]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dbuf.c
MFV r348583: 9847 leaking dd_clones (DMU_OT_DSL_CLONES) objects
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / dbuf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53
54 kstat_t *dbuf_ksp;
55
56 typedef struct dbuf_stats {
57         /*
58          * Various statistics about the size of the dbuf cache.
59          */
60         kstat_named_t cache_count;
61         kstat_named_t cache_size_bytes;
62         kstat_named_t cache_size_bytes_max;
63         /*
64          * Statistics regarding the bounds on the dbuf cache size.
65          */
66         kstat_named_t cache_target_bytes;
67         kstat_named_t cache_lowater_bytes;
68         kstat_named_t cache_hiwater_bytes;
69         /*
70          * Total number of dbuf cache evictions that have occurred.
71          */
72         kstat_named_t cache_total_evicts;
73         /*
74          * The distribution of dbuf levels in the dbuf cache and
75          * the total size of all dbufs at each level.
76          */
77         kstat_named_t cache_levels[DN_MAX_LEVELS];
78         kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
79         /*
80          * Statistics about the dbuf hash table.
81          */
82         kstat_named_t hash_hits;
83         kstat_named_t hash_misses;
84         kstat_named_t hash_collisions;
85         kstat_named_t hash_elements;
86         kstat_named_t hash_elements_max;
87         /*
88          * Number of sublists containing more than one dbuf in the dbuf
89          * hash table. Keep track of the longest hash chain.
90          */
91         kstat_named_t hash_chains;
92         kstat_named_t hash_chain_max;
93         /*
94          * Number of times a dbuf_create() discovers that a dbuf was
95          * already created and in the dbuf hash table.
96          */
97         kstat_named_t hash_insert_race;
98         /*
99          * Statistics about the size of the metadata dbuf cache.
100          */
101         kstat_named_t metadata_cache_count;
102         kstat_named_t metadata_cache_size_bytes;
103         kstat_named_t metadata_cache_size_bytes_max;
104         /*
105          * For diagnostic purposes, this is incremented whenever we can't add
106          * something to the metadata cache because it's full, and instead put
107          * the data in the regular dbuf cache.
108          */
109         kstat_named_t metadata_cache_overflow;
110 } dbuf_stats_t;
111
112 dbuf_stats_t dbuf_stats = {
113         { "cache_count",                        KSTAT_DATA_UINT64 },
114         { "cache_size_bytes",                   KSTAT_DATA_UINT64 },
115         { "cache_size_bytes_max",               KSTAT_DATA_UINT64 },
116         { "cache_target_bytes",                 KSTAT_DATA_UINT64 },
117         { "cache_lowater_bytes",                KSTAT_DATA_UINT64 },
118         { "cache_hiwater_bytes",                KSTAT_DATA_UINT64 },
119         { "cache_total_evicts",                 KSTAT_DATA_UINT64 },
120         { { "cache_levels_N",                   KSTAT_DATA_UINT64 } },
121         { { "cache_levels_bytes_N",             KSTAT_DATA_UINT64 } },
122         { "hash_hits",                          KSTAT_DATA_UINT64 },
123         { "hash_misses",                        KSTAT_DATA_UINT64 },
124         { "hash_collisions",                    KSTAT_DATA_UINT64 },
125         { "hash_elements",                      KSTAT_DATA_UINT64 },
126         { "hash_elements_max",                  KSTAT_DATA_UINT64 },
127         { "hash_chains",                        KSTAT_DATA_UINT64 },
128         { "hash_chain_max",                     KSTAT_DATA_UINT64 },
129         { "hash_insert_race",                   KSTAT_DATA_UINT64 },
130         { "metadata_cache_count",               KSTAT_DATA_UINT64 },
131         { "metadata_cache_size_bytes",          KSTAT_DATA_UINT64 },
132         { "metadata_cache_size_bytes_max",      KSTAT_DATA_UINT64 },
133         { "metadata_cache_overflow",            KSTAT_DATA_UINT64 }
134 };
135
136 #define DBUF_STAT_INCR(stat, val)       \
137         atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
138 #define DBUF_STAT_DECR(stat, val)       \
139         DBUF_STAT_INCR(stat, -(val));
140 #define DBUF_STAT_BUMP(stat)            \
141         DBUF_STAT_INCR(stat, 1);
142 #define DBUF_STAT_BUMPDOWN(stat)        \
143         DBUF_STAT_INCR(stat, -1);
144 #define DBUF_STAT_MAX(stat, v) {                                        \
145         uint64_t _m;                                                    \
146         while ((v) > (_m = dbuf_stats.stat.value.ui64) &&               \
147             (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
148                 continue;                                               \
149 }
150
151 struct dbuf_hold_impl_data {
152         /* Function arguments */
153         dnode_t *dh_dn;
154         uint8_t dh_level;
155         uint64_t dh_blkid;
156         boolean_t dh_fail_sparse;
157         boolean_t dh_fail_uncached;
158         void *dh_tag;
159         dmu_buf_impl_t **dh_dbp;
160         /* Local variables */
161         dmu_buf_impl_t *dh_db;
162         dmu_buf_impl_t *dh_parent;
163         blkptr_t *dh_bp;
164         int dh_err;
165         dbuf_dirty_record_t *dh_dr;
166         int dh_depth;
167 };
168
169 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
170     dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
171         boolean_t fail_uncached,
172         void *tag, dmu_buf_impl_t **dbp, int depth);
173 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
174
175 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
176 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
177
178 #ifndef __lint
179 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
180     dmu_buf_evict_func_t *evict_func_sync,
181     dmu_buf_evict_func_t *evict_func_async,
182     dmu_buf_t **clear_on_evict_dbufp);
183 #endif /* ! __lint */
184
185 /*
186  * Global data structures and functions for the dbuf cache.
187  */
188 static kmem_cache_t *dbuf_kmem_cache;
189 static taskq_t *dbu_evict_taskq;
190
191 static kthread_t *dbuf_cache_evict_thread;
192 static kmutex_t dbuf_evict_lock;
193 static kcondvar_t dbuf_evict_cv;
194 static boolean_t dbuf_evict_thread_exit;
195
196 /*
197  * There are two dbuf caches; each dbuf can only be in one of them at a time.
198  *
199  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
200  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
201  *    that represent the metadata that describes filesystems/snapshots/
202  *    bookmarks/properties/etc. We only evict from this cache when we export a
203  *    pool, to short-circuit as much I/O as possible for all administrative
204  *    commands that need the metadata. There is no eviction policy for this
205  *    cache, because we try to only include types in it which would occupy a
206  *    very small amount of space per object but create a large impact on the
207  *    performance of these commands. Instead, after it reaches a maximum size
208  *    (which should only happen on very small memory systems with a very large
209  *    number of filesystem objects), we stop taking new dbufs into the
210  *    metadata cache, instead putting them in the normal dbuf cache.
211  *
212  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
213  *    are not currently held but have been recently released. These dbufs
214  *    are not eligible for arc eviction until they are aged out of the cache.
215  *    Dbufs that are aged out of the cache will be immediately destroyed and
216  *    become eligible for arc eviction.
217  *
218  * Dbufs are added to these caches once the last hold is released. If a dbuf is
219  * later accessed and still exists in the dbuf cache, then it will be removed
220  * from the cache and later re-added to the head of the cache.
221  *
222  * If a given dbuf meets the requirements for the metadata cache, it will go
223  * there, otherwise it will be considered for the generic LRU dbuf cache. The
224  * caches and the refcounts tracking their sizes are stored in an array indexed
225  * by those caches' matching enum values (from dbuf_cached_state_t).
226  */
227 typedef struct dbuf_cache {
228         multilist_t *cache;
229         refcount_t size;
230 } dbuf_cache_t;
231 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
232
233 /* Size limits for the caches */
234 uint64_t dbuf_cache_max_bytes = 0;
235 uint64_t dbuf_metadata_cache_max_bytes = 0;
236 /* Set the default sizes of the caches to log2 fraction of arc size */
237 int dbuf_cache_shift = 5;
238 int dbuf_metadata_cache_shift = 6;
239
240 /*
241  * For diagnostic purposes, this is incremented whenever we can't add
242  * something to the metadata cache because it's full, and instead put
243  * the data in the regular dbuf cache.
244  */
245 uint64_t dbuf_metadata_cache_overflow;
246
247 /*
248  * The LRU dbuf cache uses a three-stage eviction policy:
249  *      - A low water marker designates when the dbuf eviction thread
250  *      should stop evicting from the dbuf cache.
251  *      - When we reach the maximum size (aka mid water mark), we
252  *      signal the eviction thread to run.
253  *      - The high water mark indicates when the eviction thread
254  *      is unable to keep up with the incoming load and eviction must
255  *      happen in the context of the calling thread.
256  *
257  * The dbuf cache:
258  *                                                 (max size)
259  *                                      low water   mid water   hi water
260  * +----------------------------------------+----------+----------+
261  * |                                        |          |          |
262  * |                                        |          |          |
263  * |                                        |          |          |
264  * |                                        |          |          |
265  * +----------------------------------------+----------+----------+
266  *                                        stop        signal     evict
267  *                                      evicting     eviction   directly
268  *                                                    thread
269  *
270  * The high and low water marks indicate the operating range for the eviction
271  * thread. The low water mark is, by default, 90% of the total size of the
272  * cache and the high water mark is at 110% (both of these percentages can be
273  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
274  * respectively). The eviction thread will try to ensure that the cache remains
275  * within this range by waking up every second and checking if the cache is
276  * above the low water mark. The thread can also be woken up by callers adding
277  * elements into the cache if the cache is larger than the mid water (i.e max
278  * cache size). Once the eviction thread is woken up and eviction is required,
279  * it will continue evicting buffers until it's able to reduce the cache size
280  * to the low water mark. If the cache size continues to grow and hits the high
281  * water mark, then callers adding elments to the cache will begin to evict
282  * directly from the cache until the cache is no longer above the high water
283  * mark.
284  */
285
286 /*
287  * The percentage above and below the maximum cache size.
288  */
289 uint_t dbuf_cache_hiwater_pct = 10;
290 uint_t dbuf_cache_lowater_pct = 10;
291
292 SYSCTL_DECL(_vfs_zfs);
293 SYSCTL_QUAD(_vfs_zfs, OID_AUTO, dbuf_cache_max_bytes, CTLFLAG_RWTUN,
294     &dbuf_cache_max_bytes, 0, "dbuf cache size in bytes");
295 SYSCTL_QUAD(_vfs_zfs, OID_AUTO, dbuf_metadata_cache_max_bytes, CTLFLAG_RWTUN,
296     &dbuf_metadata_cache_max_bytes, 0, "dbuf metadata cache size in bytes");
297 SYSCTL_INT(_vfs_zfs, OID_AUTO, dbuf_cache_shift, CTLFLAG_RDTUN,
298     &dbuf_cache_shift, 0, "dbuf cache size as log2 fraction of ARC");
299 SYSCTL_INT(_vfs_zfs, OID_AUTO, dbuf_metadata_cache_shift, CTLFLAG_RDTUN,
300     &dbuf_metadata_cache_shift, 0,
301     "dbuf metadata cache size as log2 fraction of ARC");
302 SYSCTL_QUAD(_vfs_zfs, OID_AUTO, dbuf_metadata_cache_overflow, CTLFLAG_RD,
303     &dbuf_metadata_cache_overflow, 0, "dbuf metadata cache overflow");
304 SYSCTL_UINT(_vfs_zfs, OID_AUTO, dbuf_cache_hiwater_pct, CTLFLAG_RWTUN,
305     &dbuf_cache_hiwater_pct, 0, "max percents above the dbuf cache size");
306 SYSCTL_UINT(_vfs_zfs, OID_AUTO, dbuf_cache_lowater_pct, CTLFLAG_RWTUN,
307     &dbuf_cache_lowater_pct, 0, "max percents below the dbuf cache size");
308
309 /* ARGSUSED */
310 static int
311 dbuf_cons(void *vdb, void *unused, int kmflag)
312 {
313         dmu_buf_impl_t *db = vdb;
314         bzero(db, sizeof (dmu_buf_impl_t));
315
316         mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
317         cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
318         multilist_link_init(&db->db_cache_link);
319         refcount_create(&db->db_holds);
320
321         return (0);
322 }
323
324 /* ARGSUSED */
325 static void
326 dbuf_dest(void *vdb, void *unused)
327 {
328         dmu_buf_impl_t *db = vdb;
329         mutex_destroy(&db->db_mtx);
330         cv_destroy(&db->db_changed);
331         ASSERT(!multilist_link_active(&db->db_cache_link));
332         refcount_destroy(&db->db_holds);
333 }
334
335 /*
336  * dbuf hash table routines
337  */
338 static dbuf_hash_table_t dbuf_hash_table;
339
340 static uint64_t dbuf_hash_count;
341
342 /*
343  * We use Cityhash for this. It's fast, and has good hash properties without
344  * requiring any large static buffers.
345  */
346 static uint64_t
347 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
348 {
349         return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
350 }
351
352 #define DBUF_EQUAL(dbuf, os, obj, level, blkid)         \
353         ((dbuf)->db.db_object == (obj) &&               \
354         (dbuf)->db_objset == (os) &&                    \
355         (dbuf)->db_level == (level) &&                  \
356         (dbuf)->db_blkid == (blkid))
357
358 dmu_buf_impl_t *
359 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
360 {
361         dbuf_hash_table_t *h = &dbuf_hash_table;
362         uint64_t hv = dbuf_hash(os, obj, level, blkid);
363         uint64_t idx = hv & h->hash_table_mask;
364         dmu_buf_impl_t *db;
365
366         mutex_enter(DBUF_HASH_MUTEX(h, idx));
367         for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
368                 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
369                         mutex_enter(&db->db_mtx);
370                         if (db->db_state != DB_EVICTING) {
371                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
372                                 return (db);
373                         }
374                         mutex_exit(&db->db_mtx);
375                 }
376         }
377         mutex_exit(DBUF_HASH_MUTEX(h, idx));
378         return (NULL);
379 }
380
381 static dmu_buf_impl_t *
382 dbuf_find_bonus(objset_t *os, uint64_t object)
383 {
384         dnode_t *dn;
385         dmu_buf_impl_t *db = NULL;
386
387         if (dnode_hold(os, object, FTAG, &dn) == 0) {
388                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
389                 if (dn->dn_bonus != NULL) {
390                         db = dn->dn_bonus;
391                         mutex_enter(&db->db_mtx);
392                 }
393                 rw_exit(&dn->dn_struct_rwlock);
394                 dnode_rele(dn, FTAG);
395         }
396         return (db);
397 }
398
399 /*
400  * Insert an entry into the hash table.  If there is already an element
401  * equal to elem in the hash table, then the already existing element
402  * will be returned and the new element will not be inserted.
403  * Otherwise returns NULL.
404  */
405 static dmu_buf_impl_t *
406 dbuf_hash_insert(dmu_buf_impl_t *db)
407 {
408         dbuf_hash_table_t *h = &dbuf_hash_table;
409         objset_t *os = db->db_objset;
410         uint64_t obj = db->db.db_object;
411         int level = db->db_level;
412         uint64_t blkid, hv, idx;
413         dmu_buf_impl_t *dbf;
414         uint32_t i;
415
416         blkid = db->db_blkid;
417         hv = dbuf_hash(os, obj, level, blkid);
418         idx = hv & h->hash_table_mask;
419
420         mutex_enter(DBUF_HASH_MUTEX(h, idx));
421         for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
422             dbf = dbf->db_hash_next, i++) {
423                 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
424                         mutex_enter(&dbf->db_mtx);
425                         if (dbf->db_state != DB_EVICTING) {
426                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
427                                 return (dbf);
428                         }
429                         mutex_exit(&dbf->db_mtx);
430                 }
431         }
432
433         if (i > 0) {
434                 DBUF_STAT_BUMP(hash_collisions);
435                 if (i == 1)
436                         DBUF_STAT_BUMP(hash_chains);
437
438                 DBUF_STAT_MAX(hash_chain_max, i);
439         }
440
441         mutex_enter(&db->db_mtx);
442         db->db_hash_next = h->hash_table[idx];
443         h->hash_table[idx] = db;
444         mutex_exit(DBUF_HASH_MUTEX(h, idx));
445         atomic_inc_64(&dbuf_hash_count);
446         DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
447
448         return (NULL);
449 }
450
451 /*
452  * Remove an entry from the hash table.  It must be in the EVICTING state.
453  */
454 static void
455 dbuf_hash_remove(dmu_buf_impl_t *db)
456 {
457         dbuf_hash_table_t *h = &dbuf_hash_table;
458         uint64_t hv, idx;
459         dmu_buf_impl_t *dbf, **dbp;
460
461         hv = dbuf_hash(db->db_objset, db->db.db_object,
462             db->db_level, db->db_blkid);
463         idx = hv & h->hash_table_mask;
464
465         /*
466          * We mustn't hold db_mtx to maintain lock ordering:
467          * DBUF_HASH_MUTEX > db_mtx.
468          */
469         ASSERT(refcount_is_zero(&db->db_holds));
470         ASSERT(db->db_state == DB_EVICTING);
471         ASSERT(!MUTEX_HELD(&db->db_mtx));
472
473         mutex_enter(DBUF_HASH_MUTEX(h, idx));
474         dbp = &h->hash_table[idx];
475         while ((dbf = *dbp) != db) {
476                 dbp = &dbf->db_hash_next;
477                 ASSERT(dbf != NULL);
478         }
479         *dbp = db->db_hash_next;
480         db->db_hash_next = NULL;
481         if (h->hash_table[idx] &&
482             h->hash_table[idx]->db_hash_next == NULL)
483                 DBUF_STAT_BUMPDOWN(hash_chains);
484         mutex_exit(DBUF_HASH_MUTEX(h, idx));
485         atomic_dec_64(&dbuf_hash_count);
486 }
487
488 typedef enum {
489         DBVU_EVICTING,
490         DBVU_NOT_EVICTING
491 } dbvu_verify_type_t;
492
493 static void
494 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
495 {
496 #ifdef ZFS_DEBUG
497         int64_t holds;
498
499         if (db->db_user == NULL)
500                 return;
501
502         /* Only data blocks support the attachment of user data. */
503         ASSERT(db->db_level == 0);
504
505         /* Clients must resolve a dbuf before attaching user data. */
506         ASSERT(db->db.db_data != NULL);
507         ASSERT3U(db->db_state, ==, DB_CACHED);
508
509         holds = refcount_count(&db->db_holds);
510         if (verify_type == DBVU_EVICTING) {
511                 /*
512                  * Immediate eviction occurs when holds == dirtycnt.
