ||
9127                             subr == DIF_SUBR_COPYIN ||
9128                             subr == DIF_SUBR_COPYINTO ||
9129                             subr == DIF_SUBR_COPYINSTR ||
9130                             subr == DIF_SUBR_INDEX ||
9131                             subr == DIF_SUBR_INET_NTOA ||
9132                             subr == DIF_SUBR_INET_NTOA6 ||
9133                             subr == DIF_SUBR_INET_NTOP ||
9134                             subr == DIF_SUBR_LLTOSTR ||
9135                             subr == DIF_SUBR_RINDEX ||
9136                             subr == DIF_SUBR_STRCHR ||
9137                             subr == DIF_SUBR_STRJOIN ||
9138                             subr == DIF_SUBR_STRRCHR ||
9139                             subr == DIF_SUBR_STRSTR ||
9140                             subr == DIF_SUBR_HTONS ||
9141                             subr == DIF_SUBR_HTONL ||
9142                             subr == DIF_SUBR_HTONLL ||
9143                             subr == DIF_SUBR_NTOHS ||
9144                             subr == DIF_SUBR_NTOHL ||
9145                             subr == DIF_SUBR_NTOHLL ||
9146                             subr == DIF_SUBR_MEMREF ||
9147 #if !defined(sun)
9148                             subr == DIF_SUBR_MEMSTR ||
9149 #endif
9150                             subr == DIF_SUBR_TYPEREF)
9151                                 break;
9152
9153                         err += efunc(pc, "invalid subr %u\n", subr);
9154                         break;
9155
9156                 default:
9157                         err += efunc(pc, "invalid opcode %u\n",
9158                             DIF_INSTR_OP(instr));
9159                 }
9160         }
9161
9162         return (err);
9163 }
9164
9165 /*
9166  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9167  * basis; 0 if not.
9168  */
9169 static int
9170 dtrace_difo_cacheable(dtrace_difo_t *dp)
9171 {
9172         int i;
9173
9174         if (dp == NULL)
9175                 return (0);
9176
9177         for (i = 0; i < dp->dtdo_varlen; i++) {
9178                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9179
9180                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9181                         continue;
9182
9183                 switch (v->dtdv_id) {
9184                 case DIF_VAR_CURTHREAD:
9185                 case DIF_VAR_PID:
9186                 case DIF_VAR_TID:
9187                 case DIF_VAR_EXECARGS:
9188                 case DIF_VAR_EXECNAME:
9189                 case DIF_VAR_ZONENAME:
9190                         break;
9191
9192                 default:
9193                         return (0);
9194                 }
9195         }
9196
9197         /*
9198          * This DIF object may be cacheable.  Now we need to look for any
9199          * array loading instructions, any memory loading instructions, or
9200          * any stores to thread-local variables.
9201          */
9202         for (i = 0; i < dp->dtdo_len; i++) {
9203                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9204
9205                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9206                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9207                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9208                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
9209                         return (0);
9210         }
9211
9212         return (1);
9213 }
9214
9215 static void
9216 dtrace_difo_hold(dtrace_difo_t *dp)
9217 {
9218         int i;
9219
9220         ASSERT(MUTEX_HELD(&dtrace_lock));
9221
9222         dp->dtdo_refcnt++;
9223         ASSERT(dp->dtdo_refcnt != 0);
9224
9225         /*
9226          * We need to check this DIF object for references to the variable
9227          * DIF_VAR_VTIMESTAMP.
9228          */
9229         for (i = 0; i < dp->dtdo_varlen; i++) {
9230                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9231
9232                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9233                         continue;
9234
9235                 if (dtrace_vtime_references++ == 0)
9236                         dtrace_vtime_enable();
9237         }
9238 }
9239
9240 /*
9241  * This routine calculates the dynamic variable chunksize for a given DIF
9242  * object.  The calculation is not fool-proof, and can probably be tricked by
9243  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9244  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9245  * if a dynamic variable size exceeds the chunksize.
9246  */
9247 static void
9248 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9249 {
9250         uint64_t sval = 0;
9251         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9252         const dif_instr_t *text = dp->dtdo_buf;
9253         uint_t pc, srd = 0;
9254         uint_t ttop = 0;
9255         size_t size, ksize;
9256         uint_t id, i;
9257
9258         for (pc = 0; pc < dp->dtdo_len; pc++) {
9259                 dif_instr_t instr = text[pc];
9260                 uint_t op = DIF_INSTR_OP(instr);
9261                 uint_t rd = DIF_INSTR_RD(instr);
9262                 uint_t r1 = DIF_INSTR_R1(instr);
9263                 uint_t nkeys = 0;
9264                 uchar_t scope = 0;
9265
9266                 dtrace_key_t *key = tupregs;
9267
9268                 switch (op) {
9269                 case DIF_OP_SETX:
9270                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9271                         srd = rd;
9272                         continue;
9273
9274                 case DIF_OP_STTS:
9275                         key = &tupregs[DIF_DTR_NREGS];
9276                         key[0].dttk_size = 0;
9277                         key[1].dttk_size = 0;
9278                         nkeys = 2;
9279                         scope = DIFV_SCOPE_THREAD;
9280                         break;
9281
9282                 case DIF_OP_STGAA:
9283                 case DIF_OP_STTAA:
9284                         nkeys = ttop;
9285
9286                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9287                                 key[nkeys++].dttk_size = 0;
9288
9289                         key[nkeys++].dttk_size = 0;
9290
9291                         if (op == DIF_OP_STTAA) {
9292                                 scope = DIFV_SCOPE_THREAD;
9293                         } else {
9294                                 scope = DIFV_SCOPE_GLOBAL;
9295                         }
9296
9297                         break;
9298
9299                 case DIF_OP_PUSHTR:
9300                         if (ttop == DIF_DTR_NREGS)
9301                                 return;
9302
9303                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9304                                 /*
9305                                  * If the register for the size of the "pushtr"
9306                                  * is %r0 (or the value is 0) and the type is
9307                                  * a string, we'll use the system-wide default
9308                                  * string size.
9309                                  */
9310                                 tupregs[ttop++].dttk_size =
9311                                     dtrace_strsize_default;
9312                         } else {
9313                                 if (srd == 0)
9314                                         return;
9315
9316                                 tupregs[ttop++].dttk_size = sval;
9317                         }
9318
9319                         break;
9320
9321                 case DIF_OP_PUSHTV:
9322                         if (ttop == DIF_DTR_NREGS)
9323                                 return;
9324
9325                         tupregs[ttop++].dttk_size = 0;
9326                         break;
9327
9328                 case DIF_OP_FLUSHTS:
9329                         ttop = 0;
9330                         break;
9331
9332                 case DIF_OP_POPTS:
9333                         if (ttop != 0)
9334                                 ttop--;
9335                         break;
9336                 }
9337
9338                 sval = 0;
9339                 srd = 0;
9340
9341                 if (nkeys == 0)
9342                         continue;
9343
9344                 /*
9345                  * We have a dynamic variable allocation; calculate its size.
9346                  */
9347                 for (ksize = 0, i = 0; i < nkeys; i++)
9348                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9349
9350                 size = sizeof (dtrace_dynvar_t);
9351                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9352                 size += ksize;
9353
9354                 /*
9355                  * Now we need to determine the size of the stored data.
9356                  */
9357                 id = DIF_INSTR_VAR(instr);
9358
9359                 for (i = 0; i < dp->dtdo_varlen; i++) {
9360                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9361
9362                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9363                                 size += v->dtdv_type.dtdt_size;
9364                                 break;
9365                         }
9366                 }
9367
9368                 if (i == dp->dtdo_varlen)
9369                         return;
9370
9371                 /*
9372                  * We have the size.  If this is larger than the chunk size
9373                  * for our dynamic variable state, reset the chunk size.
9374                  */
9375                 size = P2ROUNDUP(size, sizeof (uint64_t));
9376
9377                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9378                         vstate->dtvs_dynvars.dtds_chunksize = size;
9379         }
9380 }
9381
9382 static void
9383 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9384 {
9385         int i, oldsvars, osz, nsz, otlocals, ntlocals;
9386         uint_t id;
9387
9388         ASSERT(MUTEX_HELD(&dtrace_lock));
9389         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9390
9391         for (i = 0; i < dp->dtdo_varlen; i++) {
9392                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9393                 dtrace_statvar_t *svar, ***svarp = NULL;
9394                 size_t dsize = 0;
9395                 uint8_t scope = v->dtdv_scope;
9396                 int *np = NULL;
9397
9398                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9399                         continue;
9400
9401                 id -= DIF_VAR_OTHER_UBASE;
9402
9403                 switch (scope) {
9404                 case DIFV_SCOPE_THREAD:
9405                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9406                                 dtrace_difv_t *tlocals;
9407
9408                                 if ((ntlocals = (otlocals << 1)) == 0)
9409                                         ntlocals = 1;
9410
9411                                 osz = otlocals * sizeof (dtrace_difv_t);
9412                                 nsz = ntlocals * sizeof (dtrace_difv_t);
9413
9414                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9415
9416                                 if (osz != 0) {
9417                                         bcopy(vstate->dtvs_tlocals,
9418                                             tlocals, osz);
9419                                         kmem_free(vstate->dtvs_tlocals, osz);
9420                                 }
9421
9422                                 vstate->dtvs_tlocals = tlocals;
9423                                 vstate->dtvs_ntlocals = ntlocals;
9424                         }
9425
9426                         vstate->dtvs_tlocals[id] = *v;
9427                         continue;
9428
9429                 case DIFV_SCOPE_LOCAL:
9430                         np = &vstate->dtvs_nlocals;
9431                         svarp = &vstate->dtvs_locals;
9432
9433                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9434                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
9435                                     sizeof (uint64_t));
9436                         else
9437                                 dsize = NCPU * sizeof (uint64_t);
9438
9439                         break;
9440
9441                 case DIFV_SCOPE_GLOBAL:
9442                         np = &vstate->dtvs_nglobals;
9443                         svarp = &vstate->dtvs_globals;
9444
9445                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9446                                 dsize = v->dtdv_type.dtdt_size +
9447                                     sizeof (uint64_t);
9448
9449                         break;
9450
9451                 default:
9452                         ASSERT(0);
9453                 }
9454
9455                 while (id >= (oldsvars = *np)) {
9456                         dtrace_statvar_t **statics;
9457                         int newsvars, oldsize, newsize;
9458
9459                         if ((newsvars = (oldsvars << 1)) == 0)
9460                                 newsvars = 1;
9461
9462                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9463                         newsize = newsvars * sizeof (dtrace_statvar_t *);
9464
9465                         statics = kmem_zalloc(newsize, KM_SLEEP);
9466
9467                         if (oldsize != 0) {
9468                                 bcopy(*svarp, statics, oldsize);
9469                                 kmem_free(*svarp, oldsize);
9470                         }
9471
9472                         *svarp = statics;
9473                         *np = newsvars;
9474                 }
9475
9476                 if ((svar = (*svarp)[id]) == NULL) {
9477                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9478                         svar->dtsv_var = *v;
9479
9480                         if ((svar->dtsv_size = dsize) != 0) {
9481                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9482                                     kmem_zalloc(dsize, KM_SLEEP);
9483                         }
9484
9485                         (*svarp)[id] = svar;
9486                 }
9487
9488                 svar->dtsv_refcnt++;
9489         }
9490
9491         dtrace_difo_chunksize(dp, vstate);
9492         dtrace_difo_hold(dp);
9493 }
9494
9495 static dtrace_difo_t *
9496 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9497 {
9498         dtrace_difo_t *new;
9499         size_t sz;
9500
9501         ASSERT(dp->dtdo_buf != NULL);
9502         ASSERT(dp->dtdo_refcnt != 0);
9503
9504         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9505
9506         ASSERT(dp->dtdo_buf != NULL);
9507         sz = dp->dtdo_len * sizeof (dif_instr_t);
9508         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9509         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9510         new->dtdo_len = dp->dtdo_len;
9511
9512         if (dp->dtdo_strtab != NULL) {
9513                 ASSERT(dp->dtdo_strlen != 0);
9514                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9515                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9516                 new->dtdo_strlen = dp->dtdo_strlen;
9517         }
9518
9519         if (dp->dtdo_inttab != NULL) {
9520                 ASSERT(dp->dtdo_intlen != 0);
9521                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9522                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9523                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9524                 new->dtdo_intlen = dp->dtdo_intlen;
9525         }
9526
9527         if (dp->dtdo_vartab != NULL) {
9528                 ASSERT(dp->dtdo_varlen != 0);
9529                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9530                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9531                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9532                 new->dtdo_varlen = dp->dtdo_varlen;
9533         }
9534
9535         dtrace_difo_init(new, vstate);
9536         return (new);
9537 }
9538
9539 static void
9540 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9541 {
9542         int i;
9543
9544         ASSERT(dp->dtdo_refcnt == 0);
9545
9546         for (i = 0; i < dp->dtdo_varlen; i++) {
9547                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9548                 dtrace_statvar_t *svar, **svarp = NULL;
9549                 uint_t id;
9550                 uint8_t scope = v->dtdv_scope;
9551                 int *np = NULL;
9552
9553                 switch (scope) {
9554                 case DIFV_SCOPE_THREAD:
9555                         continue;
9556
9557                 case DIFV_SCOPE_LOCAL:
9558                         np = &vstate->dtvs_nlocals;
9559                         svarp = vstate->dtvs_locals;
9560                         break;
9561
9562                 case DIFV_SCOPE_GLOBAL:
9563                         np = &vstate->dtvs_nglobals;
9564                         svarp = vstate->dtvs_globals;
9565                         break;
9566
9567                 default:
9568                         ASSERT(0);
9569                 }
9570
9571                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9572                         continue;
9573
9574                 id -= DIF_VAR_OTHER_UBASE;
9575                 ASSERT(id < *np);
9576
9577                 svar = svarp[id];
9578                 ASSERT(svar != NULL);
9579                 ASSERT(svar->dtsv_refcnt > 0);
9580
9581                 if (--svar->dtsv_refcnt > 0)
9582                         continue;
9583
9584                 if (svar->dtsv_size != 0) {
9585                         ASSERT(svar->dtsv_data != 0);
9586                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9587                             svar->dtsv_size);
9588                 }
9589
9590                 kmem_free(svar, sizeof (dtrace_statvar_t));
9591                 svarp[id] = NULL;
9592         }
9593
9594         if (dp->dtdo_buf != NULL)
9595                 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9596         if (dp->dtdo_inttab != NULL)
9597                 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9598         if (dp->dtdo_strtab != NULL)
9599                 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9600         if (dp->dtdo_vartab != NULL)
9601                 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9602
9603         kmem_free(dp, sizeof (dtrace_difo_t));
9604 }
9605
9606 static void
9607 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9608 {
9609         int i;
9610
9611         ASSERT(MUTEX_HELD(&dtrace_lock));
9612         ASSERT(dp->dtdo_refcnt != 0);
9613
9614         for (i = 0; i < dp->dtdo_varlen; i++) {
9615                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9616
9617                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9618                         continue;
9619
9620                 ASSERT(dtrace_vtime_references > 0);
9621                 if (--dtrace_vtime_references == 0)
9622                         dtrace_vtime_disable();
9623         }
9624
9625         if (--dp->dtdo_refcnt == 0)
9626                 dtrace_difo_destroy(dp, vstate);
9627 }
9628
9629 /*
9630  * DTrace Format Functions
9631  */
9632 static uint16_t
9633 dtrace_format_add(dtrace_state_t *state, char *str)
9634 {
9635         char *fmt, **new;
9636         uint16_t ndx, len = strlen(str) + 1;
9637
9638         fmt = kmem_zalloc(len, KM_SLEEP);
9639         bcopy(str, fmt, len);
9640
9641         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9642                 if (state->dts_formats[ndx] == NULL) {
9643                         state->dts_formats[ndx] = fmt;
9644                         return (ndx + 1);
9645                 }
9646         }
9647
9648         if (state->dts_nformats == USHRT_MAX) {
9649                 /*
9650                  * This is only likely if a denial-of-service attack is being
9651                  * attempted.  As such, it's okay to fail silently here.
9652                  */
9653                 kmem_free(fmt, len);
9654                 return (0);
9655         }
9656
9657         /*
9658          * For simplicity, we always resize the formats array to be exactly the
9659          * number of formats.
9660          */
9661         ndx = state->dts_nformats++;
9662         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9663
9664         if (state->dts_formats != NULL) {
9665                 ASSERT(ndx != 0);
9666                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9667                 kmem_free(state->dts_formats, ndx * sizeof (char *));
9668         }
9669
9670         state->dts_formats = new;
9671         state->dts_formats[ndx] = fmt;
9672
9673         return (ndx + 1);
9674 }
9675
9676 static void
9677 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9678 {
9679         char *fmt;
9680
9681         ASSERT(state->dts_formats != NULL);
9682         ASSERT(format <= state->dts_nformats);
9683         ASSERT(state->dts_formats[format - 1] != NULL);
9684
9685         fmt = state->dts_formats[format - 1];
9686         kmem_free(fmt, strlen(fmt) + 1);
9687         state->dts_formats[format - 1] = NULL;
9688 }
9689
9690 static void
9691 dtrace_format_destroy(dtrace_state_t *state)
9692 {
9693         int i;
9694
9695         if (state->dts_nformats == 0) {
9696                 ASSERT(state->dts_formats == NULL);
9697                 return;
9698         }
9699
9700         ASSERT(state->dts_formats != NULL);
9701
9702         for (i = 0; i < state->dts_nformats; i++) {
9703                 char *fmt = state->dts_formats[i];
9704
9705                 if (fmt == NULL)
9706                         continue;
9707
9708                 kmem_free(fmt, strlen(fmt) + 1);
9709         }
9710
9711         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9712         state->dts_nformats = 0;
9713         state->dts_formats = NULL;
9714 }
9715
9716 /*
9717  * DTrace Predicate Functions
9718  */
9719 static dtrace_predicate_t *
9720 dtrace_predicate_create(dtrace_difo_t *dp)
9721 {
9722         dtrace_predicate_t *pred;
9723
9724         ASSERT(MUTEX_HELD(&dtrace_lock));
9725         ASSERT(dp->dtdo_refcnt != 0);
9726
9727         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9728         pred->dtp_difo = dp;
9729         pred->dtp_refcnt = 1;
9730
9731         if (!dtrace_difo_cacheable(dp))
9732                 return (pred);
9733
9734         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9735                 /*
9736                  * This is only theoretically possible -- we have had 2^32
9737                  * cacheable predicates on this machine.  We cannot allow any
9738                  * more predicates to become cacheable:  as unlikely as it is,
9739                  * there may be a thread caching a (now stale) predicate cache
9740                  * ID. (N.B.: the temptation is being successfully resisted to
9741                  * have this cmn_err() "Holy shit -- we executed this code!")
9742                  */
9743                 return (pred);
9744         }
9745
9746         pred->dtp_cacheid = dtrace_predcache_id++;
9747
9748         return (pred);
9749 }
9750
9751 static void
9752 dtrace_predicate_hold(dtrace_predicate_t *pred)
9753 {
9754         ASSERT(MUTEX_HELD(&dtrace_lock));
9755         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9756         ASSERT(pred->dtp_refcnt > 0);
9757
9758         pred->dtp_refcnt++;
9759 }
9760
9761 static void
9762 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9763 {
9764         dtrace_difo_t *dp = pred->dtp_difo;
9765
9766         ASSERT(MUTEX_HELD(&dtrace_lock));
9767         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9768         ASSERT(pred->dtp_refcnt > 0);
9769
9770         if (--pred->dtp_refcnt == 0) {
9771                 dtrace_difo_release(pred->dtp_difo, vstate);
9772                 kmem_free(pred, sizeof (dtrace_predicate_t));
9773         }
9774 }
9775
9776 /*
9777  * DTrace Action Description Functions
9778  */
9779 static dtrace_actdesc_t *
9780 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9781     uint64_t uarg, uint64_t arg)
9782 {
9783         dtrace_actdesc_t *act;
9784
9785 #if defined(sun)
9786         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9787             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9788 #endif
9789
9790         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9791         act->dtad_kind = kind;
9792         act->dtad_ntuple = ntuple;
9793         act->dtad_uarg = uarg;
9794         act->dtad_arg = arg;
9795         act->dtad_refcnt = 1;
9796
9797         return (act);
9798 }
9799
9800 static void
9801 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9802 {
9803         ASSERT(act->dtad_refcnt >= 1);
9804         act->dtad_refcnt++;
9805 }
9806
9807 static void
9808 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9809 {
9810         dtrace_actkind_t kind = act->dtad_kind;
9811         dtrace_difo_t *dp;
9812
9813         ASSERT(act->dtad_refcnt >= 1);
9814
9815         if (--act->dtad_refcnt != 0)
9816                 return;
9817
9818         if ((dp = act->dtad_difo) != NULL)
9819                 dtrace_difo_release(dp, vstate);
9820
9821         if (DTRACEACT_ISPRINTFLIKE(kind)) {
9822                 char *str = (char *)(uintptr_t)act->dtad_arg;
9823
9824 #if defined(sun)
9825                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9826                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9827 #endif
9828
9829                 if (str != NULL)
9830                         kmem_free(str, strlen(str) + 1);
9831         }
9832
9833         kmem_free(act, sizeof (dtrace_actdesc_t));
9834 }
9835
9836 /*
9837  * DTrace ECB Functions
9838  */
9839 static dtrace_ecb_t *
9840 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9841 {
9842         dtrace_ecb_t *ecb;
9843         dtrace_epid_t epid;
9844
9845         ASSERT(MUTEX_HELD(&dtrace_lock));
9846
9847         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9848         ecb->dte_predicate = NULL;
9849         ecb->dte_probe = probe;
9850
9851         /*
9852          * The default size is the size of the default action: recording
9853          * the header.
9854          */
9855         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9856         ecb->dte_alignment = sizeof (dtrace_epid_t);
9857
9858         epid = state->dts_epid++;
9859
9860         if (epid - 1 >= state->dts_necbs) {
9861                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9862                 int necbs = state->dts_necbs << 1;
9863
9864                 ASSERT(epid == state->dts_necbs + 1);
9865
9866                 if (necbs == 0) {
9867                         ASSERT(oecbs == NULL);
9868                         necbs = 1;
9869                 }
9870
9871                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9872
9873                 if (oecbs != NULL)
9874                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9875
9876                 dtrace_membar_producer();
9877                 state->dts_ecbs = ecbs;
9878
9879                 if (oecbs != NULL) {
9880                         /*
9881                          * If this state is active, we must dtrace_sync()
9882                          * before we can free the old dts_ecbs array:  we're
9883                          * coming in hot, and there may be active ring
9884                          * buffer processing (which indexes into the dts_ecbs
9885                          * array) on another CPU.
9886                          */
9887                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9888                                 dtrace_sync();
9889
9890                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9891                 }
9892
9893                 dtrace_membar_producer();
9894                 state->dts_necbs = necbs;
9895         }
9896
9897         ecb->dte_state = state;
9898
9899         ASSERT(state->dts_ecbs[epid - 1] == NULL);
9900         dtrace_membar_producer();
9901         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9902
9903         return (ecb);
9904 }
9905
9906 static void
9907 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9908 {
9909         dtrace_probe_t *probe = ecb->dte_probe;
9910
9911         ASSERT(MUTEX_HELD(&cpu_lock));
9912         ASSERT(MUTEX_HELD(&dtrace_lock));
9913         ASSERT(ecb->dte_next == NULL);
9914
9915         if (probe == NULL) {
9916                 /*
9917                  * This is the NULL probe -- there's nothing to do.
9918                  */
9919                 return;
9920         }
9921
9922         if (probe->dtpr_ecb == NULL) {
9923                 dtrace_provider_t *prov = probe->dtpr_provider;
9924
9925                 /*
9926                  * We're the first ECB on this probe.
9927                  */
9928                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9929
9930                 if (ecb->dte_predicate != NULL)
9931                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9932
9933                 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9934                     probe->dtpr_id, probe->dtpr_arg);
9935         } else {
9936                 /*
9937                  * This probe is already active.  Swing the last pointer to
9938                  * point to the new ECB, and issue a dtrace_sync() to assure
9939                  * that all CPUs have seen the change.
9940                  */
9941                 ASSERT(probe->dtpr_ecb_last != NULL);
9942                 probe->dtpr_ecb_last->dte_next = ecb;
9943                 probe->dtpr_ecb_last = ecb;
9944                 probe->dtpr_predcache = 0;
9945
9946                 dtrace_sync();
9947         }
9948 }
9949
9950 static void
9951 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9952 {
9953         dtrace_action_t *act;
9954         uint32_t curneeded = UINT32_MAX;
9955         uint32_t aggbase = UINT32_MAX;
9956
9957         /*
9958          * If we record anything, we always record the dtrace_rechdr_t.  (And
9959          * we always record it first.)
9960          */
9961         ecb->dte_size = sizeof (dtrace_rechdr_t);
9962         ecb->dte_alignment = sizeof (dtrace_epid_t);
9963
9964         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9965                 dtrace_recdesc_t *rec = &act->dta_rec;
9966                 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9967
9968                 ecb->dte_alignment = MAX(ecb->dte_alignment,
9969                     rec->dtrd_alignment);
9970
9971                 if (DTRACEACT_ISAGG(act->dta_kind)) {
9972                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9973
9974                         ASSERT(rec->dtrd_size != 0);
9975                         ASSERT(agg->dtag_first != NULL);
9976                         ASSERT(act->dta_prev->dta_intuple);
9977                         ASSERT(aggbase != UINT32_MAX);
9978                         ASSERT(curneeded != UINT32_MAX);
9979
9980                         agg->dtag_base = aggbase;
9981
9982                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9983                         rec->dtrd_offset = curneeded;
9984                         curneeded += rec->dtrd_size;
9985                         ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9986
9987                         aggbase = UINT32_MAX;
9988                         curneeded = UINT32_MAX;
9989                 } else if (act->dta_intuple) {
9990                         if (curneeded == UINT32_MAX) {
9991                                 /*
9992                                  * This is the first record in a tuple.  Align
9993                                  * curneeded to be at offset 4 in an 8-byte
9994                                  * aligned block.
9995                                  */
9996                                 ASSERT(act->dta_prev == NULL ||
9997                                     !act->dta_prev->dta_intuple);
9998                                 ASSERT3U(aggbase, ==, UINT32_MAX);
9999                                 curneeded = P2PHASEUP(ecb->dte_size,
10000                                     sizeof (uint64_t), sizeof (dtrace_aggid_t));
10001
10002                                 aggbase = curneeded - sizeof (dtrace_aggid_t);
10003                                 ASSERT(IS_P2ALIGNED(aggbase,
10004                                     sizeof (uint64_t)));
10005                         }
10006                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10007                         rec->dtrd_offset = curneeded;
10008                         curneeded += rec->dtrd_size;
10009                 } else {
10010                         /* tuples must be followed by an aggregation */
10011                         ASSERT(act->dta_prev == NULL ||
10012                             !act->dta_prev->dta_intuple);
10013
10014                         ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10015                             rec->dtrd_alignment);
10016                         rec->dtrd_offset = ecb->dte_size;
10017                         ecb->dte_size += rec->dtrd_size;
10018                         ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10019                 }
10020         }
10021
10022         if ((act = ecb->dte_action) != NULL &&
10023             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10024             ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10025                 /*
10026                  * If the size is still sizeof (dtrace_rechdr_t), then all
10027                  * actions store no data; set the size to 0.
10028                  */
10029                 ecb->dte_size = 0;
10030         }
10031
10032         ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10033         ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10034         ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10035             ecb->dte_needed);
10036 }
10037
10038 static dtrace_action_t *
10039 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10040 {
10041         dtrace_aggregation_t *agg;
10042         size_t size = sizeof (uint64_t);
10043         int ntuple = desc->dtad_ntuple;
10044         dtrace_action_t *act;
10045         dtrace_recdesc_t *frec;
10046         dtrace_aggid_t aggid;
10047         dtrace_state_t *state = ecb->dte_state;
10048
10049         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10050         agg->dtag_ecb = ecb;
10051
10052         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10053
10054         switch (desc->dtad_kind) {
10055         case DTRACEAGG_MIN:
10056                 agg->dtag_initial = INT64_MAX;
10057                 agg->dtag_aggregate = dtrace_aggregate_min;
10058                 break;
10059
10060         case DTRACEAGG_MAX:
10061                 agg->dtag_initial = INT64_MIN;
10062                 agg->dtag_aggregate = dtrace_aggregate_max;
10063                 break;
10064
10065         case DTRACEAGG_COUNT:
10066                 agg->dtag_aggregate = dtrace_aggregate_count;
10067                 break;
10068
10069         case DTRACEAGG_QUANTIZE:
10070                 agg->dtag_aggregate = dtrace_aggregate_quantize;
10071                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10072                     sizeof (uint64_t);
10073                 break;
10074
10075         case DTRACEAGG_LQUANTIZE: {
10076                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10077                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10078
10079                 agg->dtag_initial = desc->dtad_arg;
10080                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10081
10082                 if (step == 0 || levels == 0)
10083                         goto err;
10084
10085                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10086                 break;
10087         }
10088
10089         case DTRACEAGG_LLQUANTIZE: {
10090                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10091                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10092                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10093                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10094                 int64_t v;
10095
10096                 agg->dtag_initial = desc->dtad_arg;
10097                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10098
10099                 if (factor < 2 || low >= high || nsteps < factor)
10100                         goto err;
10101
10102                 /*
10103                  * Now check that the number of steps evenly divides a power
10104                  * of the factor.  (This assures both integer bucket size and
10105                  * linearity within each magnitude.)
