]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu_zfetch.c
MFV: r362513
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44 boolean_t zfs_prefetch_disable = B_FALSE;
45
46 /* max # of streams per zfetch */
47 uint32_t        zfetch_max_streams = 8;
48 /* min time before stream reclaim */
49 uint32_t        zfetch_min_sec_reap = 2;
50 /* max bytes to prefetch per stream (default 8MB) */
51 uint32_t        zfetch_max_distance = 8 * 1024 * 1024;
52 /* max bytes to prefetch indirects for per stream (default 64MB) */
53 uint32_t        zfetch_max_idistance = 64 * 1024 * 1024;
54 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
55 uint64_t        zfetch_array_rd_sz = 1024 * 1024;
56
57 SYSCTL_DECL(_vfs_zfs);
58 SYSCTL_INT(_vfs_zfs, OID_AUTO, prefetch_disable, CTLFLAG_RW,
59     &zfs_prefetch_disable, 0, "Disable prefetch");
60 SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
61     "ZFS ZFETCH");
62 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_streams, CTLFLAG_RWTUN,
63     &zfetch_max_streams, 0, "Max # of streams per zfetch");
64 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, min_sec_reap, CTLFLAG_RWTUN,
65     &zfetch_min_sec_reap, 0, "Min time before stream reclaim");
66 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN,
67     &zfetch_max_distance, 0, "Max bytes to prefetch per stream");
68 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_idistance, CTLFLAG_RWTUN,
69     &zfetch_max_idistance, 0, "Max bytes to prefetch indirects for per stream");
70 SYSCTL_UQUAD(_vfs_zfs_zfetch, OID_AUTO, array_rd_sz, CTLFLAG_RWTUN,
71     &zfetch_array_rd_sz, 0,
72     "Number of bytes in a array_read at which we stop prefetching");
73
74 typedef struct zfetch_stats {
75         kstat_named_t zfetchstat_hits;
76         kstat_named_t zfetchstat_misses;
77         kstat_named_t zfetchstat_max_streams;
78 } zfetch_stats_t;
79
80 static zfetch_stats_t zfetch_stats = {
81         { "hits",                       KSTAT_DATA_UINT64 },
82         { "misses",                     KSTAT_DATA_UINT64 },
83         { "max_streams",                KSTAT_DATA_UINT64 },
84 };
85
86 #define ZFETCHSTAT_BUMP(stat) \
87         atomic_inc_64(&zfetch_stats.stat.value.ui64);
88
89 kstat_t         *zfetch_ksp;
90
91 void
92 zfetch_init(void)
93 {
94         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
95             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
96             KSTAT_FLAG_VIRTUAL);
97
98         if (zfetch_ksp != NULL) {
99                 zfetch_ksp->ks_data = &zfetch_stats;
100                 kstat_install(zfetch_ksp);
101         }
102 }
103
104 void
105 zfetch_fini(void)
106 {
107         if (zfetch_ksp != NULL) {
108                 kstat_delete(zfetch_ksp);
109                 zfetch_ksp = NULL;
110         }
111 }
112
113 /*
114  * This takes a pointer to a zfetch structure and a dnode.  It performs the
115  * necessary setup for the zfetch structure, grokking data from the
116  * associated dnode.
117  */
118 void
119 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
120 {
121         if (zf == NULL)
122                 return;
123
124         zf->zf_dnode = dno;
125
126         list_create(&zf->zf_stream, sizeof (zstream_t),
127             offsetof(zstream_t, zs_node));
128
129         rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
130 }
131
132 static void
133 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
134 {
135         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
136         list_remove(&zf->zf_stream, zs);
137         mutex_destroy(&zs->zs_lock);
138         kmem_free(zs, sizeof (*zs));
139 }
140
141 /*
142  * Clean-up state associated with a zfetch structure (e.g. destroy the
143  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
144  */
145 void
146 dmu_zfetch_fini(zfetch_t *zf)
147 {
148         zstream_t *zs;
149
150         ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
151
152         rw_enter(&zf->zf_rwlock, RW_WRITER);
153         while ((zs = list_head(&zf->zf_stream)) != NULL)
154                 dmu_zfetch_stream_remove(zf, zs);
155         rw_exit(&zf->zf_rwlock);
156         list_destroy(&zf->zf_stream);
157         rw_destroy(&zf->zf_rwlock);
158
159         zf->zf_dnode = NULL;
160 }
161
162 /*
163  * If there aren't too many streams already, create a new stream.
164  * The "blkid" argument is the next block that we expect this stream to access.
165  * While we're here, clean up old streams (which haven't been
166  * accessed for at least zfetch_min_sec_reap seconds).
167  */
168 static void
169 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
170 {
171         zstream_t *zs_next;
172         int numstreams = 0;
173
174         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
175
176         /*
177          * Clean up old streams.
178          */
179         for (zstream_t *zs = list_head(&zf->zf_stream);
180             zs != NULL; zs = zs_next) {
181                 zs_next = list_next(&zf->zf_stream, zs);
182                 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
183                     zfetch_min_sec_reap)
184                         dmu_zfetch_stream_remove(zf, zs);
185                 else
186                         numstreams++;
187         }
188
189         /*
190          * The maximum number of streams is normally zfetch_max_streams,
191          * but for small files we lower it such that it's at least possible
192          * for all the streams to be non-overlapping.
193          *
194          * If we are already at the maximum number of streams for this file,
195          * even after removing old streams, then don't create this stream.