513                  * For normal eviction buffers, holds is zero on
514                  * eviction, except when dbuf_fix_old_data() calls
515                  * dbuf_clear_data().  However, the hold count can grow
516                  * during eviction even though db_mtx is held (see
517                  * dmu_bonus_hold() for an example), so we can only
518                  * test the generic invariant that holds >= dirtycnt.
519                  */
520                 ASSERT3U(holds, >=, db->db_dirtycnt);
521         } else {
522                 if (db->db_user_immediate_evict == TRUE)
523                         ASSERT3U(holds, >=, db->db_dirtycnt);
524                 else
525                         ASSERT3U(holds, >, 0);
526         }
527 #endif
528 }
529
530 static void
531 dbuf_evict_user(dmu_buf_impl_t *db)
532 {
533         dmu_buf_user_t *dbu = db->db_user;
534
535         ASSERT(MUTEX_HELD(&db->db_mtx));
536
537         if (dbu == NULL)
538                 return;
539
540         dbuf_verify_user(db, DBVU_EVICTING);
541         db->db_user = NULL;
542
543 #ifdef ZFS_DEBUG
544         if (dbu->dbu_clear_on_evict_dbufp != NULL)
545                 *dbu->dbu_clear_on_evict_dbufp = NULL;
546 #endif
547
548         /*
549          * There are two eviction callbacks - one that we call synchronously
550          * and one that we invoke via a taskq.  The async one is useful for
551          * avoiding lock order reversals and limiting stack depth.
552          *
553          * Note that if we have a sync callback but no async callback,
554          * it's likely that the sync callback will free the structure
555          * containing the dbu.  In that case we need to take care to not
556          * dereference dbu after calling the sync evict func.
557          */
558         boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
559
560         if (dbu->dbu_evict_func_sync != NULL)
561                 dbu->dbu_evict_func_sync(dbu);
562
563         if (has_async) {
564                 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
565                     dbu, 0, &dbu->dbu_tqent);
566         }
567 }
568
569 boolean_t
570 dbuf_is_metadata(dmu_buf_impl_t *db)
571 {
572         if (db->db_level > 0) {
573                 return (B_TRUE);
574         } else {
575                 boolean_t is_metadata;
576
577                 DB_DNODE_ENTER(db);
578                 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
579                 DB_DNODE_EXIT(db);
580
581                 return (is_metadata);
582         }
583 }
584
585 /*
586  * This returns whether this dbuf should be stored in the metadata cache, which
587  * is based on whether it's from one of the dnode types that store data related
588  * to traversing dataset hierarchies.
589  */
590 static boolean_t
591 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
592 {
593         DB_DNODE_ENTER(db);
594         dmu_object_type_t type = DB_DNODE(db)->dn_type;
595         DB_DNODE_EXIT(db);
596
597         /* Check if this dbuf is one of the types we care about */
598         if (DMU_OT_IS_METADATA_CACHED(type)) {
599                 /* If we hit this, then we set something up wrong in dmu_ot */
600                 ASSERT(DMU_OT_IS_METADATA(type));
601
602                 /*
603                  * Sanity check for small-memory systems: don't allocate too
604                  * much memory for this purpose.
605                  */
606                 if (refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
607                     dbuf_metadata_cache_max_bytes) {
608                         dbuf_metadata_cache_overflow++;
609                         DTRACE_PROBE1(dbuf__metadata__cache__overflow,
610                             dmu_buf_impl_t *, db);
611                         return (B_FALSE);
612                 }
613
614                 return (B_TRUE);
615         }
616
617         return (B_FALSE);
618 }
619
620 /*
621  * This function *must* return indices evenly distributed between all
622  * sublists of the multilist. This is needed due to how the dbuf eviction
623  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
624  * distributed between all sublists and uses this assumption when
625  * deciding which sublist to evict from and how much to evict from it.
626  */
627 unsigned int
628 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
629 {
630         dmu_buf_impl_t *db = obj;
631
632         /*
633          * The assumption here, is the hash value for a given
634          * dmu_buf_impl_t will remain constant throughout it's lifetime
635          * (i.e. it's objset, object, level and blkid fields don't change).
636          * Thus, we don't need to store the dbuf's sublist index
637          * on insertion, as this index can be recalculated on removal.
638          *
639          * Also, the low order bits of the hash value are thought to be
640          * distributed evenly. Otherwise, in the case that the multilist
641          * has a power of two number of sublists, each sublists' usage
642          * would not be evenly distributed.
643          */
644         return (dbuf_hash(db->db_objset, db->db.db_object,
645             db->db_level, db->db_blkid) %
646             multilist_get_num_sublists(ml));
647 }
648
649 static inline unsigned long
650 dbuf_cache_target_bytes(void)
651 {
652         return MIN(dbuf_cache_max_bytes,
653             arc_max_bytes() >> dbuf_cache_shift);
654 }
655
656 static inline uint64_t
657 dbuf_cache_hiwater_bytes(void)
658 {
659         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
660         return (dbuf_cache_target +
661             (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
662 }
663
664 static inline uint64_t
665 dbuf_cache_lowater_bytes(void)
666 {
667         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
668         return (dbuf_cache_target -
669             (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
670 }
671
672 static inline boolean_t
673 dbuf_cache_above_hiwater(void)
674 {
675         return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
676             dbuf_cache_hiwater_bytes());
677 }
678
679 static inline boolean_t
680 dbuf_cache_above_lowater(void)
681 {
682         return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
683             dbuf_cache_lowater_bytes());
684 }
685
686 /*
687  * Evict the oldest eligible dbuf from the dbuf cache.
688  */
689 static void
690 dbuf_evict_one(void)
691 {
692         int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
693         multilist_sublist_t *mls = multilist_sublist_lock(
694             dbuf_caches[DB_DBUF_CACHE].cache, idx);
695
696         ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
697
698         dmu_buf_impl_t *db = multilist_sublist_tail(mls);
699         while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
700                 db = multilist_sublist_prev(mls, db);
701         }
702
703         DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
704             multilist_sublist_t *, mls);
705
706         if (db != NULL) {
707                 multilist_sublist_remove(mls, db);
708                 multilist_sublist_unlock(mls);
709                 (void) refcount_remove_many(&dbuf_caches[DB_DBUF_CACHE].size,
710                     db->db.db_size, db);
711                 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
712                 DBUF_STAT_BUMPDOWN(cache_count);
713                 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
714                     db->db.db_size);
715                 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
716                 db->db_caching_status = DB_NO_CACHE;
717                 dbuf_destroy(db);
718                 DBUF_STAT_MAX(cache_size_bytes_max,
719                     refcount_count(&dbuf_caches[DB_DBUF_CACHE].size));
720                 DBUF_STAT_BUMP(cache_total_evicts);
721         } else {
722                 multilist_sublist_unlock(mls);
723         }
724 }
725
726 /*
727  * The dbuf evict thread is responsible for aging out dbufs from the
728  * cache. Once the cache has reached it's maximum size, dbufs are removed
729  * and destroyed. The eviction thread will continue running until the size
730  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
731  * out of the cache it is destroyed and becomes eligible for arc eviction.
732  */
733 /* ARGSUSED */
734 static void
735 dbuf_evict_thread(void *unused __unused)
736 {
737         callb_cpr_t cpr;
738
739         CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
740
741         mutex_enter(&dbuf_evict_lock);
742         while (!dbuf_evict_thread_exit) {
743                 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
744                         CALLB_CPR_SAFE_BEGIN(&cpr);
745                         (void) cv_timedwait_hires(&dbuf_evict_cv,
746                             &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
747                         CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
748                 }
749                 mutex_exit(&dbuf_evict_lock);
750
751                 /*
752                  * Keep evicting as long as we're above the low water mark
753                  * for the cache. We do this without holding the locks to
754                  * minimize lock contention.
755                  */
756                 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
757                         dbuf_evict_one();
758                 }
759
760                 mutex_enter(&dbuf_evict_lock);
761         }
762
763         dbuf_evict_thread_exit = B_FALSE;
764         cv_broadcast(&dbuf_evict_cv);
765         CALLB_CPR_EXIT(&cpr);   /* drops dbuf_evict_lock */
766         thread_exit();
767 }
768
769 /*
770  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
771  * If the dbuf cache is at its high water mark, then evict a dbuf from the
772  * dbuf cache using the callers context.
773  */
774 static void
775 dbuf_evict_notify(void)
776 {
777         /*
778          * We check if we should evict without holding the dbuf_evict_lock,
779          * because it's OK to occasionally make the wrong decision here,
780          * and grabbing the lock results in massive lock contention.
781          */
782         if (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
783             dbuf_cache_max_bytes) {
784                 if (dbuf_cache_above_hiwater())
785                         dbuf_evict_one();
786                 cv_signal(&dbuf_evict_cv);
787         }
788 }
789
790 static int
791 dbuf_kstat_update(kstat_t *ksp, int rw)
792 {
793         dbuf_stats_t *ds = ksp->ks_data;
794
795         if (rw == KSTAT_WRITE) {
796                 return (SET_ERROR(EACCES));
797         } else {
798                 ds->metadata_cache_size_bytes.value.ui64 =
799                     refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size);
800                 ds->cache_size_bytes.value.ui64 =
801                     refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
802                 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
803                 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
804                 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
805                 ds->hash_elements.value.ui64 = dbuf_hash_count;
806         }
807
808         return (0);
809 }
810
811 void
812 dbuf_init(void)
813 {
814         uint64_t hsize = 1ULL << 16;
815         dbuf_hash_table_t *h = &dbuf_hash_table;
816         int i;
817
818         /*
819          * The hash table is big enough to fill all of physical memory
820          * with an average 4K block size.  The table will take up
821          * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
822          */
823         while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
824                 hsize <<= 1;
825
826 retry:
827         h->hash_table_mask = hsize - 1;
828         h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
829         if (h->hash_table == NULL) {
830                 /* XXX - we should really return an error instead of assert */
831                 ASSERT(hsize > (1ULL << 10));
832                 hsize >>= 1;
833                 goto retry;
834         }
835
836         dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
837             sizeof (dmu_buf_impl_t),
838             0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
839
840         for (i = 0; i < DBUF_MUTEXES; i++)
841                 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
842
843         dbuf_stats_init(h);
844         /*
845          * Setup the parameters for the dbuf caches. We set the sizes of the
846          * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
847          * of the size of the ARC, respectively. If the values are set in
848          * /etc/system and they're not greater than the size of the ARC, then
849          * we honor that value.
850          */
851         if (dbuf_cache_max_bytes == 0 ||
852             dbuf_cache_max_bytes >= arc_max_bytes())  {
853                 dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift;
854         }
855         if (dbuf_metadata_cache_max_bytes == 0 ||
856             dbuf_metadata_cache_max_bytes >= arc_max_bytes()) {
857                 dbuf_metadata_cache_max_bytes =
858                     arc_max_bytes() >> dbuf_metadata_cache_shift;
859         }
860
861         /*
862          * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
863          * configuration is not required.
864          */
865         dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
866
867         for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
868                 dbuf_caches[dcs].cache =
869                     multilist_create(sizeof (dmu_buf_impl_t),
870                     offsetof(dmu_buf_impl_t, db_cache_link),
871                     dbuf_cache_multilist_index_func);
872                 refcount_create(&dbuf_caches[dcs].size);
873         }
874
875         dbuf_evict_thread_exit = B_FALSE;
876         mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
877         cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
878         dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
879             NULL, 0, &p0, TS_RUN, minclsyspri);
880
881 #ifdef __linux__
882         /*
883          * XXX FreeBSD's SPL lacks KSTAT_TYPE_NAMED support - TODO 
884          */
885         dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
886             KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
887             KSTAT_FLAG_VIRTUAL);
888         if (dbuf_ksp != NULL) {
889                 dbuf_ksp->ks_data = &dbuf_stats;
890                 dbuf_ksp->ks_update = dbuf_kstat_update;
891                 kstat_install(dbuf_ksp);
892
893                 for (i = 0; i < DN_MAX_LEVELS; i++) {
894                         snprintf(dbuf_stats.cache_levels[i].name,
895                             KSTAT_STRLEN, "cache_level_%d", i);
896                         dbuf_stats.cache_levels[i].data_type =
897                             KSTAT_DATA_UINT64;
898                         snprintf(dbuf_stats.cache_levels_bytes[i].name,
899                             KSTAT_STRLEN, "cache_level_%d_bytes", i);
900                         dbuf_stats.cache_levels_bytes[i].data_type =
901                             KSTAT_DATA_UINT64;
902                 }
903         }
904 #endif  
905 }
906
907 void
908 dbuf_fini(void)
909 {
910         dbuf_hash_table_t *h = &dbuf_hash_table;
911         int i;
912
913         dbuf_stats_destroy();
914
915         for (i = 0; i < DBUF_MUTEXES; i++)
916                 mutex_destroy(&h->hash_mutexes[i]);
917         kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
918         kmem_cache_destroy(dbuf_kmem_cache);
919         taskq_destroy(dbu_evict_taskq);
920
921         mutex_enter(&dbuf_evict_lock);
922         dbuf_evict_thread_exit = B_TRUE;
923         while (dbuf_evict_thread_exit) {
924                 cv_signal(&dbuf_evict_cv);
925                 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
926         }
927         mutex_exit(&dbuf_evict_lock);
928
929         mutex_destroy(&dbuf_evict_lock);
930         cv_destroy(&dbuf_evict_cv);
931
932         for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
933                 refcount_destroy(&dbuf_caches[dcs].size);
934                 multilist_destroy(dbuf_caches[dcs].cache);
935         }
936
937         if (dbuf_ksp != NULL) {
938                 kstat_delete(dbuf_ksp);
939                 dbuf_ksp = NULL;
940         }
941 }
942
943 /*
944  * Other stuff.
945  */
946
947 #ifdef ZFS_DEBUG
948 static void
949 dbuf_verify(dmu_buf_impl_t *db)
950 {
951         dnode_t *dn;
952         dbuf_dirty_record_t *dr;
953
954         ASSERT(MUTEX_HELD(&db->db_mtx));
955
956         if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
957                 return;
958
959         ASSERT(db->db_objset != NULL);
960         DB_DNODE_ENTER(db);
961         dn = DB_DNODE(db);
962         if (dn == NULL) {
963                 ASSERT(db->db_parent == NULL);
964                 ASSERT(db->db_blkptr == NULL);
965         } else {
966                 ASSERT3U(db->db.db_object, ==, dn->dn_object);
967                 ASSERT3P(db->db_objset, ==, dn->dn_objset);
968                 ASSERT3U(db->db_level, <, dn->dn_nlevels);
969                 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
970                     db->db_blkid == DMU_SPILL_BLKID ||
971                     !avl_is_empty(&dn->dn_dbufs));
972         }
973         if (db->db_blkid == DMU_BONUS_BLKID) {
974                 ASSERT(dn != NULL);
975                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
976                 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
977         } else if (db->db_blkid == DMU_SPILL_BLKID) {
978                 ASSERT(dn != NULL);
979                 ASSERT0(db->db.db_offset);
980         } else {
981                 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
982         }
983
984         for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
985                 ASSERT(dr->dr_dbuf == db);
986
987         for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
988                 ASSERT(dr->dr_dbuf == db);
989
990         /*
991          * We can't assert that db_size matches dn_datablksz because it
992          * can be momentarily different when another thread is doing
993          * dnode_set_blksz().
994          */
995         if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
996                 dr = db->db_data_pending;
997                 /*
998                  * It should only be modified in syncing context, so
999                  * make sure we only have one copy of the data.
1000                  */
1001                 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1002         }
1003
1004         /* verify db->db_blkptr */
1005         if (db->db_blkptr) {
1006                 if (db->db_parent == dn->dn_dbuf) {
1007                         /* db is pointed to by the dnode */
1008                         /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1009                         if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1010                                 ASSERT(db->db_parent == NULL);
1011                         else
1012                                 ASSERT(db->db_parent != NULL);
1013                         if (db->db_blkid != DMU_SPILL_BLKID)
1014                                 ASSERT3P(db->db_blkptr, ==,
1015                                     &dn->dn_phys->dn_blkptr[db->db_blkid]);
1016                 } else {
1017                         /* db is pointed to by an indirect block */
1018                         int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
1019                         ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1020                         ASSERT3U(db->db_parent->db.db_object, ==,
1021                             db->db.db_object);
1022                         /*
1023                          * dnode_grow_indblksz() can make this fail if we don't
1024                          * have the struct_rwlock.  XXX indblksz no longer
1025                          * grows.  safe to do this now?
1026                          */
1027                         if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1028                                 ASSERT3P(db->db_blkptr, ==,
1029                                     ((blkptr_t *)db->db_parent->db.db_data +
1030                                     db->db_blkid % epb));
1031                         }
1032                 }
1033         }
1034         if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1035             (db->db_buf == NULL || db->db_buf->b_data) &&
1036             db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1037             db->db_state != DB_FILL && !dn->dn_free_txg) {
1038                 /*
1039                  * If the blkptr isn't set but they have nonzero data,
1040                  * it had better be dirty, otherwise we'll lose that
1041                  * data when we evict this buffer.