10106                  */
10107                 for (v = factor; v < nsteps; v *= factor)
10108                         continue;
10109
10110                 if ((v % nsteps) || (nsteps % factor))
10111                         goto err;
10112
10113                 size = (dtrace_aggregate_llquantize_bucket(factor,
10114                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10115                 break;
10116         }
10117
10118         case DTRACEAGG_AVG:
10119                 agg->dtag_aggregate = dtrace_aggregate_avg;
10120                 size = sizeof (uint64_t) * 2;
10121                 break;
10122
10123         case DTRACEAGG_STDDEV:
10124                 agg->dtag_aggregate = dtrace_aggregate_stddev;
10125                 size = sizeof (uint64_t) * 4;
10126                 break;
10127
10128         case DTRACEAGG_SUM:
10129                 agg->dtag_aggregate = dtrace_aggregate_sum;
10130                 break;
10131
10132         default:
10133                 goto err;
10134         }
10135
10136         agg->dtag_action.dta_rec.dtrd_size = size;
10137
10138         if (ntuple == 0)
10139                 goto err;
10140
10141         /*
10142          * We must make sure that we have enough actions for the n-tuple.
10143          */
10144         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10145                 if (DTRACEACT_ISAGG(act->dta_kind))
10146                         break;
10147
10148                 if (--ntuple == 0) {
10149                         /*
10150                          * This is the action with which our n-tuple begins.
10151                          */
10152                         agg->dtag_first = act;
10153                         goto success;
10154                 }
10155         }
10156
10157         /*
10158          * This n-tuple is short by ntuple elements.  Return failure.
10159          */
10160         ASSERT(ntuple != 0);
10161 err:
10162         kmem_free(agg, sizeof (dtrace_aggregation_t));
10163         return (NULL);
10164
10165 success:
10166         /*
10167          * If the last action in the tuple has a size of zero, it's actually
10168          * an expression argument for the aggregating action.
10169          */
10170         ASSERT(ecb->dte_action_last != NULL);
10171         act = ecb->dte_action_last;
10172
10173         if (act->dta_kind == DTRACEACT_DIFEXPR) {
10174                 ASSERT(act->dta_difo != NULL);
10175
10176                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10177                         agg->dtag_hasarg = 1;
10178         }
10179
10180         /*
10181          * We need to allocate an id for this aggregation.
10182          */
10183 #if defined(sun)
10184         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10185             VM_BESTFIT | VM_SLEEP);
10186 #else
10187         aggid = alloc_unr(state->dts_aggid_arena);
10188 #endif
10189
10190         if (aggid - 1 >= state->dts_naggregations) {
10191                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10192                 dtrace_aggregation_t **aggs;
10193                 int naggs = state->dts_naggregations << 1;
10194                 int onaggs = state->dts_naggregations;
10195
10196                 ASSERT(aggid == state->dts_naggregations + 1);
10197
10198                 if (naggs == 0) {
10199                         ASSERT(oaggs == NULL);
10200                         naggs = 1;
10201                 }
10202
10203                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10204
10205                 if (oaggs != NULL) {
10206                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10207                         kmem_free(oaggs, onaggs * sizeof (*aggs));
10208                 }
10209
10210                 state->dts_aggregations = aggs;
10211                 state->dts_naggregations = naggs;
10212         }
10213
10214         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10215         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10216
10217         frec = &agg->dtag_first->dta_rec;
10218         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10219                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10220
10221         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10222                 ASSERT(!act->dta_intuple);
10223                 act->dta_intuple = 1;
10224         }
10225
10226         return (&agg->dtag_action);
10227 }
10228
10229 static void
10230 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10231 {
10232         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10233         dtrace_state_t *state = ecb->dte_state;
10234         dtrace_aggid_t aggid = agg->dtag_id;
10235
10236         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10237 #if defined(sun)
10238         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10239 #else
10240         free_unr(state->dts_aggid_arena, aggid);
10241 #endif
10242
10243         ASSERT(state->dts_aggregations[aggid - 1] == agg);
10244         state->dts_aggregations[aggid - 1] = NULL;
10245
10246         kmem_free(agg, sizeof (dtrace_aggregation_t));
10247 }
10248
10249 static int
10250 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10251 {
10252         dtrace_action_t *action, *last;
10253         dtrace_difo_t *dp = desc->dtad_difo;
10254         uint32_t size = 0, align = sizeof (uint8_t), mask;
10255         uint16_t format = 0;
10256         dtrace_recdesc_t *rec;
10257         dtrace_state_t *state = ecb->dte_state;
10258         dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10259         uint64_t arg = desc->dtad_arg;
10260
10261         ASSERT(MUTEX_HELD(&dtrace_lock));
10262         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10263
10264         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10265                 /*
10266                  * If this is an aggregating action, there must be neither
10267                  * a speculate nor a commit on the action chain.
10268                  */
10269                 dtrace_action_t *act;
10270
10271                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10272                         if (act->dta_kind == DTRACEACT_COMMIT)
10273                                 return (EINVAL);
10274
10275                         if (act->dta_kind == DTRACEACT_SPECULATE)
10276                                 return (EINVAL);
10277                 }
10278
10279                 action = dtrace_ecb_aggregation_create(ecb, desc);
10280
10281                 if (action == NULL)
10282                         return (EINVAL);
10283         } else {
10284                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10285                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10286                     dp != NULL && dp->dtdo_destructive)) {
10287                         state->dts_destructive = 1;
10288                 }
10289
10290                 switch (desc->dtad_kind) {
10291                 case DTRACEACT_PRINTF:
10292                 case DTRACEACT_PRINTA:
10293                 case DTRACEACT_SYSTEM:
10294                 case DTRACEACT_FREOPEN:
10295                 case DTRACEACT_DIFEXPR:
10296                         /*
10297                          * We know that our arg is a string -- turn it into a
10298                          * format.
10299                          */
10300                         if (arg == 0) {
10301                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10302                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
10303                                 format = 0;
10304                         } else {
10305                                 ASSERT(arg != 0);
10306 #if defined(sun)
10307                                 ASSERT(arg > KERNELBASE);
10308 #endif
10309                                 format = dtrace_format_add(state,
10310                                     (char *)(uintptr_t)arg);
10311                         }
10312
10313                         /*FALLTHROUGH*/
10314                 case DTRACEACT_LIBACT:
10315                 case DTRACEACT_TRACEMEM:
10316                 case DTRACEACT_TRACEMEM_DYNSIZE:
10317                         if (dp == NULL)
10318                                 return (EINVAL);
10319
10320                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10321                                 break;
10322
10323                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10324                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10325                                         return (EINVAL);
10326
10327                                 size = opt[DTRACEOPT_STRSIZE];
10328                         }
10329
10330                         break;
10331
10332                 case DTRACEACT_STACK:
10333                         if ((nframes = arg) == 0) {
10334                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10335                                 ASSERT(nframes > 0);
10336                                 arg = nframes;
10337                         }
10338
10339                         size = nframes * sizeof (pc_t);
10340                         break;
10341
10342                 case DTRACEACT_JSTACK:
10343                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10344                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10345
10346                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10347                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10348
10349                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10350
10351                         /*FALLTHROUGH*/
10352                 case DTRACEACT_USTACK:
10353                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10354                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10355                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10356                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10357                                 ASSERT(nframes > 0);
10358                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10359                         }
10360
10361                         /*
10362                          * Save a slot for the pid.
10363                          */
10364                         size = (nframes + 1) * sizeof (uint64_t);
10365                         size += DTRACE_USTACK_STRSIZE(arg);
10366                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10367
10368                         break;
10369
10370                 case DTRACEACT_SYM:
10371                 case DTRACEACT_MOD:
10372                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10373                             sizeof (uint64_t)) ||
10374                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10375                                 return (EINVAL);
10376                         break;
10377
10378                 case DTRACEACT_USYM:
10379                 case DTRACEACT_UMOD:
10380                 case DTRACEACT_UADDR:
10381                         if (dp == NULL ||
10382                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10383                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10384                                 return (EINVAL);
10385
10386                         /*
10387                          * We have a slot for the pid, plus a slot for the
10388                          * argument.  To keep things simple (aligned with
10389                          * bitness-neutral sizing), we store each as a 64-bit
10390                          * quantity.
10391                          */
10392                         size = 2 * sizeof (uint64_t);
10393                         break;
10394
10395                 case DTRACEACT_STOP:
10396                 case DTRACEACT_BREAKPOINT:
10397                 case DTRACEACT_PANIC:
10398                         break;
10399
10400                 case DTRACEACT_CHILL:
10401                 case DTRACEACT_DISCARD:
10402                 case DTRACEACT_RAISE:
10403                         if (dp == NULL)
10404                                 return (EINVAL);
10405                         break;
10406
10407                 case DTRACEACT_EXIT:
10408                         if (dp == NULL ||
10409                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10410                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10411                                 return (EINVAL);
10412                         break;
10413
10414                 case DTRACEACT_SPECULATE:
10415                         if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10416                                 return (EINVAL);
10417
10418                         if (dp == NULL)
10419                                 return (EINVAL);
10420
10421                         state->dts_speculates = 1;
10422                         break;
10423
10424                 case DTRACEACT_PRINTM:
10425                         size = dp->dtdo_rtype.dtdt_size;
10426                         break;
10427
10428                 case DTRACEACT_PRINTT:
10429                         size = dp->dtdo_rtype.dtdt_size;
10430                         break;
10431
10432                 case DTRACEACT_COMMIT: {
10433                         dtrace_action_t *act = ecb->dte_action;
10434
10435                         for (; act != NULL; act = act->dta_next) {
10436                                 if (act->dta_kind == DTRACEACT_COMMIT)
10437                                         return (EINVAL);
10438                         }
10439
10440                         if (dp == NULL)
10441                                 return (EINVAL);
10442                         break;
10443                 }
10444
10445                 default:
10446                         return (EINVAL);
10447                 }
10448
10449                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10450                         /*
10451                          * If this is a data-storing action or a speculate,
10452                          * we must be sure that there isn't a commit on the
10453                          * action chain.
10454                          */
10455                         dtrace_action_t *act = ecb->dte_action;
10456
10457                         for (; act != NULL; act = act->dta_next) {
10458                                 if (act->dta_kind == DTRACEACT_COMMIT)
10459                                         return (EINVAL);
10460                         }
10461                 }
10462
10463                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10464                 action->dta_rec.dtrd_size = size;
10465         }
10466
10467         action->dta_refcnt = 1;
10468         rec = &action->dta_rec;
10469         size = rec->dtrd_size;
10470
10471         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10472                 if (!(size & mask)) {
10473                         align = mask + 1;
10474                         break;
10475                 }
10476         }
10477
10478         action->dta_kind = desc->dtad_kind;
10479
10480         if ((action->dta_difo = dp) != NULL)
10481                 dtrace_difo_hold(dp);
10482
10483         rec->dtrd_action = action->dta_kind;
10484         rec->dtrd_arg = arg;
10485         rec->dtrd_uarg = desc->dtad_uarg;
10486         rec->dtrd_alignment = (uint16_t)align;
10487         rec->dtrd_format = format;
10488
10489         if ((last = ecb->dte_action_last) != NULL) {
10490                 ASSERT(ecb->dte_action != NULL);
10491                 action->dta_prev = last;
10492                 last->dta_next = action;
10493         } else {
10494                 ASSERT(ecb->dte_action == NULL);
10495                 ecb->dte_action = action;
10496         }
10497
10498         ecb->dte_action_last = action;
10499
10500         return (0);
10501 }
10502
10503 static void
10504 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10505 {
10506         dtrace_action_t *act = ecb->dte_action, *next;
10507         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10508         dtrace_difo_t *dp;
10509         uint16_t format;
10510
10511         if (act != NULL && act->dta_refcnt > 1) {
10512                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10513                 act->dta_refcnt--;
10514         } else {
10515                 for (; act != NULL; act = next) {
10516                         next = act->dta_next;
10517                         ASSERT(next != NULL || act == ecb->dte_action_last);
10518                         ASSERT(act->dta_refcnt == 1);
10519
10520                         if ((format = act->dta_rec.dtrd_format) != 0)
10521                                 dtrace_format_remove(ecb->dte_state, format);
10522
10523                         if ((dp = act->dta_difo) != NULL)
10524                                 dtrace_difo_release(dp, vstate);
10525
10526                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10527                                 dtrace_ecb_aggregation_destroy(ecb, act);
10528                         } else {
10529                                 kmem_free(act, sizeof (dtrace_action_t));
10530                         }
10531                 }
10532         }
10533
10534         ecb->dte_action = NULL;
10535         ecb->dte_action_last = NULL;
10536         ecb->dte_size = 0;
10537 }
10538
10539 static void
10540 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10541 {
10542         /*
10543          * We disable the ECB by removing it from its probe.
10544          */
10545         dtrace_ecb_t *pecb, *prev = NULL;
10546         dtrace_probe_t *probe = ecb->dte_probe;
10547
10548         ASSERT(MUTEX_HELD(&dtrace_lock));
10549
10550         if (probe == NULL) {
10551                 /*
10552                  * This is the NULL probe; there is nothing to disable.
10553                  */
10554                 return;
10555         }
10556
10557         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10558                 if (pecb == ecb)
10559                         break;
10560                 prev = pecb;
10561         }
10562
10563         ASSERT(pecb != NULL);
10564
10565         if (prev == NULL) {
10566                 probe->dtpr_ecb = ecb->dte_next;
10567         } else {
10568                 prev->dte_next = ecb->dte_next;
10569         }
10570
10571         if (ecb == probe->dtpr_ecb_last) {
10572                 ASSERT(ecb->dte_next == NULL);
10573                 probe->dtpr_ecb_last = prev;
10574         }
10575
10576         /*
10577          * The ECB has been disconnected from the probe; now sync to assure
10578          * that all CPUs have seen the change before returning.
10579          */
10580         dtrace_sync();
10581
10582         if (probe->dtpr_ecb == NULL) {
10583                 /*
10584                  * That was the last ECB on the probe; clear the predicate
10585                  * cache ID for the probe, disable it and sync one more time
10586                  * to assure that we'll never hit it again.
10587                  */
10588                 dtrace_provider_t *prov = probe->dtpr_provider;
10589
10590                 ASSERT(ecb->dte_next == NULL);
10591                 ASSERT(probe->dtpr_ecb_last == NULL);
10592                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10593                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10594                     probe->dtpr_id, probe->dtpr_arg);
10595                 dtrace_sync();
10596         } else {
10597                 /*
10598                  * There is at least one ECB remaining on the probe.  If there
10599                  * is _exactly_ one, set the probe's predicate cache ID to be
10600                  * the predicate cache ID of the remaining ECB.
10601                  */
10602                 ASSERT(probe->dtpr_ecb_last != NULL);
10603                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10604
10605                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10606                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10607
10608                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10609
10610                         if (p != NULL)
10611                                 probe->dtpr_predcache = p->dtp_cacheid;
10612                 }
10613
10614                 ecb->dte_next = NULL;
10615         }
10616 }
10617
10618 static void
10619 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10620 {
10621         dtrace_state_t *state = ecb->dte_state;
10622         dtrace_vstate_t *vstate = &state->dts_vstate;
10623         dtrace_predicate_t *pred;
10624         dtrace_epid_t epid = ecb->dte_epid;
10625
10626         ASSERT(MUTEX_HELD(&dtrace_lock));
10627         ASSERT(ecb->dte_next == NULL);
10628         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10629
10630         if ((pred = ecb->dte_predicate) != NULL)
10631                 dtrace_predicate_release(pred, vstate);
10632
10633         dtrace_ecb_action_remove(ecb);
10634
10635         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10636         state->dts_ecbs[epid - 1] = NULL;
10637
10638         kmem_free(ecb, sizeof (dtrace_ecb_t));
10639 }
10640
10641 static dtrace_ecb_t *
10642 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10643     dtrace_enabling_t *enab)
10644 {
10645         dtrace_ecb_t *ecb;
10646         dtrace_predicate_t *pred;
10647         dtrace_actdesc_t *act;
10648         dtrace_provider_t *prov;
10649         dtrace_ecbdesc_t *desc = enab->dten_current;
10650
10651         ASSERT(MUTEX_HELD(&dtrace_lock));
10652         ASSERT(state != NULL);
10653
10654         ecb = dtrace_ecb_add(state, probe);
10655         ecb->dte_uarg = desc->dted_uarg;
10656
10657         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10658                 dtrace_predicate_hold(pred);
10659                 ecb->dte_predicate = pred;
10660         }
10661
10662         if (probe != NULL) {
10663                 /*
10664                  * If the provider shows more leg than the consumer is old
10665                  * enough to see, we need to enable the appropriate implicit
10666                  * predicate bits to prevent the ecb from activating at
10667                  * revealing times.
10668                  *
10669                  * Providers specifying DTRACE_PRIV_USER at register time
10670                  * are stating that they need the /proc-style privilege
10671                  * model to be enforced, and this is what DTRACE_COND_OWNER
10672                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
10673                  */
10674                 prov = probe->dtpr_provider;
10675                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10676                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10677                         ecb->dte_cond |= DTRACE_COND_OWNER;
10678
10679                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10680                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10681                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10682
10683                 /*
10684                  * If the provider shows us kernel innards and the user
10685                  * is lacking sufficient privilege, enable the
10686                  * DTRACE_COND_USERMODE implicit predicate.
10687                  */
10688                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10689                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10690                         ecb->dte_cond |= DTRACE_COND_USERMODE;
10691         }
10692
10693         if (dtrace_ecb_create_cache != NULL) {
10694                 /*
10695                  * If we have a cached ecb, we'll use its action list instead
10696                  * of creating our own (saving both time and space).
10697                  */
10698                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10699                 dtrace_action_t *act = cached->dte_action;
10700
10701                 if (act != NULL) {
10702                         ASSERT(act->dta_refcnt > 0);
10703                         act->dta_refcnt++;
10704                         ecb->dte_action = act;
10705                         ecb->dte_action_last = cached->dte_action_last;
10706                         ecb->dte_needed = cached->dte_needed;
10707                         ecb->dte_size = cached->dte_size;
10708                         ecb->dte_alignment = cached->dte_alignment;
10709                 }
10710
10711                 return (ecb);
10712         }
10713
10714         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10715                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10716                         dtrace_ecb_destroy(ecb);
10717                         return (NULL);
10718                 }
10719         }
10720
10721         dtrace_ecb_resize(ecb);
10722
10723         return (dtrace_ecb_create_cache = ecb);
10724 }
10725
10726 static int
10727 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10728 {
10729         dtrace_ecb_t *ecb;
10730         dtrace_enabling_t *enab = arg;
10731         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10732
10733         ASSERT(state != NULL);
10734
10735         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10736                 /*
10737                  * This probe was created in a generation for which this
10738                  * enabling has previously created ECBs; we don't want to
10739                  * enable it again, so just kick out.
10740                  */
10741                 return (DTRACE_MATCH_NEXT);
10742         }
10743
10744         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10745                 return (DTRACE_MATCH_DONE);
10746
10747         dtrace_ecb_enable(ecb);
10748         return (DTRACE_MATCH_NEXT);
10749 }
10750
10751 static dtrace_ecb_t *
10752 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10753 {
10754         dtrace_ecb_t *ecb;
10755
10756         ASSERT(MUTEX_HELD(&dtrace_lock));
10757
10758         if (id == 0 || id > state->dts_necbs)
10759                 return (NULL);
10760
10761         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10762         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10763
10764         return (state->dts_ecbs[id - 1]);
10765 }
10766
10767 static dtrace_aggregation_t *
10768 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10769 {
10770         dtrace_aggregation_t *agg;
10771
10772         ASSERT(MUTEX_HELD(&dtrace_lock));
10773
10774         if (id == 0 || id > state->dts_naggregations)
10775                 return (NULL);
10776
10777         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10778         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10779             agg->dtag_id == id);
10780
10781         return (state->dts_aggregations[id - 1]);
10782 }
10783
10784 /*
10785  * DTrace Buffer Functions
10786  *
10787  * The following functions manipulate DTrace buffers.  Most of these functions
10788  * are called in the context of establishing or processing consumer state;
10789  * exceptions are explicitly noted.
10790  */
10791
10792 /*
10793  * Note:  called from cross call context.  This function switches the two
10794  * buffers on a given CPU.  The atomicity of this operation is assured by
10795  * disabling interrupts while the actual switch takes place; the disabling of
10796  * interrupts serializes the execution with any execution of dtrace_probe() on
10797  * the same CPU.
10798  */
10799 static void
10800 dtrace_buffer_switch(dtrace_buffer_t *buf)
10801 {
10802         caddr_t tomax = buf->dtb_tomax;
10803         caddr_t xamot = buf->dtb_xamot;
10804         dtrace_icookie_t cookie;
10805         hrtime_t now;
10806
10807         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10808         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10809
10810         cookie = dtrace_interrupt_disable();
10811         now = dtrace_gethrtime();
10812         buf->dtb_tomax = xamot;
10813         buf->dtb_xamot = tomax;
10814         buf->dtb_xamot_drops = buf->dtb_drops;
10815         buf->dtb_xamot_offset = buf->dtb_offset;
10816         buf->dtb_xamot_errors = buf->dtb_errors;
10817         buf->dtb_xamot_flags = buf->dtb_flags;
10818         buf->dtb_offset = 0;
10819         buf->dtb_drops = 0;
10820         buf->dtb_errors = 0;
10821         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10822         buf->dtb_interval = now - buf->dtb_switched;
10823         buf->dtb_switched = now;
10824         dtrace_interrupt_enable(cookie);
10825 }
10826
10827 /*
10828  * Note:  called from cross call context.  This function activates a buffer
10829  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10830  * is guaranteed by the disabling of interrupts.
10831  */
10832 static void
10833 dtrace_buffer_activate(dtrace_state_t *state)
10834 {
10835         dtrace_buffer_t *buf;
10836         dtrace_icookie_t cookie = dtrace_interrupt_disable();
10837
10838         buf = &state->dts_buffer[curcpu];
10839
10840         if (buf->dtb_tomax != NULL) {
10841                 /*
10842                  * We might like to assert that the buffer is marked inactive,
10843                  * but this isn't necessarily true:  the buffer for the CPU
10844                  * that processes the BEGIN probe has its buffer activated
10845                  * manually.  In this case, we take the (harmless) action
10846                  * re-clearing the bit INACTIVE bit.
10847                  */
10848                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10849         }
10850
10851         dtrace_interrupt_enable(cookie);
10852 }
10853
10854 static int
10855 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10856     processorid_t cpu)
10857 {
10858 #if defined(sun)
10859         cpu_t *cp;
10860 #endif
10861         dtrace_buffer_t *buf;
10862
10863 #if defined(sun)
10864         ASSERT(MUTEX_HELD(&cpu_lock));
10865         ASSERT(MUTEX_HELD(&dtrace_lock));
10866
10867         if (size > dtrace_nonroot_maxsize &&
10868             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10869                 return (EFBIG);
10870
10871         cp = cpu_list;
10872
10873         do {
10874                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10875                         continue;
10876
10877                 buf = &bufs[cp->cpu_id];
10878
10879                 /*
10880                  * If there is already a buffer allocated for this CPU, it
10881                  * is only possible that this is a DR event.  In this case,
10882                  */
10883                 if (buf->dtb_tomax != NULL) {
10884                         ASSERT(buf->dtb_size == size);
10885                         continue;
10886                 }
10887
10888                 ASSERT(buf->dtb_xamot == NULL);
10889
10890                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10891                         goto err;
10892
10893                 buf->dtb_size = size;
10894                 buf->dtb_flags = flags;
10895                 buf->dtb_offset = 0;
10896                 buf->dtb_drops = 0;
10897
10898                 if (flags & DTRACEBUF_NOSWITCH)
10899                         continue;
10900
10901                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10902                         goto err;
10903         } while ((cp = cp->cpu_next) != cpu_list);
10904
10905         return (0);
10906
10907 err:
10908         cp = cpu_list;
10909
10910         do {
10911                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10912                         continue;
10913
10914                 buf = &bufs[cp->cpu_id];
10915
10916                 if (buf->dtb_xamot != NULL) {
10917                         ASSERT(buf->dtb_tomax != NULL);
10918                         ASSERT(buf->dtb_size == size);
10919                         kmem_free(buf->dtb_xamot, size);
10920                 }
10921
10922                 if (buf->dtb_tomax != NULL) {
10923                         ASSERT(buf->dtb_size == size);
10924                         kmem_free(buf->dtb_tomax, size);
10925                 }
10926
10927                 buf->dtb_tomax = NULL;
10928                 buf->dtb_xamot = NULL;
10929                 buf->dtb_size = 0;
10930         } while ((cp = cp->cpu_next) != cpu_list);
10931
10932         return (ENOMEM);
10933 #else
10934         int i;
10935
10936 #if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
10937         /*
10938          * FreeBSD isn't good at limiting the amount of memory we
10939          * ask to malloc, so let's place a limit here before trying
10940          * to do something that might well end in tears at bedtime.
10941          */
10942         if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10943                 return(ENOMEM);
10944 #endif
10945
10946         ASSERT(MUTEX_HELD(&dtrace_lock));
10947         CPU_FOREACH(i) {
10948                 if (cpu != DTRACE_CPUALL && cpu != i)
10949                         continue;
10950
10951                 buf = &bufs[i];
10952
10953                 /*
10954                  * If there is already a buffer allocated for this CPU, it
10955                  * is only possible that this is a DR event.  In this case,
10956                  * the buffer size must match our specified size.
10957                  */
10958                 if (buf->dtb_tomax != NULL) {
10959                         ASSERT(buf->dtb_size == size);
10960                         continue;
10961                 }
10962
10963                 ASSERT(buf->dtb_xamot == NULL);
10964
10965                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10966                         goto err;
10967
10968                 buf->dtb_size = size;
10969                 buf->dtb_flags = flags;
10970                 buf->dtb_offset = 0;
10971                 buf->dtb_drops = 0;
10972
10973                 if (flags & DTRACEBUF_NOSWITCH)
10974                         continue;
10975
10976                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10977                         goto err;
10978         }
10979
10980         return (0);
10981
10982 err:
10983         /*
10984          * Error allocating memory, so free the buffers that were
10985          * allocated before the failed allocation.
10986          */
10987         CPU_FOREACH(i) {
10988                 if (cpu != DTRACE_CPUALL && cpu != i)
10989                         continue;
10990
10991                 buf = &bufs[i];
10992
10993                 if (buf->dtb_xamot != NULL) {
10994                         ASSERT(buf->dtb_tomax != NULL);
10995                         ASSERT(buf->dtb_size == size);
10996                         kmem_free(buf->dtb_xamot, size);
10997                 }
10998
10999                 if (buf->dtb_tomax != NULL) {
11000                         ASSERT(buf->dtb_size == size);
11001                         kmem_free(buf->dtb_tomax, size);
11002                 }
11003
11004                 buf->dtb_tomax = NULL;
11005                 buf->dtb_xamot = NULL;
11006                 buf->dtb_size = 0;
11007
11008         }
11009
11010         return (ENOMEM);
11011 #endif
11012 }
11013
11014 /*
11015  * Note:  called from probe context.  This function just increments the drop
11016  * count on a buffer.  It has been made a function to allow for the
11017  * possibility of understanding the source of mysterious drop counts.  (A
11018  * problem for which one may be particularly disappointed that DTrace cannot
11019  * be used to understand DTrace.)
11020  */
11021 static void
11022 dtrace_buffer_drop(dtrace_buffer_t *buf)
11023 {
11024         buf->dtb_drops++;
11025 }
11026
11027 /*
11028  * Note:  called from probe context.  This function is called to reserve space
11029  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11030  * mstate.  Returns the new offset in the buffer, or a negative value if an
11031  * error has occurred.
11032  */
11033 static intptr_t
11034 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11035     dtrace_state_t *state, dtrace_mstate_t *mstate)
11036 {
11037         intptr_t offs = buf->dtb_offset, soffs;
11038         intptr_t woffs;
11039         caddr_t tomax;
11040         size_t total;
11041
11042         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11043                 return (-1);
11044
11045         if ((tomax = buf->dtb_tomax) == NULL) {
11046                 dtrace_buffer_drop(buf);
11047                 return (-1);
11048         }
11049
11050         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11051                 while (offs & (align - 1)) {
11052                         /*
11053                          * Assert that our alignment is off by a number which
11054                          * is itself sizeof (uint32_t) aligned.