196          */
197         uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
198             zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
199             zfetch_max_distance));
200         if (numstreams >= max_streams) {
201                 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
202                 return;
203         }
204
205         zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
206         zs->zs_blkid = blkid;
207         zs->zs_pf_blkid = blkid;
208         zs->zs_ipf_blkid = blkid;
209         zs->zs_atime = gethrtime();
210         mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
211
212         list_insert_head(&zf->zf_stream, zs);
213 }
214
215 /*
216  * This is the predictive prefetch entry point.  It associates dnode access
217  * specified with blkid and nblks arguments with prefetch stream, predicts
218  * further accesses based on that stats and initiates speculative prefetch.
219  * fetch_data argument specifies whether actual data blocks should be fetched:
220  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
221  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
222  */
223 void
224 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
225 {
226         zstream_t *zs;
227         int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
228         int64_t pf_ahead_blks, max_blks;
229         int epbs, max_dist_blks, pf_nblks, ipf_nblks;
230         uint64_t end_of_access_blkid = blkid + nblks;
231         spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
232
233         if (zfs_prefetch_disable)
234                 return;
235
236         /*
237          * If we haven't yet loaded the indirect vdevs' mappings, we
238          * can only read from blocks that we carefully ensure are on
239          * concrete vdevs (or previously-loaded indirect vdevs).  So we
240          * can't allow the predictive prefetcher to attempt reads of other
241          * blocks (e.g. of the MOS's dnode obejct).
242          */
243         if (!spa_indirect_vdevs_loaded(spa))
244                 return;
245
246         /*
247          * As a fast path for small (single-block) files, ignore access
248          * to the first block.
249          */
250         if (blkid == 0)
251                 return;
252
253         rw_enter(&zf->zf_rwlock, RW_READER);
254
255         /*
256          * Find matching prefetch stream.  Depending on whether the accesses
257          * are block-aligned, first block of the new access may either follow
258          * the last block of the previous access, or be equal to it.
259          */
260         for (zs = list_head(&zf->zf_stream); zs != NULL;
261             zs = list_next(&zf->zf_stream, zs)) {
262                 if (blkid == zs->zs_blkid || blkid + 1 == zs->zs_blkid) {
263                         mutex_enter(&zs->zs_lock);
264                         /*
265                          * zs_blkid could have changed before we
266                          * acquired zs_lock; re-check them here.
267                          */
268                         if (blkid == zs->zs_blkid) {
269                                 break;
270                         } else if (blkid + 1 == zs->zs_blkid) {
271                                 blkid++;
272                                 nblks--;
273                                 if (nblks == 0) {
274                                         /* Already prefetched this before. */
275                                         mutex_exit(&zs->zs_lock);
276                                         rw_exit(&zf->zf_rwlock);
277                                         return;
278                                 }
279                                 break;
280                         }
281                         mutex_exit(&zs->zs_lock);
282                 }
283         }
284
285         if (zs == NULL) {
286                 /*
287                  * This access is not part of any existing stream.  Create
288                  * a new stream for it.
289                  */
290                 ZFETCHSTAT_BUMP(zfetchstat_misses);
291                 if (rw_tryupgrade(&zf->zf_rwlock))
292                         dmu_zfetch_stream_create(zf, end_of_access_blkid);
293                 rw_exit(&zf->zf_rwlock);
294                 return;
295         }
296
297         /*
298          * This access was to a block that we issued a prefetch for on
299          * behalf of this stream. Issue further prefetches for this stream.
300          *
301          * Normally, we start prefetching where we stopped
302          * prefetching last (zs_pf_blkid).  But when we get our first
303          * hit on this stream, zs_pf_blkid == zs_blkid, we don't
304          * want to prefetch the block we just accessed.  In this case,
305          * start just after the block we just accessed.
306          */
307         pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
308
309         /*
310          * Double our amount of prefetched data, but don't let the
311          * prefetch get further ahead than zfetch_max_distance.
312          */
313         if (fetch_data) {
314                 max_dist_blks =
315                     zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
316                 /*
317                  * Previously, we were (zs_pf_blkid - blkid) ahead.  We
318                  * want to now be double that, so read that amount again,
319                  * plus the amount we are catching up by (i.e. the amount
320                  * read just now).
321                  */
322                 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
323                 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
324                 pf_nblks = MIN(pf_ahead_blks, max_blks);
325         } else {
326                 pf_nblks = 0;
327         }
328
329         zs->zs_pf_blkid = pf_start + pf_nblks;
330
331         /*
332          * Do the same for indirects, starting from where we stopped last,
333          * or where we will stop reading data blocks (and the indirects
334          * that point to them).
335          */
336         ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
337         max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
338         /*
339          * We want to double our distance ahead of the data prefetch
340          * (or reader, if we are not prefetching data).  Previously, we
341          * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
342          * that amount again, plus the amount we are catching up by
343          * (i.e. the amount read now + the amount of data prefetched now).
344          */
345         pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
346         max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
347         ipf_nblks = MIN(pf_ahead_blks, max_blks);
348         zs->zs_ipf_blkid = ipf_start + ipf_nblks;
349
350         epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
351         ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
352         ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
353
354         zs->zs_atime = gethrtime();
355         zs->zs_blkid = end_of_access_blkid;
356         mutex_exit(&zs->zs_lock);
357         rw_exit(&zf->zf_rwlock);
358
359         /*
360          * dbuf_prefetch() is asynchronous (even when it needs to read
361          * indirect blocks), but we still prefer to drop our locks before
362          * calling it to reduce the time we hold them.
363          */
364
365         for (int i = 0; i < pf_nblks; i++) {
366                 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
367                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
368         }
369         for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
370                 dbuf_prefetch(zf->zf_dnode, 1, iblk,
371                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
372         }
373         ZFETCHSTAT_BUMP(zfetchstat_hits);
374 }