1042                  *
1043                  * There is an exception to this rule for indirect blocks; in
1044                  * this case, if the indirect block is a hole, we fill in a few
1045                  * fields on each of the child blocks (importantly, birth time)
1046                  * to prevent hole birth times from being lost when you
1047                  * partially fill in a hole.
1048                  */
1049                 if (db->db_dirtycnt == 0) {
1050                         if (db->db_level == 0) {
1051                                 uint64_t *buf = db->db.db_data;
1052                                 int i;
1053
1054                                 for (i = 0; i < db->db.db_size >> 3; i++) {
1055                                         ASSERT(buf[i] == 0);
1056                                 }
1057                         } else {
1058                                 blkptr_t *bps = db->db.db_data;
1059                                 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1060                                     db->db.db_size);
1061                                 /*
1062                                  * We want to verify that all the blkptrs in the
1063                                  * indirect block are holes, but we may have
1064                                  * automatically set up a few fields for them.
1065                                  * We iterate through each blkptr and verify
1066                                  * they only have those fields set.
1067                                  */
1068                                 for (int i = 0;
1069                                     i < db->db.db_size / sizeof (blkptr_t);
1070                                     i++) {
1071                                         blkptr_t *bp = &bps[i];
1072                                         ASSERT(ZIO_CHECKSUM_IS_ZERO(
1073                                             &bp->blk_cksum));
1074                                         ASSERT(
1075                                             DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1076                                             DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1077                                             DVA_IS_EMPTY(&bp->blk_dva[2]));
1078                                         ASSERT0(bp->blk_fill);
1079                                         ASSERT0(bp->blk_pad[0]);
1080                                         ASSERT0(bp->blk_pad[1]);
1081                                         ASSERT(!BP_IS_EMBEDDED(bp));
1082                                         ASSERT(BP_IS_HOLE(bp));
1083                                         ASSERT0(bp->blk_phys_birth);
1084                                 }
1085                         }
1086                 }
1087         }
1088         DB_DNODE_EXIT(db);
1089 }
1090 #endif
1091
1092 static void
1093 dbuf_clear_data(dmu_buf_impl_t *db)
1094 {
1095         ASSERT(MUTEX_HELD(&db->db_mtx));
1096         dbuf_evict_user(db);
1097         ASSERT3P(db->db_buf, ==, NULL);
1098         db->db.db_data = NULL;
1099         if (db->db_state != DB_NOFILL)
1100                 db->db_state = DB_UNCACHED;
1101 }
1102
1103 static void
1104 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1105 {
1106         ASSERT(MUTEX_HELD(&db->db_mtx));
1107         ASSERT(buf != NULL);
1108
1109         db->db_buf = buf;
1110         ASSERT(buf->b_data != NULL);
1111         db->db.db_data = buf->b_data;
1112 }
1113
1114 /*
1115  * Loan out an arc_buf for read.  Return the loaned arc_buf.
1116  */
1117 arc_buf_t *
1118 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1119 {
1120         arc_buf_t *abuf;
1121
1122         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1123         mutex_enter(&db->db_mtx);
1124         if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
1125                 int blksz = db->db.db_size;
1126                 spa_t *spa = db->db_objset->os_spa;
1127
1128                 mutex_exit(&db->db_mtx);
1129                 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1130                 bcopy(db->db.db_data, abuf->b_data, blksz);
1131         } else {
1132                 abuf = db->db_buf;
1133                 arc_loan_inuse_buf(abuf, db);
1134                 db->db_buf = NULL;
1135                 dbuf_clear_data(db);
1136                 mutex_exit(&db->db_mtx);
1137         }
1138         return (abuf);
1139 }
1140
1141 /*
1142  * Calculate which level n block references the data at the level 0 offset
1143  * provided.
1144  */
1145 uint64_t
1146 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
1147 {
1148         if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1149                 /*
1150                  * The level n blkid is equal to the level 0 blkid divided by
1151                  * the number of level 0s in a level n block.
1152                  *
1153                  * The level 0 blkid is offset >> datablkshift =
1154                  * offset / 2^datablkshift.
1155                  *
1156                  * The number of level 0s in a level n is the number of block
1157                  * pointers in an indirect block, raised to the power of level.
1158                  * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1159                  * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1160                  *
1161                  * Thus, the level n blkid is: offset /
1162                  * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
1163                  * = offset / 2^(datablkshift + level *
1164                  *   (indblkshift - SPA_BLKPTRSHIFT))
1165                  * = offset >> (datablkshift + level *
1166                  *   (indblkshift - SPA_BLKPTRSHIFT))
1167                  */
1168                 return (offset >> (dn->dn_datablkshift + level *
1169                     (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
1170         } else {
1171                 ASSERT3U(offset, <, dn->dn_datablksz);
1172                 return (0);
1173         }
1174 }
1175
1176 static void
1177 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1178     arc_buf_t *buf, void *vdb)
1179 {
1180         dmu_buf_impl_t *db = vdb;
1181
1182         mutex_enter(&db->db_mtx);
1183         ASSERT3U(db->db_state, ==, DB_READ);
1184         /*
1185          * All reads are synchronous, so we must have a hold on the dbuf
1186          */
1187         ASSERT(refcount_count(&db->db_holds) > 0);
1188         ASSERT(db->db_buf == NULL);
1189         ASSERT(db->db.db_data == NULL);
1190         if (buf == NULL) {
1191                 /* i/o error */
1192                 ASSERT(zio == NULL || zio->io_error != 0);
1193                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1194                 ASSERT3P(db->db_buf, ==, NULL);
1195                 db->db_state = DB_UNCACHED;
1196         } else if (db->db_level == 0 && db->db_freed_in_flight) {
1197                 /* freed in flight */
1198                 ASSERT(zio == NULL || zio->io_error == 0);
1199                 if (buf == NULL) {
1200                         buf = arc_alloc_buf(db->db_objset->os_spa,
1201                              db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1202                 }
1203                 arc_release(buf, db);
1204                 bzero(buf->b_data, db->db.db_size);
1205                 arc_buf_freeze(buf);
1206                 db->db_freed_in_flight = FALSE;
1207                 dbuf_set_data(db, buf);
1208                 db->db_state = DB_CACHED;
1209         } else {
1210                 /* success */
1211                 ASSERT(zio == NULL || zio->io_error == 0);
1212                 dbuf_set_data(db, buf);
1213                 db->db_state = DB_CACHED;
1214         }
1215         cv_broadcast(&db->db_changed);
1216         dbuf_rele_and_unlock(db, NULL, B_FALSE);
1217 }
1218
1219 static void
1220 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1221 {
1222         dnode_t *dn;
1223         zbookmark_phys_t zb;
1224         arc_flags_t aflags = ARC_FLAG_NOWAIT;
1225
1226         DB_DNODE_ENTER(db);
1227         dn = DB_DNODE(db);
1228         ASSERT(!refcount_is_zero(&db->db_holds));
1229         /* We need the struct_rwlock to prevent db_blkptr from changing. */
1230         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1231         ASSERT(MUTEX_HELD(&db->db_mtx));
1232         ASSERT(db->db_state == DB_UNCACHED);
1233         ASSERT(db->db_buf == NULL);
1234
1235         if (db->db_blkid == DMU_BONUS_BLKID) {
1236                 /*
1237                  * The bonus length stored in the dnode may be less than
1238                  * the maximum available space in the bonus buffer.
1239                  */
1240                 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1241                 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1242
1243                 ASSERT3U(bonuslen, <=, db->db.db_size);
1244                 db->db.db_data = zio_buf_alloc(max_bonuslen);
1245                 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1246                 if (bonuslen < max_bonuslen)
1247                         bzero(db->db.db_data, max_bonuslen);
1248                 if (bonuslen)
1249                         bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1250                 DB_DNODE_EXIT(db);
1251                 db->db_state = DB_CACHED;
1252                 mutex_exit(&db->db_mtx);
1253                 return;
1254         }
1255
1256         /*
1257          * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1258          * processes the delete record and clears the bp while we are waiting
1259          * for the dn_mtx (resulting in a "no" from block_freed).
1260          */
1261         if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1262             (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1263             BP_IS_HOLE(db->db_blkptr)))) {
1264                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1265
1266                 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1267                     db->db.db_size));
1268                 bzero(db->db.db_data, db->db.db_size);
1269
1270                 if (db->db_blkptr != NULL && db->db_level > 0 &&
1271                     BP_IS_HOLE(db->db_blkptr) &&
1272                     db->db_blkptr->blk_birth != 0) {
1273                         blkptr_t *bps = db->db.db_data;
1274                         for (int i = 0; i < ((1 <<
1275                             DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1276                             i++) {
1277                                 blkptr_t *bp = &bps[i];
1278                                 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1279                                     1 << dn->dn_indblkshift);
1280                                 BP_SET_LSIZE(bp,
1281                                     BP_GET_LEVEL(db->db_blkptr) == 1 ?
1282                                     dn->dn_datablksz :
1283                                     BP_GET_LSIZE(db->db_blkptr));
1284                                 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1285                                 BP_SET_LEVEL(bp,
1286                                     BP_GET_LEVEL(db->db_blkptr) - 1);
1287                                 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1288                         }
1289                 }
1290                 DB_DNODE_EXIT(db);
1291                 db->db_state = DB_CACHED;
1292                 mutex_exit(&db->db_mtx);
1293                 return;
1294         }
1295
1296         DB_DNODE_EXIT(db);
1297
1298         db->db_state = DB_READ;
1299         mutex_exit(&db->db_mtx);
1300
1301         if (DBUF_IS_L2CACHEABLE(db))
1302                 aflags |= ARC_FLAG_L2CACHE;
1303
1304         SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1305             db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1306             db->db.db_object, db->db_level, db->db_blkid);
1307
1308         dbuf_add_ref(db, NULL);
1309
1310         (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1311             dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1312             (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1313             &aflags, &zb);
1314 }
1315
1316 /*
1317  * This is our just-in-time copy function.  It makes a copy of buffers that
1318  * have been modified in a previous transaction group before we access them in
1319  * the current active group.
1320  *
1321  * This function is used in three places: when we are dirtying a buffer for the
1322  * first time in a txg, when we are freeing a range in a dnode that includes
1323  * this buffer, and when we are accessing a buffer which was received compressed
1324  * and later referenced in a WRITE_BYREF record.
1325  *
1326  * Note that when we are called from dbuf_free_range() we do not put a hold on
1327  * the buffer, we just traverse the active dbuf list for the dnode.
1328  */
1329 static void
1330 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1331 {
1332         dbuf_dirty_record_t *dr = db->db_last_dirty;
1333
1334         ASSERT(MUTEX_HELD(&db->db_mtx));
1335         ASSERT(db->db.db_data != NULL);
1336         ASSERT(db->db_level == 0);
1337         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1338
1339         if (dr == NULL ||
1340             (dr->dt.dl.dr_data !=
1341             ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1342                 return;
1343
1344         /*
1345          * If the last dirty record for this dbuf has not yet synced
1346          * and its referencing the dbuf data, either:
1347          *      reset the reference to point to a new copy,
1348          * or (if there a no active holders)
1349          *      just null out the current db_data pointer.
1350          */
1351         ASSERT(dr->dr_txg >= txg - 2);
1352         if (db->db_blkid == DMU_BONUS_BLKID) {
1353                 /* Note that the data bufs here are zio_bufs */
1354                 dnode_t *dn = DB_DNODE(db);
1355                 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1356                 dr->dt.dl.dr_data = zio_buf_alloc(bonuslen);
1357                 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1358                 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1359         } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1360                 int size = arc_buf_size(db->db_buf);
1361                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1362                 spa_t *spa = db->db_objset->os_spa;
1363                 enum zio_compress compress_type =
1364                     arc_get_compression(db->db_buf);
1365
1366                 if (compress_type == ZIO_COMPRESS_OFF) {
1367                         dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1368                 } else {
1369                         ASSERT3U(type, ==, ARC_BUFC_DATA);
1370                         dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1371                             size, arc_buf_lsize(db->db_buf), compress_type);
1372                 }
1373                 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1374         } else {
1375                 db->db_buf = NULL;
1376                 dbuf_clear_data(db);
1377         }
1378 }
1379
1380 int
1381 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1382 {
1383         int err = 0;
1384         boolean_t prefetch;
1385         dnode_t *dn;
1386
1387         /*
1388          * We don't have to hold the mutex to check db_state because it
1389          * can't be freed while we have a hold on the buffer.
1390          */
1391         ASSERT(!refcount_is_zero(&db->db_holds));
1392
1393         if (db->db_state == DB_NOFILL)
1394                 return (SET_ERROR(EIO));
1395
1396         DB_DNODE_ENTER(db);
1397         dn = DB_DNODE(db);
1398         if ((flags & DB_RF_HAVESTRUCT) == 0)
1399                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1400
1401         prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1402             (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1403             DBUF_IS_CACHEABLE(db);
1404
1405         mutex_enter(&db->db_mtx);
1406         if (db->db_state == DB_CACHED) {
1407                 /*
1408                  * If the arc buf is compressed, we need to decompress it to
1409                  * read the data. This could happen during the "zfs receive" of
1410                  * a stream which is compressed and deduplicated.
1411                  */
1412                 if (db->db_buf != NULL &&
1413                     arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1414                         dbuf_fix_old_data(db,
1415                             spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1416                         err = arc_decompress(db->db_buf);
1417                         dbuf_set_data(db, db->db_buf);
1418                 }
1419                 mutex_exit(&db->db_mtx);
1420                 if (prefetch)
1421                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1422                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1423                         rw_exit(&dn->dn_struct_rwlock);
1424                 DB_DNODE_EXIT(db);
1425                 DBUF_STAT_BUMP(hash_hits);
1426         } else if (db->db_state == DB_UNCACHED) {
1427                 spa_t *spa = dn->dn_objset->os_spa;
1428                 boolean_t need_wait = B_FALSE;
1429
1430                 if (zio == NULL &&
1431                     db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1432                         zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1433                         need_wait = B_TRUE;
1434                 }
1435                 dbuf_read_impl(db, zio, flags);
1436
1437                 /* dbuf_read_impl has dropped db_mtx for us */
1438
1439                 if (prefetch)
1440                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1441
1442                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1443                         rw_exit(&dn->dn_struct_rwlock);
1444                 DB_DNODE_EXIT(db);
1445                 DBUF_STAT_BUMP(hash_misses);
1446
1447                 if (need_wait)
1448                         err = zio_wait(zio);
1449         } else {
1450                 /*
1451                  * Another reader came in while the dbuf was in flight
1452                  * between UNCACHED and CACHED.  Either a writer will finish
1453                  * writing the buffer (sending the dbuf to CACHED) or the
1454                  * first reader's request will reach the read_done callback
1455                  * and send the dbuf to CACHED.  Otherwise, a failure
1456                  * occurred and the dbuf went to UNCACHED.
1457                  */
1458                 mutex_exit(&db->db_mtx);
1459                 if (prefetch)
1460                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1461                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1462                         rw_exit(&dn->dn_struct_rwlock);
1463                 DB_DNODE_EXIT(db);
1464                 DBUF_STAT_BUMP(hash_misses);
1465
1466                 /* Skip the wait per the caller's request. */
1467                 mutex_enter(&db->db_mtx);
1468                 if ((flags & DB_RF_NEVERWAIT) == 0) {
1469                         while (db->db_state == DB_READ ||
1470                             db->db_state == DB_FILL) {
1471                                 ASSERT(db->db_state == DB_READ ||
1472                                     (flags & DB_RF_HAVESTRUCT) == 0);
1473                                 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1474                                     db, zio_t *, zio);
1475                                 cv_wait(&db->db_changed, &db->db_mtx);
1476                         }
1477                         if (db->db_state == DB_UNCACHED)
1478                                 err = SET_ERROR(EIO);
1479                 }
1480                 mutex_exit(&db->db_mtx);
1481         }
1482
1483         return (err);
1484 }
1485
1486 static void
1487 dbuf_noread(dmu_buf_impl_t *db)
1488 {
1489         ASSERT(!refcount_is_zero(&db->db_holds));
1490         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1491         mutex_enter(&db->db_mtx);
1492         while (db->db_state == DB_READ || db->db_state == DB_FILL)
1493                 cv_wait(&db->db_changed, &db->db_mtx);
1494         if (db->db_state == DB_UNCACHED) {
1495                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1496                 spa_t *spa = db->db_objset->os_spa;
1497
1498                 ASSERT(db->db_buf == NULL);
1499                 ASSERT(db->db.db_data == NULL);
1500                 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1501                 db->db_state = DB_FILL;
1502         } else if (db->db_state == DB_NOFILL) {
1503                 dbuf_clear_data(db);
1504         } else {
1505                 ASSERT3U(db->db_state, ==, DB_CACHED);
1506         }
1507         mutex_exit(&db->db_mtx);
1508 }
1509
1510 void
1511 dbuf_unoverride(dbuf_dirty_record_t *dr)
1512 {
1513         dmu_buf_impl_t *db = dr->dr_dbuf;
1514         blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1515         uint64_t txg = dr->dr_txg;
1516
1517         ASSERT(MUTEX_HELD(&db->db_mtx));
1518         /*
1519          * This assert is valid because dmu_sync() expects to be called by
1520          * a zilog's get_data while holding a range lock.  This call only
1521          * comes from dbuf_dirty() callers who must also hold a range lock.