11055                          */
11056                         ASSERT(!((align - (offs & (align - 1))) &
11057                             (sizeof (uint32_t) - 1)));
11058                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11059                         offs += sizeof (uint32_t);
11060                 }
11061
11062                 if ((soffs = offs + needed) > buf->dtb_size) {
11063                         dtrace_buffer_drop(buf);
11064                         return (-1);
11065                 }
11066
11067                 if (mstate == NULL)
11068                         return (offs);
11069
11070                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11071                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11072                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11073
11074                 return (offs);
11075         }
11076
11077         if (buf->dtb_flags & DTRACEBUF_FILL) {
11078                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11079                     (buf->dtb_flags & DTRACEBUF_FULL))
11080                         return (-1);
11081                 goto out;
11082         }
11083
11084         total = needed + (offs & (align - 1));
11085
11086         /*
11087          * For a ring buffer, life is quite a bit more complicated.  Before
11088          * we can store any padding, we need to adjust our wrapping offset.
11089          * (If we've never before wrapped or we're not about to, no adjustment
11090          * is required.)
11091          */
11092         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11093             offs + total > buf->dtb_size) {
11094                 woffs = buf->dtb_xamot_offset;
11095
11096                 if (offs + total > buf->dtb_size) {
11097                         /*
11098                          * We can't fit in the end of the buffer.  First, a
11099                          * sanity check that we can fit in the buffer at all.
11100                          */
11101                         if (total > buf->dtb_size) {
11102                                 dtrace_buffer_drop(buf);
11103                                 return (-1);
11104                         }
11105
11106                         /*
11107                          * We're going to be storing at the top of the buffer,
11108                          * so now we need to deal with the wrapped offset.  We
11109                          * only reset our wrapped offset to 0 if it is
11110                          * currently greater than the current offset.  If it
11111                          * is less than the current offset, it is because a
11112                          * previous allocation induced a wrap -- but the
11113                          * allocation didn't subsequently take the space due
11114                          * to an error or false predicate evaluation.  In this
11115                          * case, we'll just leave the wrapped offset alone: if
11116                          * the wrapped offset hasn't been advanced far enough
11117                          * for this allocation, it will be adjusted in the
11118                          * lower loop.
11119                          */
11120                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11121                                 if (woffs >= offs)
11122                                         woffs = 0;
11123                         } else {
11124                                 woffs = 0;
11125                         }
11126
11127                         /*
11128                          * Now we know that we're going to be storing to the
11129                          * top of the buffer and that there is room for us
11130                          * there.  We need to clear the buffer from the current
11131                          * offset to the end (there may be old gunk there).
11132                          */
11133                         while (offs < buf->dtb_size)
11134                                 tomax[offs++] = 0;
11135
11136                         /*
11137                          * We need to set our offset to zero.  And because we
11138                          * are wrapping, we need to set the bit indicating as
11139                          * much.  We can also adjust our needed space back
11140                          * down to the space required by the ECB -- we know
11141                          * that the top of the buffer is aligned.
11142                          */
11143                         offs = 0;
11144                         total = needed;
11145                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
11146                 } else {
11147                         /*
11148                          * There is room for us in the buffer, so we simply
11149                          * need to check the wrapped offset.
11150                          */
11151                         if (woffs < offs) {
11152                                 /*
11153                                  * The wrapped offset is less than the offset.
11154                                  * This can happen if we allocated buffer space
11155                                  * that induced a wrap, but then we didn't
11156                                  * subsequently take the space due to an error
11157                                  * or false predicate evaluation.  This is
11158                                  * okay; we know that _this_ allocation isn't
11159                                  * going to induce a wrap.  We still can't
11160                                  * reset the wrapped offset to be zero,
11161                                  * however: the space may have been trashed in
11162                                  * the previous failed probe attempt.  But at
11163                                  * least the wrapped offset doesn't need to
11164                                  * be adjusted at all...
11165                                  */
11166                                 goto out;
11167                         }
11168                 }
11169
11170                 while (offs + total > woffs) {
11171                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11172                         size_t size;
11173
11174                         if (epid == DTRACE_EPIDNONE) {
11175                                 size = sizeof (uint32_t);
11176                         } else {
11177                                 ASSERT3U(epid, <=, state->dts_necbs);
11178                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11179
11180                                 size = state->dts_ecbs[epid - 1]->dte_size;
11181                         }
11182
11183                         ASSERT(woffs + size <= buf->dtb_size);
11184                         ASSERT(size != 0);
11185
11186                         if (woffs + size == buf->dtb_size) {
11187                                 /*
11188                                  * We've reached the end of the buffer; we want
11189                                  * to set the wrapped offset to 0 and break
11190                                  * out.  However, if the offs is 0, then we're
11191                                  * in a strange edge-condition:  the amount of
11192                                  * space that we want to reserve plus the size
11193                                  * of the record that we're overwriting is
11194                                  * greater than the size of the buffer.  This
11195                                  * is problematic because if we reserve the
11196                                  * space but subsequently don't consume it (due
11197                                  * to a failed predicate or error) the wrapped
11198                                  * offset will be 0 -- yet the EPID at offset 0
11199                                  * will not be committed.  This situation is
11200                                  * relatively easy to deal with:  if we're in
11201                                  * this case, the buffer is indistinguishable
11202                                  * from one that hasn't wrapped; we need only
11203                                  * finish the job by clearing the wrapped bit,
11204                                  * explicitly setting the offset to be 0, and
11205                                  * zero'ing out the old data in the buffer.
11206                                  */
11207                                 if (offs == 0) {
11208                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11209                                         buf->dtb_offset = 0;
11210                                         woffs = total;
11211
11212                                         while (woffs < buf->dtb_size)
11213                                                 tomax[woffs++] = 0;
11214                                 }
11215
11216                                 woffs = 0;
11217                                 break;
11218                         }
11219
11220                         woffs += size;
11221                 }
11222
11223                 /*
11224                  * We have a wrapped offset.  It may be that the wrapped offset
11225                  * has become zero -- that's okay.
11226                  */
11227                 buf->dtb_xamot_offset = woffs;
11228         }
11229
11230 out:
11231         /*
11232          * Now we can plow the buffer with any necessary padding.
11233          */
11234         while (offs & (align - 1)) {
11235                 /*
11236                  * Assert that our alignment is off by a number which
11237                  * is itself sizeof (uint32_t) aligned.
11238                  */
11239                 ASSERT(!((align - (offs & (align - 1))) &
11240                     (sizeof (uint32_t) - 1)));
11241                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11242                 offs += sizeof (uint32_t);
11243         }
11244
11245         if (buf->dtb_flags & DTRACEBUF_FILL) {
11246                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11247                         buf->dtb_flags |= DTRACEBUF_FULL;
11248                         return (-1);
11249                 }
11250         }
11251
11252         if (mstate == NULL)
11253                 return (offs);
11254
11255         /*
11256          * For ring buffers and fill buffers, the scratch space is always
11257          * the inactive buffer.
11258          */
11259         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11260         mstate->dtms_scratch_size = buf->dtb_size;
11261         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11262
11263         return (offs);
11264 }
11265
11266 static void
11267 dtrace_buffer_polish(dtrace_buffer_t *buf)
11268 {
11269         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11270         ASSERT(MUTEX_HELD(&dtrace_lock));
11271
11272         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11273                 return;
11274
11275         /*
11276          * We need to polish the ring buffer.  There are three cases:
11277          *
11278          * - The first (and presumably most common) is that there is no gap
11279          *   between the buffer offset and the wrapped offset.  In this case,
11280          *   there is nothing in the buffer that isn't valid data; we can
11281          *   mark the buffer as polished and return.
11282          *
11283          * - The second (less common than the first but still more common
11284          *   than the third) is that there is a gap between the buffer offset
11285          *   and the wrapped offset, and the wrapped offset is larger than the
11286          *   buffer offset.  This can happen because of an alignment issue, or
11287          *   can happen because of a call to dtrace_buffer_reserve() that
11288          *   didn't subsequently consume the buffer space.  In this case,
11289          *   we need to zero the data from the buffer offset to the wrapped
11290          *   offset.
11291          *
11292          * - The third (and least common) is that there is a gap between the
11293          *   buffer offset and the wrapped offset, but the wrapped offset is
11294          *   _less_ than the buffer offset.  This can only happen because a
11295          *   call to dtrace_buffer_reserve() induced a wrap, but the space
11296          *   was not subsequently consumed.  In this case, we need to zero the
11297          *   space from the offset to the end of the buffer _and_ from the
11298          *   top of the buffer to the wrapped offset.
11299          */
11300         if (buf->dtb_offset < buf->dtb_xamot_offset) {
11301                 bzero(buf->dtb_tomax + buf->dtb_offset,
11302                     buf->dtb_xamot_offset - buf->dtb_offset);
11303         }
11304
11305         if (buf->dtb_offset > buf->dtb_xamot_offset) {
11306                 bzero(buf->dtb_tomax + buf->dtb_offset,
11307                     buf->dtb_size - buf->dtb_offset);
11308                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11309         }
11310 }
11311
11312 /*
11313  * This routine determines if data generated at the specified time has likely
11314  * been entirely consumed at user-level.  This routine is called to determine
11315  * if an ECB on a defunct probe (but for an active enabling) can be safely
11316  * disabled and destroyed.
11317  */
11318 static int
11319 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11320 {
11321         int i;
11322
11323         for (i = 0; i < NCPU; i++) {
11324                 dtrace_buffer_t *buf = &bufs[i];
11325
11326                 if (buf->dtb_size == 0)
11327                         continue;
11328
11329                 if (buf->dtb_flags & DTRACEBUF_RING)
11330                         return (0);
11331
11332                 if (!buf->dtb_switched && buf->dtb_offset != 0)
11333                         return (0);
11334
11335                 if (buf->dtb_switched - buf->dtb_interval < when)
11336                         return (0);
11337         }
11338
11339         return (1);
11340 }
11341
11342 static void
11343 dtrace_buffer_free(dtrace_buffer_t *bufs)
11344 {
11345         int i;
11346
11347         for (i = 0; i < NCPU; i++) {
11348                 dtrace_buffer_t *buf = &bufs[i];
11349
11350                 if (buf->dtb_tomax == NULL) {
11351                         ASSERT(buf->dtb_xamot == NULL);
11352                         ASSERT(buf->dtb_size == 0);
11353                         continue;
11354                 }
11355
11356                 if (buf->dtb_xamot != NULL) {
11357                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11358                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11359                 }
11360
11361                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11362                 buf->dtb_size = 0;
11363                 buf->dtb_tomax = NULL;
11364                 buf->dtb_xamot = NULL;
11365         }
11366 }
11367
11368 /*
11369  * DTrace Enabling Functions
11370  */
11371 static dtrace_enabling_t *
11372 dtrace_enabling_create(dtrace_vstate_t *vstate)
11373 {
11374         dtrace_enabling_t *enab;
11375
11376         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11377         enab->dten_vstate = vstate;
11378
11379         return (enab);
11380 }
11381
11382 static void
11383 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11384 {
11385         dtrace_ecbdesc_t **ndesc;
11386         size_t osize, nsize;
11387
11388         /*
11389          * We can't add to enablings after we've enabled them, or after we've
11390          * retained them.
11391          */
11392         ASSERT(enab->dten_probegen == 0);
11393         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11394
11395         if (enab->dten_ndesc < enab->dten_maxdesc) {
11396                 enab->dten_desc[enab->dten_ndesc++] = ecb;
11397                 return;
11398         }
11399
11400         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11401
11402         if (enab->dten_maxdesc == 0) {
11403                 enab->dten_maxdesc = 1;
11404         } else {
11405                 enab->dten_maxdesc <<= 1;
11406         }
11407
11408         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11409
11410         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11411         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11412         bcopy(enab->dten_desc, ndesc, osize);
11413         if (enab->dten_desc != NULL)
11414                 kmem_free(enab->dten_desc, osize);
11415
11416         enab->dten_desc = ndesc;
11417         enab->dten_desc[enab->dten_ndesc++] = ecb;
11418 }
11419
11420 static void
11421 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11422     dtrace_probedesc_t *pd)
11423 {
11424         dtrace_ecbdesc_t *new;
11425         dtrace_predicate_t *pred;
11426         dtrace_actdesc_t *act;
11427
11428         /*
11429          * We're going to create a new ECB description that matches the
11430          * specified ECB in every way, but has the specified probe description.
11431          */
11432         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11433
11434         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11435                 dtrace_predicate_hold(pred);
11436
11437         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11438                 dtrace_actdesc_hold(act);
11439
11440         new->dted_action = ecb->dted_action;
11441         new->dted_pred = ecb->dted_pred;
11442         new->dted_probe = *pd;
11443         new->dted_uarg = ecb->dted_uarg;
11444
11445         dtrace_enabling_add(enab, new);
11446 }
11447
11448 static void
11449 dtrace_enabling_dump(dtrace_enabling_t *enab)
11450 {
11451         int i;
11452
11453         for (i = 0; i < enab->dten_ndesc; i++) {
11454                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11455
11456                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11457                     desc->dtpd_provider, desc->dtpd_mod,
11458                     desc->dtpd_func, desc->dtpd_name);
11459         }
11460 }
11461
11462 static void
11463 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11464 {
11465         int i;
11466         dtrace_ecbdesc_t *ep;
11467         dtrace_vstate_t *vstate = enab->dten_vstate;
11468
11469         ASSERT(MUTEX_HELD(&dtrace_lock));
11470
11471         for (i = 0; i < enab->dten_ndesc; i++) {
11472                 dtrace_actdesc_t *act, *next;
11473                 dtrace_predicate_t *pred;
11474
11475                 ep = enab->dten_desc[i];
11476
11477                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11478                         dtrace_predicate_release(pred, vstate);
11479
11480                 for (act = ep->dted_action; act != NULL; act = next) {
11481                         next = act->dtad_next;
11482                         dtrace_actdesc_release(act, vstate);
11483                 }
11484
11485                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11486         }
11487
11488         if (enab->dten_desc != NULL)
11489                 kmem_free(enab->dten_desc,
11490                     enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11491
11492         /*
11493          * If this was a retained enabling, decrement the dts_nretained count
11494          * and take it off of the dtrace_retained list.
11495          */
11496         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11497             dtrace_retained == enab) {
11498                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11499                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11500                 enab->dten_vstate->dtvs_state->dts_nretained--;
11501         }
11502
11503         if (enab->dten_prev == NULL) {
11504                 if (dtrace_retained == enab) {
11505                         dtrace_retained = enab->dten_next;
11506
11507                         if (dtrace_retained != NULL)
11508                                 dtrace_retained->dten_prev = NULL;
11509                 }
11510         } else {
11511                 ASSERT(enab != dtrace_retained);
11512                 ASSERT(dtrace_retained != NULL);
11513                 enab->dten_prev->dten_next = enab->dten_next;
11514         }
11515
11516         if (enab->dten_next != NULL) {
11517                 ASSERT(dtrace_retained != NULL);
11518                 enab->dten_next->dten_prev = enab->dten_prev;
11519         }
11520
11521         kmem_free(enab, sizeof (dtrace_enabling_t));
11522 }
11523
11524 static int
11525 dtrace_enabling_retain(dtrace_enabling_t *enab)
11526 {
11527         dtrace_state_t *state;
11528
11529         ASSERT(MUTEX_HELD(&dtrace_lock));
11530         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11531         ASSERT(enab->dten_vstate != NULL);
11532
11533         state = enab->dten_vstate->dtvs_state;
11534         ASSERT(state != NULL);
11535
11536         /*
11537          * We only allow each state to retain dtrace_retain_max enablings.
11538          */
11539         if (state->dts_nretained >= dtrace_retain_max)
11540                 return (ENOSPC);
11541
11542         state->dts_nretained++;
11543
11544         if (dtrace_retained == NULL) {
11545                 dtrace_retained = enab;
11546                 return (0);
11547         }
11548
11549         enab->dten_next = dtrace_retained;
11550         dtrace_retained->dten_prev = enab;
11551         dtrace_retained = enab;
11552
11553         return (0);
11554 }
11555
11556 static int
11557 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11558     dtrace_probedesc_t *create)
11559 {
11560         dtrace_enabling_t *new, *enab;
11561         int found = 0, err = ENOENT;
11562
11563         ASSERT(MUTEX_HELD(&dtrace_lock));
11564         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11565         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11566         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11567         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11568
11569         new = dtrace_enabling_create(&state->dts_vstate);
11570
11571         /*
11572          * Iterate over all retained enablings, looking for enablings that
11573          * match the specified state.
11574          */
11575         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11576                 int i;
11577
11578                 /*
11579                  * dtvs_state can only be NULL for helper enablings -- and
11580                  * helper enablings can't be retained.
11581                  */
11582                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11583
11584                 if (enab->dten_vstate->dtvs_state != state)
11585                         continue;
11586
11587                 /*
11588                  * Now iterate over each probe description; we're looking for
11589                  * an exact match to the specified probe description.
11590                  */
11591                 for (i = 0; i < enab->dten_ndesc; i++) {
11592                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11593                         dtrace_probedesc_t *pd = &ep->dted_probe;
11594
11595                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11596                                 continue;
11597
11598                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11599                                 continue;
11600
11601                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11602                                 continue;
11603
11604                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11605                                 continue;
11606
11607                         /*
11608                          * We have a winning probe!  Add it to our growing
11609                          * enabling.
11610                          */
11611                         found = 1;
11612                         dtrace_enabling_addlike(new, ep, create);
11613                 }
11614         }
11615
11616         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11617                 dtrace_enabling_destroy(new);
11618                 return (err);
11619         }
11620
11621         return (0);
11622 }
11623
11624 static void
11625 dtrace_enabling_retract(dtrace_state_t *state)
11626 {
11627         dtrace_enabling_t *enab, *next;
11628
11629         ASSERT(MUTEX_HELD(&dtrace_lock));
11630
11631         /*
11632          * Iterate over all retained enablings, destroy the enablings retained
11633          * for the specified state.
11634          */
11635         for (enab = dtrace_retained; enab != NULL; enab = next) {
11636                 next = enab->dten_next;
11637
11638                 /*
11639                  * dtvs_state can only be NULL for helper enablings -- and
11640                  * helper enablings can't be retained.
11641                  */
11642                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11643
11644                 if (enab->dten_vstate->dtvs_state == state) {
11645                         ASSERT(state->dts_nretained > 0);
11646                         dtrace_enabling_destroy(enab);
11647                 }
11648         }
11649
11650         ASSERT(state->dts_nretained == 0);
11651 }
11652
11653 static int
11654 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11655 {
11656         int i = 0;
11657         int matched = 0;
11658
11659         ASSERT(MUTEX_HELD(&cpu_lock));
11660         ASSERT(MUTEX_HELD(&dtrace_lock));
11661
11662         for (i = 0; i < enab->dten_ndesc; i++) {
11663                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11664
11665                 enab->dten_current = ep;
11666                 enab->dten_error = 0;
11667
11668                 matched += dtrace_probe_enable(&ep->dted_probe, enab);
11669
11670                 if (enab->dten_error != 0) {
11671                         /*
11672                          * If we get an error half-way through enabling the
11673                          * probes, we kick out -- perhaps with some number of
11674                          * them enabled.  Leaving enabled probes enabled may
11675                          * be slightly confusing for user-level, but we expect
11676                          * that no one will attempt to actually drive on in
11677                          * the face of such errors.  If this is an anonymous
11678                          * enabling (indicated with a NULL nmatched pointer),
11679                          * we cmn_err() a message.  We aren't expecting to
11680                          * get such an error -- such as it can exist at all,
11681                          * it would be a result of corrupted DOF in the driver
11682                          * properties.
11683                          */
11684                         if (nmatched == NULL) {
11685                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11686                                     "error on %p: %d", (void *)ep,
11687                                     enab->dten_error);
11688                         }
11689
11690                         return (enab->dten_error);
11691                 }
11692         }
11693
11694         enab->dten_probegen = dtrace_probegen;
11695         if (nmatched != NULL)
11696                 *nmatched = matched;
11697
11698         return (0);
11699 }
11700
11701 static void
11702 dtrace_enabling_matchall(void)
11703 {
11704         dtrace_enabling_t *enab;
11705
11706         mutex_enter(&cpu_lock);
11707         mutex_enter(&dtrace_lock);
11708
11709         /*
11710          * Iterate over all retained enablings to see if any probes match
11711          * against them.  We only perform this operation on enablings for which
11712          * we have sufficient permissions by virtue of being in the global zone
11713          * or in the same zone as the DTrace client.  Because we can be called
11714          * after dtrace_detach() has been called, we cannot assert that there
11715          * are retained enablings.  We can safely load from dtrace_retained,
11716          * however:  the taskq_destroy() at the end of dtrace_detach() will
11717          * block pending our completion.
11718          */
11719         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11720 #if defined(sun)
11721                 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11722
11723                 if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11724 #endif
11725                         (void) dtrace_enabling_match(enab, NULL);
11726         }
11727
11728         mutex_exit(&dtrace_lock);
11729         mutex_exit(&cpu_lock);
11730 }
11731
11732 /*
11733  * If an enabling is to be enabled without having matched probes (that is, if
11734  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11735  * enabling must be _primed_ by creating an ECB for every ECB description.
11736  * This must be done to assure that we know the number of speculations, the
11737  * number of aggregations, the minimum buffer size needed, etc. before we
11738  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11739  * enabling any probes, we create ECBs for every ECB decription, but with a
11740  * NULL probe -- which is exactly what this function does.
11741  */
11742 static void
11743 dtrace_enabling_prime(dtrace_state_t *state)
11744 {
11745         dtrace_enabling_t *enab;
11746         int i;
11747
11748         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11749                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11750
11751                 if (enab->dten_vstate->dtvs_state != state)
11752                         continue;
11753
11754                 /*
11755                  * We don't want to prime an enabling more than once, lest
11756                  * we allow a malicious user to induce resource exhaustion.
11757                  * (The ECBs that result from priming an enabling aren't
11758                  * leaked -- but they also aren't deallocated until the
11759                  * consumer state is destroyed.)
11760                  */
11761                 if (enab->dten_primed)
11762                         continue;
11763
11764                 for (i = 0; i < enab->dten_ndesc; i++) {
11765                         enab->dten_current = enab->dten_desc[i];
11766                         (void) dtrace_probe_enable(NULL, enab);
11767                 }
11768
11769                 enab->dten_primed = 1;
11770         }
11771 }
11772
11773 /*
11774  * Called to indicate that probes should be provided due to retained
11775  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11776  * must take an initial lap through the enabling calling the dtps_provide()
11777  * entry point explicitly to allow for autocreated probes.
11778  */
11779 static void
11780 dtrace_enabling_provide(dtrace_provider_t *prv)
11781 {
11782         int i, all = 0;
11783         dtrace_probedesc_t desc;
11784
11785         ASSERT(MUTEX_HELD(&dtrace_lock));
11786         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11787
11788         if (prv == NULL) {
11789                 all = 1;
11790                 prv = dtrace_provider;
11791         }
11792
11793         do {
11794                 dtrace_enabling_t *enab = dtrace_retained;
11795                 void *parg = prv->dtpv_arg;
11796
11797                 for (; enab != NULL; enab = enab->dten_next) {
11798                         for (i = 0; i < enab->dten_ndesc; i++) {
11799                                 desc = enab->dten_desc[i]->dted_probe;
11800                                 mutex_exit(&dtrace_lock);
11801                                 prv->dtpv_pops.dtps_provide(parg, &desc);
11802                                 mutex_enter(&dtrace_lock);
11803                         }
11804                 }
11805         } while (all && (prv = prv->dtpv_next) != NULL);
11806
11807         mutex_exit(&dtrace_lock);
11808         dtrace_probe_provide(NULL, all ? NULL : prv);
11809         mutex_enter(&dtrace_lock);
11810 }
11811
11812 /*
11813  * Called to reap ECBs that are attached to probes from defunct providers.
11814  */
11815 static void
11816 dtrace_enabling_reap(void)
11817 {
11818         dtrace_provider_t *prov;
11819         dtrace_probe_t *probe;
11820         dtrace_ecb_t *ecb;
11821         hrtime_t when;
11822         int i;
11823
11824         mutex_enter(&cpu_lock);
11825         mutex_enter(&dtrace_lock);
11826
11827         for (i = 0; i < dtrace_nprobes; i++) {
11828                 if ((probe = dtrace_probes[i]) == NULL)
11829                         continue;
11830
11831                 if (probe->dtpr_ecb == NULL)
11832                         continue;
11833
11834                 prov = probe->dtpr_provider;
11835
11836                 if ((when = prov->dtpv_defunct) == 0)
11837                         continue;
11838
11839                 /*
11840                  * We have ECBs on a defunct provider:  we want to reap these
11841                  * ECBs to allow the provider to unregister.  The destruction
11842                  * of these ECBs must be done carefully:  if we destroy the ECB
11843                  * and the consumer later wishes to consume an EPID that
11844                  * corresponds to the destroyed ECB (and if the EPID metadata
11845                  * has not been previously consumed), the consumer will abort
11846                  * processing on the unknown EPID.  To reduce (but not, sadly,
11847                  * eliminate) the possibility of this, we will only destroy an
11848                  * ECB for a defunct provider if, for the state that
11849                  * corresponds to the ECB:
11850                  *
11851                  *  (a) There is no speculative tracing (which can effectively
11852                  *      cache an EPID for an arbitrary amount of time).
11853                  *
11854                  *  (b) The principal buffers have been switched twice since the
11855                  *      provider became defunct.
11856                  *
11857                  *  (c) The aggregation buffers are of zero size or have been
11858                  *      switched twice since the provider became defunct.
11859                  *
11860                  * We use dts_speculates to determine (a) and call a function
11861                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11862                  * that as soon as we've been unable to destroy one of the ECBs
11863                  * associated with the probe, we quit trying -- reaping is only
11864                  * fruitful in as much as we can destroy all ECBs associated
11865                  * with the defunct provider's probes.
11866                  */
11867                 while ((ecb = probe->dtpr_ecb) != NULL) {
11868                         dtrace_state_t *state = ecb->dte_state;
11869                         dtrace_buffer_t *buf = state->dts_buffer;
11870                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11871
11872                         if (state->dts_speculates)
11873                                 break;
11874
11875                         if (!dtrace_buffer_consumed(buf, when))
11876                                 break;
11877
11878                         if (!dtrace_buffer_consumed(aggbuf, when))
11879                                 break;
11880
11881                         dtrace_ecb_disable(ecb);
11882                         ASSERT(probe->dtpr_ecb != ecb);
11883                         dtrace_ecb_destroy(ecb);
11884                 }
11885         }
11886
11887         mutex_exit(&dtrace_lock);
11888         mutex_exit(&cpu_lock);
11889 }
11890
11891 /*
11892  * DTrace DOF Functions
11893  */
11894 /*ARGSUSED*/
11895 static void
11896 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11897 {
11898         if (dtrace_err_verbose)
11899                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11900
11901 #ifdef DTRACE_ERRDEBUG
11902         dtrace_errdebug(str);
11903 #endif
11904 }
11905
11906 /*
11907  * Create DOF out of a currently enabled state.  Right now, we only create
11908  * DOF containing the run-time options -- but this could be expanded to create
11909  * complete DOF representing the enabled state.
11910  */
11911 static dof_hdr_t *
11912 dtrace_dof_create(dtrace_state_t *state)
11913 {
11914         dof_hdr_t *dof;
11915         dof_sec_t *sec;
11916         dof_optdesc_t *opt;
11917         int i, len = sizeof (dof_hdr_t) +
11918             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11919             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11920
11921         ASSERT(MUTEX_HELD(&dtrace_lock));
11922
11923         dof = kmem_zalloc(len, KM_SLEEP);
11924         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11925         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11926         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11927         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11928
11929         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11930         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11931         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11932         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11933         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11934         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11935
11936         dof->dofh_flags = 0;
11937         dof->dofh_hdrsize = sizeof (dof_hdr_t);
11938         dof->dofh_secsize = sizeof (dof_sec_t);
11939         dof->dofh_secnum = 1;   /* only DOF_SECT_OPTDESC */
11940         dof->dofh_secoff = sizeof (dof_hdr_t);
11941         dof->dofh_loadsz = len;
11942         dof->dofh_filesz = len;
11943         dof->dofh_pad = 0;
11944
11945         /*
11946          * Fill in the option section header...
11947          */
11948         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11949         sec->dofs_type = DOF_SECT_OPTDESC;
11950         sec->dofs_align = sizeof (uint64_t);
11951         sec->dofs_flags = DOF_SECF_LOAD;
11952         sec->dofs_entsize = sizeof (dof_optdesc_t);
11953
11954         opt = (dof_optdesc_t *)((uintptr_t)sec +
11955             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11956
11957         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11958         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11959
11960         for (i = 0; i < DTRACEOPT_MAX; i++) {
11961                 opt[i].dofo_option = i;
11962                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11963                 opt[i].dofo_value = state->dts_options[i];
11964         }
11965
11966         return (dof);
11967 }
11968
11969 static dof_hdr_t *
11970 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11971 {
11972         dof_hdr_t hdr, *dof;
11973
11974         ASSERT(!MUTEX_HELD(&dtrace_lock));
11975
11976         /*
11977          * First, we're going to copyin() the sizeof (dof_hdr_t).