1522          */
1523         ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1524         ASSERT(db->db_level == 0);
1525
1526         if (db->db_blkid == DMU_BONUS_BLKID ||
1527             dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1528                 return;
1529
1530         ASSERT(db->db_data_pending != dr);
1531
1532         /* free this block */
1533         if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1534                 zio_free(db->db_objset->os_spa, txg, bp);
1535
1536         dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1537         dr->dt.dl.dr_nopwrite = B_FALSE;
1538
1539         /*
1540          * Release the already-written buffer, so we leave it in
1541          * a consistent dirty state.  Note that all callers are
1542          * modifying the buffer, so they will immediately do
1543          * another (redundant) arc_release().  Therefore, leave
1544          * the buf thawed to save the effort of freezing &
1545          * immediately re-thawing it.
1546          */
1547         arc_release(dr->dt.dl.dr_data, db);
1548 }
1549
1550 /*
1551  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1552  * data blocks in the free range, so that any future readers will find
1553  * empty blocks.
1554  */
1555 void
1556 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1557     dmu_tx_t *tx)
1558 {
1559         dmu_buf_impl_t db_search;
1560         dmu_buf_impl_t *db, *db_next;
1561         uint64_t txg = tx->tx_txg;
1562         avl_index_t where;
1563
1564         if (end_blkid > dn->dn_maxblkid &&
1565             !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1566                 end_blkid = dn->dn_maxblkid;
1567         dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1568
1569         db_search.db_level = 0;
1570         db_search.db_blkid = start_blkid;
1571         db_search.db_state = DB_SEARCH;
1572
1573         mutex_enter(&dn->dn_dbufs_mtx);
1574         db = avl_find(&dn->dn_dbufs, &db_search, &where);
1575         ASSERT3P(db, ==, NULL);
1576
1577         db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1578
1579         for (; db != NULL; db = db_next) {
1580                 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1581                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1582
1583                 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1584                         break;
1585                 }
1586                 ASSERT3U(db->db_blkid, >=, start_blkid);
1587
1588                 /* found a level 0 buffer in the range */
1589                 mutex_enter(&db->db_mtx);
1590                 if (dbuf_undirty(db, tx)) {
1591                         /* mutex has been dropped and dbuf destroyed */
1592                         continue;
1593                 }
1594
1595                 if (db->db_state == DB_UNCACHED ||
1596                     db->db_state == DB_NOFILL ||
1597                     db->db_state == DB_EVICTING) {
1598                         ASSERT(db->db.db_data == NULL);
1599                         mutex_exit(&db->db_mtx);
1600                         continue;
1601                 }
1602                 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1603                         /* will be handled in dbuf_read_done or dbuf_rele */
1604                         db->db_freed_in_flight = TRUE;
1605                         mutex_exit(&db->db_mtx);
1606                         continue;
1607                 }
1608                 if (refcount_count(&db->db_holds) == 0) {
1609                         ASSERT(db->db_buf);
1610                         dbuf_destroy(db);
1611                         continue;
1612                 }
1613                 /* The dbuf is referenced */
1614
1615                 if (db->db_last_dirty != NULL) {
1616                         dbuf_dirty_record_t *dr = db->db_last_dirty;
1617
1618                         if (dr->dr_txg == txg) {
1619                                 /*
1620                                  * This buffer is "in-use", re-adjust the file
1621                                  * size to reflect that this buffer may
1622                                  * contain new data when we sync.
1623                                  */
1624                                 if (db->db_blkid != DMU_SPILL_BLKID &&
1625                                     db->db_blkid > dn->dn_maxblkid)
1626                                         dn->dn_maxblkid = db->db_blkid;
1627                                 dbuf_unoverride(dr);
1628                         } else {
1629                                 /*
1630                                  * This dbuf is not dirty in the open context.
1631                                  * Either uncache it (if its not referenced in
1632                                  * the open context) or reset its contents to
1633                                  * empty.
1634                                  */
1635                                 dbuf_fix_old_data(db, txg);
1636                         }
1637                 }
1638                 /* clear the contents if its cached */
1639                 if (db->db_state == DB_CACHED) {
1640                         ASSERT(db->db.db_data != NULL);
1641                         arc_release(db->db_buf, db);
1642                         bzero(db->db.db_data, db->db.db_size);
1643                         arc_buf_freeze(db->db_buf);
1644                 }
1645
1646                 mutex_exit(&db->db_mtx);
1647         }
1648         mutex_exit(&dn->dn_dbufs_mtx);
1649 }
1650
1651 void
1652 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1653 {
1654         arc_buf_t *buf, *obuf;
1655         int osize = db->db.db_size;
1656         arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1657         dnode_t *dn;
1658
1659         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1660
1661         DB_DNODE_ENTER(db);
1662         dn = DB_DNODE(db);
1663
1664         /* XXX does *this* func really need the lock? */
1665         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1666
1667         /*
1668          * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1669          * is OK, because there can be no other references to the db
1670          * when we are changing its size, so no concurrent DB_FILL can
1671          * be happening.
1672          */
1673         /*
1674          * XXX we should be doing a dbuf_read, checking the return
1675          * value and returning that up to our callers
1676          */
1677         dmu_buf_will_dirty(&db->db, tx);
1678
1679         /* create the data buffer for the new block */
1680         buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1681
1682         /* copy old block data to the new block */
1683         obuf = db->db_buf;
1684         bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1685         /* zero the remainder */
1686         if (size > osize)
1687                 bzero((uint8_t *)buf->b_data + osize, size - osize);
1688
1689         mutex_enter(&db->db_mtx);
1690         dbuf_set_data(db, buf);
1691         arc_buf_destroy(obuf, db);
1692         db->db.db_size = size;
1693
1694         if (db->db_level == 0) {
1695                 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1696                 db->db_last_dirty->dt.dl.dr_data = buf;
1697         }
1698         mutex_exit(&db->db_mtx);
1699
1700         dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1701         DB_DNODE_EXIT(db);
1702 }
1703
1704 void
1705 dbuf_release_bp(dmu_buf_impl_t *db)
1706 {
1707         objset_t *os = db->db_objset;
1708
1709         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1710         ASSERT(arc_released(os->os_phys_buf) ||
1711             list_link_active(&os->os_dsl_dataset->ds_synced_link));
1712         ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1713
1714         (void) arc_release(db->db_buf, db);
1715 }
1716
1717 /*
1718  * We already have a dirty record for this TXG, and we are being
1719  * dirtied again.
1720  */
1721 static void
1722 dbuf_redirty(dbuf_dirty_record_t *dr)
1723 {
1724         dmu_buf_impl_t *db = dr->dr_dbuf;
1725
1726         ASSERT(MUTEX_HELD(&db->db_mtx));
1727
1728         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1729                 /*
1730                  * If this buffer has already been written out,
1731                  * we now need to reset its state.
1732                  */
1733                 dbuf_unoverride(dr);
1734                 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1735                     db->db_state != DB_NOFILL) {
1736                         /* Already released on initial dirty, so just thaw. */
1737                         ASSERT(arc_released(db->db_buf));
1738                         arc_buf_thaw(db->db_buf);
1739                 }
1740         }
1741 }
1742
1743 dbuf_dirty_record_t *
1744 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1745 {
1746         dnode_t *dn;
1747         objset_t *os;
1748         dbuf_dirty_record_t **drp, *dr;
1749         int drop_struct_lock = FALSE;
1750         int txgoff = tx->tx_txg & TXG_MASK;
1751
1752         ASSERT(tx->tx_txg != 0);
1753         ASSERT(!refcount_is_zero(&db->db_holds));
1754         DMU_TX_DIRTY_BUF(tx, db);
1755
1756         DB_DNODE_ENTER(db);
1757         dn = DB_DNODE(db);
1758         /*
1759          * Shouldn't dirty a regular buffer in syncing context.  Private
1760          * objects may be dirtied in syncing context, but only if they
1761          * were already pre-dirtied in open context.
1762          */
1763 #ifdef DEBUG
1764         if (dn->dn_objset->os_dsl_dataset != NULL) {
1765                 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1766                     RW_READER, FTAG);
1767         }
1768         ASSERT(!dmu_tx_is_syncing(tx) ||
1769             BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1770             DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1771             dn->dn_objset->os_dsl_dataset == NULL);
1772         if (dn->dn_objset->os_dsl_dataset != NULL)
1773                 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1774 #endif
1775         /*
1776          * We make this assert for private objects as well, but after we
1777          * check if we're already dirty.  They are allowed to re-dirty
1778          * in syncing context.
1779          */
1780         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1781             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1782             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1783
1784         mutex_enter(&db->db_mtx);
1785         /*
1786          * XXX make this true for indirects too?  The problem is that
1787          * transactions created with dmu_tx_create_assigned() from
1788          * syncing context don't bother holding ahead.
1789          */
1790         ASSERT(db->db_level != 0 ||
1791             db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1792             db->db_state == DB_NOFILL);
1793
1794         mutex_enter(&dn->dn_mtx);
1795         /*
1796          * Don't set dirtyctx to SYNC if we're just modifying this as we
1797          * initialize the objset.
1798          */
1799         if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1800                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1801                         rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1802                             RW_READER, FTAG);
1803                 }
1804                 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1805                         dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1806                             DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1807                         ASSERT(dn->dn_dirtyctx_firstset == NULL);
1808                         dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1809                 }
1810                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1811                         rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1812                             FTAG);
1813                 }
1814         }
1815         mutex_exit(&dn->dn_mtx);
1816
1817         if (db->db_blkid == DMU_SPILL_BLKID)
1818                 dn->dn_have_spill = B_TRUE;
1819
1820         /*
1821          * If this buffer is already dirty, we're done.
1822          */
1823         drp = &db->db_last_dirty;
1824         ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1825             db->db.db_object == DMU_META_DNODE_OBJECT);
1826         while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1827                 drp = &dr->dr_next;
1828         if (dr && dr->dr_txg == tx->tx_txg) {
1829                 DB_DNODE_EXIT(db);
1830
1831                 dbuf_redirty(dr);
1832                 mutex_exit(&db->db_mtx);
1833                 return (dr);
1834         }
1835
1836         /*
1837          * Only valid if not already dirty.
1838          */
1839         ASSERT(dn->dn_object == 0 ||
1840             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1841             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1842
1843         ASSERT3U(dn->dn_nlevels, >, db->db_level);
1844
1845         /*
1846          * We should only be dirtying in syncing context if it's the
1847          * mos or we're initializing the os or it's a special object.
1848          * However, we are allowed to dirty in syncing context provided
1849          * we already dirtied it in open context.  Hence we must make
1850          * this assertion only if we're not already dirty.
1851          */
1852         os = dn->dn_objset;
1853         VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1854 #ifdef DEBUG
1855         if (dn->dn_objset->os_dsl_dataset != NULL)
1856                 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1857         ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1858             os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1859         if (dn->dn_objset->os_dsl_dataset != NULL)
1860                 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1861 #endif
1862         ASSERT(db->db.db_size != 0);
1863
1864         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1865
1866         if (db->db_blkid != DMU_BONUS_BLKID) {
1867                 dmu_objset_willuse_space(os, db->db.db_size, tx);
1868         }
1869
1870         /*
1871          * If this buffer is dirty in an old transaction group we need
1872          * to make a copy of it so that the changes we make in this
1873          * transaction group won't leak out when we sync the older txg.
1874          */
1875         dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1876         list_link_init(&dr->dr_dirty_node);
1877         if (db->db_level == 0) {
1878                 void *data_old = db->db_buf;
1879
1880                 if (db->db_state != DB_NOFILL) {
1881                         if (db->db_blkid == DMU_BONUS_BLKID) {
1882                                 dbuf_fix_old_data(db, tx->tx_txg);
1883                                 data_old = db->db.db_data;
1884                         } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1885                                 /*
1886                                  * Release the data buffer from the cache so
1887                                  * that we can modify it without impacting
1888                                  * possible other users of this cached data
1889                                  * block.  Note that indirect blocks and
1890                                  * private objects are not released until the
1891                                  * syncing state (since they are only modified
1892                                  * then).
1893                                  */
1894                                 arc_release(db->db_buf, db);
1895                                 dbuf_fix_old_data(db, tx->tx_txg);
1896                                 data_old = db->db_buf;
1897                         }
1898                         ASSERT(data_old != NULL);
1899                 }
1900                 dr->dt.dl.dr_data = data_old;
1901         } else {
1902                 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1903                 list_create(&dr->dt.di.dr_children,
1904                     sizeof (dbuf_dirty_record_t),
1905                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
1906         }
1907         if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1908                 dr->dr_accounted = db->db.db_size;
1909         dr->dr_dbuf = db;
1910         dr->dr_txg = tx->tx_txg;
1911         dr->dr_next = *drp;
1912         *drp = dr;
1913
1914         /*
1915          * We could have been freed_in_flight between the dbuf_noread
1916          * and dbuf_dirty.  We win, as though the dbuf_noread() had
1917          * happened after the free.
1918          */
1919         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1920             db->db_blkid != DMU_SPILL_BLKID) {
1921                 mutex_enter(&dn->dn_mtx);
1922                 if (dn->dn_free_ranges[txgoff] != NULL) {
1923                         range_tree_clear(dn->dn_free_ranges[txgoff],
1924                             db->db_blkid, 1);
1925                 }
1926                 mutex_exit(&dn->dn_mtx);
1927                 db->db_freed_in_flight = FALSE;
1928         }
1929
1930         /*
1931          * This buffer is now part of this txg
1932          */
1933         dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1934         db->db_dirtycnt += 1;
1935         ASSERT3U(db->db_dirtycnt, <=, 3);
1936
1937         mutex_exit(&db->db_mtx);
1938
1939         if (db->db_blkid == DMU_BONUS_BLKID ||
1940             db->db_blkid == DMU_SPILL_BLKID) {
1941                 mutex_enter(&dn->dn_mtx);
1942                 ASSERT(!list_link_active(&dr->dr_dirty_node));
1943                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1944                 mutex_exit(&dn->dn_mtx);
1945                 dnode_setdirty(dn, tx);
1946                 DB_DNODE_EXIT(db);
1947                 return (dr);
1948         }
1949
1950         /*
1951          * The dn_struct_rwlock prevents db_blkptr from changing
1952          * due to a write from syncing context completing
1953          * while we are running, so we want to acquire it before
1954          * looking at db_blkptr.
1955          */
1956         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1957                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1958                 drop_struct_lock = TRUE;
1959         }
1960
1961         /*
1962          * We need to hold the dn_struct_rwlock to make this assertion,
1963          * because it protects dn_phys / dn_next_nlevels from changing.
1964          */
1965         ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1966             dn->dn_phys->dn_nlevels > db->db_level ||
1967             dn->dn_next_nlevels[txgoff] > db->db_level ||
1968             dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1969             dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1970
1971         /*
1972          * If we are overwriting a dedup BP, then unless it is snapshotted,
1973          * when we get to syncing context we will need to decrement its
1974          * refcount in the DDT.  Prefetch the relevant DDT block so that
1975          * syncing context won't have to wait for the i/o.
1976          */
1977         ddt_prefetch(os->os_spa, db->db_blkptr);
1978
1979         if (db->db_level == 0) {
1980                 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1981                 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1982         }
1983
1984         if (db->db_level+1 < dn->dn_nlevels) {
1985                 dmu_buf_impl_t *parent = db->db_parent;
1986                 dbuf_dirty_record_t *di;
1987                 int parent_held = FALSE;
1988
1989                 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1990                         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1991
1992                         parent = dbuf_hold_level(dn, db->db_level+1,
1993                             db->db_blkid >> epbs, FTAG);
1994                         ASSERT(parent != NULL);
1995                         parent_held = TRUE;
1996                 }
1997                 if (drop_struct_lock)
1998                         rw_exit(&dn->dn_struct_rwlock);
1999                 ASSERT3U(db->db_level+1, ==, parent->db_level);
2000                 di = dbuf_dirty(parent, tx);
2001                 if (parent_held)
2002                         dbuf_rele(parent, FTAG);
2003
2004                 mutex_enter(&db->db_mtx);
2005                 /*
2006                  * Since we've dropped the mutex, it's possible that
2007                  * dbuf_undirty() might have changed this out from under us.
2008                  */
2009                 if (db->db_last_dirty == dr ||
2010                     dn->dn_object == DMU_META_DNODE_OBJECT) {
2011                         mutex_enter(&di->dt.di.dr_mtx);
2012                         ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2013                         ASSERT(!list_link_active(&dr->dr_dirty_node));
2014                         list_insert_tail(&di->dt.di.dr_children, dr);
2015                         mutex_exit(&di->dt.di.dr_mtx);
2016                         dr->dr_parent = di;
2017                 }
2018                 mutex_exit(&db->db_mtx);
2019         } else {
2020                 ASSERT(db->db_level+1 == dn->dn_nlevels);
2021                 ASSERT(db->db_blkid < dn->dn_nblkptr);
2022                 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2023                 mutex_enter(&dn->dn_mtx);
2024                 ASSERT(!list_link_active(&dr->dr_dirty_node));
2025                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2026                 mutex_exit(&dn->dn_mtx);
2027                 if (drop_struct_lock)
2028                         rw_exit(&dn->dn_struct_rwlock);
2029         }
2030
2031         dnode_setdirty(dn, tx);
2032         DB_DNODE_EXIT(db);
2033         return (dr);
2034 }
2035
2036 /*
2037  * Undirty a buffer in the transaction group referenced by the given
2038  * transaction.  Return whether this evicted the dbuf.
2039  */
2040 static boolean_t
2041 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2042 {
2043         dnode_t *dn;
2044         uint64_t txg = tx->tx_txg;
2045         dbuf_dirty_record_t *dr, **drp;
2046
2047         ASSERT(txg != 0);
2048
2049         /*
2050          * Due to our use of dn_nlevels below, this can only be called
2051          * in open context, unless we are operating on the MOS.
2052          * From syncing context, dn_nlevels may be different from the
2053          * dn_nlevels used when dbuf was dirtied.
2054          */
2055         ASSERT(db->db_objset ==
2056             dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2057             txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2058         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2059         ASSERT0(db->db_level);
2060         ASSERT(MUTEX_HELD(&db->db_mtx));
2061
2062         /*
2063          * If this buffer is not dirty, we're done.
2064          */
2065         for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2066                 if (dr->dr_txg <= txg)
2067                         break;
2068         if (dr == NULL || dr->dr_txg < txg)
2069                 return (B_FALSE);
2070         ASSERT(dr->dr_txg == txg);
2071         ASSERT(dr->dr_dbuf == db);
2072
2073         DB_DNODE_ENTER(db);
2074         dn = DB_DNODE(db);
2075
2076         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2077
2078         ASSERT(db->db.db_size != 0);
2079
2080         dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2081             dr->dr_accounted, txg);
2082
2083         *drp = dr->dr_next;
2084
2085         /*
2086          * Note that there are three places in dbuf_dirty()
2087          * where this dirty record may be put on a list.
2088          * Make sure to do a list_remove corresponding to
2089          * every one of those list_insert calls.
2090          */
2091         if (dr->dr_parent) {
2092                 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2093                 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2094                 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2095         } else if (db->db_blkid == DMU_SPILL_BLKID ||
2096             db->db_level + 1 == dn->dn_nlevels) {
2097                 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2098                 mutex_enter(&dn->dn_mtx);
2099                 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2100                 mutex_exit(&dn->dn_mtx);
2101         }
2102         DB_DNODE_EXIT(db);
2103
2104         if (db->db_state != DB_NOFILL) {
2105                 dbuf_unoverride(dr);
2106
2107                 ASSERT(db->db_buf != NULL);
2108                 ASSERT(dr->dt.dl.dr_data != NULL);
2109                 if (dr->dt.dl.dr_data != db->db_buf)
2110                         arc_buf_destroy(dr->dt.dl.dr_data, db);
2111         }
2112
2113         kmem_free(dr, sizeof (dbuf_dirty_record_t));
2114
2115         ASSERT(db->db_dirtycnt > 0);
2116         db->db_dirtycnt -= 1;
2117
2118         if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2119                 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2120                 dbuf_destroy(db);
2121                 return (B_TRUE);
2122         }
2123
2124         return (B_FALSE);
2125 }
2126
2127 void
2128 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2129 {
2130         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2131         int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
2132
2133         ASSERT(tx->tx_txg != 0);
2134         ASSERT(!refcount_is_zero(&db->db_holds));
2135
2136         /*
2137          * Quick check for dirtyness.  For already dirty blocks, this
2138          * reduces runtime of this function by >90%, and overall performance
2139          * by 50% for some workloads (e.g. file deletion with indirect blocks
2140          * cached).
2141          */
2142         mutex_enter(&db->db_mtx);
2143         dbuf_dirty_record_t *dr;
2144         for (dr = db->db_last_dirty;
2145             dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2146                 /*
2147                  * It's possible that it is already dirty but not cached,
2148                  * because there are some calls to dbuf_dirty() that don't
2149                  * go through dmu_buf_will_dirty().
2150                  */
2151                 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2152                         /* This dbuf is already dirty and cached. */
2153                         dbuf_redirty(dr);
2154                         mutex_exit(&db->db_mtx);
2155                         return;
2156                 }
2157         }
2158         mutex_exit(&db->db_mtx);
2159
2160         DB_DNODE_ENTER(db);
2161         if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2162                 rf |= DB_RF_HAVESTRUCT;
2163         DB_DNODE_EXIT(db);
2164         (void) dbuf_read(db, NULL, rf);
2165         (void) dbuf_dirty(db, tx);
2166 }
2167
2168 void
2169 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2170 {
2171         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2172
2173         db->db_state = DB_NOFILL;
2174
2175         dmu_buf_will_fill(db_fake, tx);
2176 }
2177
2178 void
2179 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2180 {
2181         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2182
2183         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2184         ASSERT(tx->tx_txg != 0);
2185         ASSERT(db->db_level == 0);
2186         ASSERT(!refcount_is_zero(&db->db_holds));
2187
2188         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2189             dmu_tx_private_ok(tx));
2190
2191         dbuf_noread(db);
2192         (void) dbuf_dirty(db, tx);
2193 }
2194
2195 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2196 /* ARGSUSED */
2197 void
2198 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2199 {
2200         mutex_enter(&db->db_mtx);
2201         DBUF_VERIFY(db);
2202
2203         if (db->db_state == DB_FILL) {
2204                 if (db->db_level == 0 && db->db_freed_in_flight) {
2205                         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2206                         /* we were freed while filling */
2207                         /* XXX dbuf_undirty? */
2208                         bzero(db->db.db_data, db->db.db_size);
2209                         db->db_freed_in_flight = FALSE;
2210                 }
2211                 db->db_state = DB_CACHED;
2212                 cv_broadcast(&db->db_changed);
2213         }
2214         mutex_exit(&db->db_mtx);
2215 }
2216
2217 void
2218 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2219     bp_embedded_type_t etype, enum zio_compress comp,
2220     int uncompressed_size, int compressed_size, int byteorder,
2221     dmu_tx_t *tx)
2222 {
2223         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2224         struct dirty_leaf *dl;
2225         dmu_object_type_t type;
2226
2227         if (etype == BP_EMBEDDED_TYPE_DATA) {
2228                 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2229                     SPA_FEATURE_EMBEDDED_DATA));
2230         }
2231
2232         DB_DNODE_ENTER(db);
2233         type = DB_DNODE(db)->dn_type;
2234         DB_DNODE_EXIT(db);
2235
2236         ASSERT0(db->db_level);
2237         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2238
2239         dmu_buf_will_not_fill(dbuf, tx);
2240
2241         ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2242         dl = &db->db_last_dirty->dt.dl;
2243         encode_embedded_bp_compressed(&dl->dr_overridden_by,
2244             data, comp, uncompressed_size, compressed_size);
2245         BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2246         BP_SET_TYPE(&dl->dr_overridden_by, type);
2247         BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2248         BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2249
2250         dl->dr_override_state = DR_OVERRIDDEN;
2251         dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2252 }
2253
2254 /*
2255  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2256  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2257  */
2258 void
2259 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2260 {
2261         ASSERT(!refcount_is_zero(&db->db_holds));
2262         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2263         ASSERT(db->db_level == 0);
2264         ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2265         ASSERT(buf != NULL);
2266         ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2267         ASSERT(tx->tx_txg != 0);
2268
2269         arc_return_buf(buf, db);
2270         ASSERT(arc_released(buf));
2271
2272         mutex_enter(&db->db_mtx);
2273
2274         while (db->db_state == DB_READ || db->db_state == DB_FILL)
2275                 cv_wait(&db->db_changed, &db->db_mtx);
2276
2277         ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2278
2279         if (db->db_state == DB_CACHED &&
2280             refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2281                 mutex_exit(&db->db_mtx);
2282                 (void) dbuf_dirty(db, tx);
2283                 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2284                 arc_buf_destroy(buf, db);
2285                 xuio_stat_wbuf_copied();
2286                 return;
2287         }
2288
2289         xuio_stat_wbuf_nocopy();
2290         if (db->db_state == DB_CACHED) {
2291                 dbuf_dirty_record_t *dr = db->db_last_dirty;
2292
2293                 ASSERT(db->db_buf != NULL);
2294                 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2295                         ASSERT(dr->dt.dl.dr_data == db->db_buf);
2296                         if (!arc_released(db->db_buf)) {
2297                                 ASSERT(dr->dt.dl.dr_override_state ==
2298                                     DR_OVERRIDDEN);
2299                                 arc_release(db->db_buf, db);
2300                         }
2301                         dr->dt.dl.dr_data = buf;
2302                         arc_buf_destroy(db->db_buf, db);
2303                 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2304                         arc_release(db->db_buf, db);
2305                         arc_buf_destroy(db->db_buf, db);
2306                 }
2307                 db->db_buf = NULL;
2308         }
2309         ASSERT(db->db_buf == NULL);
2310         dbuf_set_data(db, buf);
2311         db->db_state = DB_FILL;
2312         mutex_exit(&db->db_mtx);
2313         (void) dbuf_dirty(db, tx);
2314         dmu_buf_fill_done(&db->db, tx);
2315 }
2316
2317 void
2318 dbuf_destroy(dmu_buf_impl_t *db)
2319 {
2320         dnode_t *dn;
2321         dmu_buf_impl_t *parent = db->db_parent;
2322         dmu_buf_impl_t *dndb;
2323
2324         ASSERT(MUTEX_HELD(&db->db_mtx));
2325         ASSERT(refcount_is_zero(&db->db_holds));
2326
2327         if (db->db_buf != NULL) {
2328                 arc_buf_destroy(db->db_buf, db);
2329                 db->db_buf = NULL;
2330         }
2331
2332         if (db->db_blkid == DMU_BONUS_BLKID) {
2333                 int slots = DB_DNODE(db)->dn_num_slots;
2334                 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2335                 if (db->db.db_data != NULL) {
2336                         zio_buf_free(db->db.db_data, bonuslen);
2337                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
2338                         db->db_state = DB_UNCACHED;
2339                 }
2340         }
2341
2342         dbuf_clear_data(db);
2343
2344         if (multilist_link_active(&db->db_cache_link)) {
2345                 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2346                     db->db_caching_status == DB_DBUF_METADATA_CACHE);
2347
2348                 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2349                 (void) refcount_remove_many(
2350                     &dbuf_caches[db->db_caching_status].size,
2351                     db->db.db_size, db);
2352
2353                 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2354                         DBUF_STAT_BUMPDOWN(metadata_cache_count);
2355                 } else {
2356                         DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2357                         DBUF_STAT_BUMPDOWN(cache_count);
2358                         DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2359                             db->db.db_size);
2360                 }
2361                 db->db_caching_status = DB_NO_CACHE;
2362         }
2363
2364         ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2365         ASSERT(db->db_data_pending == NULL);
2366
2367         db->db_state = DB_EVICTING;
2368         db->db_blkptr = NULL;
2369
2370         /*
2371          * Now that db_state is DB_EVICTING, nobody else can find this via
2372          * the hash table.  We can now drop db_mtx, which allows us to
2373          * acquire the dn_dbufs_mtx.
2374          */
2375         mutex_exit(&db->db_mtx);
2376
2377         DB_DNODE_ENTER(db);
2378         dn = DB_DNODE(db);
2379         dndb = dn->dn_dbuf;
2380         if (db->db_blkid != DMU_BONUS_BLKID) {
2381                 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2382                 if (needlock)
2383                         mutex_enter(&dn->dn_dbufs_mtx);
2384                 avl_remove(&dn->dn_dbufs, db);
2385                 atomic_dec_32(&dn->dn_dbufs_count);
2386                 membar_producer();
2387                 DB_DNODE_EXIT(db);
2388                 if (needlock)
2389                         mutex_exit(&dn->dn_dbufs_mtx);
2390                 /*
2391                  * Decrementing the dbuf count means that the hold corresponding
2392                  * to the removed dbuf is no longer discounted in dnode_move(),
2393                  * so the dnode cannot be moved until after we release the hold.
2394                  * The membar_producer() ensures visibility of the decremented
2395                  * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2396                  * release any lock.
2397                  */
2398                 mutex_enter(&dn->dn_mtx);
2399                 dnode_rele_and_unlock(dn, db, B_TRUE);
2400                 db->db_dnode_handle = NULL;
2401
2402                 dbuf_hash_remove(db);
2403         } else {
2404                 DB_DNODE_EXIT(db);
2405         }
2406
2407         ASSERT(refcount_is_zero(&db->db_holds));
2408
2409         db->db_parent = NULL;
2410
2411         ASSERT(db->db_buf == NULL);
2412         ASSERT(db->db.db_data == NULL);
2413         ASSERT(db->db_hash_next == NULL);
2414         ASSERT(db->db_blkptr == NULL);
2415         ASSERT(db->db_data_pending == NULL);
2416         ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2417         ASSERT(!multilist_link_active(&db->db_cache_link));
2418
2419         kmem_cache_free(dbuf_kmem_cache, db);
2420         arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2421
2422         /*
2423          * If this dbuf is referenced from an indirect dbuf,
2424          * decrement the ref count on the indirect dbuf.
2425          */
2426         if (parent && parent != dndb) {
2427                 mutex_enter(&parent->db_mtx);
2428                 dbuf_rele_and_unlock(parent, db, B_TRUE);
2429         }
2430 }
2431
2432 /*
2433  * Note: While bpp will always be updated if the function returns success,
2434  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2435  * this happens when the dnode is the meta-dnode, or a userused or groupused
2436  * object.
2437  */
2438 __attribute__((always_inline))
2439 static inline int
2440 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2441     dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2442 {
2443         *parentp = NULL;
2444         *bpp = NULL;
2445
2446         ASSERT(blkid != DMU_BONUS_BLKID);
2447
2448         if (blkid == DMU_SPILL_BLKID) {
2449                 mutex_enter(&dn->dn_mtx);
2450                 if (dn->dn_have_spill &&
2451                     (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2452                         *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2453                 else
2454                         *bpp = NULL;
2455                 dbuf_add_ref(dn->dn_dbuf, NULL);
2456                 *parentp = dn->dn_dbuf;
2457                 mutex_exit(&dn->dn_mtx);
2458                 return (0);
2459         }
2460
2461         int nlevels =
2462             (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2463         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2464
2465         ASSERT3U(level * epbs, <, 64);
2466         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2467         /*
2468          * This assertion shouldn't trip as long as the max indirect block size
2469          * is less than 1M.  The reason for this is that up to that point,
2470          * the number of levels required to address an entire object with blocks
2471          * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2472          * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2473          * (i.e. we can address the entire object), objects will all use at most
2474          * N-1 levels and the assertion won't overflow.  However, once epbs is
2475          * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2476          * enough to address an entire object, so objects will have 5 levels,
2477          * but then this assertion will overflow.
2478          *
2479          * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2480          * need to redo this logic to handle overflows.
2481          */
2482         ASSERT(level >= nlevels ||
2483             ((nlevels - level - 1) * epbs) +
2484             highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2485         if (level >= nlevels ||
2486             blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2487             ((nlevels - level - 1) * epbs)) ||
2488             (fail_sparse &&
2489             blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2490                 /* the buffer has no parent yet */
2491                 return (SET_ERROR(ENOENT));
2492         } else if (level < nlevels-1) {
2493                 /* this block is referenced from an indirect block */
2494                 int err;
2495                 if (dh == NULL) {
2496                         err = dbuf_hold_impl(dn, level+1,
2497                             blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2498                 } else {
2499                         __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2500                             blkid >> epbs, fail_sparse, FALSE, NULL,
2501                             parentp, dh->dh_depth + 1);
2502                         err = __dbuf_hold_impl(dh + 1);
2503                 }
2504                 if (err)
2505                         return (err);
2506                 err = dbuf_read(*parentp, NULL,
2507                     (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2508                 if (err) {
2509                         dbuf_rele(*parentp, NULL);
2510                         *parentp = NULL;
2511                         return (err);
2512                 }
2513                 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2514                     (blkid & ((1ULL << epbs) - 1));
2515                 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2516                         ASSERT(BP_IS_HOLE(*bpp));
2517                 return (0);
2518         } else {
2519                 /* the block is referenced from the dnode */
2520                 ASSERT3U(level, ==, nlevels-1);
2521                 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2522                     blkid < dn->dn_phys->dn_nblkptr);
2523                 if (dn->dn_dbuf) {
2524                         dbuf_add_ref(dn->dn_dbuf, NULL);
2525                         *parentp = dn->dn_dbuf;
2526                 }
2527                 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2528                 return (0);
2529         }
2530 }
2531
2532 static dmu_buf_impl_t *
2533 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2534     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2535 {
2536         objset_t *os = dn->dn_objset;
2537         dmu_buf_impl_t *db, *odb;
2538
2539         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2540         ASSERT(dn->dn_type != DMU_OT_NONE);
2541
2542         db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2543
2544         db->db_objset = os;
2545         db->db.db_object = dn->dn_object;
2546         db->db_level = level;
2547         db->db_blkid = blkid;
2548         db->db_last_dirty = NULL;
2549         db->db_dirtycnt = 0;
2550         db->db_dnode_handle = dn->dn_handle;
2551         db->db_parent = parent;
2552         db->db_blkptr = blkptr;
2553
2554         db->db_user = NULL;
2555         db->db_user_immediate_evict = FALSE;
2556         db->db_freed_in_flight = FALSE;
2557         db->db_pending_evict = FALSE;
2558
2559         if (blkid == DMU_BONUS_BLKID) {
2560                 ASSERT3P(parent, ==, dn->dn_dbuf);
2561                 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2562                     (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2563                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2564                 db->db.db_offset = DMU_BONUS_BLKID;
2565                 db->db_state = DB_UNCACHED;
2566                 db->db_caching_status = DB_NO_CACHE;
2567                 /* the bonus dbuf is not placed in the hash table */
2568                 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2569                 return (db);
2570         } else if (blkid == DMU_SPILL_BLKID) {
2571                 db->db.db_size = (blkptr != NULL) ?
2572                     BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2573                 db->db.db_offset = 0;
2574         } else {
2575                 int blocksize =
2576                     db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2577                 db->db.db_size = blocksize;
2578                 db->db.db_offset = db->db_blkid * blocksize;
2579         }
2580
2581         /*
2582          * Hold the dn_dbufs_mtx while we get the new dbuf
2583          * in the hash table *and* added to the dbufs list.
2584          * This prevents a possible deadlock with someone
2585          * trying to look up this dbuf before its added to the
2586          * dn_dbufs list.