11978          */
11979         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11980                 dtrace_dof_error(NULL, "failed to copyin DOF header");
11981                 *errp = EFAULT;
11982                 return (NULL);
11983         }
11984
11985         /*
11986          * Now we'll allocate the entire DOF and copy it in -- provided
11987          * that the length isn't outrageous.
11988          */
11989         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11990                 dtrace_dof_error(&hdr, "load size exceeds maximum");
11991                 *errp = E2BIG;
11992                 return (NULL);
11993         }
11994
11995         if (hdr.dofh_loadsz < sizeof (hdr)) {
11996                 dtrace_dof_error(&hdr, "invalid load size");
11997                 *errp = EINVAL;
11998                 return (NULL);
11999         }
12000
12001         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12002
12003         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
12004                 kmem_free(dof, hdr.dofh_loadsz);
12005                 *errp = EFAULT;
12006                 return (NULL);
12007         }
12008
12009         return (dof);
12010 }
12011
12012 #if !defined(sun)
12013 static __inline uchar_t
12014 dtrace_dof_char(char c) {
12015         switch (c) {
12016         case '0':
12017         case '1':
12018         case '2':
12019         case '3':
12020         case '4':
12021         case '5':
12022         case '6':
12023         case '7':
12024         case '8':
12025         case '9':
12026                 return (c - '0');
12027         case 'A':
12028         case 'B':
12029         case 'C':
12030         case 'D':
12031         case 'E':
12032         case 'F':
12033                 return (c - 'A' + 10);
12034         case 'a':
12035         case 'b':
12036         case 'c':
12037         case 'd':
12038         case 'e':
12039         case 'f':
12040                 return (c - 'a' + 10);
12041         }
12042         /* Should not reach here. */
12043         return (0);
12044 }
12045 #endif
12046
12047 static dof_hdr_t *
12048 dtrace_dof_property(const char *name)
12049 {
12050         uchar_t *buf;
12051         uint64_t loadsz;
12052         unsigned int len, i;
12053         dof_hdr_t *dof;
12054
12055 #if defined(sun)
12056         /*
12057          * Unfortunately, array of values in .conf files are always (and
12058          * only) interpreted to be integer arrays.  We must read our DOF
12059          * as an integer array, and then squeeze it into a byte array.
12060          */
12061         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12062             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12063                 return (NULL);
12064
12065         for (i = 0; i < len; i++)
12066                 buf[i] = (uchar_t)(((int *)buf)[i]);
12067
12068         if (len < sizeof (dof_hdr_t)) {
12069                 ddi_prop_free(buf);
12070                 dtrace_dof_error(NULL, "truncated header");
12071                 return (NULL);
12072         }
12073
12074         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12075                 ddi_prop_free(buf);
12076                 dtrace_dof_error(NULL, "truncated DOF");
12077                 return (NULL);
12078         }
12079
12080         if (loadsz >= dtrace_dof_maxsize) {
12081                 ddi_prop_free(buf);
12082                 dtrace_dof_error(NULL, "oversized DOF");
12083                 return (NULL);
12084         }
12085
12086         dof = kmem_alloc(loadsz, KM_SLEEP);
12087         bcopy(buf, dof, loadsz);
12088         ddi_prop_free(buf);
12089 #else
12090         char *p;
12091         char *p_env;
12092
12093         if ((p_env = getenv(name)) == NULL)
12094                 return (NULL);
12095
12096         len = strlen(p_env) / 2;
12097
12098         buf = kmem_alloc(len, KM_SLEEP);
12099
12100         dof = (dof_hdr_t *) buf;
12101
12102         p = p_env;
12103
12104         for (i = 0; i < len; i++) {
12105                 buf[i] = (dtrace_dof_char(p[0]) << 4) |
12106                      dtrace_dof_char(p[1]);
12107                 p += 2;
12108         }
12109
12110         freeenv(p_env);
12111
12112         if (len < sizeof (dof_hdr_t)) {
12113                 kmem_free(buf, 0);
12114                 dtrace_dof_error(NULL, "truncated header");
12115                 return (NULL);
12116         }
12117
12118         if (len < (loadsz = dof->dofh_loadsz)) {
12119                 kmem_free(buf, 0);
12120                 dtrace_dof_error(NULL, "truncated DOF");
12121                 return (NULL);
12122         }
12123
12124         if (loadsz >= dtrace_dof_maxsize) {
12125                 kmem_free(buf, 0);
12126                 dtrace_dof_error(NULL, "oversized DOF");
12127                 return (NULL);
12128         }
12129 #endif
12130
12131         return (dof);
12132 }
12133
12134 static void
12135 dtrace_dof_destroy(dof_hdr_t *dof)
12136 {
12137         kmem_free(dof, dof->dofh_loadsz);
12138 }
12139
12140 /*
12141  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12142  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12143  * a type other than DOF_SECT_NONE is specified, the header is checked against
12144  * this type and NULL is returned if the types do not match.
12145  */
12146 static dof_sec_t *
12147 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12148 {
12149         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12150             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12151
12152         if (i >= dof->dofh_secnum) {
12153                 dtrace_dof_error(dof, "referenced section index is invalid");
12154                 return (NULL);
12155         }
12156
12157         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12158                 dtrace_dof_error(dof, "referenced section is not loadable");
12159                 return (NULL);
12160         }
12161
12162         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12163                 dtrace_dof_error(dof, "referenced section is the wrong type");
12164                 return (NULL);
12165         }
12166
12167         return (sec);
12168 }
12169
12170 static dtrace_probedesc_t *
12171 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12172 {
12173         dof_probedesc_t *probe;
12174         dof_sec_t *strtab;
12175         uintptr_t daddr = (uintptr_t)dof;
12176         uintptr_t str;
12177         size_t size;
12178
12179         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12180                 dtrace_dof_error(dof, "invalid probe section");
12181                 return (NULL);
12182         }
12183
12184         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12185                 dtrace_dof_error(dof, "bad alignment in probe description");
12186                 return (NULL);
12187         }
12188
12189         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12190                 dtrace_dof_error(dof, "truncated probe description");
12191                 return (NULL);
12192         }
12193
12194         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12195         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12196
12197         if (strtab == NULL)
12198                 return (NULL);
12199
12200         str = daddr + strtab->dofs_offset;
12201         size = strtab->dofs_size;
12202
12203         if (probe->dofp_provider >= strtab->dofs_size) {
12204                 dtrace_dof_error(dof, "corrupt probe provider");
12205                 return (NULL);
12206         }
12207
12208         (void) strncpy(desc->dtpd_provider,
12209             (char *)(str + probe->dofp_provider),
12210             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12211
12212         if (probe->dofp_mod >= strtab->dofs_size) {
12213                 dtrace_dof_error(dof, "corrupt probe module");
12214                 return (NULL);
12215         }
12216
12217         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12218             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12219
12220         if (probe->dofp_func >= strtab->dofs_size) {
12221                 dtrace_dof_error(dof, "corrupt probe function");
12222                 return (NULL);
12223         }
12224
12225         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12226             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12227
12228         if (probe->dofp_name >= strtab->dofs_size) {
12229                 dtrace_dof_error(dof, "corrupt probe name");
12230                 return (NULL);
12231         }
12232
12233         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12234             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12235
12236         return (desc);
12237 }
12238
12239 static dtrace_difo_t *
12240 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12241     cred_t *cr)
12242 {
12243         dtrace_difo_t *dp;
12244         size_t ttl = 0;
12245         dof_difohdr_t *dofd;
12246         uintptr_t daddr = (uintptr_t)dof;
12247         size_t max = dtrace_difo_maxsize;
12248         int i, l, n;
12249
12250         static const struct {
12251                 int section;
12252                 int bufoffs;
12253                 int lenoffs;
12254                 int entsize;
12255                 int align;
12256                 const char *msg;
12257         } difo[] = {
12258                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12259                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12260                 sizeof (dif_instr_t), "multiple DIF sections" },
12261
12262                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12263                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12264                 sizeof (uint64_t), "multiple integer tables" },
12265
12266                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12267                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12268                 sizeof (char), "multiple string tables" },
12269
12270                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12271                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12272                 sizeof (uint_t), "multiple variable tables" },
12273
12274                 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12275         };
12276
12277         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12278                 dtrace_dof_error(dof, "invalid DIFO header section");
12279                 return (NULL);
12280         }
12281
12282         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12283                 dtrace_dof_error(dof, "bad alignment in DIFO header");
12284                 return (NULL);
12285         }
12286
12287         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12288             sec->dofs_size % sizeof (dof_secidx_t)) {
12289                 dtrace_dof_error(dof, "bad size in DIFO header");
12290                 return (NULL);
12291         }
12292
12293         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12294         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12295
12296         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12297         dp->dtdo_rtype = dofd->dofd_rtype;
12298
12299         for (l = 0; l < n; l++) {
12300                 dof_sec_t *subsec;
12301                 void **bufp;
12302                 uint32_t *lenp;
12303
12304                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12305                     dofd->dofd_links[l])) == NULL)
12306                         goto err; /* invalid section link */
12307
12308                 if (ttl + subsec->dofs_size > max) {
12309                         dtrace_dof_error(dof, "exceeds maximum size");
12310                         goto err;
12311                 }
12312
12313                 ttl += subsec->dofs_size;
12314
12315                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12316                         if (subsec->dofs_type != difo[i].section)
12317                                 continue;
12318
12319                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12320                                 dtrace_dof_error(dof, "section not loaded");
12321                                 goto err;
12322                         }
12323
12324                         if (subsec->dofs_align != difo[i].align) {
12325                                 dtrace_dof_error(dof, "bad alignment");
12326                                 goto err;
12327                         }
12328
12329                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12330                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12331
12332                         if (*bufp != NULL) {
12333                                 dtrace_dof_error(dof, difo[i].msg);
12334                                 goto err;
12335                         }
12336
12337                         if (difo[i].entsize != subsec->dofs_entsize) {
12338                                 dtrace_dof_error(dof, "entry size mismatch");
12339                                 goto err;
12340                         }
12341
12342                         if (subsec->dofs_entsize != 0 &&
12343                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12344                                 dtrace_dof_error(dof, "corrupt entry size");
12345                                 goto err;
12346                         }
12347
12348                         *lenp = subsec->dofs_size;
12349                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12350                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12351                             *bufp, subsec->dofs_size);
12352
12353                         if (subsec->dofs_entsize != 0)
12354                                 *lenp /= subsec->dofs_entsize;
12355
12356                         break;
12357                 }
12358
12359                 /*
12360                  * If we encounter a loadable DIFO sub-section that is not
12361                  * known to us, assume this is a broken program and fail.
12362                  */
12363                 if (difo[i].section == DOF_SECT_NONE &&
12364                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
12365                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
12366                         goto err;
12367                 }
12368         }
12369
12370         if (dp->dtdo_buf == NULL) {
12371                 /*
12372                  * We can't have a DIF object without DIF text.
12373                  */
12374                 dtrace_dof_error(dof, "missing DIF text");
12375                 goto err;
12376         }
12377
12378         /*
12379          * Before we validate the DIF object, run through the variable table
12380          * looking for the strings -- if any of their size are under, we'll set
12381          * their size to be the system-wide default string size.  Note that
12382          * this should _not_ happen if the "strsize" option has been set --
12383          * in this case, the compiler should have set the size to reflect the
12384          * setting of the option.
12385          */
12386         for (i = 0; i < dp->dtdo_varlen; i++) {
12387                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12388                 dtrace_diftype_t *t = &v->dtdv_type;
12389
12390                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12391                         continue;
12392
12393                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12394                         t->dtdt_size = dtrace_strsize_default;
12395         }
12396
12397         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12398                 goto err;
12399
12400         dtrace_difo_init(dp, vstate);
12401         return (dp);
12402
12403 err:
12404         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12405         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12406         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12407         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12408
12409         kmem_free(dp, sizeof (dtrace_difo_t));
12410         return (NULL);
12411 }
12412
12413 static dtrace_predicate_t *
12414 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12415     cred_t *cr)
12416 {
12417         dtrace_difo_t *dp;
12418
12419         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12420                 return (NULL);
12421
12422         return (dtrace_predicate_create(dp));
12423 }
12424
12425 static dtrace_actdesc_t *
12426 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12427     cred_t *cr)
12428 {
12429         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12430         dof_actdesc_t *desc;
12431         dof_sec_t *difosec;
12432         size_t offs;
12433         uintptr_t daddr = (uintptr_t)dof;
12434         uint64_t arg;
12435         dtrace_actkind_t kind;
12436
12437         if (sec->dofs_type != DOF_SECT_ACTDESC) {
12438                 dtrace_dof_error(dof, "invalid action section");
12439                 return (NULL);
12440         }
12441
12442         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12443                 dtrace_dof_error(dof, "truncated action description");
12444                 return (NULL);
12445         }
12446
12447         if (sec->dofs_align != sizeof (uint64_t)) {
12448                 dtrace_dof_error(dof, "bad alignment in action description");
12449                 return (NULL);
12450         }
12451
12452         if (sec->dofs_size < sec->dofs_entsize) {
12453                 dtrace_dof_error(dof, "section entry size exceeds total size");
12454                 return (NULL);
12455         }
12456
12457         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12458                 dtrace_dof_error(dof, "bad entry size in action description");
12459                 return (NULL);
12460         }
12461
12462         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12463                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12464                 return (NULL);
12465         }
12466
12467         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12468                 desc = (dof_actdesc_t *)(daddr +
12469                     (uintptr_t)sec->dofs_offset + offs);
12470                 kind = (dtrace_actkind_t)desc->dofa_kind;
12471
12472                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12473                     (kind != DTRACEACT_PRINTA ||
12474                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12475                     (kind == DTRACEACT_DIFEXPR &&
12476                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12477                         dof_sec_t *strtab;
12478                         char *str, *fmt;
12479                         uint64_t i;
12480
12481                         /*
12482                          * The argument to these actions is an index into the
12483                          * DOF string table.  For printf()-like actions, this
12484                          * is the format string.  For print(), this is the
12485                          * CTF type of the expression result.
12486                          */
12487                         if ((strtab = dtrace_dof_sect(dof,
12488                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12489                                 goto err;
12490
12491                         str = (char *)((uintptr_t)dof +
12492                             (uintptr_t)strtab->dofs_offset);
12493
12494                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12495                                 if (str[i] == '\0')
12496                                         break;
12497                         }
12498
12499                         if (i >= strtab->dofs_size) {
12500                                 dtrace_dof_error(dof, "bogus format string");
12501                                 goto err;
12502                         }
12503
12504                         if (i == desc->dofa_arg) {
12505                                 dtrace_dof_error(dof, "empty format string");
12506                                 goto err;
12507                         }
12508
12509                         i -= desc->dofa_arg;
12510                         fmt = kmem_alloc(i + 1, KM_SLEEP);
12511                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
12512                         arg = (uint64_t)(uintptr_t)fmt;
12513                 } else {
12514                         if (kind == DTRACEACT_PRINTA) {
12515                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12516                                 arg = 0;
12517                         } else {
12518                                 arg = desc->dofa_arg;
12519                         }
12520                 }
12521
12522                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12523                     desc->dofa_uarg, arg);
12524
12525                 if (last != NULL) {
12526                         last->dtad_next = act;
12527                 } else {
12528                         first = act;
12529                 }
12530
12531                 last = act;
12532
12533                 if (desc->dofa_difo == DOF_SECIDX_NONE)
12534                         continue;
12535
12536                 if ((difosec = dtrace_dof_sect(dof,
12537                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12538                         goto err;
12539
12540                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12541
12542                 if (act->dtad_difo == NULL)
12543                         goto err;
12544         }
12545
12546         ASSERT(first != NULL);
12547         return (first);
12548
12549 err:
12550         for (act = first; act != NULL; act = next) {
12551                 next = act->dtad_next;
12552                 dtrace_actdesc_release(act, vstate);
12553         }
12554
12555         return (NULL);
12556 }
12557
12558 static dtrace_ecbdesc_t *
12559 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12560     cred_t *cr)
12561 {
12562         dtrace_ecbdesc_t *ep;
12563         dof_ecbdesc_t *ecb;
12564         dtrace_probedesc_t *desc;
12565         dtrace_predicate_t *pred = NULL;
12566
12567         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12568                 dtrace_dof_error(dof, "truncated ECB description");
12569                 return (NULL);
12570         }
12571
12572         if (sec->dofs_align != sizeof (uint64_t)) {
12573                 dtrace_dof_error(dof, "bad alignment in ECB description");
12574                 return (NULL);
12575         }
12576
12577         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12578         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12579
12580         if (sec == NULL)
12581                 return (NULL);
12582
12583         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12584         ep->dted_uarg = ecb->dofe_uarg;
12585         desc = &ep->dted_probe;
12586
12587         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12588                 goto err;
12589
12590         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12591                 if ((sec = dtrace_dof_sect(dof,
12592                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12593                         goto err;
12594
12595                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12596                         goto err;
12597
12598                 ep->dted_pred.dtpdd_predicate = pred;
12599         }
12600
12601         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12602                 if ((sec = dtrace_dof_sect(dof,
12603                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12604                         goto err;
12605
12606                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12607
12608                 if (ep->dted_action == NULL)
12609                         goto err;
12610         }
12611
12612         return (ep);
12613
12614 err:
12615         if (pred != NULL)
12616                 dtrace_predicate_release(pred, vstate);
12617         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12618         return (NULL);
12619 }
12620
12621 /*
12622  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12623  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12624  * site of any user SETX relocations to account for load object base address.
12625  * In the future, if we need other relocations, this function can be extended.
12626  */
12627 static int
12628 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12629 {
12630         uintptr_t daddr = (uintptr_t)dof;
12631         dof_relohdr_t *dofr =
12632             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12633         dof_sec_t *ss, *rs, *ts;
12634         dof_relodesc_t *r;
12635         uint_t i, n;
12636
12637         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12638             sec->dofs_align != sizeof (dof_secidx_t)) {
12639                 dtrace_dof_error(dof, "invalid relocation header");
12640                 return (-1);
12641         }
12642
12643         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12644         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12645         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12646
12647         if (ss == NULL || rs == NULL || ts == NULL)
12648                 return (-1); /* dtrace_dof_error() has been called already */
12649
12650         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12651             rs->dofs_align != sizeof (uint64_t)) {
12652                 dtrace_dof_error(dof, "invalid relocation section");
12653                 return (-1);
12654         }
12655
12656         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12657         n = rs->dofs_size / rs->dofs_entsize;
12658
12659         for (i = 0; i < n; i++) {
12660                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12661
12662                 switch (r->dofr_type) {
12663                 case DOF_RELO_NONE:
12664                         break;
12665                 case DOF_RELO_SETX:
12666                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12667                             sizeof (uint64_t) > ts->dofs_size) {
12668                                 dtrace_dof_error(dof, "bad relocation offset");
12669                                 return (-1);
12670                         }
12671
12672                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12673                                 dtrace_dof_error(dof, "misaligned setx relo");
12674                                 return (-1);
12675                         }
12676
12677                         *(uint64_t *)taddr += ubase;
12678                         break;
12679                 default:
12680                         dtrace_dof_error(dof, "invalid relocation type");
12681                         return (-1);
12682                 }
12683
12684                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12685         }
12686
12687         return (0);
12688 }
12689
12690 /*
12691  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12692  * header:  it should be at the front of a memory region that is at least
12693  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12694  * size.  It need not be validated in any other way.
12695  */
12696 static int
12697 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12698     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12699 {
12700         uint64_t len = dof->dofh_loadsz, seclen;
12701         uintptr_t daddr = (uintptr_t)dof;
12702         dtrace_ecbdesc_t *ep;
12703         dtrace_enabling_t *enab;
12704         uint_t i;
12705
12706         ASSERT(MUTEX_HELD(&dtrace_lock));
12707         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12708
12709         /*
12710          * Check the DOF header identification bytes.  In addition to checking
12711          * valid settings, we also verify that unused bits/bytes are zeroed so
12712          * we can use them later without fear of regressing existing binaries.
12713          */
12714         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12715             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12716                 dtrace_dof_error(dof, "DOF magic string mismatch");
12717                 return (-1);
12718         }
12719
12720         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12721             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12722                 dtrace_dof_error(dof, "DOF has invalid data model");
12723                 return (-1);
12724         }
12725
12726         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12727                 dtrace_dof_error(dof, "DOF encoding mismatch");
12728                 return (-1);
12729         }
12730
12731         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12732             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12733                 dtrace_dof_error(dof, "DOF version mismatch");
12734                 return (-1);
12735         }
12736
12737         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12738                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12739                 return (-1);
12740         }
12741
12742         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12743                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12744                 return (-1);
12745         }
12746
12747         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12748                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12749                 return (-1);
12750         }
12751
12752         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12753                 if (dof->dofh_ident[i] != 0) {
12754                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12755                         return (-1);
12756                 }
12757         }
12758
12759         if (dof->dofh_flags & ~DOF_FL_VALID) {
12760                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12761                 return (-1);
12762         }
12763
12764         if (dof->dofh_secsize == 0) {
12765                 dtrace_dof_error(dof, "zero section header size");
12766                 return (-1);
12767         }
12768
12769         /*
12770          * Check that the section headers don't exceed the amount of DOF
12771          * data.  Note that we cast the section size and number of sections
12772          * to uint64_t's to prevent possible overflow in the multiplication.
12773          */
12774         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12775
12776         if (dof->dofh_secoff > len || seclen > len ||
12777             dof->dofh_secoff + seclen > len) {
12778                 dtrace_dof_error(dof, "truncated section headers");
12779                 return (-1);
12780         }
12781
12782         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12783                 dtrace_dof_error(dof, "misaligned section headers");
12784                 return (-1);
12785         }
12786
12787         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12788                 dtrace_dof_error(dof, "misaligned section size");
12789                 return (-1);
12790         }
12791
12792         /*
12793          * Take an initial pass through the section headers to be sure that
12794          * the headers don't have stray offsets.  If the 'noprobes' flag is
12795          * set, do not permit sections relating to providers, probes, or args.
12796          */
12797         for (i = 0; i < dof->dofh_secnum; i++) {
12798                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12799                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12800
12801                 if (noprobes) {
12802                         switch (sec->dofs_type) {
12803                         case DOF_SECT_PROVIDER:
12804                         case DOF_SECT_PROBES:
12805                         case DOF_SECT_PRARGS:
12806                         case DOF_SECT_PROFFS:
12807                                 dtrace_dof_error(dof, "illegal sections "
12808                                     "for enabling");
12809                                 return (-1);
12810                         }
12811                 }
12812
12813                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12814                         continue; /* just ignore non-loadable sections */
12815
12816                 if (sec->dofs_align & (sec->dofs_align - 1)) {
12817                         dtrace_dof_error(dof, "bad section alignment");
12818                         return (-1);
12819                 }
12820
12821                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12822                         dtrace_dof_error(dof, "misaligned section");
12823                         return (-1);
12824                 }
12825
12826                 if (sec->dofs_offset > len || sec->dofs_size > len ||
12827                     sec->dofs_offset + sec->dofs_size > len) {
12828                         dtrace_dof_error(dof, "corrupt section header");
12829                         return (-1);
12830                 }
12831
12832                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12833                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12834                         dtrace_dof_error(dof, "non-terminating string table");
12835                         return (-1);
12836                 }
12837         }
12838
12839         /*
12840          * Take a second pass through the sections and locate and perform any
12841          * relocations that are present.  We do this after the first pass to
12842          * be sure that all sections have had their headers validated.
12843          */
12844         for (i = 0; i < dof->dofh_secnum; i++) {
12845                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12846                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12847
12848                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12849                         continue; /* skip sections that are not loadable */
12850
12851                 switch (sec->dofs_type) {
12852                 case DOF_SECT_URELHDR:
12853                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12854                                 return (-1);
12855                         break;
12856                 }
12857         }
12858
12859         if ((enab = *enabp) == NULL)
12860                 enab = *enabp = dtrace_enabling_create(vstate);
12861
12862         for (i = 0; i < dof->dofh_secnum; i++) {
12863                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12864                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12865
12866                 if (sec->dofs_type != DOF_SECT_ECBDESC)
12867                         continue;
12868
12869                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12870                         dtrace_enabling_destroy(enab);
12871                         *enabp = NULL;
12872                         return (-1);
12873                 }
12874
12875                 dtrace_enabling_add(enab, ep);
12876         }
12877
12878         return (0);
12879 }
12880
12881 /*
12882  * Process DOF for any options.  This routine assumes that the DOF has been
12883  * at least processed by dtrace_dof_slurp().
12884  */
12885 static int
12886 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12887 {
12888         int i, rval;
12889         uint32_t entsize;
12890         size_t offs;
12891         dof_optdesc_t *desc;
12892
12893         for (i = 0; i < dof->dofh_secnum; i++) {
12894                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12895                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12896
12897                 if (sec->dofs_type != DOF_SECT_OPTDESC)
12898                         continue;
12899
12900                 if (sec->dofs_align != sizeof (uint64_t)) {
12901                         dtrace_dof_error(dof, "bad alignment in "
12902                             "option description");
12903                         return (EINVAL);
12904                 }
12905
12906                 if ((entsize = sec->dofs_entsize) == 0) {
12907                         dtrace_dof_error(dof, "zeroed option entry size");
12908                         return (EINVAL);
12909                 }
12910
12911                 if (entsize < sizeof (dof_optdesc_t)) {
12912                         dtrace_dof_error(dof, "bad option entry size");
12913                         return (EINVAL);
12914                 }
12915
12916                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12917                         desc = (dof_optdesc_t *)((uintptr_t)dof +
12918                             (uintptr_t)sec->dofs_offset + offs);
12919
12920                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12921                                 dtrace_dof_error(dof, "non-zero option string");
12922                                 return (EINVAL);
12923                         }
12924
12925                         if (desc->dofo_value == DTRACEOPT_UNSET) {
12926                                 dtrace_dof_error(dof, "unset option");
12927                                 return (EINVAL);
12928                         }
12929
12930                         if ((rval = dtrace_state_option(state,
12931                             desc->dofo_option, desc->dofo_value)) != 0) {
12932                                 dtrace_dof_error(dof, "rejected option");
12933                                 return (rval);
12934                         }
12935                 }
12936         }
12937
12938         return (0);
12939 }
12940
12941 /*
12942  * DTrace Consumer State Functions
12943  */
12944 static int
12945 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12946 {
12947         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12948         void *base;
12949         uintptr_t limit;
12950         dtrace_dynvar_t *dvar, *next, *start;
12951         int i;
12952
12953         ASSERT(MUTEX_HELD(&dtrace_lock));
12954         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12955
12956         bzero(dstate, sizeof (dtrace_dstate_t));
12957
12958         if ((dstate->dtds_chunksize = chunksize) == 0)
12959                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12960
12961         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12962                 size = min;
12963
12964         if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12965                 return (ENOMEM);
12966
12967         dstate->dtds_size = size;
12968         dstate->dtds_base = base;
12969         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12970         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12971
12972         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12973
12974         if (hashsize != 1 && (hashsize & 1))
12975                 hashsize--;
12976
12977         dstate->dtds_hashsize = hashsize;
12978         dstate->dtds_hash = dstate->dtds_base;
12979
12980         /*
12981          * Set all of our hash buckets to point to the single sink, and (if
12982          * it hasn't already been set), set the sink's hash value to be the
12983          * sink sentinel value.  The sink is needed for dynamic variable
12984          * lookups to know that they have iterated over an entire, valid hash
12985          * chain.
12986          */
12987         for (i = 0; i < hashsize; i++)
12988                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12989
12990         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12991                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12992
12993         /*
12994          * Determine number of active CPUs.  Divide free list evenly among
12995          * active CPUs.
12996          */
12997         start = (dtrace_dynvar_t *)
12998             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12999         limit = (uintptr_t)base + size;
13000
13001         maxper = (limit - (uintptr_t)start) / NCPU;
13002         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13003
13004 #if !defined(sun)
13005         CPU_FOREACH(i) {
13006 #else
13007         for (i = 0; i < NCPU; i++) {
13008 #endif
13009                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13010
13011                 /*
13012                  * If we don't even have enough chunks to make it once through
13013                  * NCPUs, we're just going to allocate everything to the first
13014                  * CPU.  And if we're on the last CPU, we're going to allocate
13015                  * whatever is left over.  In either case, we set the limit to
13016                  * be the limit of the dynamic variable space.
13017                  */
13018                 if (maxper == 0 || i == NCPU - 1) {
13019                         limit = (uintptr_t)base + size;
13020                         start = NULL;
13021                 } else {
13022                         limit = (uintptr_t)start + maxper;
13023                         start = (dtrace_dynvar_t *)limit;
13024                 }
13025
13026                 ASSERT(limit <= (uintptr_t)base + size);
13027
13028                 for (;;) {
13029                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13030                             dstate->dtds_chunksize);
13031
13032                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13033                                 break;
13034
13035                         dvar->dtdv_next = next;
13036                         dvar = next;
13037                 }
13038
13039                 if (maxper == 0)
13040                         break;
13041         }
13042
13043         return (0);
13044 }
13045
13046 static void
13047 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13048 {
13049         ASSERT(MUTEX_HELD(&cpu_lock));
13050
13051         if (dstate->dtds_base == NULL)
13052                 return;
13053
13054         kmem_free(dstate->dtds_base, dstate->dtds_size);
13055         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13056 }
13057
13058 static void
13059 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13060 {
13061         /*
13062          * Logical XOR, where are you?