2587          */
2588         mutex_enter(&dn->dn_dbufs_mtx);
2589         db->db_state = DB_EVICTING;
2590         if ((odb = dbuf_hash_insert(db)) != NULL) {
2591                 /* someone else inserted it first */
2592                 kmem_cache_free(dbuf_kmem_cache, db);
2593                 mutex_exit(&dn->dn_dbufs_mtx);
2594                 DBUF_STAT_BUMP(hash_insert_race);
2595                 return (odb);
2596         }
2597         avl_add(&dn->dn_dbufs, db);
2598
2599         db->db_state = DB_UNCACHED;
2600         db->db_caching_status = DB_NO_CACHE;
2601         mutex_exit(&dn->dn_dbufs_mtx);
2602         arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2603
2604         if (parent && parent != dn->dn_dbuf)
2605                 dbuf_add_ref(parent, db);
2606
2607         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2608             refcount_count(&dn->dn_holds) > 0);
2609         (void) refcount_add(&dn->dn_holds, db);
2610         atomic_inc_32(&dn->dn_dbufs_count);
2611
2612         dprintf_dbuf(db, "db=%p\n", db);
2613
2614         return (db);
2615 }
2616
2617 typedef struct dbuf_prefetch_arg {
2618         spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2619         zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2620         int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2621         int dpa_curlevel; /* The current level that we're reading */
2622         dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2623         zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2624         zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2625         arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2626 } dbuf_prefetch_arg_t;
2627
2628 /*
2629  * Actually issue the prefetch read for the block given.
2630  */
2631 static void
2632 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2633 {
2634         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2635                 return;
2636
2637         arc_flags_t aflags =
2638             dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2639
2640         ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2641         ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2642         ASSERT(dpa->dpa_zio != NULL);
2643         (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2644             dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2645             &aflags, &dpa->dpa_zb);
2646 }
2647
2648 /*
2649  * Called when an indirect block above our prefetch target is read in.  This
2650  * will either read in the next indirect block down the tree or issue the actual
2651  * prefetch if the next block down is our target.
2652  */
2653 static void
2654 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2655     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2656 {
2657         dbuf_prefetch_arg_t *dpa = private;
2658
2659         ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2660         ASSERT3S(dpa->dpa_curlevel, >, 0);
2661
2662         if (abuf == NULL) {
2663                 ASSERT(zio == NULL || zio->io_error != 0);
2664                 kmem_free(dpa, sizeof (*dpa));
2665                 return;
2666         }
2667         ASSERT(zio == NULL || zio->io_error == 0);
2668
2669         /*
2670          * The dpa_dnode is only valid if we are called with a NULL
2671          * zio. This indicates that the arc_read() returned without
2672          * first calling zio_read() to issue a physical read. Once
2673          * a physical read is made the dpa_dnode must be invalidated
2674          * as the locks guarding it may have been dropped. If the
2675          * dpa_dnode is still valid, then we want to add it to the dbuf
2676          * cache. To do so, we must hold the dbuf associated with the block
2677          * we just prefetched, read its contents so that we associate it
2678          * with an arc_buf_t, and then release it.
2679          */
2680         if (zio != NULL) {
2681                 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2682                 if (zio->io_flags & ZIO_FLAG_RAW) {
2683                         ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2684                 } else {
2685                         ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2686                 }
2687                 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2688
2689                 dpa->dpa_dnode = NULL;
2690         } else if (dpa->dpa_dnode != NULL) {
2691                 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2692                     (dpa->dpa_epbs * (dpa->dpa_curlevel -
2693                     dpa->dpa_zb.zb_level));
2694                 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2695                     dpa->dpa_curlevel, curblkid, FTAG);
2696                 (void) dbuf_read(db, NULL,
2697                     DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2698                 dbuf_rele(db, FTAG);
2699         }
2700
2701         if (abuf == NULL) {
2702                 kmem_free(dpa, sizeof(*dpa));
2703                 return;
2704         }
2705         
2706         dpa->dpa_curlevel--;
2707
2708         uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2709             (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2710         blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2711             P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2712         if (BP_IS_HOLE(bp)) {
2713                 kmem_free(dpa, sizeof (*dpa));
2714         } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2715                 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2716                 dbuf_issue_final_prefetch(dpa, bp);
2717                 kmem_free(dpa, sizeof (*dpa));
2718         } else {
2719                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2720                 zbookmark_phys_t zb;
2721
2722                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2723                 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2724                         iter_aflags |= ARC_FLAG_L2CACHE;
2725
2726                 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2727
2728                 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2729                     dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2730
2731                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2732                     bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2733                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2734                     &iter_aflags, &zb);
2735         }
2736
2737         arc_buf_destroy(abuf, private);
2738 }
2739
2740 /*
2741  * Issue prefetch reads for the given block on the given level.  If the indirect
2742  * blocks above that block are not in memory, we will read them in
2743  * asynchronously.  As a result, this call never blocks waiting for a read to
2744  * complete.
2745  */
2746 void
2747 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2748     arc_flags_t aflags)
2749 {
2750         blkptr_t bp;
2751         int epbs, nlevels, curlevel;
2752         uint64_t curblkid;
2753
2754         ASSERT(blkid != DMU_BONUS_BLKID);
2755         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2756
2757         if (blkid > dn->dn_maxblkid)
2758                 return;
2759
2760         if (dnode_block_freed(dn, blkid))
2761                 return;
2762
2763         /*
2764          * This dnode hasn't been written to disk yet, so there's nothing to
2765          * prefetch.
2766          */
2767         nlevels = dn->dn_phys->dn_nlevels;
2768         if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2769                 return;
2770
2771         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2772         if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2773                 return;
2774
2775         dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2776             level, blkid);
2777         if (db != NULL) {
2778                 mutex_exit(&db->db_mtx);
2779                 /*
2780                  * This dbuf already exists.  It is either CACHED, or
2781                  * (we assume) about to be read or filled.
2782                  */
2783                 return;
2784         }
2785
2786         /*
2787          * Find the closest ancestor (indirect block) of the target block
2788          * that is present in the cache.  In this indirect block, we will
2789          * find the bp that is at curlevel, curblkid.
2790          */
2791         curlevel = level;
2792         curblkid = blkid;
2793         while (curlevel < nlevels - 1) {
2794                 int parent_level = curlevel + 1;
2795                 uint64_t parent_blkid = curblkid >> epbs;
2796                 dmu_buf_impl_t *db;
2797
2798                 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2799                     FALSE, TRUE, FTAG, &db) == 0) {
2800                         blkptr_t *bpp = db->db_buf->b_data;
2801                         bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2802                         dbuf_rele(db, FTAG);
2803                         break;
2804                 }
2805
2806                 curlevel = parent_level;
2807                 curblkid = parent_blkid;
2808         }
2809
2810         if (curlevel == nlevels - 1) {
2811                 /* No cached indirect blocks found. */
2812                 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2813                 bp = dn->dn_phys->dn_blkptr[curblkid];
2814         }
2815         if (BP_IS_HOLE(&bp))
2816                 return;
2817
2818         ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2819
2820         zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2821             ZIO_FLAG_CANFAIL);
2822
2823         dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2824         dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2825         SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2826             dn->dn_object, level, blkid);
2827         dpa->dpa_curlevel = curlevel;
2828         dpa->dpa_prio = prio;
2829         dpa->dpa_aflags = aflags;
2830         dpa->dpa_spa = dn->dn_objset->os_spa;
2831         dpa->dpa_dnode = dn;
2832         dpa->dpa_epbs = epbs;
2833         dpa->dpa_zio = pio;
2834
2835         /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2836         if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2837                 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2838
2839         /*
2840          * If we have the indirect just above us, no need to do the asynchronous
2841          * prefetch chain; we'll just run the last step ourselves.  If we're at
2842          * a higher level, though, we want to issue the prefetches for all the
2843          * indirect blocks asynchronously, so we can go on with whatever we were
2844          * doing.
2845          */
2846         if (curlevel == level) {
2847                 ASSERT3U(curblkid, ==, blkid);
2848                 dbuf_issue_final_prefetch(dpa, &bp);
2849                 kmem_free(dpa, sizeof (*dpa));
2850         } else {
2851                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2852                 zbookmark_phys_t zb;
2853
2854                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2855                 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2856                         iter_aflags |= ARC_FLAG_L2CACHE;
2857
2858                 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2859                     dn->dn_object, curlevel, curblkid);
2860                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2861                     &bp, dbuf_prefetch_indirect_done, dpa, prio,
2862                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2863                     &iter_aflags, &zb);
2864         }
2865         /*
2866          * We use pio here instead of dpa_zio since it's possible that
2867          * dpa may have already been freed.
2868          */
2869         zio_nowait(pio);
2870 }
2871
2872 #define DBUF_HOLD_IMPL_MAX_DEPTH        20
2873
2874 /*
2875  * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2876  * the case of encrypted, compressed and uncompressed buffers by
2877  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2878  * arc_alloc_compressed_buf() or arc_alloc_buf().*
2879  *
2880  * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2881  */
2882 noinline static void
2883 dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
2884 {
2885         dnode_t *dn = dh->dh_dn;
2886         dmu_buf_impl_t *db = dh->dh_db;
2887         dbuf_dirty_record_t *dr = dh->dh_dr;
2888         arc_buf_t *data = dr->dt.dl.dr_data;
2889
2890         enum zio_compress compress_type = arc_get_compression(data);
2891
2892         if (compress_type != ZIO_COMPRESS_OFF) {
2893                 dbuf_set_data(db, arc_alloc_compressed_buf(
2894                     dn->dn_objset->os_spa, db, arc_buf_size(data),
2895                     arc_buf_lsize(data), compress_type));
2896         } else {
2897                 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2898                     DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2899         }
2900
2901         bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2902 }
2903
2904 /*
2905  * Returns with db_holds incremented, and db_mtx not held.
2906  * Note: dn_struct_rwlock must be held.
2907  */
2908 static int
2909 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2910 {
2911         ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2912         dh->dh_parent = NULL;
2913
2914         ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2915         ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2916         ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2917
2918         *(dh->dh_dbp) = NULL;
2919
2920         /* dbuf_find() returns with db_mtx held */
2921         dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2922             dh->dh_level, dh->dh_blkid);
2923
2924         if (dh->dh_db == NULL) {
2925                 dh->dh_bp = NULL;
2926
2927                 if (dh->dh_fail_uncached)
2928                         return (SET_ERROR(ENOENT));
2929
2930                 ASSERT3P(dh->dh_parent, ==, NULL);
2931                 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2932                     dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2933                 if (dh->dh_fail_sparse) {
2934                         if (dh->dh_err == 0 &&
2935                             dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2936                                 dh->dh_err = SET_ERROR(ENOENT);
2937                         if (dh->dh_err) {
2938                                 if (dh->dh_parent)
2939                                         dbuf_rele(dh->dh_parent, NULL);
2940                                 return (dh->dh_err);
2941                         }
2942                 }
2943                 if (dh->dh_err && dh->dh_err != ENOENT)
2944                         return (dh->dh_err);
2945                 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2946                     dh->dh_parent, dh->dh_bp);
2947         }
2948
2949         if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2950                 mutex_exit(&dh->dh_db->db_mtx);
2951                 return (SET_ERROR(ENOENT));
2952         }
2953
2954         if (dh->dh_db->db_buf != NULL) {
2955                 arc_buf_access(dh->dh_db->db_buf);
2956                 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
2957         }
2958
2959         ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
2960
2961         /*
2962          * If this buffer is currently syncing out, and we are are
2963          * still referencing it from db_data, we need to make a copy
2964          * of it in case we decide we want to dirty it again in this txg.
2965          */
2966         if (dh->dh_db->db_level == 0 &&
2967             dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2968             dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2969             dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2970                 dh->dh_dr = dh->dh_db->db_data_pending;
2971                 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
2972                         dbuf_hold_copy(dh);
2973         }
2974
2975         if (multilist_link_active(&dh->dh_db->db_cache_link)) {
2976                 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
2977                 ASSERT(dh->dh_db->db_caching_status == DB_DBUF_CACHE ||
2978                     dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE);
2979
2980                 multilist_remove(
2981                     dbuf_caches[dh->dh_db->db_caching_status].cache,
2982                     dh->dh_db);
2983                 (void) refcount_remove_many(
2984                     &dbuf_caches[dh->dh_db->db_caching_status].size,
2985                     dh->dh_db->db.db_size, dh->dh_db);
2986
2987                 if (dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2988                         DBUF_STAT_BUMPDOWN(metadata_cache_count);
2989                 } else {
2990                         DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
2991                         DBUF_STAT_BUMPDOWN(cache_count);
2992                         DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
2993                             dh->dh_db->db.db_size);
2994                 }
2995                 dh->dh_db->db_caching_status = DB_NO_CACHE;
2996         }
2997         (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
2998         DBUF_VERIFY(dh->dh_db);
2999         mutex_exit(&dh->dh_db->db_mtx);
3000
3001         /* NOTE: we can't rele the parent until after we drop the db_mtx */
3002         if (dh->dh_parent)
3003                 dbuf_rele(dh->dh_parent, NULL);
3004
3005         ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3006         ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3007         ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3008         *(dh->dh_dbp) = dh->dh_db;
3009
3010         return (0);
3011 }
3012
3013 /*
3014  * The following code preserves the recursive function dbuf_hold_impl()
3015  * but moves the local variables AND function arguments to the heap to
3016  * minimize the stack frame size.  Enough space is initially allocated
3017  * on the stack for 20 levels of recursion.
3018  */
3019 int
3020 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3021     boolean_t fail_sparse, boolean_t fail_uncached,
3022     void *tag, dmu_buf_impl_t **dbp)
3023 {
3024         struct dbuf_hold_impl_data *dh;
3025         int error;
3026
3027         dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
3028             DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
3029         __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
3030             fail_uncached, tag, dbp, 0);
3031
3032         error = __dbuf_hold_impl(dh);
3033
3034         kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
3035             DBUF_HOLD_IMPL_MAX_DEPTH);
3036
3037         return (error);
3038 }
3039
3040 static void
3041 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
3042     dnode_t *dn, uint8_t level, uint64_t blkid,
3043     boolean_t fail_sparse, boolean_t fail_uncached,
3044     void *tag, dmu_buf_impl_t **dbp, int depth)
3045 {
3046         dh->dh_dn = dn;
3047         dh->dh_level = level;
3048         dh->dh_blkid = blkid;
3049
3050         dh->dh_fail_sparse = fail_sparse;
3051         dh->dh_fail_uncached = fail_uncached;
3052
3053         dh->dh_tag = tag;
3054         dh->dh_dbp = dbp;
3055
3056         dh->dh_db = NULL;
3057         dh->dh_parent = NULL;
3058         dh->dh_bp = NULL;
3059         dh->dh_err = 0;
3060         dh->dh_dr = NULL;
3061
3062         dh->dh_depth = depth;
3063 }
3064
3065 dmu_buf_impl_t *
3066 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3067 {
3068         return (dbuf_hold_level(dn, 0, blkid, tag));
3069 }
3070
3071 dmu_buf_impl_t *
3072 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3073 {
3074         dmu_buf_impl_t *db;
3075         int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3076         return (err ? NULL : db);
3077 }
3078
3079 void
3080 dbuf_create_bonus(dnode_t *dn)
3081 {
3082         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3083
3084         ASSERT(dn->dn_bonus == NULL);
3085         dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3086 }
3087
3088 int
3089 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3090 {
3091         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3092         dnode_t *dn;
3093
3094         if (db->db_blkid != DMU_SPILL_BLKID)
3095                 return (SET_ERROR(ENOTSUP));
3096         if (blksz == 0)
3097                 blksz = SPA_MINBLOCKSIZE;
3098         ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3099         blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3100
3101         DB_DNODE_ENTER(db);
3102         dn = DB_DNODE(db);
3103         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3104         dbuf_new_size(db, blksz, tx);
3105         rw_exit(&dn->dn_struct_rwlock);
3106         DB_DNODE_EXIT(db);
3107
3108         return (0);
3109 }
3110
3111 void
3112 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3113 {
3114         dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3115 }
3116
3117 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3118 void
3119 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3120 {
3121         int64_t holds = refcount_add(&db->db_holds, tag);
3122         ASSERT3S(holds, >, 1);
3123 }
3124
3125 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3126 boolean_t
3127 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3128     void *tag)
3129 {
3130         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3131         dmu_buf_impl_t *found_db;
3132         boolean_t result = B_FALSE;
3133
3134         if (db->db_blkid == DMU_BONUS_BLKID)
3135                 found_db = dbuf_find_bonus(os, obj);
3136         else
3137                 found_db = dbuf_find(os, obj, 0, blkid);
3138
3139         if (found_db != NULL) {
3140                 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3141                         (void) refcount_add(&db->db_holds, tag);
3142                         result = B_TRUE;
3143                 }
3144                 mutex_exit(&db->db_mtx);
3145         }
3146         return (result);
3147 }
3148
3149 /*
3150  * If you call dbuf_rele() you had better not be referencing the dnode handle
3151  * unless you have some other direct or indirect hold on the dnode. (An indirect
3152  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3153  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3154  * dnode's parent dbuf evicting its dnode handles.
3155  */
3156 void
3157 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3158 {
3159         mutex_enter(&db->db_mtx);
3160         dbuf_rele_and_unlock(db, tag, B_FALSE);
3161 }
3162
3163 void
3164 dmu_buf_rele(dmu_buf_t *db, void *tag)
3165 {
3166         dbuf_rele((dmu_buf_impl_t *)db, tag);
3167 }
3168
3169 /*
3170  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
3171  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
3172  * argument should be set if we are already in the dbuf-evicting code
3173  * path, in which case we don't want to recursively evict.  This allows us to
3174  * avoid deeply nested stacks that would have a call flow similar to this:
3175  *
3176  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3177  *      ^                                               |
3178  *      |                                               |
3179  *      +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3180  *
3181  */
3182 void
3183 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3184 {
3185         int64_t holds;
3186
3187         ASSERT(MUTEX_HELD(&db->db_mtx));
3188         DBUF_VERIFY(db);
3189
3190         /*
3191          * Remove the reference to the dbuf before removing its hold on the
3192          * dnode so we can guarantee in dnode_move() that a referenced bonus
3193          * buffer has a corresponding dnode hold.