13063          */
13064         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13065
13066         if (vstate->dtvs_nglobals > 0) {
13067                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13068                     sizeof (dtrace_statvar_t *));
13069         }
13070
13071         if (vstate->dtvs_ntlocals > 0) {
13072                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13073                     sizeof (dtrace_difv_t));
13074         }
13075
13076         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13077
13078         if (vstate->dtvs_nlocals > 0) {
13079                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13080                     sizeof (dtrace_statvar_t *));
13081         }
13082 }
13083
13084 #if defined(sun)
13085 static void
13086 dtrace_state_clean(dtrace_state_t *state)
13087 {
13088         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13089                 return;
13090
13091         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13092         dtrace_speculation_clean(state);
13093 }
13094
13095 static void
13096 dtrace_state_deadman(dtrace_state_t *state)
13097 {
13098         hrtime_t now;
13099
13100         dtrace_sync();
13101
13102         now = dtrace_gethrtime();
13103
13104         if (state != dtrace_anon.dta_state &&
13105             now - state->dts_laststatus >= dtrace_deadman_user)
13106                 return;
13107
13108         /*
13109          * We must be sure that dts_alive never appears to be less than the
13110          * value upon entry to dtrace_state_deadman(), and because we lack a
13111          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13112          * store INT64_MAX to it, followed by a memory barrier, followed by
13113          * the new value.  This assures that dts_alive never appears to be
13114          * less than its true value, regardless of the order in which the
13115          * stores to the underlying storage are issued.
13116          */
13117         state->dts_alive = INT64_MAX;
13118         dtrace_membar_producer();
13119         state->dts_alive = now;
13120 }
13121 #else
13122 static void
13123 dtrace_state_clean(void *arg)
13124 {
13125         dtrace_state_t *state = arg;
13126         dtrace_optval_t *opt = state->dts_options;
13127
13128         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13129                 return;
13130
13131         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13132         dtrace_speculation_clean(state);
13133
13134         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13135             dtrace_state_clean, state);
13136 }
13137
13138 static void
13139 dtrace_state_deadman(void *arg)
13140 {
13141         dtrace_state_t *state = arg;
13142         hrtime_t now;
13143
13144         dtrace_sync();
13145
13146         dtrace_debug_output();
13147
13148         now = dtrace_gethrtime();
13149
13150         if (state != dtrace_anon.dta_state &&
13151             now - state->dts_laststatus >= dtrace_deadman_user)
13152                 return;
13153
13154         /*
13155          * We must be sure that dts_alive never appears to be less than the
13156          * value upon entry to dtrace_state_deadman(), and because we lack a
13157          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13158          * store INT64_MAX to it, followed by a memory barrier, followed by
13159          * the new value.  This assures that dts_alive never appears to be
13160          * less than its true value, regardless of the order in which the
13161          * stores to the underlying storage are issued.
13162          */
13163         state->dts_alive = INT64_MAX;
13164         dtrace_membar_producer();
13165         state->dts_alive = now;
13166
13167         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13168             dtrace_state_deadman, state);
13169 }
13170 #endif
13171
13172 static dtrace_state_t *
13173 #if defined(sun)
13174 dtrace_state_create(dev_t *devp, cred_t *cr)
13175 #else
13176 dtrace_state_create(struct cdev *dev)
13177 #endif
13178 {
13179 #if defined(sun)
13180         minor_t minor;
13181         major_t major;
13182 #else
13183         cred_t *cr = NULL;
13184         int m = 0;
13185 #endif
13186         char c[30];
13187         dtrace_state_t *state;
13188         dtrace_optval_t *opt;
13189         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13190
13191         ASSERT(MUTEX_HELD(&dtrace_lock));
13192         ASSERT(MUTEX_HELD(&cpu_lock));
13193
13194 #if defined(sun)
13195         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13196             VM_BESTFIT | VM_SLEEP);
13197
13198         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13199                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13200                 return (NULL);
13201         }
13202
13203         state = ddi_get_soft_state(dtrace_softstate, minor);
13204 #else
13205         if (dev != NULL) {
13206                 cr = dev->si_cred;
13207                 m = dev2unit(dev);
13208                 }
13209
13210         /* Allocate memory for the state. */
13211         state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13212 #endif
13213
13214         state->dts_epid = DTRACE_EPIDNONE + 1;
13215
13216         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13217 #if defined(sun)
13218         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13219             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13220
13221         if (devp != NULL) {
13222                 major = getemajor(*devp);
13223         } else {
13224                 major = ddi_driver_major(dtrace_devi);
13225         }
13226
13227         state->dts_dev = makedevice(major, minor);
13228
13229         if (devp != NULL)
13230                 *devp = state->dts_dev;
13231 #else
13232         state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13233         state->dts_dev = dev;
13234 #endif
13235
13236         /*
13237          * We allocate NCPU buffers.  On the one hand, this can be quite
13238          * a bit of memory per instance (nearly 36K on a Starcat).  On the
13239          * other hand, it saves an additional memory reference in the probe
13240          * path.
13241          */
13242         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13243         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13244
13245 #if defined(sun)
13246         state->dts_cleaner = CYCLIC_NONE;
13247         state->dts_deadman = CYCLIC_NONE;
13248 #else
13249         callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13250         callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13251 #endif
13252         state->dts_vstate.dtvs_state = state;
13253
13254         for (i = 0; i < DTRACEOPT_MAX; i++)
13255                 state->dts_options[i] = DTRACEOPT_UNSET;
13256
13257         /*
13258          * Set the default options.
13259          */
13260         opt = state->dts_options;
13261         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13262         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13263         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13264         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13265         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13266         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13267         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13268         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13269         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13270         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13271         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13272         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13273         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13274         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13275
13276         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13277
13278         /*
13279          * Depending on the user credentials, we set flag bits which alter probe
13280          * visibility or the amount of destructiveness allowed.  In the case of
13281          * actual anonymous tracing, or the possession of all privileges, all of
13282          * the normal checks are bypassed.
13283          */
13284         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13285                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13286                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13287         } else {
13288                 /*
13289                  * Set up the credentials for this instantiation.  We take a
13290                  * hold on the credential to prevent it from disappearing on
13291                  * us; this in turn prevents the zone_t referenced by this
13292                  * credential from disappearing.  This means that we can
13293                  * examine the credential and the zone from probe context.
13294                  */
13295                 crhold(cr);
13296                 state->dts_cred.dcr_cred = cr;
13297
13298                 /*
13299                  * CRA_PROC means "we have *some* privilege for dtrace" and
13300                  * unlocks the use of variables like pid, zonename, etc.
13301                  */
13302                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13303                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13304                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13305                 }
13306
13307                 /*
13308                  * dtrace_user allows use of syscall and profile providers.
13309                  * If the user also has proc_owner and/or proc_zone, we
13310                  * extend the scope to include additional visibility and
13311                  * destructive power.
13312                  */
13313                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13314                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13315                                 state->dts_cred.dcr_visible |=
13316                                     DTRACE_CRV_ALLPROC;
13317
13318                                 state->dts_cred.dcr_action |=
13319                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13320                         }
13321
13322                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13323                                 state->dts_cred.dcr_visible |=
13324                                     DTRACE_CRV_ALLZONE;
13325
13326                                 state->dts_cred.dcr_action |=
13327                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13328                         }
13329
13330                         /*
13331                          * If we have all privs in whatever zone this is,
13332                          * we can do destructive things to processes which
13333                          * have altered credentials.
13334                          */
13335 #if defined(sun)
13336                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13337                             cr->cr_zone->zone_privset)) {
13338                                 state->dts_cred.dcr_action |=
13339                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13340                         }
13341 #endif
13342                 }
13343
13344                 /*
13345                  * Holding the dtrace_kernel privilege also implies that
13346                  * the user has the dtrace_user privilege from a visibility
13347                  * perspective.  But without further privileges, some
13348                  * destructive actions are not available.
13349                  */
13350                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13351                         /*
13352                          * Make all probes in all zones visible.  However,
13353                          * this doesn't mean that all actions become available
13354                          * to all zones.
13355                          */
13356                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13357                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13358
13359                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13360                             DTRACE_CRA_PROC;
13361                         /*
13362                          * Holding proc_owner means that destructive actions
13363                          * for *this* zone are allowed.
13364                          */
13365                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13366                                 state->dts_cred.dcr_action |=
13367                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13368
13369                         /*
13370                          * Holding proc_zone means that destructive actions
13371                          * for this user/group ID in all zones is allowed.
13372                          */
13373                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13374                                 state->dts_cred.dcr_action |=
13375                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13376
13377 #if defined(sun)
13378                         /*
13379                          * If we have all privs in whatever zone this is,
13380                          * we can do destructive things to processes which
13381                          * have altered credentials.
13382                          */
13383                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13384                             cr->cr_zone->zone_privset)) {
13385                                 state->dts_cred.dcr_action |=
13386                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13387                         }
13388 #endif
13389                 }
13390
13391                 /*
13392                  * Holding the dtrace_proc privilege gives control over fasttrap
13393                  * and pid providers.  We need to grant wider destructive
13394                  * privileges in the event that the user has proc_owner and/or
13395                  * proc_zone.
13396                  */
13397                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13398                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13399                                 state->dts_cred.dcr_action |=
13400                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13401
13402                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13403                                 state->dts_cred.dcr_action |=
13404                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13405                 }
13406         }
13407
13408         return (state);
13409 }
13410
13411 static int
13412 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13413 {
13414         dtrace_optval_t *opt = state->dts_options, size;
13415         processorid_t cpu = 0;;
13416         int flags = 0, rval;
13417
13418         ASSERT(MUTEX_HELD(&dtrace_lock));
13419         ASSERT(MUTEX_HELD(&cpu_lock));
13420         ASSERT(which < DTRACEOPT_MAX);
13421         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13422             (state == dtrace_anon.dta_state &&
13423             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13424
13425         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13426                 return (0);
13427
13428         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13429                 cpu = opt[DTRACEOPT_CPU];
13430
13431         if (which == DTRACEOPT_SPECSIZE)
13432                 flags |= DTRACEBUF_NOSWITCH;
13433
13434         if (which == DTRACEOPT_BUFSIZE) {
13435                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13436                         flags |= DTRACEBUF_RING;
13437
13438                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13439                         flags |= DTRACEBUF_FILL;
13440
13441                 if (state != dtrace_anon.dta_state ||
13442                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13443                         flags |= DTRACEBUF_INACTIVE;
13444         }
13445
13446         for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13447                 /*
13448                  * The size must be 8-byte aligned.  If the size is not 8-byte
13449                  * aligned, drop it down by the difference.
13450                  */
13451                 if (size & (sizeof (uint64_t) - 1))
13452                         size -= size & (sizeof (uint64_t) - 1);
13453
13454                 if (size < state->dts_reserve) {
13455                         /*
13456                          * Buffers always must be large enough to accommodate
13457                          * their prereserved space.  We return E2BIG instead
13458                          * of ENOMEM in this case to allow for user-level
13459                          * software to differentiate the cases.
13460                          */
13461                         return (E2BIG);
13462                 }
13463
13464                 rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13465
13466                 if (rval != ENOMEM) {
13467                         opt[which] = size;
13468                         return (rval);
13469                 }
13470
13471                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13472                         return (rval);
13473         }
13474
13475         return (ENOMEM);
13476 }
13477
13478 static int
13479 dtrace_state_buffers(dtrace_state_t *state)
13480 {
13481         dtrace_speculation_t *spec = state->dts_speculations;
13482         int rval, i;
13483
13484         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13485             DTRACEOPT_BUFSIZE)) != 0)
13486                 return (rval);
13487
13488         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13489             DTRACEOPT_AGGSIZE)) != 0)
13490                 return (rval);
13491
13492         for (i = 0; i < state->dts_nspeculations; i++) {
13493                 if ((rval = dtrace_state_buffer(state,
13494                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13495                         return (rval);
13496         }
13497
13498         return (0);
13499 }
13500
13501 static void
13502 dtrace_state_prereserve(dtrace_state_t *state)
13503 {
13504         dtrace_ecb_t *ecb;
13505         dtrace_probe_t *probe;
13506
13507         state->dts_reserve = 0;
13508
13509         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13510                 return;
13511
13512         /*
13513          * If our buffer policy is a "fill" buffer policy, we need to set the
13514          * prereserved space to be the space required by the END probes.
13515          */
13516         probe = dtrace_probes[dtrace_probeid_end - 1];
13517         ASSERT(probe != NULL);
13518
13519         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13520                 if (ecb->dte_state != state)
13521                         continue;
13522
13523                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13524         }
13525 }
13526
13527 static int
13528 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13529 {
13530         dtrace_optval_t *opt = state->dts_options, sz, nspec;
13531         dtrace_speculation_t *spec;
13532         dtrace_buffer_t *buf;
13533 #if defined(sun)
13534         cyc_handler_t hdlr;
13535         cyc_time_t when;
13536 #endif
13537         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13538         dtrace_icookie_t cookie;
13539
13540         mutex_enter(&cpu_lock);
13541         mutex_enter(&dtrace_lock);
13542
13543         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13544                 rval = EBUSY;
13545                 goto out;
13546         }
13547
13548         /*
13549          * Before we can perform any checks, we must prime all of the
13550          * retained enablings that correspond to this state.
13551          */
13552         dtrace_enabling_prime(state);
13553
13554         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13555                 rval = EACCES;
13556                 goto out;
13557         }
13558
13559         dtrace_state_prereserve(state);
13560
13561         /*
13562          * Now we want to do is try to allocate our speculations.
13563          * We do not automatically resize the number of speculations; if
13564          * this fails, we will fail the operation.
13565          */
13566         nspec = opt[DTRACEOPT_NSPEC];
13567         ASSERT(nspec != DTRACEOPT_UNSET);
13568
13569         if (nspec > INT_MAX) {
13570                 rval = ENOMEM;
13571                 goto out;
13572         }
13573
13574         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13575
13576         if (spec == NULL) {
13577                 rval = ENOMEM;
13578                 goto out;
13579         }
13580
13581         state->dts_speculations = spec;
13582         state->dts_nspeculations = (int)nspec;
13583
13584         for (i = 0; i < nspec; i++) {
13585                 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13586                         rval = ENOMEM;
13587                         goto err;
13588                 }
13589
13590                 spec[i].dtsp_buffer = buf;
13591         }
13592
13593         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13594                 if (dtrace_anon.dta_state == NULL) {
13595                         rval = ENOENT;
13596                         goto out;
13597                 }
13598
13599                 if (state->dts_necbs != 0) {
13600                         rval = EALREADY;
13601                         goto out;
13602                 }
13603
13604                 state->dts_anon = dtrace_anon_grab();
13605                 ASSERT(state->dts_anon != NULL);
13606                 state = state->dts_anon;
13607
13608                 /*
13609                  * We want "grabanon" to be set in the grabbed state, so we'll
13610                  * copy that option value from the grabbing state into the
13611                  * grabbed state.
13612                  */
13613                 state->dts_options[DTRACEOPT_GRABANON] =
13614                     opt[DTRACEOPT_GRABANON];
13615
13616                 *cpu = dtrace_anon.dta_beganon;
13617
13618                 /*
13619                  * If the anonymous state is active (as it almost certainly
13620                  * is if the anonymous enabling ultimately matched anything),
13621                  * we don't allow any further option processing -- but we
13622                  * don't return failure.
13623                  */
13624                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13625                         goto out;
13626         }
13627
13628         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13629             opt[DTRACEOPT_AGGSIZE] != 0) {
13630                 if (state->dts_aggregations == NULL) {
13631                         /*
13632                          * We're not going to create an aggregation buffer
13633                          * because we don't have any ECBs that contain
13634                          * aggregations -- set this option to 0.
13635                          */
13636                         opt[DTRACEOPT_AGGSIZE] = 0;
13637                 } else {
13638                         /*
13639                          * If we have an aggregation buffer, we must also have
13640                          * a buffer to use as scratch.
13641                          */
13642                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13643                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13644                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13645                         }
13646                 }
13647         }
13648
13649         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13650             opt[DTRACEOPT_SPECSIZE] != 0) {
13651                 if (!state->dts_speculates) {
13652                         /*
13653                          * We're not going to create speculation buffers
13654                          * because we don't have any ECBs that actually
13655                          * speculate -- set the speculation size to 0.
13656                          */
13657                         opt[DTRACEOPT_SPECSIZE] = 0;
13658                 }
13659         }
13660
13661         /*
13662          * The bare minimum size for any buffer that we're actually going to
13663          * do anything to is sizeof (uint64_t).
13664          */
13665         sz = sizeof (uint64_t);
13666
13667         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13668             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13669             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13670                 /*
13671                  * A buffer size has been explicitly set to 0 (or to a size
13672                  * that will be adjusted to 0) and we need the space -- we
13673                  * need to return failure.  We return ENOSPC to differentiate
13674                  * it from failing to allocate a buffer due to failure to meet
13675                  * the reserve (for which we return E2BIG).
13676                  */
13677                 rval = ENOSPC;
13678                 goto out;
13679         }
13680
13681         if ((rval = dtrace_state_buffers(state)) != 0)
13682                 goto err;
13683
13684         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13685                 sz = dtrace_dstate_defsize;
13686
13687         do {
13688                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13689
13690                 if (rval == 0)
13691                         break;
13692
13693                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13694                         goto err;
13695         } while (sz >>= 1);
13696
13697         opt[DTRACEOPT_DYNVARSIZE] = sz;
13698
13699         if (rval != 0)
13700                 goto err;
13701
13702         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13703                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13704
13705         if (opt[DTRACEOPT_CLEANRATE] == 0)
13706                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13707
13708         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13709                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13710
13711         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13712                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13713
13714         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13715 #if defined(sun)
13716         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13717         hdlr.cyh_arg = state;
13718         hdlr.cyh_level = CY_LOW_LEVEL;
13719
13720         when.cyt_when = 0;
13721         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13722
13723         state->dts_cleaner = cyclic_add(&hdlr, &when);
13724
13725         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13726         hdlr.cyh_arg = state;
13727         hdlr.cyh_level = CY_LOW_LEVEL;
13728
13729         when.cyt_when = 0;
13730         when.cyt_interval = dtrace_deadman_interval;
13731
13732         state->dts_deadman = cyclic_add(&hdlr, &when);
13733 #else
13734         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13735             dtrace_state_clean, state);
13736         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13737             dtrace_state_deadman, state);
13738 #endif
13739
13740         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13741
13742         /*
13743          * Now it's time to actually fire the BEGIN probe.  We need to disable
13744          * interrupts here both to record the CPU on which we fired the BEGIN
13745          * probe (the data from this CPU will be processed first at user
13746          * level) and to manually activate the buffer for this CPU.
13747          */
13748         cookie = dtrace_interrupt_disable();
13749         *cpu = curcpu;
13750         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13751         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13752
13753         dtrace_probe(dtrace_probeid_begin,
13754             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13755         dtrace_interrupt_enable(cookie);
13756         /*
13757          * We may have had an exit action from a BEGIN probe; only change our
13758          * state to ACTIVE if we're still in WARMUP.
13759          */
13760         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13761             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13762
13763         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13764                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13765
13766         /*
13767          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13768          * want each CPU to transition its principal buffer out of the
13769          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13770          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13771          * atomically transition from processing none of a state's ECBs to
13772          * processing all of them.
13773          */
13774         dtrace_xcall(DTRACE_CPUALL,
13775             (dtrace_xcall_t)dtrace_buffer_activate, state);
13776         goto out;
13777
13778 err:
13779         dtrace_buffer_free(state->dts_buffer);
13780         dtrace_buffer_free(state->dts_aggbuffer);
13781
13782         if ((nspec = state->dts_nspeculations) == 0) {
13783                 ASSERT(state->dts_speculations == NULL);
13784                 goto out;
13785         }
13786
13787         spec = state->dts_speculations;
13788         ASSERT(spec != NULL);
13789
13790         for (i = 0; i < state->dts_nspeculations; i++) {
13791                 if ((buf = spec[i].dtsp_buffer) == NULL)
13792                         break;
13793
13794                 dtrace_buffer_free(buf);
13795                 kmem_free(buf, bufsize);
13796         }
13797
13798         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13799         state->dts_nspeculations = 0;
13800         state->dts_speculations = NULL;
13801
13802 out:
13803         mutex_exit(&dtrace_lock);
13804         mutex_exit(&cpu_lock);
13805
13806         return (rval);
13807 }
13808
13809 static int
13810 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13811 {
13812         dtrace_icookie_t cookie;
13813
13814         ASSERT(MUTEX_HELD(&dtrace_lock));
13815
13816         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13817             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13818                 return (EINVAL);
13819
13820         /*
13821          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13822          * to be sure that every CPU has seen it.  See below for the details
13823          * on why this is done.
13824          */
13825         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13826         dtrace_sync();
13827
13828         /*
13829          * By this point, it is impossible for any CPU to be still processing
13830          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13831          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13832          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13833          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13834          * iff we're in the END probe.
13835          */
13836         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13837         dtrace_sync();
13838         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13839
13840         /*
13841          * Finally, we can release the reserve and call the END probe.  We
13842          * disable interrupts across calling the END probe to allow us to
13843          * return the CPU on which we actually called the END probe.  This
13844          * allows user-land to be sure that this CPU's principal buffer is
13845          * processed last.
13846          */
13847         state->dts_reserve = 0;
13848
13849         cookie = dtrace_interrupt_disable();
13850         *cpu = curcpu;
13851         dtrace_probe(dtrace_probeid_end,
13852             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13853         dtrace_interrupt_enable(cookie);
13854
13855         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13856         dtrace_sync();
13857
13858         return (0);
13859 }
13860
13861 static int
13862 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13863     dtrace_optval_t val)
13864 {
13865         ASSERT(MUTEX_HELD(&dtrace_lock));
13866
13867         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13868                 return (EBUSY);
13869
13870         if (option >= DTRACEOPT_MAX)
13871                 return (EINVAL);
13872
13873         if (option != DTRACEOPT_CPU && val < 0)
13874                 return (EINVAL);
13875
13876         switch (option) {
13877         case DTRACEOPT_DESTRUCTIVE:
13878                 if (dtrace_destructive_disallow)
13879                         return (EACCES);
13880
13881                 state->dts_cred.dcr_destructive = 1;
13882                 break;
13883
13884         case DTRACEOPT_BUFSIZE:
13885         case DTRACEOPT_DYNVARSIZE:
13886         case DTRACEOPT_AGGSIZE:
13887         case DTRACEOPT_SPECSIZE:
13888         case DTRACEOPT_STRSIZE:
13889                 if (val < 0)
13890                         return (EINVAL);
13891
13892                 if (val >= LONG_MAX) {
13893                         /*
13894                          * If this is an otherwise negative value, set it to
13895                          * the highest multiple of 128m less than LONG_MAX.
13896                          * Technically, we're adjusting the size without
13897                          * regard to the buffer resizing policy, but in fact,
13898                          * this has no effect -- if we set the buffer size to
13899                          * ~LONG_MAX and the buffer policy is ultimately set to
13900                          * be "manual", the buffer allocation is guaranteed to
13901                          * fail, if only because the allocation requires two
13902                          * buffers.  (We set the the size to the highest
13903                          * multiple of 128m because it ensures that the size
13904                          * will remain a multiple of a megabyte when
13905                          * repeatedly halved -- all the way down to 15m.)
13906                          */
13907                         val = LONG_MAX - (1 << 27) + 1;
13908                 }
13909         }
13910
13911         state->dts_options[option] = val;
13912
13913         return (0);
13914 }
13915
13916 static void
13917 dtrace_state_destroy(dtrace_state_t *state)
13918 {
13919         dtrace_ecb_t *ecb;
13920         dtrace_vstate_t *vstate = &state->dts_vstate;
13921 #if defined(sun)
13922         minor_t minor = getminor(state->dts_dev);
13923 #endif
13924         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13925         dtrace_speculation_t *spec = state->dts_speculations;
13926         int nspec = state->dts_nspeculations;
13927         uint32_t match;
13928
13929         ASSERT(MUTEX_HELD(&dtrace_lock));
13930         ASSERT(MUTEX_HELD(&cpu_lock));
13931
13932         /*
13933          * First, retract any retained enablings for this state.
13934          */
13935         dtrace_enabling_retract(state);
13936         ASSERT(state->dts_nretained == 0);
13937
13938         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13939             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13940                 /*
13941                  * We have managed to come into dtrace_state_destroy() on a
13942                  * hot enabling -- almost certainly because of a disorderly
13943                  * shutdown of a consumer.  (That is, a consumer that is
13944                  * exiting without having called dtrace_stop().) In this case,
13945                  * we're going to set our activity to be KILLED, and then
13946                  * issue a sync to be sure that everyone is out of probe
13947                  * context before we start blowing away ECBs.
13948                  */
13949                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13950                 dtrace_sync();
13951         }
13952
13953         /*
13954          * Release the credential hold we took in dtrace_state_create().
13955          */
13956         if (state->dts_cred.dcr_cred != NULL)
13957                 crfree(state->dts_cred.dcr_cred);
13958
13959         /*
13960          * Now we can safely disable and destroy any enabled probes.  Because
13961          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13962          * (especially if they're all enabled), we take two passes through the
13963          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13964          * in the second we disable whatever is left over.
13965          */
13966         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13967                 for (i = 0; i < state->dts_necbs; i++) {
13968                         if ((ecb = state->dts_ecbs[i]) == NULL)
13969                                 continue;
13970
13971                         if (match && ecb->dte_probe != NULL) {
13972                                 dtrace_probe_t *probe = ecb->dte_probe;
13973                                 dtrace_provider_t *prov = probe->dtpr_provider;
13974
13975                                 if (!(prov->dtpv_priv.dtpp_flags & match))
13976                                         continue;
13977                         }
13978
13979                         dtrace_ecb_disable(ecb);
13980                         dtrace_ecb_destroy(ecb);
13981                 }
13982
13983                 if (!match)
13984                         break;
13985         }
13986
13987         /*
13988          * Before we free the buffers, perform one more sync to assure that
13989          * every CPU is out of probe context.
13990          */
13991         dtrace_sync();
13992
13993         dtrace_buffer_free(state->dts_buffer);
13994         dtrace_buffer_free(state->dts_aggbuffer);
13995
13996         for (i = 0; i < nspec; i++)
13997                 dtrace_buffer_free(spec[i].dtsp_buffer);
13998
13999 #if defined(sun)
14000         if (state->dts_cleaner != CYCLIC_NONE)
14001                 cyclic_remove(state->dts_cleaner);
14002
14003         if (state->dts_deadman != CYCLIC_NONE)
14004                 cyclic_remove(state->dts_deadman);
14005 #else
14006         callout_stop(&state->dts_cleaner);
14007         callout_drain(&state->dts_cleaner);
14008         callout_stop(&state->dts_deadman);
14009         callout_drain(&state->dts_deadman);
14010 #endif
14011
14012         dtrace_dstate_fini(&vstate->dtvs_dynvars);
14013         dtrace_vstate_fini(vstate);
14014         if (state->dts_ecbs != NULL)
14015                 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14016
14017         if (state->dts_aggregations != NULL) {
14018 #ifdef DEBUG
14019                 for (i = 0; i < state->dts_naggregations; i++)
14020                         ASSERT(state->dts_aggregations[i] == NULL);
14021 #endif
14022                 ASSERT(state->dts_naggregations > 0);
14023                 kmem_free(state->dts_aggregations,
14024                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14025         }
14026
14027         kmem_free(state->dts_buffer, bufsize);
14028         kmem_free(state->dts_aggbuffer, bufsize);
14029
14030         for (i = 0; i < nspec; i++)
14031                 kmem_free(spec[i].dtsp_buffer, bufsize);
14032
14033         if (spec != NULL)
14034                 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14035
14036         dtrace_format_destroy(state);
14037
14038         if (state->dts_aggid_arena != NULL) {
14039 #if defined(sun)
14040                 vmem_destroy(state->dts_aggid_arena);
14041 #else
14042                 delete_unrhdr(state->dts_aggid_arena);
14043 #endif
14044                 state->dts_aggid_arena = NULL;
14045         }
14046 #if defined(sun)
14047         ddi_soft_state_free(dtrace_softstate, minor);
14048         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14049 #endif
14050 }
14051
14052 /*
14053  * DTrace Anonymous Enabling Functions
14054  */
14055 static dtrace_state_t *
14056 dtrace_anon_grab(void)
14057 {
14058         dtrace_state_t *state;
14059
14060         ASSERT(MUTEX_HELD(&dtrace_lock));
14061
14062         if ((state = dtrace_anon.dta_state) == NULL) {
14063                 ASSERT(dtrace_anon.dta_enabling == NULL);
14064                 return (NULL);
14065         }
14066
14067         ASSERT(dtrace_anon.dta_enabling != NULL);
14068         ASSERT(dtrace_retained != NULL);
14069
14070         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14071         dtrace_anon.dta_enabling = NULL;
14072         dtrace_anon.dta_state = NULL;
14073
14074         return (state);
14075 }
14076
14077 static void
14078 dtrace_anon_property(void)
14079 {
14080         int i, rv;
14081         dtrace_state_t *state;
14082         dof_hdr_t *dof;
14083         char c[32];             /* enough for "dof-data-" + digits */
14084
14085         ASSERT(MUTEX_HELD(&dtrace_lock));
14086         ASSERT(MUTEX_HELD(&cpu_lock));
14087
14088         for (i = 0; ; i++) {
14089                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14090
14091                 dtrace_err_verbose = 1;
14092
14093                 if ((dof = dtrace_dof_property(c)) == NULL) {
14094                         dtrace_err_verbose = 0;
14095                         break;
14096                 }
14097
14098 #if defined(sun)
14099                 /*
14100                  * We want to create anonymous state, so we need to transition
14101                  * the kernel debugger to indicate that DTrace is active.  If
14102                  * this fails (e.g. because the debugger has modified text in
14103                  * some way), we won't continue with the processing.
14104                  */
14105                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14106                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14107                             "enabling ignored.");
14108                         dtrace_dof_destroy(dof);
14109                         break;
14110                 }
14111 #endif
14112
14113                 /*
14114                  * If we haven't allocated an anonymous state, we'll do so now.
14115                  */
14116                 if ((state = dtrace_anon.dta_state) == NULL) {
14117 #if defined(sun)
14118                         state = dtrace_state_create(NULL, NULL);
14119 #else
14120                         state = dtrace_state_create(NULL);
14121 #endif
14122                         dtrace_anon.dta_state = state;
14123
14124                         if (state == NULL) {
14125                                 /*
14126                                  * This basically shouldn't happen:  the only
14127                                  * failure mode from dtrace_state_create() is a
14128                                  * failure of ddi_soft_state_zalloc() that
14129                                  * itself should never happen.  Still, the
14130                                  * interface allows for a failure mode, and
14131                                  * we want to fail as gracefully as possible:
14132                                  * we'll emit an error message and cease
14133                                  * processing anonymous state in this case.
14134                                  */
14135                                 cmn_err(CE_WARN, "failed to create "
14136                                     "anonymous state");
14137                                 dtrace_dof_destroy(dof);
14138                                 break;
14139                         }
14140                 }
14141
14142                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14143                     &dtrace_anon.dta_enabling, 0, B_TRUE);
14144
14145                 if (rv == 0)
14146                         rv = dtrace_dof_options(dof, state);
14147
14148                 dtrace_err_verbose = 0;
14149                 dtrace_dof_destroy(dof);
14150
14151                 if (rv != 0) {
14152                         /*
14153                          * This is malformed DOF; chuck any anonymous state
14154                          * that we created.
14155                          */
14156                         ASSERT(dtrace_anon.dta_enabling == NULL);
14157                         dtrace_state_destroy(state);
14158                         dtrace_anon.dta_state = NULL;
14159                         break;
14160                 }
14161
14162                 ASSERT(dtrace_anon.dta_enabling != NULL);
14163         }
14164
14165         if (dtrace_anon.dta_enabling != NULL) {
14166                 int rval;
14167
14168                 /*
14169                  * dtrace_enabling_retain() can only fail because we are
14170                  * trying to retain more enablings than are allowed -- but
14171                  * we only have one anonymous enabling, and we are guaranteed
14172                  * to be allowed at least one retained enabling; we assert
14173                  * that dtrace_enabling_retain() returns success.
14174                  */
14175                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14176                 ASSERT(rval == 0);
14177
14178                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14179         }
14180 }
14181
14182 /*
14183  * DTrace Helper Functions
14184  */
14185 static void
14186 dtrace_helper_trace(dtrace_helper_action_t *helper,
14187     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14188 {
14189         uint32_t size, next, nnext, i;
14190         dtrace_helptrace_t *ent;
14191         uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14192
14193         if (!dtrace_helptrace_enabled)
14194                 return;
14195
14196         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14197
14198         /*
14199          * What would a tracing framework be without its own tracing
14200          * framework?  (Well, a hell of a lot simpler, for starters...)
14201          */
14202         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14203             sizeof (uint64_t) - sizeof (uint64_t);
14204
14205         /*
14206          * Iterate until we can allocate a slot in the trace buffer.
14207          */
14208         do {
14209                 next = dtrace_helptrace_next;
14210
14211                 if (next + size < dtrace_helptrace_bufsize) {
14212                         nnext = next + size;
14213                 } else {
14214                         nnext = size;
14215                 }
14216         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14217
14218         /*
14219          * We have our slot; fill it in.
14220          */
14221         if (nnext == size)
14222                 next = 0;
14223
14224         ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14225         ent->dtht_helper = helper;
14226         ent->dtht_where = where;
14227         ent->dtht_nlocals = vstate->dtvs_nlocals;
14228
14229         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14230             mstate->dtms_fltoffs : -1;
14231         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14232         ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14233
14234         for (i = 0; i < vstate->dtvs_nlocals; i++) {
14235                 dtrace_statvar_t *svar;
14236
14237                 if ((svar = vstate->dtvs_locals[i]) == NULL)
14238                         continue;
14239
14240                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14241                 ent->dtht_locals[i] =
14242                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14243         }
14244 }
14245
14246 static uint64_t
14247 dtrace_helper(int which, dtrace_mstate_t *mstate,
14248     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14249 {
14250         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14251         uint64_t sarg0 = mstate->dtms_arg[0];
14252         uint64_t sarg1 = mstate->dtms_arg[1];
14253         uint64_t rval = 0;
14254         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14255         dtrace_helper_action_t *helper;
14256         dtrace_vstate_t *vstate;
14257         dtrace_difo_t *pred;
14258         int i, trace = dtrace_helptrace_enabled;
14259
14260         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14261
14262         if (helpers == NULL)
14263                 return (0);
14264
14265         if ((helper = helpers->dthps_actions[which]) == NULL)
14266                 return (0);
14267
14268         vstate = &helpers->dthps_vstate;
14269         mstate->dtms_arg[0] = arg0;
14270         mstate->dtms_arg[1] = arg1;
14271
14272         /*
14273          * Now iterate over each helper.  If its predicate evaluates to 'true',
14274          * we'll call the corresponding actions.  Note that the below calls
14275          * to dtrace_dif_emulate() may set faults in machine state.  This is
14276          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14277          * the stored DIF offset with its own (which is the desired behavior).
14278          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14279          * from machine state; this is okay, too.
14280          */
14281         for (; helper != NULL; helper = helper->dtha_next) {
14282                 if ((pred = helper->dtha_predicate) != NULL) {
14283                         if (trace)
14284                                 dtrace_helper_trace(helper, mstate, vstate, 0);
14285
14286                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14287                                 goto next;
14288
14289                         if (*flags & CPU_DTRACE_FAULT)
14290                                 goto err;
14291                 }
14292
14293                 for (i = 0; i < helper->dtha_nactions; i++) {
14294                         if (trace)
14295                                 dtrace_helper_trace(helper,
14296                                     mstate, vstate, i + 1);
14297
14298                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
14299                             mstate, vstate, state);
14300
14301                         if (*flags & CPU_DTRACE_FAULT)
14302                                 goto err;
14303                 }
14304
14305 next:
14306                 if (trace)
14307                         dtrace_helper_trace(helper, mstate, vstate,
14308                             DTRACE_HELPTRACE_NEXT);
14309         }
14310
14311         if (trace)
14312                 dtrace_helper_trace(helper, mstate, vstate,
14313                     DTRACE_HELPTRACE_DONE);
14314
14315         /*
14316          * Restore the arg0 that we saved upon entry.
14317          */
14318         mstate->dtms_arg[0] = sarg0;
14319         mstate->dtms_arg[1] = sarg1;
14320
14321         return (rval);
14322
14323 err:
14324         if (trace)
14325                 dtrace_helper_trace(helper, mstate, vstate,
14326                     DTRACE_HELPTRACE_ERR);
14327
14328         /*
14329          * Restore the arg0 that we saved upon entry.
14330          */
14331         mstate->dtms_arg[0] = sarg0;
14332         mstate->dtms_arg[1] = sarg1;
14333
14334         return (0);
14335 }
14336
14337 static void
14338 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14339     dtrace_vstate_t *vstate)
14340 {
14341         int i;
14342
14343         if (helper->dtha_predicate != NULL)
14344                 dtrace_difo_release(helper->dtha_predicate, vstate);
14345
14346         for (i = 0; i < helper->dtha_nactions; i++) {
14347                 ASSERT(helper->dtha_actions[i] != NULL);
14348                 dtrace_difo_release(helper->dtha_actions[i], vstate);
14349         }
14350
14351         kmem_free(helper->dtha_actions,
14352             helper->dtha_nactions * sizeof (dtrace_difo_t *));
14353         kmem_free(helper, sizeof (dtrace_helper_action_t));
14354 }
14355
14356 static int
14357 dtrace_helper_destroygen(int gen)
14358 {
14359         proc_t *p = curproc;
14360         dtrace_helpers_t *help = p->p_dtrace_helpers;
14361         dtrace_vstate_t *vstate;
14362         int i;
14363
14364         ASSERT(MUTEX_HELD(&dtrace_lock));
14365
14366         if (help == NULL || gen > help->dthps_generation)
14367                 return (EINVAL);
14368
14369         vstate = &help->dthps_vstate;
14370
14371         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14372                 dtrace_helper_action_t *last = NULL, *h, *next;
14373
14374                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14375                         next = h->dtha_next;
14376
14377                         if (h->dtha_generation == gen) {
14378                                 if (last != NULL) {
14379                                         last->dtha_next = next;
14380                                 } else {
14381                                         help->dthps_actions[i] = next;
14382                                 }
14383
14384                                 dtrace_helper_action_destroy(h, vstate);
14385                         } else {
14386                                 last = h;
14387                         }
14388                 }
14389         }
14390
14391         /*
14392          * Interate until we've cleared out all helper providers with the
14393          * given generation number.
14394          */
14395         for (;;) {
14396                 dtrace_helper_provider_t *prov;
14397
14398                 /*
14399                  * Look for a helper provider with the right generation. We
14400                  * have to start back at the beginning of the list each time
14401                  * because we drop dtrace_lock. It's unlikely that we'll make
14402                  * more than two passes.
14403                  */
14404                 for (i = 0; i < help->dthps_nprovs; i++) {
14405                         prov = help->dthps_provs[i];
14406
14407                         if (prov->dthp_generation == gen)
14408                                 break;
14409                 }
14410
14411                 /*
14412                  * If there were no matches, we're done.
14413                  */
14414                 if (i == help->dthps_nprovs)
14415                         break;
14416
14417                 /*
14418                  * Move the last helper provider into this slot.
14419                  */
14420                 help->dthps_nprovs--;
14421                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14422                 help->dthps_provs[help->dthps_nprovs] = NULL;
14423
14424                 mutex_exit(&dtrace_lock);
14425
14426                 /*
14427                  * If we have a meta provider, remove this helper provider.
14428                  */
14429                 mutex_enter(&dtrace_meta_lock);
14430                 if (dtrace_meta_pid != NULL) {
14431                         ASSERT(dtrace_deferred_pid == NULL);
14432                         dtrace_helper_provider_remove(&prov->dthp_prov,
14433                             p->p_pid);
14434                 }
14435                 mutex_exit(&dtrace_meta_lock);
14436
14437                 dtrace_helper_provider_destroy(prov);
14438
14439                 mutex_enter(&dtrace_lock);
14440         }
14441
14442         return (0);
14443 }
14444
14445 static int
14446 dtrace_helper_validate(dtrace_helper_action_t *helper)
14447 {
14448         int err = 0, i;
14449         dtrace_difo_t *dp;
14450
14451         if ((dp = helper->dtha_predicate) != NULL)
14452                 err += dtrace_difo_validate_helper(dp);
14453
14454         for (i = 0; i < helper->dtha_nactions; i++)
14455                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14456
14457         return (err == 0);
14458 }
14459
14460 static int
14461 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14462 {
14463         dtrace_helpers_t *help;
14464         dtrace_helper_action_t *helper, *last;
14465         dtrace_actdesc_t *act;
14466         dtrace_vstate_t *vstate;
14467         dtrace_predicate_t *pred;
14468         int count = 0, nactions = 0, i;
14469
14470         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14471                 return (EINVAL);
14472
14473         help = curproc->p_dtrace_helpers;
14474         last = help->dthps_actions[which];
14475         vstate = &help->dthps_vstate;
14476
14477         for (count = 0; last != NULL; last = last->dtha_next) {
14478                 count++;
14479                 if (last->dtha_next == NULL)
14480                         break;
14481         }
14482
14483         /*
14484          * If we already have dtrace_helper_actions_max helper actions for this
14485          * helper action type, we'll refuse to add a new one.
14486          */
14487         if (count >= dtrace_helper_actions_max)
14488                 return (ENOSPC);
14489
14490         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14491         helper->dtha_generation = help->dthps_generation;
14492
14493         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14494                 ASSERT(pred->dtp_difo != NULL);
14495                 dtrace_difo_hold(pred->dtp_difo);
14496                 helper->dtha_predicate = pred->dtp_difo;
14497         }
14498
14499         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14500                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14501                         goto err;
14502
14503                 if (act->dtad_difo == NULL)
14504                         goto err;
14505
14506                 nactions++;
14507         }
14508
14509         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14510             (helper->dtha_nactions = nactions), KM_SLEEP);
14511
14512         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14513                 dtrace_difo_hold(act->dtad_difo);
14514                 helper->dtha_actions[i++] = act->dtad_difo;
14515         }
14516
14517         if (!dtrace_helper_validate(helper))
14518                 goto err;
14519
14520         if (last == NULL) {
14521                 help->dthps_actions[which] = helper;
14522         } else {
14523                 last->dtha_next = helper;
14524         }
14525
14526         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14527                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14528                 dtrace_helptrace_next = 0;
14529         }
14530
14531         return (0);
14532 err:
14533         dtrace_helper_action_destroy(helper, vstate);
14534         return (EINVAL);
14535 }
14536
14537 static void
14538 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14539     dof_helper_t *dofhp)
14540 {
14541         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14542
14543         mutex_enter(&dtrace_meta_lock);
14544         mutex_enter(&dtrace_lock);
14545
14546         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14547                 /*
14548                  * If the dtrace module is loaded but not attached, or if
14549                  * there aren't isn't a meta provider registered to deal with
14550                  * these provider descriptions, we need to postpone creating
14551                  * the actual providers until later.
14552                  */
14553
14554                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14555                     dtrace_deferred_pid != help) {
14556                         help->dthps_deferred = 1;
14557                         help->dthps_pid = p->p_pid;
14558                         help->dthps_next = dtrace_deferred_pid;
14559                         help->dthps_prev = NULL;
14560                         if (dtrace_deferred_pid != NULL)
14561                                 dtrace_deferred_pid->dthps_prev = help;
14562                         dtrace_deferred_pid = help;
14563                 }
14564
14565                 mutex_exit(&dtrace_lock);
14566
14567         } else if (dofhp != NULL) {
14568                 /*
14569                  * If the dtrace module is loaded and we have a particular
14570                  * helper provider description, pass that off to the
14571                  * meta provider.
14572                  */
14573
14574                 mutex_exit(&dtrace_lock);
14575
14576                 dtrace_helper_provide(dofhp, p->p_pid);
14577
14578         } else {
14579                 /*
14580                  * Otherwise, just pass all the helper provider descriptions
14581                  * off to the meta provider.
14582                  */
14583
14584                 int i;
14585                 mutex_exit(&dtrace_lock);
14586
14587                 for (i = 0; i < help->dthps_nprovs; i++) {
14588                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14589                             p->p_pid);
14590                 }
14591         }
14592
14593         mutex_exit(&dtrace_meta_lock);
14594 }
14595
14596 static int
14597 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14598 {
14599         dtrace_helpers_t *help;
14600         dtrace_helper_provider_t *hprov, **tmp_provs;
14601         uint_t tmp_maxprovs, i;
14602
14603         ASSERT(MUTEX_HELD(&dtrace_lock));
14604
14605         help = curproc->p_dtrace_helpers;
14606         ASSERT(help != NULL);
14607
14608         /*
14609          * If we already have dtrace_helper_providers_max helper providers,
14610          * we're refuse to add a new one.
14611          */
14612         if (help->dthps_nprovs >= dtrace_helper_providers_max)
14613                 return (ENOSPC);
14614
14615         /*
14616          * Check to make sure this isn't a duplicate.
14617          */
14618         for (i = 0; i < help->dthps_nprovs; i++) {
14619                 if (dofhp->dofhp_addr ==
14620                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
14621                         return (EALREADY);
14622         }
14623
14624         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14625         hprov->dthp_prov = *dofhp;
14626         hprov->dthp_ref = 1;
14627         hprov->dthp_generation = gen;
14628
14629         /*
14630          * Allocate a bigger table for helper providers if it's already full.
14631          */
14632         if (help->dthps_maxprovs == help->dthps_nprovs) {
14633                 tmp_maxprovs = help->dthps_maxprovs;
14634                 tmp_provs = help->dthps_provs;
14635
14636                 if (help->dthps_maxprovs == 0)
14637                         help->dthps_maxprovs = 2;
14638                 else
14639                         help->dthps_maxprovs *= 2;
14640                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14641                         help->dthps_maxprovs = dtrace_helper_providers_max;
14642
14643                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14644
14645                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14646                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14647
14648                 if (tmp_provs != NULL) {
14649                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14650                             sizeof (dtrace_helper_provider_t *));
14651                         kmem_free(tmp_provs, tmp_maxprovs *
14652                             sizeof (dtrace_helper_provider_t *));
14653                 }
14654         }
14655
14656         help->dthps_provs[help->dthps_nprovs] = hprov;
14657         help->dthps_nprovs++;
14658
14659         return (0);
14660 }
14661
14662 static void
14663 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14664 {
14665         mutex_enter(&dtrace_lock);
14666
14667         if (--hprov->dthp_ref == 0) {
14668                 dof_hdr_t *dof;
14669                 mutex_exit(&dtrace_lock);
14670                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14671                 dtrace_dof_destroy(dof);
14672                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14673         } else {
14674                 mutex_exit(&dtrace_lock);
14675         }
14676 }
14677
14678 static int
14679 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14680 {
14681         uintptr_t daddr = (uintptr_t)dof;
14682         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14683         dof_provider_t *provider;
14684         dof_probe_t *probe;
14685         uint8_t *arg;
14686         char *strtab, *typestr;
14687         dof_stridx_t typeidx;
14688         size_t typesz;
14689         uint_t nprobes, j, k;
14690
14691         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14692
14693         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14694                 dtrace_dof_error(dof, "misaligned section offset");
14695                 return (-1);
14696         }
14697
14698         /*
14699          * The section needs to be large enough to contain the DOF provider
14700          * structure appropriate for the given version.
14701          */
14702         if (sec->dofs_size <
14703             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14704             offsetof(dof_provider_t, dofpv_prenoffs) :
14705             sizeof (dof_provider_t))) {
14706                 dtrace_dof_error(dof, "provider section too small");
14707                 return (-1);
14708         }
14709
14710         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14711         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14712         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14713         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14714         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14715
14716         if (str_sec == NULL || prb_sec == NULL ||
14717             arg_sec == NULL || off_sec == NULL)
14718                 return (-1);
14719
14720         enoff_sec = NULL;
14721
14722         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14723             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14724             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14725             provider->dofpv_prenoffs)) == NULL)
14726                 return (-1);
14727
14728         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14729
14730         if (provider->dofpv_name >= str_sec->dofs_size ||
14731             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14732                 dtrace_dof_error(dof, "invalid provider name");
14733                 return (-1);
14734         }
14735
14736         if (prb_sec->dofs_entsize == 0 ||
14737             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14738                 dtrace_dof_error(dof, "invalid entry size");
14739                 return (-1);
14740         }
14741
14742         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14743                 dtrace_dof_error(dof, "misaligned entry size");
14744                 return (-1);
14745         }
14746
14747         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14748                 dtrace_dof_error(dof, "invalid entry size");
14749                 return (-1);
14750         }
14751
14752         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14753                 dtrace_dof_error(dof, "misaligned section offset");
14754                 return (-1);
14755         }
14756
14757         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14758                 dtrace_dof_error(dof, "invalid entry size");
14759                 return (-1);
14760         }
14761
14762         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14763
14764         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14765
14766         /*
14767          * Take a pass through the probes to check for errors.
14768          */
14769         for (j = 0; j < nprobes; j++) {
14770                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14771                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14772
14773                 if (probe->dofpr_func >= str_sec->dofs_size) {
14774                         dtrace_dof_error(dof, "invalid function name");
14775                         return (-1);
14776                 }
14777
14778                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14779                         dtrace_dof_error(dof, "function name too long");
14780                         return (-1);
14781                 }
14782
14783                 if (probe->dofpr_name >= str_sec->dofs_size ||
14784                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14785                         dtrace_dof_error(dof, "invalid probe name");
14786                         return (-1);
14787                 }
14788
14789                 /*
14790                  * The offset count must not wrap the index, and the offsets
14791                  * must also not overflow the section's data.
14792                  */
14793                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14794                     probe->dofpr_offidx ||
14795                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14796                     off_sec->dofs_entsize > off_sec->dofs_size) {
14797                         dtrace_dof_error(dof, "invalid probe offset");
14798                         return (-1);
14799                 }
14800
14801                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14802                         /*
14803                          * If there's no is-enabled offset section, make sure
14804                          * there aren't any is-enabled offsets. Otherwise
14805                          * perform the same checks as for probe offsets
14806                          * (immediately above).
14807                          */
14808                         if (enoff_sec == NULL) {
14809                                 if (probe->dofpr_enoffidx != 0 ||
14810                                     probe->dofpr_nenoffs != 0) {
14811                                         dtrace_dof_error(dof, "is-enabled "
14812                                             "offsets with null section");
14813                                         return (-1);
14814                                 }
14815                         } else if (probe->dofpr_enoffidx +
14816                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14817                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14818                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14819                                 dtrace_dof_error(dof, "invalid is-enabled "
14820                                     "offset");
14821                                 return (-1);
14822                         }
14823
14824                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14825                                 dtrace_dof_error(dof, "zero probe and "
14826                                     "is-enabled offsets");
14827                                 return (-1);
14828                         }
14829                 } else if (probe->dofpr_noffs == 0) {
14830                         dtrace_dof_error(dof, "zero probe offsets");
14831                         return (-1);
14832                 }
14833
14834                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14835                     probe->dofpr_argidx ||
14836                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14837                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14838                         dtrace_dof_error(dof, "invalid args");
14839                         return (-1);
14840                 }
14841
14842                 typeidx = probe->dofpr_nargv;
14843                 typestr = strtab + probe->dofpr_nargv;
14844                 for (k = 0; k < probe->dofpr_nargc; k++) {
14845                         if (typeidx >= str_sec->dofs_size) {
14846                                 dtrace_dof_error(dof, "bad "
14847                                     "native argument type");
14848                                 return (-1);
14849                         }
14850
14851                         typesz = strlen(typestr) + 1;
14852                         if (typesz > DTRACE_ARGTYPELEN) {
14853                                 dtrace_dof_error(dof, "native "
14854                                     "argument type too long");
14855                                 return (-1);
14856                         }
14857                         typeidx += typesz;
14858                         typestr += typesz;
14859                 }
14860
14861                 typeidx = probe->dofpr_xargv;
14862                 typestr = strtab + probe->dofpr_xargv;
14863                 for (k = 0; k < probe->dofpr_xargc; k++) {
14864                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14865                                 dtrace_dof_error(dof, "bad "
14866                                     "native argument index");
14867                                 return (-1);
14868                         }
14869
14870                         if (typeidx >= str_sec->dofs_size) {
14871                                 dtrace_dof_error(dof, "bad "
14872                                     "translated argument type");
14873                                 return (-1);
14874                         }
14875
14876                         typesz = strlen(typestr) + 1;
14877                         if (typesz > DTRACE_ARGTYPELEN) {
14878                                 dtrace_dof_error(dof, "translated argument "
14879                                     "type too long");
14880                                 return (-1);
14881                         }
14882
14883                         typeidx += typesz;
14884                         typestr += typesz;
14885                 }
14886         }
14887
14888         return (0);
14889 }
14890
14891 static int
14892 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14893 {
14894         dtrace_helpers_t *help;
14895         dtrace_vstate_t *vstate;
14896         dtrace_enabling_t *enab = NULL;
14897         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14898         uintptr_t daddr = (uintptr_t)dof;
14899
14900         ASSERT(MUTEX_HELD(&dtrace_lock));
14901
14902         if ((help = curproc->p_dtrace_helpers) == NULL)
14903                 help = dtrace_helpers_create(curproc);
14904
14905         vstate = &help->dthps_vstate;
14906
14907         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14908             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14909                 dtrace_dof_destroy(dof);
14910                 return (rv);
14911         }
14912
14913         /*
14914          * Look for helper providers and validate their descriptions.
14915          */
14916         if (dhp != NULL) {
14917                 for (i = 0; i < dof->dofh_secnum; i++) {
14918                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14919                             dof->dofh_secoff + i * dof->dofh_secsize);
14920
14921                         if (sec->dofs_type != DOF_SECT_PROVIDER)
14922                                 continue;
14923
14924                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
14925                                 dtrace_enabling_destroy(enab);
14926                                 dtrace_dof_destroy(dof);
14927                                 return (-1);
14928                         }
14929
14930                         nprovs++;
14931                 }
14932         }
14933
14934         /*
14935          * Now we need to walk through the ECB descriptions in the enabling.
14936          */
14937         for (i = 0; i < enab->dten_ndesc; i++) {
14938                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14939                 dtrace_probedesc_t *desc = &ep->dted_probe;
14940
14941                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14942                         continue;
14943
14944                 if (strcmp(desc->dtpd_mod, "helper") != 0)
14945                         continue;
14946
14947                 if (strcmp(desc->dtpd_func, "ustack") != 0)
14948                         continue;
14949
14950                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14951                     ep)) != 0) {
14952                         /*
14953                          * Adding this helper action failed -- we are now going
14954                          * to rip out the entire generation and return failure.
14955                          */
14956                         (void) dtrace_helper_destroygen(help->dthps_generation);
14957                         dtrace_enabling_destroy(enab);
14958                         dtrace_dof_destroy(dof);
14959                         return (-1);
14960                 }
14961
14962                 nhelpers++;
14963         }
14964
14965         if (nhelpers < enab->dten_ndesc)
14966                 dtrace_dof_error(dof, "unmatched helpers");
14967
14968         gen = help->dthps_generation++;
14969         dtrace_enabling_destroy(enab);
14970
14971         if (dhp != NULL && nprovs > 0) {
14972                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14973                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14974                         mutex_exit(&dtrace_lock);
14975                         dtrace_helper_provider_register(curproc, help, dhp);
14976                         mutex_enter(&dtrace_lock);
14977
14978                         destroy = 0;
14979                 }
14980         }
14981
14982         if (destroy)
14983                 dtrace_dof_destroy(dof);
14984
14985         return (gen);
14986 }
14987
14988 static dtrace_helpers_t *
14989 dtrace_helpers_create(proc_t *p)
14990 {
14991         dtrace_helpers_t *help;
14992
14993         ASSERT(MUTEX_HELD(&dtrace_lock));
14994         ASSERT(p->p_dtrace_helpers == NULL);
14995
14996         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14997         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14998             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14999
15000         p->p_dtrace_helpers = help;
15001         dtrace_helpers++;
15002
15003         return (help);
15004 }
15005
15006 #if defined(sun)
15007 static
15008 #endif
15009 void
15010 dtrace_helpers_destroy(proc_t *p)
15011 {
15012         dtrace_helpers_t *help;
15013         dtrace_vstate_t *vstate;
15014 #if defined(sun)
15015         proc_t *p = curproc;
15016 #endif
15017         int i;
15018
15019         mutex_enter(&dtrace_lock);
15020
15021         ASSERT(p->p_dtrace_helpers != NULL);
15022         ASSERT(dtrace_helpers > 0);
15023
15024         help = p->p_dtrace_helpers;
15025         vstate = &help->dthps_vstate;
15026
15027         /*
15028          * We're now going to lose the help from this process.
15029          */
15030         p->p_dtrace_helpers = NULL;
15031         dtrace_sync();
15032
15033         /*
15034          * Destory the helper actions.
15035          */
15036         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15037                 dtrace_helper_action_t *h, *next;
15038
15039                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15040                         next = h->dtha_next;
15041                         dtrace_helper_action_destroy(h, vstate);
15042                         h = next;
15043                 }
15044         }
15045
15046         mutex_exit(&dtrace_lock);
15047
15048         /*
15049          * Destroy the helper providers.