3194          */
3195         holds = refcount_remove(&db->db_holds, tag);
3196         ASSERT(holds >= 0);
3197
3198         /*
3199          * We can't freeze indirects if there is a possibility that they
3200          * may be modified in the current syncing context.
3201          */
3202         if (db->db_buf != NULL &&
3203             holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3204                 arc_buf_freeze(db->db_buf);
3205         }
3206
3207         if (holds == db->db_dirtycnt &&
3208             db->db_level == 0 && db->db_user_immediate_evict)
3209                 dbuf_evict_user(db);
3210
3211         if (holds == 0) {
3212                 if (db->db_blkid == DMU_BONUS_BLKID) {
3213                         dnode_t *dn;
3214                         boolean_t evict_dbuf = db->db_pending_evict;
3215
3216                         /*
3217                          * If the dnode moves here, we cannot cross this
3218                          * barrier until the move completes.
3219                          */
3220                         DB_DNODE_ENTER(db);
3221
3222                         dn = DB_DNODE(db);
3223                         atomic_dec_32(&dn->dn_dbufs_count);
3224
3225                         /*
3226                          * Decrementing the dbuf count means that the bonus
3227                          * buffer's dnode hold is no longer discounted in
3228                          * dnode_move(). The dnode cannot move until after
3229                          * the dnode_rele() below.
3230                          */
3231                         DB_DNODE_EXIT(db);
3232
3233                         /*
3234                          * Do not reference db after its lock is dropped.
3235                          * Another thread may evict it.
3236                          */
3237                         mutex_exit(&db->db_mtx);
3238
3239                         if (evict_dbuf)
3240                                 dnode_evict_bonus(dn);
3241
3242                         dnode_rele(dn, db);
3243                 } else if (db->db_buf == NULL) {
3244                         /*
3245                          * This is a special case: we never associated this
3246                          * dbuf with any data allocated from the ARC.
3247                          */
3248                         ASSERT(db->db_state == DB_UNCACHED ||
3249                             db->db_state == DB_NOFILL);
3250                         dbuf_destroy(db);
3251                 } else if (arc_released(db->db_buf)) {
3252                         /*
3253                          * This dbuf has anonymous data associated with it.
3254                          */
3255                         dbuf_destroy(db);
3256                 } else {
3257                         boolean_t do_arc_evict = B_FALSE;
3258                         blkptr_t bp;
3259                         spa_t *spa = dmu_objset_spa(db->db_objset);
3260
3261                         if (!DBUF_IS_CACHEABLE(db) &&
3262                             db->db_blkptr != NULL &&
3263                             !BP_IS_HOLE(db->db_blkptr) &&
3264                             !BP_IS_EMBEDDED(db->db_blkptr)) {
3265                                 do_arc_evict = B_TRUE;
3266                                 bp = *db->db_blkptr;
3267                         }
3268
3269                         if (!DBUF_IS_CACHEABLE(db) ||
3270                             db->db_pending_evict) {
3271                                 dbuf_destroy(db);
3272                         } else if (!multilist_link_active(&db->db_cache_link)) {
3273                                 ASSERT3U(db->db_caching_status, ==,
3274                                     DB_NO_CACHE);
3275
3276                                 dbuf_cached_state_t dcs =
3277                                     dbuf_include_in_metadata_cache(db) ?
3278                                     DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3279                                 db->db_caching_status = dcs;
3280
3281                                 multilist_insert(dbuf_caches[dcs].cache, db);
3282                                 (void) refcount_add_many(&dbuf_caches[dcs].size,
3283                                     db->db.db_size, db);
3284
3285                                 if (dcs == DB_DBUF_METADATA_CACHE) {
3286                                         DBUF_STAT_BUMP(metadata_cache_count);
3287                                         DBUF_STAT_MAX(
3288                                             metadata_cache_size_bytes_max,
3289                                             refcount_count(
3290                                             &dbuf_caches[dcs].size));
3291                                 } else {
3292                                         DBUF_STAT_BUMP(
3293                                             cache_levels[db->db_level]);
3294                                         DBUF_STAT_BUMP(cache_count);
3295                                         DBUF_STAT_INCR(
3296                                             cache_levels_bytes[db->db_level],
3297                                             db->db.db_size);
3298                                         DBUF_STAT_MAX(cache_size_bytes_max,
3299                                             refcount_count(
3300                                             &dbuf_caches[dcs].size));
3301                                 }
3302                                 mutex_exit(&db->db_mtx);
3303
3304                                 if (db->db_caching_status == DB_DBUF_CACHE &&
3305                                     !evicting) {
3306                                         dbuf_evict_notify();
3307                                 }
3308                         }
3309
3310                         if (do_arc_evict)
3311                                 arc_freed(spa, &bp);
3312                 }
3313         } else {
3314                 mutex_exit(&db->db_mtx);
3315         }
3316
3317 }
3318
3319 #pragma weak dmu_buf_refcount = dbuf_refcount
3320 uint64_t
3321 dbuf_refcount(dmu_buf_impl_t *db)
3322 {
3323         return (refcount_count(&db->db_holds));
3324 }
3325
3326 void *
3327 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3328     dmu_buf_user_t *new_user)
3329 {
3330         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3331
3332         mutex_enter(&db->db_mtx);
3333         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3334         if (db->db_user == old_user)
3335                 db->db_user = new_user;
3336         else
3337                 old_user = db->db_user;
3338         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3339         mutex_exit(&db->db_mtx);
3340
3341         return (old_user);
3342 }
3343
3344 void *
3345 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3346 {
3347         return (dmu_buf_replace_user(db_fake, NULL, user));
3348 }
3349
3350 void *
3351 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3352 {
3353         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3354
3355         db->db_user_immediate_evict = TRUE;
3356         return (dmu_buf_set_user(db_fake, user));
3357 }
3358
3359 void *
3360 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3361 {
3362         return (dmu_buf_replace_user(db_fake, user, NULL));
3363 }
3364
3365 void *
3366 dmu_buf_get_user(dmu_buf_t *db_fake)
3367 {
3368         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3369
3370         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3371         return (db->db_user);
3372 }
3373
3374 void
3375 dmu_buf_user_evict_wait()
3376 {
3377         taskq_wait(dbu_evict_taskq);
3378 }
3379
3380 blkptr_t *
3381 dmu_buf_get_blkptr(dmu_buf_t *db)
3382 {
3383         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3384         return (dbi->db_blkptr);
3385 }
3386
3387 objset_t *
3388 dmu_buf_get_objset(dmu_buf_t *db)
3389 {
3390         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3391         return (dbi->db_objset);
3392 }
3393
3394 dnode_t *
3395 dmu_buf_dnode_enter(dmu_buf_t *db)
3396 {
3397         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3398         DB_DNODE_ENTER(dbi);
3399         return (DB_DNODE(dbi));
3400 }
3401
3402 void
3403 dmu_buf_dnode_exit(dmu_buf_t *db)
3404 {
3405         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3406         DB_DNODE_EXIT(dbi);
3407 }
3408
3409 static void
3410 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3411 {
3412         /* ASSERT(dmu_tx_is_syncing(tx) */
3413         ASSERT(MUTEX_HELD(&db->db_mtx));
3414
3415         if (db->db_blkptr != NULL)
3416                 return;
3417
3418         if (db->db_blkid == DMU_SPILL_BLKID) {
3419                 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3420                 BP_ZERO(db->db_blkptr);
3421                 return;
3422         }
3423         if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3424                 /*
3425                  * This buffer was allocated at a time when there was
3426                  * no available blkptrs from the dnode, or it was
3427                  * inappropriate to hook it in (i.e., nlevels mis-match).
3428                  */
3429                 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3430                 ASSERT(db->db_parent == NULL);
3431                 db->db_parent = dn->dn_dbuf;
3432                 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3433                 DBUF_VERIFY(db);
3434         } else {
3435                 dmu_buf_impl_t *parent = db->db_parent;
3436                 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3437
3438                 ASSERT(dn->dn_phys->dn_nlevels > 1);
3439                 if (parent == NULL) {
3440                         mutex_exit(&db->db_mtx);
3441                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
3442                         parent = dbuf_hold_level(dn, db->db_level + 1,
3443                             db->db_blkid >> epbs, db);
3444                         rw_exit(&dn->dn_struct_rwlock);
3445                         mutex_enter(&db->db_mtx);
3446                         db->db_parent = parent;
3447                 }
3448                 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3449                     (db->db_blkid & ((1ULL << epbs) - 1));
3450                 DBUF_VERIFY(db);
3451         }
3452 }
3453
3454 /*
3455  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3456  * is critical the we not allow the compiler to inline this function in to
3457  * dbuf_sync_list() thereby drastically bloating the stack usage.
3458  */
3459 noinline static void
3460 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3461 {
3462         dmu_buf_impl_t *db = dr->dr_dbuf;
3463         dnode_t *dn;
3464         zio_t *zio;
3465
3466         ASSERT(dmu_tx_is_syncing(tx));
3467
3468         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3469
3470         mutex_enter(&db->db_mtx);
3471
3472         ASSERT(db->db_level > 0);
3473         DBUF_VERIFY(db);
3474
3475         /* Read the block if it hasn't been read yet. */
3476         if (db->db_buf == NULL) {
3477                 mutex_exit(&db->db_mtx);
3478                 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3479                 mutex_enter(&db->db_mtx);
3480         }
3481         ASSERT3U(db->db_state, ==, DB_CACHED);
3482         ASSERT(db->db_buf != NULL);
3483
3484         DB_DNODE_ENTER(db);
3485         dn = DB_DNODE(db);
3486         /* Indirect block size must match what the dnode thinks it is. */
3487         ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3488         dbuf_check_blkptr(dn, db);
3489         DB_DNODE_EXIT(db);
3490
3491         /* Provide the pending dirty record to child dbufs */
3492         db->db_data_pending = dr;
3493
3494         mutex_exit(&db->db_mtx);
3495
3496         dbuf_write(dr, db->db_buf, tx);
3497
3498         zio = dr->dr_zio;
3499         mutex_enter(&dr->dt.di.dr_mtx);
3500         dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3501         ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3502         mutex_exit(&dr->dt.di.dr_mtx);
3503         zio_nowait(zio);
3504 }
3505
3506 /*
3507  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3508  * critical the we not allow the compiler to inline this function in to
3509  * dbuf_sync_list() thereby drastically bloating the stack usage.
3510  */
3511 noinline static void
3512 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3513 {
3514         arc_buf_t **datap = &dr->dt.dl.dr_data;
3515         dmu_buf_impl_t *db = dr->dr_dbuf;
3516         dnode_t *dn;
3517         objset_t *os;
3518         uint64_t txg = tx->tx_txg;
3519
3520         ASSERT(dmu_tx_is_syncing(tx));
3521
3522         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3523
3524         mutex_enter(&db->db_mtx);
3525         /*
3526          * To be synced, we must be dirtied.  But we
3527          * might have been freed after the dirty.
3528          */
3529         if (db->db_state == DB_UNCACHED) {
3530                 /* This buffer has been freed since it was dirtied */
3531                 ASSERT(db->db.db_data == NULL);
3532         } else if (db->db_state == DB_FILL) {
3533                 /* This buffer was freed and is now being re-filled */
3534                 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3535         } else {
3536                 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3537         }
3538         DBUF_VERIFY(db);
3539
3540         DB_DNODE_ENTER(db);
3541         dn = DB_DNODE(db);
3542
3543         if (db->db_blkid == DMU_SPILL_BLKID) {
3544                 mutex_enter(&dn->dn_mtx);
3545                 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3546                         /*
3547                          * In the previous transaction group, the bonus buffer
3548                          * was entirely used to store the attributes for the
3549                          * dnode which overrode the dn_spill field.  However,
3550                          * when adding more attributes to the file a spill
3551                          * block was required to hold the extra attributes.
3552                          *
3553                          * Make sure to clear the garbage left in the dn_spill
3554                          * field from the previous attributes in the bonus
3555                          * buffer.  Otherwise, after writing out the spill
3556                          * block to the new allocated dva, it will free
3557                          * the old block pointed to by the invalid dn_spill.
3558                          */
3559                         db->db_blkptr = NULL;
3560                 }
3561                 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3562                 mutex_exit(&dn->dn_mtx);
3563         }
3564
3565         /*
3566          * If this is a bonus buffer, simply copy the bonus data into the
3567          * dnode.  It will be written out when the dnode is synced (and it
3568          * will be synced, since it must have been dirty for dbuf_sync to
3569          * be called).
3570          */
3571         if (db->db_blkid == DMU_BONUS_BLKID) {
3572                 dbuf_dirty_record_t **drp;
3573
3574                 ASSERT(*datap != NULL);
3575                 ASSERT0(db->db_level);
3576                 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3577                     DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3578                 bcopy(*datap, DN_BONUS(dn->dn_phys),
3579                     DN_MAX_BONUS_LEN(dn->dn_phys));
3580                 DB_DNODE_EXIT(db);
3581
3582                 if (*datap != db->db.db_data) {
3583                         int slots = DB_DNODE(db)->dn_num_slots;
3584                         int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3585                         zio_buf_free(*datap, bonuslen);
3586                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
3587                 }
3588                 db->db_data_pending = NULL;
3589                 drp = &db->db_last_dirty;
3590                 while (*drp != dr)
3591                         drp = &(*drp)->dr_next;
3592                 ASSERT(dr->dr_next == NULL);
3593                 ASSERT(dr->dr_dbuf == db);
3594                 *drp = dr->dr_next;
3595                 if (dr->dr_dbuf->db_level != 0) {
3596                         mutex_destroy(&dr->dt.di.dr_mtx);
3597                         list_destroy(&dr->dt.di.dr_children);
3598                 }
3599                 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3600                 ASSERT(db->db_dirtycnt > 0);
3601                 db->db_dirtycnt -= 1;
3602                 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3603                 return;
3604         }
3605
3606         os = dn->dn_objset;
3607
3608         /*
3609          * This function may have dropped the db_mtx lock allowing a dmu_sync
3610          * operation to sneak in. As a result, we need to ensure that we
3611          * don't check the dr_override_state until we have returned from
3612          * dbuf_check_blkptr.
3613          */
3614         dbuf_check_blkptr(dn, db);
3615
3616         /*
3617          * If this buffer is in the middle of an immediate write,
3618          * wait for the synchronous IO to complete.
3619          */
3620         while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3621                 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3622                 cv_wait(&db->db_changed, &db->db_mtx);
3623                 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3624         }
3625
3626         if (db->db_state != DB_NOFILL &&
3627             dn->dn_object != DMU_META_DNODE_OBJECT &&
3628             refcount_count(&db->db_holds) > 1 &&
3629             dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3630             *datap == db->db_buf) {
3631                 /*
3632                  * If this buffer is currently "in use" (i.e., there
3633                  * are active holds and db_data still references it),
3634                  * then make a copy before we start the write so that
3635                  * any modifications from the open txg will not leak
3636                  * into this write.
3637                  *
3638                  * NOTE: this copy does not need to be made for
3639                  * objects only modified in the syncing context (e.g.
3640                  * DNONE_DNODE blocks).
3641                  */
3642                 int psize = arc_buf_size(*datap);
3643                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3644                 enum zio_compress compress_type = arc_get_compression(*datap);
3645
3646                 if (compress_type == ZIO_COMPRESS_OFF) {
3647                         *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3648                 } else {
3649                         ASSERT3U(type, ==, ARC_BUFC_DATA);
3650                         int lsize = arc_buf_lsize(*datap);
3651                         *datap = arc_alloc_compressed_buf(os->os_spa, db,
3652                             psize, lsize, compress_type);
3653                 }
3654                 bcopy(db->db.db_data, (*datap)->b_data, psize);
3655         }
3656         db->db_data_pending = dr;
3657
3658         mutex_exit(&db->db_mtx);
3659
3660         dbuf_write(dr, *datap, tx);
3661
3662         ASSERT(!list_link_active(&dr->dr_dirty_node));
3663         if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3664                 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3665                 DB_DNODE_EXIT(db);
3666         } else {
3667                 /*
3668                  * Although zio_nowait() does not "wait for an IO", it does
3669                  * initiate the IO. If this is an empty write it seems plausible
3670                  * that the IO could actually be completed before the nowait
3671                  * returns. We need to DB_DNODE_EXIT() first in case
3672                  * zio_nowait() invalidates the dbuf.
3673                  */
3674                 DB_DNODE_EXIT(db);
3675                 zio_nowait(dr->dr_zio);
3676         }
3677 }
3678
3679 void
3680 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3681 {
3682         dbuf_dirty_record_t *dr;
3683
3684         while (dr = list_head(list)) {
3685                 if (dr->dr_zio != NULL) {
3686                         /*
3687                          * If we find an already initialized zio then we
3688                          * are processing the meta-dnode, and we have finished.
3689                          * The dbufs for all dnodes are put back on the list
3690                          * during processing, so that we can zio_wait()
3691                          * these IOs after initiating all child IOs.