15050          */
15051         if (help->dthps_maxprovs > 0) {
15052                 mutex_enter(&dtrace_meta_lock);
15053                 if (dtrace_meta_pid != NULL) {
15054                         ASSERT(dtrace_deferred_pid == NULL);
15055
15056                         for (i = 0; i < help->dthps_nprovs; i++) {
15057                                 dtrace_helper_provider_remove(
15058                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
15059                         }
15060                 } else {
15061                         mutex_enter(&dtrace_lock);
15062                         ASSERT(help->dthps_deferred == 0 ||
15063                             help->dthps_next != NULL ||
15064                             help->dthps_prev != NULL ||
15065                             help == dtrace_deferred_pid);
15066
15067                         /*
15068                          * Remove the helper from the deferred list.
15069                          */
15070                         if (help->dthps_next != NULL)
15071                                 help->dthps_next->dthps_prev = help->dthps_prev;
15072                         if (help->dthps_prev != NULL)
15073                                 help->dthps_prev->dthps_next = help->dthps_next;
15074                         if (dtrace_deferred_pid == help) {
15075                                 dtrace_deferred_pid = help->dthps_next;
15076                                 ASSERT(help->dthps_prev == NULL);
15077                         }
15078
15079                         mutex_exit(&dtrace_lock);
15080                 }
15081
15082                 mutex_exit(&dtrace_meta_lock);
15083
15084                 for (i = 0; i < help->dthps_nprovs; i++) {
15085                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
15086                 }
15087
15088                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15089                     sizeof (dtrace_helper_provider_t *));
15090         }
15091
15092         mutex_enter(&dtrace_lock);
15093
15094         dtrace_vstate_fini(&help->dthps_vstate);
15095         kmem_free(help->dthps_actions,
15096             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15097         kmem_free(help, sizeof (dtrace_helpers_t));
15098
15099         --dtrace_helpers;
15100         mutex_exit(&dtrace_lock);
15101 }
15102
15103 #if defined(sun)
15104 static
15105 #endif
15106 void
15107 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15108 {
15109         dtrace_helpers_t *help, *newhelp;
15110         dtrace_helper_action_t *helper, *new, *last;
15111         dtrace_difo_t *dp;
15112         dtrace_vstate_t *vstate;
15113         int i, j, sz, hasprovs = 0;
15114
15115         mutex_enter(&dtrace_lock);
15116         ASSERT(from->p_dtrace_helpers != NULL);
15117         ASSERT(dtrace_helpers > 0);
15118
15119         help = from->p_dtrace_helpers;
15120         newhelp = dtrace_helpers_create(to);
15121         ASSERT(to->p_dtrace_helpers != NULL);
15122
15123         newhelp->dthps_generation = help->dthps_generation;
15124         vstate = &newhelp->dthps_vstate;
15125
15126         /*
15127          * Duplicate the helper actions.
15128          */
15129         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15130                 if ((helper = help->dthps_actions[i]) == NULL)
15131                         continue;
15132
15133                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15134                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15135                             KM_SLEEP);
15136                         new->dtha_generation = helper->dtha_generation;
15137
15138                         if ((dp = helper->dtha_predicate) != NULL) {
15139                                 dp = dtrace_difo_duplicate(dp, vstate);
15140                                 new->dtha_predicate = dp;
15141                         }
15142
15143                         new->dtha_nactions = helper->dtha_nactions;
15144                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15145                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15146
15147                         for (j = 0; j < new->dtha_nactions; j++) {
15148                                 dtrace_difo_t *dp = helper->dtha_actions[j];
15149
15150                                 ASSERT(dp != NULL);
15151                                 dp = dtrace_difo_duplicate(dp, vstate);
15152                                 new->dtha_actions[j] = dp;
15153                         }
15154
15155                         if (last != NULL) {
15156                                 last->dtha_next = new;
15157                         } else {
15158                                 newhelp->dthps_actions[i] = new;
15159                         }
15160
15161                         last = new;
15162                 }
15163         }
15164
15165         /*
15166          * Duplicate the helper providers and register them with the
15167          * DTrace framework.
15168          */
15169         if (help->dthps_nprovs > 0) {
15170                 newhelp->dthps_nprovs = help->dthps_nprovs;
15171                 newhelp->dthps_maxprovs = help->dthps_nprovs;
15172                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15173                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15174                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15175                         newhelp->dthps_provs[i] = help->dthps_provs[i];
15176                         newhelp->dthps_provs[i]->dthp_ref++;
15177                 }
15178
15179                 hasprovs = 1;
15180         }
15181
15182         mutex_exit(&dtrace_lock);
15183
15184         if (hasprovs)
15185                 dtrace_helper_provider_register(to, newhelp, NULL);
15186 }
15187
15188 /*
15189  * DTrace Hook Functions
15190  */
15191 static void
15192 dtrace_module_loaded(modctl_t *ctl)
15193 {
15194         dtrace_provider_t *prv;
15195
15196         mutex_enter(&dtrace_provider_lock);
15197 #if defined(sun)
15198         mutex_enter(&mod_lock);
15199 #endif
15200
15201 #if defined(sun)
15202         ASSERT(ctl->mod_busy);
15203 #endif
15204
15205         /*
15206          * We're going to call each providers per-module provide operation
15207          * specifying only this module.
15208          */
15209         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15210                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15211
15212 #if defined(sun)
15213         mutex_exit(&mod_lock);
15214 #endif
15215         mutex_exit(&dtrace_provider_lock);
15216
15217         /*
15218          * If we have any retained enablings, we need to match against them.
15219          * Enabling probes requires that cpu_lock be held, and we cannot hold
15220          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15221          * module.  (In particular, this happens when loading scheduling
15222          * classes.)  So if we have any retained enablings, we need to dispatch
15223          * our task queue to do the match for us.
15224          */
15225         mutex_enter(&dtrace_lock);
15226
15227         if (dtrace_retained == NULL) {
15228                 mutex_exit(&dtrace_lock);
15229                 return;
15230         }
15231
15232         (void) taskq_dispatch(dtrace_taskq,
15233             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15234
15235         mutex_exit(&dtrace_lock);
15236
15237         /*
15238          * And now, for a little heuristic sleaze:  in general, we want to
15239          * match modules as soon as they load.  However, we cannot guarantee
15240          * this, because it would lead us to the lock ordering violation
15241          * outlined above.  The common case, of course, is that cpu_lock is
15242          * _not_ held -- so we delay here for a clock tick, hoping that that's
15243          * long enough for the task queue to do its work.  If it's not, it's
15244          * not a serious problem -- it just means that the module that we
15245          * just loaded may not be immediately instrumentable.
15246          */
15247         delay(1);
15248 }
15249
15250 static void
15251 #if defined(sun)
15252 dtrace_module_unloaded(modctl_t *ctl)
15253 #else
15254 dtrace_module_unloaded(modctl_t *ctl, int *error)
15255 #endif
15256 {
15257         dtrace_probe_t template, *probe, *first, *next;
15258         dtrace_provider_t *prov;
15259 #if !defined(sun)
15260         char modname[DTRACE_MODNAMELEN];
15261         size_t len;
15262 #endif
15263
15264 #if defined(sun)
15265         template.dtpr_mod = ctl->mod_modname;
15266 #else
15267         /* Handle the fact that ctl->filename may end in ".ko". */
15268         strlcpy(modname, ctl->filename, sizeof(modname));
15269         len = strlen(ctl->filename);
15270         if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
15271                 modname[len - 3] = '\0';
15272         template.dtpr_mod = modname;
15273 #endif
15274
15275         mutex_enter(&dtrace_provider_lock);
15276 #if defined(sun)
15277         mutex_enter(&mod_lock);
15278 #endif
15279         mutex_enter(&dtrace_lock);
15280
15281 #if !defined(sun)
15282         if (ctl->nenabled > 0) {
15283                 /* Don't allow unloads if a probe is enabled. */
15284                 mutex_exit(&dtrace_provider_lock);
15285                 mutex_exit(&dtrace_lock);
15286                 *error = -1;
15287                 printf(
15288         "kldunload: attempt to unload module that has DTrace probes enabled\n");
15289                 return;
15290         }
15291 #endif
15292
15293         if (dtrace_bymod == NULL) {
15294                 /*
15295                  * The DTrace module is loaded (obviously) but not attached;
15296                  * we don't have any work to do.
15297                  */
15298                 mutex_exit(&dtrace_provider_lock);
15299 #if defined(sun)
15300                 mutex_exit(&mod_lock);
15301 #endif
15302                 mutex_exit(&dtrace_lock);
15303                 return;
15304         }
15305
15306         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15307             probe != NULL; probe = probe->dtpr_nextmod) {
15308                 if (probe->dtpr_ecb != NULL) {
15309                         mutex_exit(&dtrace_provider_lock);
15310 #if defined(sun)
15311                         mutex_exit(&mod_lock);
15312 #endif
15313                         mutex_exit(&dtrace_lock);
15314
15315                         /*
15316                          * This shouldn't _actually_ be possible -- we're
15317                          * unloading a module that has an enabled probe in it.
15318                          * (It's normally up to the provider to make sure that
15319                          * this can't happen.)  However, because dtps_enable()
15320                          * doesn't have a failure mode, there can be an
15321                          * enable/unload race.  Upshot:  we don't want to
15322                          * assert, but we're not going to disable the
15323                          * probe, either.
15324                          */
15325                         if (dtrace_err_verbose) {
15326 #if defined(sun)
15327                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15328                                     "enabled probes", ctl->mod_modname);
15329 #else
15330                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15331                                     "enabled probes", modname);
15332 #endif
15333                         }
15334
15335                         return;
15336                 }
15337         }
15338
15339         probe = first;
15340
15341         for (first = NULL; probe != NULL; probe = next) {
15342                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15343
15344                 dtrace_probes[probe->dtpr_id - 1] = NULL;
15345
15346                 next = probe->dtpr_nextmod;
15347                 dtrace_hash_remove(dtrace_bymod, probe);
15348                 dtrace_hash_remove(dtrace_byfunc, probe);
15349                 dtrace_hash_remove(dtrace_byname, probe);
15350
15351                 if (first == NULL) {
15352                         first = probe;
15353                         probe->dtpr_nextmod = NULL;
15354                 } else {
15355                         probe->dtpr_nextmod = first;
15356                         first = probe;
15357                 }
15358         }
15359
15360         /*
15361          * We've removed all of the module's probes from the hash chains and
15362          * from the probe array.  Now issue a dtrace_sync() to be sure that
15363          * everyone has cleared out from any probe array processing.
15364          */
15365         dtrace_sync();
15366
15367         for (probe = first; probe != NULL; probe = first) {
15368                 first = probe->dtpr_nextmod;
15369                 prov = probe->dtpr_provider;
15370                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15371                     probe->dtpr_arg);
15372                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15373                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15374                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15375 #if defined(sun)
15376                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15377 #else
15378                 free_unr(dtrace_arena, probe->dtpr_id);
15379 #endif
15380                 kmem_free(probe, sizeof (dtrace_probe_t));
15381         }
15382
15383         mutex_exit(&dtrace_lock);
15384 #if defined(sun)
15385         mutex_exit(&mod_lock);
15386 #endif
15387         mutex_exit(&dtrace_provider_lock);
15388 }
15389
15390 #if !defined(sun)
15391 static void
15392 dtrace_kld_load(void *arg __unused, linker_file_t lf)
15393 {
15394
15395         dtrace_module_loaded(lf);
15396 }
15397
15398 static void
15399 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
15400 {
15401
15402         if (*error != 0)
15403                 /* We already have an error, so don't do anything. */
15404                 return;
15405         dtrace_module_unloaded(lf, error);
15406 }
15407 #endif
15408
15409 #if defined(sun)
15410 static void
15411 dtrace_suspend(void)
15412 {
15413         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15414 }
15415
15416 static void
15417 dtrace_resume(void)
15418 {
15419         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15420 }
15421 #endif
15422
15423 static int
15424 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15425 {
15426         ASSERT(MUTEX_HELD(&cpu_lock));
15427         mutex_enter(&dtrace_lock);
15428
15429         switch (what) {
15430         case CPU_CONFIG: {
15431                 dtrace_state_t *state;
15432                 dtrace_optval_t *opt, rs, c;
15433
15434                 /*
15435                  * For now, we only allocate a new buffer for anonymous state.
15436                  */
15437                 if ((state = dtrace_anon.dta_state) == NULL)
15438                         break;
15439
15440                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15441                         break;
15442
15443                 opt = state->dts_options;
15444                 c = opt[DTRACEOPT_CPU];
15445
15446                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15447                         break;
15448
15449                 /*
15450                  * Regardless of what the actual policy is, we're going to
15451                  * temporarily set our resize policy to be manual.  We're
15452                  * also going to temporarily set our CPU option to denote
15453                  * the newly configured CPU.
15454                  */
15455                 rs = opt[DTRACEOPT_BUFRESIZE];
15456                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15457                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15458
15459                 (void) dtrace_state_buffers(state);
15460
15461                 opt[DTRACEOPT_BUFRESIZE] = rs;
15462                 opt[DTRACEOPT_CPU] = c;
15463
15464                 break;
15465         }
15466
15467         case CPU_UNCONFIG:
15468                 /*
15469                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
15470                  * buffer will be freed when the consumer exits.)
15471                  */
15472                 break;
15473
15474         default:
15475                 break;
15476         }
15477
15478         mutex_exit(&dtrace_lock);
15479         return (0);
15480 }
15481
15482 #if defined(sun)
15483 static void
15484 dtrace_cpu_setup_initial(processorid_t cpu)
15485 {
15486         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15487 }
15488 #endif
15489
15490 static void
15491 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15492 {
15493         if (dtrace_toxranges >= dtrace_toxranges_max) {
15494                 int osize, nsize;
15495                 dtrace_toxrange_t *range;
15496
15497                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15498
15499                 if (osize == 0) {
15500                         ASSERT(dtrace_toxrange == NULL);
15501                         ASSERT(dtrace_toxranges_max == 0);
15502                         dtrace_toxranges_max = 1;
15503                 } else {
15504                         dtrace_toxranges_max <<= 1;
15505                 }
15506
15507                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15508                 range = kmem_zalloc(nsize, KM_SLEEP);
15509
15510                 if (dtrace_toxrange != NULL) {
15511                         ASSERT(osize != 0);
15512                         bcopy(dtrace_toxrange, range, osize);
15513                         kmem_free(dtrace_toxrange, osize);
15514                 }
15515
15516                 dtrace_toxrange = range;
15517         }
15518
15519         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15520         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15521
15522         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15523         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15524         dtrace_toxranges++;
15525 }
15526
15527 /*
15528  * DTrace Driver Cookbook Functions
15529  */
15530 #if defined(sun)
15531 /*ARGSUSED*/
15532 static int
15533 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15534 {
15535         dtrace_provider_id_t id;
15536         dtrace_state_t *state = NULL;
15537         dtrace_enabling_t *enab;
15538
15539         mutex_enter(&cpu_lock);
15540         mutex_enter(&dtrace_provider_lock);
15541         mutex_enter(&dtrace_lock);
15542
15543         if (ddi_soft_state_init(&dtrace_softstate,
15544             sizeof (dtrace_state_t), 0) != 0) {
15545                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15546                 mutex_exit(&cpu_lock);
15547                 mutex_exit(&dtrace_provider_lock);
15548                 mutex_exit(&dtrace_lock);
15549                 return (DDI_FAILURE);
15550         }
15551
15552         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15553             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15554             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15555             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15556                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15557                 ddi_remove_minor_node(devi, NULL);
15558                 ddi_soft_state_fini(&dtrace_softstate);
15559                 mutex_exit(&cpu_lock);
15560                 mutex_exit(&dtrace_provider_lock);
15561                 mutex_exit(&dtrace_lock);
15562                 return (DDI_FAILURE);
15563         }
15564
15565         ddi_report_dev(devi);
15566         dtrace_devi = devi;
15567
15568         dtrace_modload = dtrace_module_loaded;
15569         dtrace_modunload = dtrace_module_unloaded;
15570         dtrace_cpu_init = dtrace_cpu_setup_initial;
15571         dtrace_helpers_cleanup = dtrace_helpers_destroy;
15572         dtrace_helpers_fork = dtrace_helpers_duplicate;
15573         dtrace_cpustart_init = dtrace_suspend;
15574         dtrace_cpustart_fini = dtrace_resume;
15575         dtrace_debugger_init = dtrace_suspend;
15576         dtrace_debugger_fini = dtrace_resume;
15577
15578         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15579
15580         ASSERT(MUTEX_HELD(&cpu_lock));
15581
15582         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15583             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15584         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15585             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15586             VM_SLEEP | VMC_IDENTIFIER);
15587         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15588             1, INT_MAX, 0);
15589
15590         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15591             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15592             NULL, NULL, NULL, NULL, NULL, 0);
15593
15594         ASSERT(MUTEX_HELD(&cpu_lock));
15595         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15596             offsetof(dtrace_probe_t, dtpr_nextmod),
15597             offsetof(dtrace_probe_t, dtpr_prevmod));
15598
15599         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15600             offsetof(dtrace_probe_t, dtpr_nextfunc),
15601             offsetof(dtrace_probe_t, dtpr_prevfunc));
15602
15603         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15604             offsetof(dtrace_probe_t, dtpr_nextname),
15605             offsetof(dtrace_probe_t, dtpr_prevname));
15606
15607         if (dtrace_retain_max < 1) {
15608                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15609                     "setting to 1", dtrace_retain_max);
15610                 dtrace_retain_max = 1;
15611         }
15612
15613         /*
15614          * Now discover our toxic ranges.
15615          */
15616         dtrace_toxic_ranges(dtrace_toxrange_add);
15617
15618         /*
15619          * Before we register ourselves as a provider to our own framework,
15620          * we would like to assert that dtrace_provider is NULL -- but that's
15621          * not true if we were loaded as a dependency of a DTrace provider.
15622          * Once we've registered, we can assert that dtrace_provider is our
15623          * pseudo provider.
15624          */
15625         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15626             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15627
15628         ASSERT(dtrace_provider != NULL);
15629         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15630
15631         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15632             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15633         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15634             dtrace_provider, NULL, NULL, "END", 0, NULL);
15635         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15636             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15637
15638         dtrace_anon_property();
15639         mutex_exit(&cpu_lock);
15640
15641         /*
15642          * If DTrace helper tracing is enabled, we need to allocate the
15643          * trace buffer and initialize the values.
15644          */
15645         if (dtrace_helptrace_enabled) {
15646                 ASSERT(dtrace_helptrace_buffer == NULL);
15647                 dtrace_helptrace_buffer =
15648                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15649                 dtrace_helptrace_next = 0;
15650         }
15651
15652         /*
15653          * If there are already providers, we must ask them to provide their
15654          * probes, and then match any anonymous enabling against them.  Note
15655          * that there should be no other retained enablings at this time:
15656          * the only retained enablings at this time should be the anonymous
15657          * enabling.
15658          */
15659         if (dtrace_anon.dta_enabling != NULL) {
15660                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15661
15662                 dtrace_enabling_provide(NULL);
15663                 state = dtrace_anon.dta_state;
15664
15665                 /*
15666                  * We couldn't hold cpu_lock across the above call to
15667                  * dtrace_enabling_provide(), but we must hold it to actually
15668                  * enable the probes.  We have to drop all of our locks, pick
15669                  * up cpu_lock, and regain our locks before matching the
15670                  * retained anonymous enabling.
15671                  */
15672                 mutex_exit(&dtrace_lock);
15673                 mutex_exit(&dtrace_provider_lock);
15674
15675                 mutex_enter(&cpu_lock);
15676                 mutex_enter(&dtrace_provider_lock);
15677                 mutex_enter(&dtrace_lock);
15678
15679                 if ((enab = dtrace_anon.dta_enabling) != NULL)
15680                         (void) dtrace_enabling_match(enab, NULL);
15681
15682                 mutex_exit(&cpu_lock);
15683         }
15684
15685         mutex_exit(&dtrace_lock);
15686         mutex_exit(&dtrace_provider_lock);
15687
15688         if (state != NULL) {
15689                 /*
15690                  * If we created any anonymous state, set it going now.
15691                  */
15692                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15693         }
15694
15695         return (DDI_SUCCESS);
15696 }
15697 #endif
15698
15699 #if !defined(sun)
15700 #if __FreeBSD_version >= 800039
15701 static void dtrace_dtr(void *);
15702 #endif
15703 #endif
15704
15705 /*ARGSUSED*/
15706 static int
15707 #if defined(sun)
15708 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15709 #else
15710 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15711 #endif
15712 {
15713         dtrace_state_t *state;
15714         uint32_t priv;
15715         uid_t uid;
15716         zoneid_t zoneid;
15717
15718 #if defined(sun)
15719         if (getminor(*devp) == DTRACEMNRN_HELPER)
15720                 return (0);
15721
15722         /*
15723          * If this wasn't an open with the "helper" minor, then it must be
15724          * the "dtrace" minor.
15725          */
15726         ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15727 #else
15728         cred_t *cred_p = NULL;
15729
15730 #if __FreeBSD_version < 800039
15731         /*
15732          * The first minor device is the one that is cloned so there is
15733          * nothing more to do here.
15734          */
15735         if (dev2unit(dev) == 0)
15736                 return 0;
15737
15738         /*
15739          * Devices are cloned, so if the DTrace state has already
15740          * been allocated, that means this device belongs to a
15741          * different client. Each client should open '/dev/dtrace'
15742          * to get a cloned device.
15743          */
15744         if (dev->si_drv1 != NULL)
15745                 return (EBUSY);
15746 #endif
15747
15748         cred_p = dev->si_cred;
15749 #endif
15750
15751         /*
15752          * If no DTRACE_PRIV_* bits are set in the credential, then the
15753          * caller lacks sufficient permission to do anything with DTrace.
15754          */
15755         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15756         if (priv == DTRACE_PRIV_NONE) {
15757 #if !defined(sun)
15758 #if __FreeBSD_version < 800039
15759                 /* Destroy the cloned device. */
15760                 destroy_dev(dev);
15761 #endif
15762 #endif
15763
15764                 return (EACCES);
15765         }
15766
15767         /*
15768          * Ask all providers to provide all their probes.
15769          */
15770         mutex_enter(&dtrace_provider_lock);
15771         dtrace_probe_provide(NULL, NULL);
15772         mutex_exit(&dtrace_provider_lock);
15773
15774         mutex_enter(&cpu_lock);
15775         mutex_enter(&dtrace_lock);
15776         dtrace_opens++;
15777         dtrace_membar_producer();
15778
15779 #if defined(sun)
15780         /*
15781          * If the kernel debugger is active (that is, if the kernel debugger
15782          * modified text in some way), we won't allow the open.
15783          */
15784         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15785                 dtrace_opens--;
15786                 mutex_exit(&cpu_lock);
15787                 mutex_exit(&dtrace_lock);
15788                 return (EBUSY);
15789         }
15790
15791         state = dtrace_state_create(devp, cred_p);
15792 #else
15793         state = dtrace_state_create(dev);
15794 #if __FreeBSD_version < 800039
15795         dev->si_drv1 = state;
15796 #else
15797         devfs_set_cdevpriv(state, dtrace_dtr);
15798 #endif
15799 #endif
15800
15801         mutex_exit(&cpu_lock);
15802
15803         if (state == NULL) {
15804 #if defined(sun)
15805                 if (--dtrace_opens == 0)
15806                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15807 #else
15808                 --dtrace_opens;
15809 #endif
15810                 mutex_exit(&dtrace_lock);
15811 #if !defined(sun)
15812 #if __FreeBSD_version < 800039
15813                 /* Destroy the cloned device. */
15814                 destroy_dev(dev);
15815 #endif
15816 #endif
15817                 return (EAGAIN);
15818         }
15819
15820         mutex_exit(&dtrace_lock);
15821
15822         return (0);
15823 }
15824
15825 /*ARGSUSED*/
15826 #if defined(sun)
15827 static int
15828 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15829 #elif __FreeBSD_version < 800039
15830 static int
15831 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15832 #else
15833 static void
15834 dtrace_dtr(void *data)
15835 #endif
15836 {
15837 #if defined(sun)
15838         minor_t minor = getminor(dev);
15839         dtrace_state_t *state;
15840
15841         if (minor == DTRACEMNRN_HELPER)
15842                 return (0);
15843
15844         state = ddi_get_soft_state(dtrace_softstate, minor);
15845 #else
15846 #if __FreeBSD_version < 800039
15847         dtrace_state_t *state = dev->si_drv1;
15848
15849         /* Check if this is not a cloned device. */
15850         if (dev2unit(dev) == 0)
15851                 return (0);
15852 #else
15853         dtrace_state_t *state = data;
15854 #endif
15855
15856 #endif
15857
15858         mutex_enter(&cpu_lock);
15859         mutex_enter(&dtrace_lock);
15860
15861         if (state != NULL) {
15862                 if (state->dts_anon) {
15863                         /*
15864                          * There is anonymous state. Destroy that first.
15865                          */
15866                         ASSERT(dtrace_anon.dta_state == NULL);
15867                         dtrace_state_destroy(state->dts_anon);
15868                 }
15869
15870                 dtrace_state_destroy(state);
15871
15872 #if !defined(sun)
15873                 kmem_free(state, 0);
15874 #if __FreeBSD_version < 800039
15875                 dev->si_drv1 = NULL;
15876 #endif
15877 #endif
15878         }
15879
15880         ASSERT(dtrace_opens > 0);
15881 #if defined(sun)
15882         if (--dtrace_opens == 0)
15883                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15884 #else
15885         --dtrace_opens;
15886 #endif
15887
15888         mutex_exit(&dtrace_lock);
15889         mutex_exit(&cpu_lock);
15890
15891 #if __FreeBSD_version < 800039
15892         /* Schedule this cloned device to be destroyed. */
15893         destroy_dev_sched(dev);
15894 #endif
15895
15896 #if defined(sun) || __FreeBSD_version < 800039
15897         return (0);
15898 #endif
15899 }
15900
15901 #if defined(sun)
15902 /*ARGSUSED*/
15903 static int
15904 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15905 {
15906         int rval;
15907         dof_helper_t help, *dhp = NULL;
15908
15909         switch (cmd) {
15910         case DTRACEHIOC_ADDDOF:
15911                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15912                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15913                         return (EFAULT);
15914                 }
15915
15916                 dhp = &help;
15917                 arg = (intptr_t)help.dofhp_dof;
15918                 /*FALLTHROUGH*/
15919
15920         case DTRACEHIOC_ADD: {
15921                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15922
15923                 if (dof == NULL)
15924                         return (rval);
15925
15926                 mutex_enter(&dtrace_lock);
15927
15928                 /*
15929                  * dtrace_helper_slurp() takes responsibility for the dof --
15930                  * it may free it now or it may save it and free it later.
15931                  */
15932                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15933                         *rv = rval;
15934                         rval = 0;
15935                 } else {
15936                         rval = EINVAL;
15937                 }
15938
15939                 mutex_exit(&dtrace_lock);
15940                 return (rval);
15941         }
15942
15943         case DTRACEHIOC_REMOVE: {
15944                 mutex_enter(&dtrace_lock);
15945                 rval = dtrace_helper_destroygen(arg);
15946                 mutex_exit(&dtrace_lock);
15947
15948                 return (rval);
15949         }
15950
15951         default:
15952                 break;
15953         }
15954
15955         return (ENOTTY);
15956 }
15957
15958 /*ARGSUSED*/
15959 static int
15960 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15961 {
15962         minor_t minor = getminor(dev);
15963         dtrace_state_t *state;
15964         int rval;
15965
15966         if (minor == DTRACEMNRN_HELPER)
15967                 return (dtrace_ioctl_helper(cmd, arg, rv));
15968
15969         state = ddi_get_soft_state(dtrace_softstate, minor);
15970
15971         if (state->dts_anon) {
15972                 ASSERT(dtrace_anon.dta_state == NULL);
15973                 state = state->dts_anon;
15974         }
15975
15976         switch (cmd) {
15977         case DTRACEIOC_PROVIDER: {
15978                 dtrace_providerdesc_t pvd;
15979                 dtrace_provider_t *pvp;
15980
15981                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15982                         return (EFAULT);
15983
15984                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15985                 mutex_enter(&dtrace_provider_lock);
15986
15987                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15988                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15989                                 break;
15990                 }
15991
15992                 mutex_exit(&dtrace_provider_lock);
15993
15994                 if (pvp == NULL)
15995                         return (ESRCH);
15996
15997                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15998                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15999
16000                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16001                         return (EFAULT);
16002
16003                 return (0);
16004         }
16005
16006         case DTRACEIOC_EPROBE: {
16007                 dtrace_eprobedesc_t epdesc;
16008                 dtrace_ecb_t *ecb;
16009                 dtrace_action_t *act;
16010                 void *buf;
16011                 size_t size;
16012                 uintptr_t dest;
16013                 int nrecs;
16014
16015                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16016                         return (EFAULT);
16017
16018                 mutex_enter(&dtrace_lock);
16019
16020                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16021                         mutex_exit(&dtrace_lock);
16022                         return (EINVAL);
16023                 }
16024
16025                 if (ecb->dte_probe == NULL) {
16026                         mutex_exit(&dtrace_lock);
16027                         return (EINVAL);
16028                 }
16029
16030                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16031                 epdesc.dtepd_uarg = ecb->dte_uarg;
16032                 epdesc.dtepd_size = ecb->dte_size;
16033
16034                 nrecs = epdesc.dtepd_nrecs;
16035                 epdesc.dtepd_nrecs = 0;
16036                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16037                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16038                                 continue;
16039
16040                         epdesc.dtepd_nrecs++;
16041                 }
16042
16043                 /*
16044                  * Now that we have the size, we need to allocate a temporary
16045                  * buffer in which to store the complete description.  We need
16046                  * the temporary buffer to be able to drop dtrace_lock()
16047                  * across the copyout(), below.
16048                  */
16049                 size = sizeof (dtrace_eprobedesc_t) +
16050                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16051
16052                 buf = kmem_alloc(size, KM_SLEEP);
16053                 dest = (uintptr_t)buf;
16054
16055                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16056                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16057
16058                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16059                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16060                                 continue;
16061
16062                         if (nrecs-- == 0)
16063                                 break;
16064
16065                         bcopy(&act->dta_rec, (void *)dest,
16066                             sizeof (dtrace_recdesc_t));
16067                         dest += sizeof (dtrace_recdesc_t);
16068                 }
16069
16070                 mutex_exit(&dtrace_lock);
16071
16072                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16073                         kmem_free(buf, size);
16074                         return (EFAULT);
16075                 }
16076
16077                 kmem_free(buf, size);
16078                 return (0);
16079         }
16080
16081         case DTRACEIOC_AGGDESC: {
16082                 dtrace_aggdesc_t aggdesc;
16083                 dtrace_action_t *act;
16084                 dtrace_aggregation_t *agg;
16085                 int nrecs;
16086                 uint32_t offs;
16087                 dtrace_recdesc_t *lrec;
16088                 void *buf;
16089                 size_t size;
16090                 uintptr_t dest;
16091
16092                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16093                         return (EFAULT);
16094
16095                 mutex_enter(&dtrace_lock);
16096
16097                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16098                         mutex_exit(&dtrace_lock);
16099                         return (EINVAL);
16100                 }
16101
16102                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16103
16104                 nrecs = aggdesc.dtagd_nrecs;
16105                 aggdesc.dtagd_nrecs = 0;
16106
16107                 offs = agg->dtag_base;
16108                 lrec = &agg->dtag_action.dta_rec;
16109                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16110
16111                 for (act = agg->dtag_first; ; act = act->dta_next) {
16112                         ASSERT(act->dta_intuple ||
16113                             DTRACEACT_ISAGG(act->dta_kind));
16114
16115                         /*
16116                          * If this action has a record size of zero, it
16117                          * denotes an argument to the aggregating action.
16118                          * Because the presence of this record doesn't (or
16119                          * shouldn't) affect the way the data is interpreted,
16120                          * we don't copy it out to save user-level the
16121                          * confusion of dealing with a zero-length record.
16122                          */
16123                         if (act->dta_rec.dtrd_size == 0) {
16124                                 ASSERT(agg->dtag_hasarg);
16125                                 continue;
16126                         }
16127
16128                         aggdesc.dtagd_nrecs++;
16129
16130                         if (act == &agg->dtag_action)
16131                                 break;
16132                 }
16133
16134                 /*
16135                  * Now that we have the size, we need to allocate a temporary
16136                  * buffer in which to store the complete description.  We need
16137                  * the temporary buffer to be able to drop dtrace_lock()
16138                  * across the copyout(), below.
16139                  */
16140                 size = sizeof (dtrace_aggdesc_t) +
16141                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16142
16143                 buf = kmem_alloc(size, KM_SLEEP);
16144                 dest = (uintptr_t)buf;
16145
16146                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16147                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16148
16149                 for (act = agg->dtag_first; ; act = act->dta_next) {
16150                         dtrace_recdesc_t rec = act->dta_rec;
16151
16152                         /*
16153                          * See the comment in the above loop for why we pass
16154                          * over zero-length records.
16155                          */
16156                         if (rec.dtrd_size == 0) {
16157                                 ASSERT(agg->dtag_hasarg);
16158                                 continue;
16159                         }
16160
16161                         if (nrecs-- == 0)
16162                                 break;
16163
16164                         rec.dtrd_offset -= offs;
16165                         bcopy(&rec, (void *)dest, sizeof (rec));
16166                         dest += sizeof (dtrace_recdesc_t);
16167
16168                         if (act == &agg->dtag_action)
16169                                 break;
16170                 }
16171
16172                 mutex_exit(&dtrace_lock);
16173
16174                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16175                         kmem_free(buf, size);
16176                         return (EFAULT);
16177                 }
16178
16179                 kmem_free(buf, size);
16180                 return (0);
16181         }
16182
16183         case DTRACEIOC_ENABLE: {
16184                 dof_hdr_t *dof;
16185                 dtrace_enabling_t *enab = NULL;
16186                 dtrace_vstate_t *vstate;
16187                 int err = 0;
16188
16189                 *rv = 0;
16190
16191                 /*
16192                  * If a NULL argument has been passed, we take this as our
16193                  * cue to reevaluate our enablings.
16194                  */
16195                 if (arg == NULL) {
16196                         dtrace_enabling_matchall();
16197
16198                         return (0);
16199                 }
16200
16201                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16202                         return (rval);
16203
16204                 mutex_enter(&cpu_lock);
16205                 mutex_enter(&dtrace_lock);
16206                 vstate = &state->dts_vstate;
16207
16208                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16209                         mutex_exit(&dtrace_lock);
16210                         mutex_exit(&cpu_lock);
16211                         dtrace_dof_destroy(dof);
16212                         return (EBUSY);
16213                 }
16214
16215                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16216                         mutex_exit(&dtrace_lock);
16217                         mutex_exit(&cpu_lock);
16218                         dtrace_dof_destroy(dof);
16219                         return (EINVAL);
16220                 }
16221
16222                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16223                         dtrace_enabling_destroy(enab);
16224                         mutex_exit(&dtrace_lock);
16225                         mutex_exit(&cpu_lock);
16226                         dtrace_dof_destroy(dof);
16227                         return (rval);
16228                 }
16229
16230                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16231                         err = dtrace_enabling_retain(enab);
16232                 } else {
16233                         dtrace_enabling_destroy(enab);
16234                 }
16235
16236                 mutex_exit(&cpu_lock);
16237                 mutex_exit(&dtrace_lock);
16238                 dtrace_dof_destroy(dof);
16239
16240                 return (err);
16241         }
16242
16243         case DTRACEIOC_REPLICATE: {
16244                 dtrace_repldesc_t desc;
16245                 dtrace_probedesc_t *match = &desc.dtrpd_match;
16246                 dtrace_probedesc_t *create = &desc.dtrpd_create;
16247                 int err;
16248
16249                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16250                         return (EFAULT);
16251
16252                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16253                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16254                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16255                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16256
16257                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16258                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16259                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16260                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16261
16262                 mutex_enter(&dtrace_lock);
16263                 err = dtrace_enabling_replicate(state, match, create);
16264                 mutex_exit(&dtrace_lock);
16265
16266                 return (err);
16267         }
16268
16269         case DTRACEIOC_PROBEMATCH:
16270         case DTRACEIOC_PROBES: {
16271                 dtrace_probe_t *probe = NULL;
16272                 dtrace_probedesc_t desc;
16273                 dtrace_probekey_t pkey;
16274                 dtrace_id_t i;
16275                 int m = 0;
16276                 uint32_t priv;
16277                 uid_t uid;
16278                 zoneid_t zoneid;
16279
16280                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16281                         return (EFAULT);
16282
16283                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16284                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16285                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16286                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16287
16288                 /*
16289                  * Before we attempt to match this probe, we want to give
16290                  * all providers the opportunity to provide it.
16291                  */
16292                 if (desc.dtpd_id == DTRACE_IDNONE) {
16293                         mutex_enter(&dtrace_provider_lock);
16294                         dtrace_probe_provide(&desc, NULL);
16295                         mutex_exit(&dtrace_provider_lock);
16296                         desc.dtpd_id++;
16297                 }
16298
16299                 if (cmd == DTRACEIOC_PROBEMATCH)  {
16300                         dtrace_probekey(&desc, &pkey);
16301                         pkey.dtpk_id = DTRACE_IDNONE;
16302                 }
16303
16304                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16305
16306                 mutex_enter(&dtrace_lock);
16307
16308                 if (cmd == DTRACEIOC_PROBEMATCH) {
16309                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16310                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16311                                     (m = dtrace_match_probe(probe, &pkey,
16312                                     priv, uid, zoneid)) != 0)
16313                                         break;
16314                         }
16315
16316                         if (m < 0) {
16317                                 mutex_exit(&dtrace_lock);
16318                                 return (EINVAL);
16319                         }
16320
16321                 } else {
16322                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16323                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16324                                     dtrace_match_priv(probe, priv, uid, zoneid))
16325                                         break;
16326                         }
16327                 }
16328
16329                 if (probe == NULL) {
16330                         mutex_exit(&dtrace_lock);
16331                         return (ESRCH);
16332                 }
16333
16334                 dtrace_probe_description(probe, &desc);
16335                 mutex_exit(&dtrace_lock);
16336
16337                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16338                         return (EFAULT);
16339
16340                 return (0);
16341         }
16342
16343         case DTRACEIOC_PROBEARG: {
16344                 dtrace_argdesc_t desc;
16345                 dtrace_probe_t *probe;
16346                 dtrace_provider_t *prov;
16347
16348                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16349                         return (EFAULT);
16350
16351                 if (desc.dtargd_id == DTRACE_IDNONE)
16352                         return (EINVAL);
16353
16354                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16355                         return (EINVAL);
16356
16357                 mutex_enter(&dtrace_provider_lock);
16358                 mutex_enter(&mod_lock);
16359                 mutex_enter(&dtrace_lock);
16360
16361                 if (desc.dtargd_id > dtrace_nprobes) {
16362                         mutex_exit(&dtrace_lock);
16363                         mutex_exit(&mod_lock);
16364                         mutex_exit(&dtrace_provider_lock);
16365                         return (EINVAL);
16366                 }
16367
16368                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16369                         mutex_exit(&dtrace_lock);
16370                         mutex_exit(&mod_lock);
16371                         mutex_exit(&dtrace_provider_lock);
16372                         return (EINVAL);
16373                 }
16374
16375                 mutex_exit(&dtrace_lock);
16376
16377                 prov = probe->dtpr_provider;
16378
16379                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16380                         /*
16381                          * There isn't any typed information for this probe.
16382                          * Set the argument number to DTRACE_ARGNONE.
16383                          */
16384                         desc.dtargd_ndx = DTRACE_ARGNONE;
16385                 } else {
16386                         desc.dtargd_native[0] = '\0';
16387                         desc.dtargd_xlate[0] = '\0';
16388                         desc.dtargd_mapping = desc.dtargd_ndx;
16389
16390                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16391                             probe->dtpr_id, probe->dtpr_arg, &desc);
16392                 }
16393
16394                 mutex_exit(&mod_lock);
16395                 mutex_exit(&dtrace_provider_lock);
16396
16397                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16398                         return (EFAULT);
16399
16400                 return (0);
16401         }
16402
16403         case DTRACEIOC_GO: {
16404                 processorid_t cpuid;
16405                 rval = dtrace_state_go(state, &cpuid);
16406
16407                 if (rval != 0)
16408                         return (rval);
16409
16410                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16411                         return (EFAULT);
16412
16413                 return (0);
16414         }
16415
16416         case DTRACEIOC_STOP: {
16417                 processorid_t cpuid;
16418
16419                 mutex_enter(&dtrace_lock);
16420                 rval = dtrace_state_stop(state, &cpuid);
16421                 mutex_exit(&dtrace_lock);
16422
16423                 if (rval != 0)
16424                         return (rval);
16425
16426                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16427                         return (EFAULT);
16428
16429                 return (0);
16430         }
16431
16432         case DTRACEIOC_DOFGET: {
16433                 dof_hdr_t hdr, *dof;
16434                 uint64_t len;
16435
16436                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16437                         return (EFAULT);
16438
16439                 mutex_enter(&dtrace_lock);
16440                 dof = dtrace_dof_create(state);
16441                 mutex_exit(&dtrace_lock);
16442
16443                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16444                 rval = copyout(dof, (void *)arg, len);
16445                 dtrace_dof_destroy(dof);
16446
16447                 return (rval == 0 ? 0 : EFAULT);
16448         }
16449
16450         case DTRACEIOC_AGGSNAP:
16451         case DTRACEIOC_BUFSNAP: {
16452                 dtrace_bufdesc_t desc;
16453                 caddr_t cached;
16454                 dtrace_buffer_t *buf;
16455
16456                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16457                         return (EFAULT);
16458
16459                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16460                         return (EINVAL);
16461
16462                 mutex_enter(&dtrace_lock);
16463
16464                 if (cmd == DTRACEIOC_BUFSNAP) {
16465                         buf = &state->dts_buffer[desc.dtbd_cpu];
16466                 } else {
16467                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16468                 }
16469
16470                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16471                         size_t sz = buf->dtb_offset;
16472
16473                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16474                                 mutex_exit(&dtrace_lock);
16475                                 return (EBUSY);
16476                         }
16477
16478                         /*
16479                          * If this buffer has already been consumed, we're
16480                          * going to indicate that there's nothing left here
16481                          * to consume.
16482                          */
16483                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16484                                 mutex_exit(&dtrace_lock);
16485
16486                                 desc.dtbd_size = 0;
16487                                 desc.dtbd_drops = 0;
16488                                 desc.dtbd_errors = 0;
16489                                 desc.dtbd_oldest = 0;
16490                                 sz = sizeof (desc);
16491
16492                                 if (copyout(&desc, (void *)arg, sz) != 0)
16493                                         return (EFAULT);
16494
16495                                 return (0);
16496                         }
16497
16498                         /*
16499                          * If this is a ring buffer that has wrapped, we want
16500                          * to copy the whole thing out.
16501                          */
16502                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16503                                 dtrace_buffer_polish(buf);
16504                                 sz = buf->dtb_size;
16505                         }
16506
16507                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16508                                 mutex_exit(&dtrace_lock);
16509                                 return (EFAULT);
16510                         }
16511
16512                         desc.dtbd_size = sz;
16513                         desc.dtbd_drops = buf->dtb_drops;
16514                         desc.dtbd_errors = buf->dtb_errors;
16515                         desc.dtbd_oldest = buf->dtb_xamot_offset;
16516                         desc.dtbd_timestamp = dtrace_gethrtime();
16517
16518                         mutex_exit(&dtrace_lock);
16519
16520                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16521                                 return (EFAULT);
16522
16523                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
16524
16525                         return (0);
16526                 }
16527
16528                 if (buf->dtb_tomax == NULL) {
16529                         ASSERT(buf->dtb_xamot == NULL);
16530                         mutex_exit(&dtrace_lock);
16531                         return (ENOENT);
16532                 }
16533
16534                 cached = buf->dtb_tomax;
16535                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16536
16537                 dtrace_xcall(desc.dtbd_cpu,
16538                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
16539
16540                 state->dts_errors += buf->dtb_xamot_errors;
16541
16542                 /*
16543                  * If the buffers did not actually switch, then the cross call
16544                  * did not take place -- presumably because the given CPU is
16545                  * not in the ready set.  If this is the case, we'll return
16546                  * ENOENT.
16547                  */
16548                 if (buf->dtb_tomax == cached) {
16549                         ASSERT(buf->dtb_xamot != cached);
16550                         mutex_exit(&dtrace_lock);
16551                         return (ENOENT);
16552                 }
16553
16554                 ASSERT(cached == buf->dtb_xamot);
16555
16556                 /*
16557                  * We have our snapshot; now copy it out.
16558                  */
16559                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16560                     buf->dtb_xamot_offset) != 0) {
16561                         mutex_exit(&dtrace_lock);
16562                         return (EFAULT);
16563                 }
16564
16565                 desc.dtbd_size = buf->dtb_xamot_offset;
16566                 desc.dtbd_drops = buf->dtb_xamot_drops;
16567                 desc.dtbd_errors = buf->dtb_xamot_errors;
16568                 desc.dtbd_oldest = 0;
16569                 desc.dtbd_timestamp = buf->dtb_switched;
16570
16571                 mutex_exit(&dtrace_lock);
16572
16573                 /*
16574                  * Finally, copy out the buffer description.
16575                  */
16576                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16577                         return (EFAULT);
16578
16579                 return (0);
16580         }
16581
16582         case DTRACEIOC_CONF: {
16583                 dtrace_conf_t conf;
16584
16585                 bzero(&conf, sizeof (conf));
16586                 conf.dtc_difversion = DIF_VERSION;
16587                 conf.dtc_difintregs = DIF_DIR_NREGS;
16588                 conf.dtc_diftupregs = DIF_DTR_NREGS;
16589                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16590
16591                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16592                         return (EFAULT);
16593
16594                 return (0);
16595         }
16596
16597         case DTRACEIOC_STATUS: {
16598                 dtrace_status_t stat;
16599                 dtrace_dstate_t *dstate;
16600                 int i, j;
16601                 uint64_t nerrs;
16602
16603                 /*
16604                  * See the comment in dtrace_state_deadman() for the reason
16605                  * for setting dts_laststatus to INT64_MAX before setting
16606                  * it to the correct value.
16607                  */
16608                 state->dts_laststatus = INT64_MAX;
16609                 dtrace_membar_producer();
16610                 state->dts_laststatus = dtrace_gethrtime();
16611
16612                 bzero(&stat, sizeof (stat));
16613
16614                 mutex_enter(&dtrace_lock);
16615
16616                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16617                         mutex_exit(&dtrace_lock);
16618                         return (ENOENT);
16619                 }
16620
16621                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16622                         stat.dtst_exiting = 1;
16623
16624                 nerrs = state->dts_errors;
16625                 dstate = &state->dts_vstate.dtvs_dynvars;
16626
16627                 for (i = 0; i < NCPU; i++) {
16628                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16629
16630                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
16631                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16632                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16633
16634                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16635                                 stat.dtst_filled++;
16636
16637                         nerrs += state->dts_buffer[i].dtb_errors;
16638
16639                         for (j = 0; j < state->dts_nspeculations; j++) {
16640                                 dtrace_speculation_t *spec;
16641                                 dtrace_buffer_t *buf;
16642
16643                                 spec = &state->dts_speculations[j];
16644                                 buf = &spec->dtsp_buffer[i];
16645                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
16646                         }
16647                 }
16648
16649                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16650                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16651                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16652                 stat.dtst_dblerrors = state->dts_dblerrors;
16653                 stat.dtst_killed =
16654                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16655                 stat.dtst_errors = nerrs;
16656
16657                 mutex_exit(&dtrace_lock);
16658
16659                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16660                         return (EFAULT);
16661
16662                 return (0);
16663         }
16664
16665         case DTRACEIOC_FORMAT: {
16666                 dtrace_fmtdesc_t fmt;
16667                 char *str;
16668                 int len;
16669
16670                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16671                         return (EFAULT);
16672
16673                 mutex_enter(&dtrace_lock);
16674
16675                 if (fmt.dtfd_format == 0 ||
16676                     fmt.dtfd_format > state->dts_nformats) {
16677                         mutex_exit(&dtrace_lock);
16678                         return (EINVAL);
16679                 }
16680
16681                 /*
16682                  * Format strings are allocated contiguously and they are
16683                  * never freed; if a format index is less than the number
16684                  * of formats, we can assert that the format map is non-NULL
16685                  * and that the format for the specified index is non-NULL.
16686                  */
16687                 ASSERT(state->dts_formats != NULL);
16688                 str = state->dts_formats[fmt.dtfd_format - 1];
16689                 ASSERT(str != NULL);
16690
16691                 len = strlen(str) + 1;
16692
16693                 if (len > fmt.dtfd_length) {
16694                         fmt.dtfd_length = len;
16695
16696                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16697                                 mutex_exit(&dtrace_lock);
16698                                 return (EINVAL);
16699                         }
16700                 } else {
16701                         if (copyout(str, fmt.dtfd_string, len) != 0) {
16702                                 mutex_exit(&dtrace_lock);
16703                                 return (EINVAL);
16704                         }
16705                 }
16706
16707                 mutex_exit(&dtrace_lock);
16708                 return (0);
16709         }
16710
16711         default:
16712                 break;
16713         }
16714
16715         return (ENOTTY);
16716 }
16717
16718 /*ARGSUSED*/
16719 static int
16720 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16721 {
16722         dtrace_state_t *state;
16723
16724         switch (cmd) {
16725         case DDI_DETACH:
16726                 break;
16727
16728         case DDI_SUSPEND:
16729                 return (DDI_SUCCESS);
16730
16731         default:
16732                 return (DDI_FAILURE);
16733         }
16734
16735         mutex_enter(&cpu_lock);
16736         mutex_enter(&dtrace_provider_lock);
16737         mutex_enter(&dtrace_lock);
16738
16739         ASSERT(dtrace_opens == 0);
16740
16741         if (dtrace_helpers > 0) {
16742                 mutex_exit(&dtrace_provider_lock);
16743                 mutex_exit(&dtrace_lock);
16744                 mutex_exit(&cpu_lock);
16745                 return (DDI_FAILURE);
16746         }
16747
16748         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16749                 mutex_exit(&dtrace_provider_lock);
16750                 mutex_exit(&dtrace_lock);
16751                 mutex_exit(&cpu_lock);
16752                 return (DDI_FAILURE);
16753         }
16754
16755         dtrace_provider = NULL;
16756
16757         if ((state = dtrace_anon_grab()) != NULL) {
16758                 /*
16759                  * If there were ECBs on this state, the provider should
16760                  * have not been allowed to detach; assert that there is
16761                  * none.
16762                  */
16763                 ASSERT(state->dts_necbs == 0);
16764                 dtrace_state_destroy(state);
16765
16766                 /*
16767                  * If we're being detached with anonymous state, we need to
16768                  * indicate to the kernel debugger that DTrace is now inactive.
16769                  */
16770                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16771         }
16772
16773         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16774         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16775         dtrace_cpu_init = NULL;
16776         dtrace_helpers_cleanup = NULL;
16777         dtrace_helpers_fork = NULL;
16778         dtrace_cpustart_init = NULL;
16779         dtrace_cpustart_fini = NULL;
16780         dtrace_debugger_init = NULL;
16781         dtrace_debugger_fini = NULL;
16782         dtrace_modload = NULL;
16783         dtrace_modunload = NULL;
16784
16785         mutex_exit(&cpu_lock);
16786
16787         if (dtrace_helptrace_enabled) {
16788                 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16789                 dtrace_helptrace_buffer = NULL;
16790         }
16791
16792         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16793         dtrace_probes = NULL;
16794         dtrace_nprobes = 0;
16795
16796         dtrace_hash_destroy(dtrace_bymod);
16797         dtrace_hash_destroy(dtrace_byfunc);
16798         dtrace_hash_destroy(dtrace_byname);
16799         dtrace_bymod = NULL;
16800         dtrace_byfunc = NULL;
16801         dtrace_byname = NULL;
16802
16803         kmem_cache_destroy(dtrace_state_cache);
16804         vmem_destroy(dtrace_minor);
16805         vmem_destroy(dtrace_arena);
16806
16807         if (dtrace_toxrange != NULL) {
16808                 kmem_free(dtrace_toxrange,
16809                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16810                 dtrace_toxrange = NULL;
16811                 dtrace_toxranges = 0;
16812                 dtrace_toxranges_max = 0;
16813         }
16814
16815         ddi_remove_minor_node(dtrace_devi, NULL);
16816         dtrace_devi = NULL;
16817
16818         ddi_soft_state_fini(&dtrace_softstate);
16819
16820         ASSERT(dtrace_vtime_references == 0);
16821         ASSERT(dtrace_opens == 0);
16822         ASSERT(dtrace_retained == NULL);
16823
16824         mutex_exit(&dtrace_lock);
16825         mutex_exit(&dtrace_provider_lock);
16826
16827         /*
16828          * We don't destroy the task queue until after we have dropped our
16829          * locks (taskq_destroy() may block on running tasks).  To prevent
16830          * attempting to do work after we have effectively detached but before
16831          * the task queue has been destroyed, all tasks dispatched via the
16832          * task queue must check that DTrace is still attached before
16833          * performing any operation.
16834          */
16835         taskq_destroy(dtrace_taskq);
16836         dtrace_taskq = NULL;
16837
16838         return (DDI_SUCCESS);
16839 }
16840 #endif
16841
16842 #if defined(sun)
16843 /*ARGSUSED*/
16844 static int
16845 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16846 {
16847         int error;
16848
16849         switch (infocmd) {
16850         case DDI_INFO_DEVT2DEVINFO:
16851                 *result = (void *)dtrace_devi;
16852                 error = DDI_SUCCESS;
16853                 break;
16854         case DDI_INFO_DEVT2INSTANCE:
16855                 *result = (void *)0;
16856                 error = DDI_SUCCESS;
16857                 break;
16858         default:
16859                 error = DDI_FAILURE;
16860         }
16861         return (error);
16862 }
16863 #endif
16864
16865 #if defined(sun)
16866 static struct cb_ops dtrace_cb_ops = {
16867         dtrace_open,            /* open */
16868         dtrace_close,           /* close */
16869         nulldev,                /* strategy */
16870         nulldev,                /* print */
16871         nodev,                  /* dump */
16872         nodev,                  /* read */
16873         nodev,                  /* write */
16874         dtrace_ioctl,           /* ioctl */
16875         nodev,                  /* devmap */
16876         nodev,                  /* mmap */
16877         nodev,                  /* segmap */
16878         nochpoll,               /* poll */
16879         ddi_prop_op,            /* cb_prop_op */
16880         0,                      /* streamtab  */
16881         D_NEW | D_MP            /* Driver compatibility flag */
16882 };
16883
16884 static struct dev_ops dtrace_ops = {
16885         DEVO_REV,               /* devo_rev */
16886         0,                      /* refcnt */
16887         dtrace_info,            /* get_dev_info */
16888         nulldev,                /* identify */
16889         nulldev,                /* probe */
16890         dtrace_attach,          /* attach */
16891         dtrace_detach,          /* detach */
16892         nodev,                  /* reset */
16893         &dtrace_cb_ops,         /* driver operations */
16894         NULL,                   /* bus operations */
16895         nodev                   /* dev power */
16896 };
16897
16898 static struct modldrv modldrv = {
16899         &mod_driverops,         /* module type (this is a pseudo driver) */
16900         "Dynamic Tracing",      /* name of module */
16901         &dtrace_ops,            /* driver ops */
16902 };
16903
16904 static struct modlinkage modlinkage = {
16905         MODREV_1,
16906         (void *)&modldrv,
16907         NULL
16908 };
16909
16910 int
16911 _init(void)
16912 {
16913         return (mod_install(&modlinkage));
16914 }
16915
16916 int
16917 _info(struct modinfo *modinfop)
16918 {
16919         return (mod_info(&modlinkage, modinfop));
16920 }
16921
16922 int
16923 _fini(void)
16924 {
16925         return (mod_remove(&modlinkage));
16926 }
16927 #else
16928
16929 static d_ioctl_t        dtrace_ioctl;
16930 static d_ioctl_t        dtrace_ioctl_helper;
16931 static void             dtrace_load(void *);
16932 static int              dtrace_unload(void);
16933 #if __FreeBSD_version < 800039
16934 static void             dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16935 static struct clonedevs *dtrace_clones;         /* Ptr to the array of cloned devices. */
16936 static eventhandler_tag eh_tag;                 /* Event handler tag. */
16937 #else
16938 static struct cdev      *dtrace_dev;
16939 static struct cdev      *helper_dev;
16940 #endif
16941
16942 void dtrace_invop_init(void);
16943 void dtrace_invop_uninit(void);
16944
16945 static struct cdevsw dtrace_cdevsw = {
16946         .d_version      = D_VERSION,
16947 #if __FreeBSD_version < 800039
16948         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16949         .d_close        = dtrace_close,
16950 #endif
16951         .d_ioctl        = dtrace_ioctl,
16952         .d_open         = dtrace_open,
16953         .d_name         = "dtrace",
16954 };
16955
16956 static struct cdevsw helper_cdevsw = {
16957         .d_version      = D_VERSION,
16958         .d_ioctl        = dtrace_ioctl_helper,
16959         .d_name         = "helper",
16960 };
16961
16962 #include <dtrace_anon.c>
16963 #if __FreeBSD_version < 800039
16964 #include <dtrace_clone.c>
16965 #endif
16966 #include <dtrace_ioctl.c>
16967 #include <dtrace_load.c>
16968 #include <dtrace_modevent.c>
16969 #include <dtrace_sysctl.c>
16970 #include <dtrace_unload.c>
16971 #include <dtrace_vtime.c>
16972 #include <dtrace_hacks.c>
16973 #include <dtrace_isa.c>
16974
16975 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16976 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16977 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16978
16979 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16980 MODULE_VERSION(dtrace, 1);
16981 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16982 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16983 #endif