3692                          */
3693                         ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3694                             DMU_META_DNODE_OBJECT);
3695                         break;
3696                 }
3697                 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3698                     dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3699                         VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3700                 }
3701                 list_remove(list, dr);
3702                 if (dr->dr_dbuf->db_level > 0)
3703                         dbuf_sync_indirect(dr, tx);
3704                 else
3705                         dbuf_sync_leaf(dr, tx);
3706         }
3707 }
3708
3709 /* ARGSUSED */
3710 static void
3711 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3712 {
3713         dmu_buf_impl_t *db = vdb;
3714         dnode_t *dn;
3715         blkptr_t *bp = zio->io_bp;
3716         blkptr_t *bp_orig = &zio->io_bp_orig;
3717         spa_t *spa = zio->io_spa;
3718         int64_t delta;
3719         uint64_t fill = 0;
3720         int i;
3721
3722         ASSERT3P(db->db_blkptr, !=, NULL);
3723         ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3724
3725         DB_DNODE_ENTER(db);
3726         dn = DB_DNODE(db);
3727         delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3728         dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3729         zio->io_prev_space_delta = delta;
3730
3731         if (bp->blk_birth != 0) {
3732                 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3733                     BP_GET_TYPE(bp) == dn->dn_type) ||
3734                     (db->db_blkid == DMU_SPILL_BLKID &&
3735                     BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3736                     BP_IS_EMBEDDED(bp));
3737                 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3738         }
3739
3740         mutex_enter(&db->db_mtx);
3741
3742 #ifdef ZFS_DEBUG
3743         if (db->db_blkid == DMU_SPILL_BLKID) {
3744                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3745                 ASSERT(!(BP_IS_HOLE(bp)) &&
3746                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3747         }
3748 #endif
3749
3750         if (db->db_level == 0) {
3751                 mutex_enter(&dn->dn_mtx);
3752                 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3753                     db->db_blkid != DMU_SPILL_BLKID)
3754                         dn->dn_phys->dn_maxblkid = db->db_blkid;
3755                 mutex_exit(&dn->dn_mtx);
3756
3757                 if (dn->dn_type == DMU_OT_DNODE) {
3758                         i = 0;
3759                         while (i < db->db.db_size) {
3760                                 dnode_phys_t *dnp = db->db.db_data + i;
3761
3762                                 i += DNODE_MIN_SIZE;
3763                                 if (dnp->dn_type != DMU_OT_NONE) {
3764                                         fill++;
3765                                         i += dnp->dn_extra_slots *
3766                                             DNODE_MIN_SIZE;
3767                                 }
3768                         }
3769                 } else {
3770                         if (BP_IS_HOLE(bp)) {
3771                                 fill = 0;
3772                         } else {
3773                                 fill = 1;
3774                         }
3775                 }
3776         } else {
3777                 blkptr_t *ibp = db->db.db_data;
3778                 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3779                 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3780                         if (BP_IS_HOLE(ibp))
3781                                 continue;
3782                         fill += BP_GET_FILL(ibp);
3783                 }
3784         }
3785         DB_DNODE_EXIT(db);
3786
3787         if (!BP_IS_EMBEDDED(bp))
3788                 bp->blk_fill = fill;
3789
3790         mutex_exit(&db->db_mtx);
3791
3792         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3793         *db->db_blkptr = *bp;
3794         rw_exit(&dn->dn_struct_rwlock);
3795 }
3796
3797 /* ARGSUSED */
3798 /*
3799  * This function gets called just prior to running through the compression
3800  * stage of the zio pipeline. If we're an indirect block comprised of only
3801  * holes, then we want this indirect to be compressed away to a hole. In
3802  * order to do that we must zero out any information about the holes that
3803  * this indirect points to prior to before we try to compress it.
3804  */
3805 static void
3806 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3807 {
3808         dmu_buf_impl_t *db = vdb;
3809         dnode_t *dn;
3810         blkptr_t *bp;
3811         unsigned int epbs, i;
3812
3813         ASSERT3U(db->db_level, >, 0);
3814         DB_DNODE_ENTER(db);
3815         dn = DB_DNODE(db);
3816         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3817         ASSERT3U(epbs, <, 31);
3818
3819         /* Determine if all our children are holes */
3820         for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3821                 if (!BP_IS_HOLE(bp))
3822                         break;
3823         }
3824
3825         /*
3826          * If all the children are holes, then zero them all out so that
3827          * we may get compressed away.
3828          */
3829         if (i == 1 << epbs) {
3830                 /*
3831                  * We only found holes. Grab the rwlock to prevent
3832                  * anybody from reading the blocks we're about to
3833                  * zero out.
3834                  */
3835                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3836                 bzero(db->db.db_data, db->db.db_size);
3837                 rw_exit(&dn->dn_struct_rwlock);
3838         }
3839         DB_DNODE_EXIT(db);
3840 }
3841
3842 /*
3843  * The SPA will call this callback several times for each zio - once
3844  * for every physical child i/o (zio->io_phys_children times).  This
3845  * allows the DMU to monitor the progress of each logical i/o.  For example,
3846  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3847  * block.  There may be a long delay before all copies/fragments are completed,
3848  * so this callback allows us to retire dirty space gradually, as the physical
3849  * i/os complete.
3850  */
3851 /* ARGSUSED */
3852 static void
3853 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3854 {
3855         dmu_buf_impl_t *db = arg;
3856         objset_t *os = db->db_objset;
3857         dsl_pool_t *dp = dmu_objset_pool(os);
3858         dbuf_dirty_record_t *dr;
3859         int delta = 0;
3860
3861         dr = db->db_data_pending;
3862         ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3863
3864         /*
3865          * The callback will be called io_phys_children times.  Retire one
3866          * portion of our dirty space each time we are called.  Any rounding
3867          * error will be cleaned up by dsl_pool_sync()'s call to
3868          * dsl_pool_undirty_space().
3869          */
3870         delta = dr->dr_accounted / zio->io_phys_children;
3871         dsl_pool_undirty_space(dp, delta, zio->io_txg);
3872 }
3873
3874 /* ARGSUSED */
3875 static void
3876 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3877 {
3878         dmu_buf_impl_t *db = vdb;
3879         blkptr_t *bp_orig = &zio->io_bp_orig;
3880         blkptr_t *bp = db->db_blkptr;
3881         objset_t *os = db->db_objset;
3882         dmu_tx_t *tx = os->os_synctx;
3883         dbuf_dirty_record_t **drp, *dr;
3884
3885         ASSERT0(zio->io_error);
3886         ASSERT(db->db_blkptr == bp);
3887
3888         /*
3889          * For nopwrites and rewrites we ensure that the bp matches our
3890          * original and bypass all the accounting.
3891          */
3892         if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3893                 ASSERT(BP_EQUAL(bp, bp_orig));
3894         } else {
3895                 dsl_dataset_t *ds = os->os_dsl_dataset;
3896                 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3897                 dsl_dataset_block_born(ds, bp, tx);
3898         }
3899
3900         mutex_enter(&db->db_mtx);
3901
3902         DBUF_VERIFY(db);
3903
3904         drp = &db->db_last_dirty;
3905         while ((dr = *drp) != db->db_data_pending)
3906                 drp = &dr->dr_next;
3907         ASSERT(!list_link_active(&dr->dr_dirty_node));
3908         ASSERT(dr->dr_dbuf == db);
3909         ASSERT(dr->dr_next == NULL);
3910         *drp = dr->dr_next;
3911
3912 #ifdef ZFS_DEBUG
3913         if (db->db_blkid == DMU_SPILL_BLKID) {
3914                 dnode_t *dn;
3915
3916                 DB_DNODE_ENTER(db);
3917                 dn = DB_DNODE(db);
3918                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3919                 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3920                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3921                 DB_DNODE_EXIT(db);
3922         }
3923 #endif
3924
3925         if (db->db_level == 0) {
3926                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3927                 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3928                 if (db->db_state != DB_NOFILL) {
3929                         if (dr->dt.dl.dr_data != db->db_buf)
3930                                 arc_buf_destroy(dr->dt.dl.dr_data, db);
3931                 }
3932         } else {
3933                 dnode_t *dn;
3934
3935                 DB_DNODE_ENTER(db);
3936                 dn = DB_DNODE(db);
3937                 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3938                 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3939                 if (!BP_IS_HOLE(db->db_blkptr)) {
3940                         int epbs =
3941                             dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3942                         ASSERT3U(db->db_blkid, <=,
3943                             dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3944                         ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3945                             db->db.db_size);
3946                 }
3947                 DB_DNODE_EXIT(db);
3948                 mutex_destroy(&dr->dt.di.dr_mtx);
3949                 list_destroy(&dr->dt.di.dr_children);
3950         }
3951         kmem_free(dr, sizeof (dbuf_dirty_record_t));
3952
3953         cv_broadcast(&db->db_changed);
3954         ASSERT(db->db_dirtycnt > 0);
3955         db->db_dirtycnt -= 1;
3956         db->db_data_pending = NULL;
3957         dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
3958 }
3959
3960 static void
3961 dbuf_write_nofill_ready(zio_t *zio)
3962 {
3963         dbuf_write_ready(zio, NULL, zio->io_private);
3964 }
3965
3966 static void
3967 dbuf_write_nofill_done(zio_t *zio)
3968 {
3969         dbuf_write_done(zio, NULL, zio->io_private);
3970 }
3971
3972 static void
3973 dbuf_write_override_ready(zio_t *zio)
3974 {
3975         dbuf_dirty_record_t *dr = zio->io_private;
3976         dmu_buf_impl_t *db = dr->dr_dbuf;
3977
3978         dbuf_write_ready(zio, NULL, db);
3979 }
3980
3981 static void
3982 dbuf_write_override_done(zio_t *zio)
3983 {
3984         dbuf_dirty_record_t *dr = zio->io_private;
3985         dmu_buf_impl_t *db = dr->dr_dbuf;
3986         blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3987
3988         mutex_enter(&db->db_mtx);
3989         if (!BP_EQUAL(zio->io_bp, obp)) {
3990                 if (!BP_IS_HOLE(obp))
3991                         dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3992                 arc_release(dr->dt.dl.dr_data, db);
3993         }
3994         mutex_exit(&db->db_mtx);
3995         dbuf_write_done(zio, NULL, db);
3996
3997         if (zio->io_abd != NULL)
3998                 abd_put(zio->io_abd);
3999 }
4000
4001 typedef struct dbuf_remap_impl_callback_arg {
4002         objset_t        *drica_os;
4003         uint64_t        drica_blk_birth;
4004         dmu_tx_t        *drica_tx;
4005 } dbuf_remap_impl_callback_arg_t;
4006
4007 static void
4008 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4009     void *arg)
4010 {
4011         dbuf_remap_impl_callback_arg_t *drica = arg;
4012         objset_t *os = drica->drica_os;
4013         spa_t *spa = dmu_objset_spa(os);
4014         dmu_tx_t *tx = drica->drica_tx;
4015
4016         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4017
4018         if (os == spa_meta_objset(spa)) {
4019                 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4020         } else {
4021                 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4022                     size, drica->drica_blk_birth, tx);
4023         }
4024 }
4025
4026 static void
4027 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4028 {
4029         blkptr_t bp_copy = *bp;
4030         spa_t *spa = dmu_objset_spa(dn->dn_objset);
4031         dbuf_remap_impl_callback_arg_t drica;
4032
4033         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4034
4035         drica.drica_os = dn->dn_objset;
4036         drica.drica_blk_birth = bp->blk_birth;
4037         drica.drica_tx = tx;
4038         if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4039             &drica)) {
4040                 /*
4041                  * The struct_rwlock prevents dbuf_read_impl() from
4042                  * dereferencing the BP while we are changing it.  To
4043                  * avoid lock contention, only grab it when we are actually
4044                  * changing the BP.
4045                  */
4046                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4047                 *bp = bp_copy;
4048                 rw_exit(&dn->dn_struct_rwlock);
4049         }
4050 }
4051
4052 /*
4053  * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4054  * to remap a copy of every bp in the dbuf.
4055  */
4056 boolean_t
4057 dbuf_can_remap(const dmu_buf_impl_t *db)
4058 {
4059         spa_t *spa = dmu_objset_spa(db->db_objset);
4060         blkptr_t *bp = db->db.db_data;
4061         boolean_t ret = B_FALSE;
4062
4063         ASSERT3U(db->db_level, >, 0);
4064         ASSERT3S(db->db_state, ==, DB_CACHED);
4065
4066         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4067
4068         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4069         for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4070                 blkptr_t bp_copy = bp[i];
4071                 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4072                         ret = B_TRUE;
4073                         break;
4074                 }
4075         }
4076         spa_config_exit(spa, SCL_VDEV, FTAG);
4077
4078         return (ret);
4079 }
4080
4081 boolean_t
4082 dnode_needs_remap(const dnode_t *dn)
4083 {
4084         spa_t *spa = dmu_objset_spa(dn->dn_objset);
4085         boolean_t ret = B_FALSE;
4086
4087         if (dn->dn_phys->dn_nlevels == 0) {
4088                 return (B_FALSE);
4089         }
4090
4091         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4092
4093         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4094         for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4095                 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4096                 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4097                         ret = B_TRUE;
4098                         break;
4099                 }
4100         }
4101         spa_config_exit(spa, SCL_VDEV, FTAG);
4102
4103         return (ret);
4104 }
4105
4106 /*
4107  * Remap any existing BP's to concrete vdevs, if possible.
4108  */
4109 static void
4110 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4111 {
4112         spa_t *spa = dmu_objset_spa(db->db_objset);
4113         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4114
4115         if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4116                 return;
4117
4118         if (db->db_level > 0) {
4119                 blkptr_t *bp = db->db.db_data;
4120                 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4121                         dbuf_remap_impl(dn, &bp[i], tx);
4122                 }
4123         } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4124                 dnode_phys_t *dnp = db->db.db_data;
4125                 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4126                     DMU_OT_DNODE);
4127                 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4128                     i += dnp[i].dn_extra_slots + 1) {
4129                         for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4130                                 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4131                         }
4132                 }
4133         }
4134 }
4135
4136
4137 /* Issue I/O to commit a dirty buffer to disk. */
4138 static void
4139 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4140 {
4141         dmu_buf_impl_t *db = dr->dr_dbuf;
4142         dnode_t *dn;
4143         objset_t *os;
4144         dmu_buf_impl_t *parent = db->db_parent;
4145         uint64_t txg = tx->tx_txg;
4146         zbookmark_phys_t zb;
4147         zio_prop_t zp;
4148         zio_t *zio;
4149         int wp_flag = 0;
4150
4151         ASSERT(dmu_tx_is_syncing(tx));
4152
4153         DB_DNODE_ENTER(db);
4154         dn = DB_DNODE(db);
4155         os = dn->dn_objset;
4156
4157         if (db->db_state != DB_NOFILL) {
4158                 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4159                         /*
4160                          * Private object buffers are released here rather
4161                          * than in dbuf_dirty() since they are only modified
4162                          * in the syncing context and we don't want the
4163                          * overhead of making multiple copies of the data.
4164                          */
4165                         if (BP_IS_HOLE(db->db_blkptr)) {
4166                                 arc_buf_thaw(data);
4167                         } else {
4168                                 dbuf_release_bp(db);
4169                         }
4170                         dbuf_remap(dn, db, tx);
4171                 }
4172         }
4173
4174         if (parent != dn->dn_dbuf) {
4175                 /* Our parent is an indirect block. */
4176                 /* We have a dirty parent that has been scheduled for write. */
4177                 ASSERT(parent && parent->db_data_pending);
4178                 /* Our parent's buffer is one level closer to the dnode. */
4179                 ASSERT(db->db_level == parent->db_level-1);
4180                 /*
4181                  * We're about to modify our parent's db_data by modifying
4182                  * our block pointer, so the parent must be released.
4183                  */
4184                 ASSERT(arc_released(parent->db_buf));
4185                 zio = parent->db_data_pending->dr_zio;
4186         } else {
4187                 /* Our parent is the dnode itself. */
4188                 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4189                     db->db_blkid != DMU_SPILL_BLKID) ||
4190                     (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4191                 if (db->db_blkid != DMU_SPILL_BLKID)
4192                         ASSERT3P(db->db_blkptr, ==,
4193                             &dn->dn_phys->dn_blkptr[db->db_blkid]);
4194                 zio = dn->dn_zio;
4195         }
4196
4197         ASSERT(db->db_level == 0 || data == db->db_buf);
4198         ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4199         ASSERT(zio);
4200
4201         SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4202             os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4203             db->db.db_object, db->db_level, db->db_blkid);
4204
4205         if (db->db_blkid == DMU_SPILL_BLKID)
4206                 wp_flag = WP_SPILL;
4207         wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4208
4209         dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4210         DB_DNODE_EXIT(db);
4211
4212         /*
4213          * We copy the blkptr now (rather than when we instantiate the dirty
4214          * record), because its value can change between open context and
4215          * syncing context. We do not need to hold dn_struct_rwlock to read
4216          * db_blkptr because we are in syncing context.
4217          */
4218         dr->dr_bp_copy = *db->db_blkptr;
4219
4220         if (db->db_level == 0 &&
4221             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4222                 /*
4223                  * The BP for this block has been provided by open context
4224                  * (by dmu_sync() or dmu_buf_write_embedded()).
4225                  */
4226                 abd_t *contents = (data != NULL) ?
4227                     abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4228
4229                 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
4230                     contents, db->db.db_size, db->db.db_size, &zp,
4231                     dbuf_write_override_ready, NULL, NULL,
4232                     dbuf_write_override_done,
4233                     dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4234                 mutex_enter(&db->db_mtx);
4235                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4236                 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4237                     dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4238                 mutex_exit(&db->db_mtx);
4239         } else if (db->db_state == DB_NOFILL) {
4240                 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4241                     zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4242                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4243                     &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4244                     dbuf_write_nofill_ready, NULL, NULL,
4245                     dbuf_write_nofill_done, db,
4246                     ZIO_PRIORITY_ASYNC_WRITE,
4247                     ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4248         } else {
4249                 ASSERT(arc_released(data));
4250
4251                 /*
4252                  * For indirect blocks, we want to setup the children
4253                  * ready callback so that we can properly handle an indirect
4254                  * block that only contains holes.
4255                  */
4256                 arc_write_done_func_t *children_ready_cb = NULL;
4257                 if (db->db_level != 0)
4258                         children_ready_cb = dbuf_write_children_ready;
4259
4260                 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4261                     &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4262                     &zp, dbuf_write_ready, children_ready_cb,
4263                     dbuf_write_physdone, dbuf_write_done, db,
4264                     ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4265         }
4266 }