]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu_zfetch.c
Update our copy of the Linux dts files to be in sync with Linux 4.5-rc1. We
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44 boolean_t zfs_prefetch_disable = B_FALSE;
45
46 /* max # of streams per zfetch */
47 uint32_t        zfetch_max_streams = 8;
48 /* min time before stream reclaim */
49 uint32_t        zfetch_min_sec_reap = 2;
50 /* max bytes to prefetch per stream (default 8MB) */
51 uint32_t        zfetch_max_distance = 8 * 1024 * 1024;
52 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
53 uint64_t        zfetch_array_rd_sz = 1024 * 1024;
54
55 SYSCTL_DECL(_vfs_zfs);
56 SYSCTL_INT(_vfs_zfs, OID_AUTO, prefetch_disable, CTLFLAG_RW,
57     &zfs_prefetch_disable, 0, "Disable prefetch");
58 SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW, 0, "ZFS ZFETCH");
59 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_streams, CTLFLAG_RWTUN,
60     &zfetch_max_streams, 0, "Max # of streams per zfetch");
61 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, min_sec_reap, CTLFLAG_RWTUN,
62     &zfetch_min_sec_reap, 0, "Min time before stream reclaim");
63 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN,
64     &zfetch_max_distance, 0, "Max bytes to prefetch per stream");
65 SYSCTL_UQUAD(_vfs_zfs_zfetch, OID_AUTO, array_rd_sz, CTLFLAG_RWTUN,
66     &zfetch_array_rd_sz, 0,
67     "Number of bytes in a array_read at which we stop prefetching");
68
69 typedef struct zfetch_stats {
70         kstat_named_t zfetchstat_hits;
71         kstat_named_t zfetchstat_misses;
72         kstat_named_t zfetchstat_max_streams;
73 } zfetch_stats_t;
74
75 static zfetch_stats_t zfetch_stats = {
76         { "hits",                       KSTAT_DATA_UINT64 },
77         { "misses",                     KSTAT_DATA_UINT64 },
78         { "max_streams",                KSTAT_DATA_UINT64 },
79 };
80
81 #define ZFETCHSTAT_BUMP(stat) \
82         atomic_inc_64(&zfetch_stats.stat.value.ui64);
83
84 kstat_t         *zfetch_ksp;
85
86 void
87 zfetch_init(void)
88 {
89         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
90             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
91             KSTAT_FLAG_VIRTUAL);
92
93         if (zfetch_ksp != NULL) {
94                 zfetch_ksp->ks_data = &zfetch_stats;
95                 kstat_install(zfetch_ksp);
96         }
97 }
98
99 void
100 zfetch_fini(void)
101 {
102         if (zfetch_ksp != NULL) {
103                 kstat_delete(zfetch_ksp);
104                 zfetch_ksp = NULL;
105         }
106 }
107
108 /*
109  * This takes a pointer to a zfetch structure and a dnode.  It performs the
110  * necessary setup for the zfetch structure, grokking data from the
111  * associated dnode.
112  */
113 void
114 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
115 {
116         if (zf == NULL)
117                 return;
118
119         zf->zf_dnode = dno;
120
121         list_create(&zf->zf_stream, sizeof (zstream_t),
122             offsetof(zstream_t, zs_node));
123
124         rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
125 }
126
127 static void
128 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
129 {
130         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
131         list_remove(&zf->zf_stream, zs);
132         mutex_destroy(&zs->zs_lock);
133         kmem_free(zs, sizeof (*zs));
134 }
135
136 /*
137  * Clean-up state associated with a zfetch structure (e.g. destroy the
138  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
139  */
140 void
141 dmu_zfetch_fini(zfetch_t *zf)
142 {
143         zstream_t *zs;
144
145         ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
146
147         rw_enter(&zf->zf_rwlock, RW_WRITER);
148         while ((zs = list_head(&zf->zf_stream)) != NULL)
149                 dmu_zfetch_stream_remove(zf, zs);
150         rw_exit(&zf->zf_rwlock);
151         list_destroy(&zf->zf_stream);
152         rw_destroy(&zf->zf_rwlock);
153
154         zf->zf_dnode = NULL;
155 }
156
157 /*
158  * If there aren't too many streams already, create a new stream.
159  * The "blkid" argument is the next block that we expect this stream to access.
160  * While we're here, clean up old streams (which haven't been
161  * accessed for at least zfetch_min_sec_reap seconds).
162  */
163 static void
164 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
165 {
166         zstream_t *zs_next;
167         int numstreams = 0;
168
169         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
170
171         /*
172          * Clean up old streams.
173          */
174         for (zstream_t *zs = list_head(&zf->zf_stream);
175             zs != NULL; zs = zs_next) {
176                 zs_next = list_next(&zf->zf_stream, zs);
177                 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
178                     zfetch_min_sec_reap)
179                         dmu_zfetch_stream_remove(zf, zs);
180                 else
181                         numstreams++;
182         }
183
184         /*
185          * The maximum number of streams is normally zfetch_max_streams,
186          * but for small files we lower it such that it's at least possible
187          * for all the streams to be non-overlapping.
188          *
189          * If we are already at the maximum number of streams for this file,
190          * even after removing old streams, then don't create this stream.
191          */
192         uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
193             zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
194             zfetch_max_distance));
195         if (numstreams >= max_streams) {
196                 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
197                 return;
198         }
199
200         zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
201         zs->zs_blkid = blkid;
202         zs->zs_pf_blkid = blkid;
203         zs->zs_atime = gethrtime();
204         mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
205
206         list_insert_head(&zf->zf_stream, zs);
207 }
208
209 /*
210  * This is the prefetch entry point.  It calls all of the other dmu_zfetch
211  * routines to create, delete, find, or operate upon prefetch streams.
212  */
213 void
214 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks)
215 {
216         zstream_t *zs;
217
218         if (zfs_prefetch_disable)
219                 return;
220
221         /*
222          * As a fast path for small (single-block) files, ignore access
223          * to the first block.
224          */
225         if (blkid == 0)
226                 return;
227
228         rw_enter(&zf->zf_rwlock, RW_READER);
229
230         for (zs = list_head(&zf->zf_stream); zs != NULL;
231             zs = list_next(&zf->zf_stream, zs)) {
232                 if (blkid == zs->zs_blkid) {
233                         mutex_enter(&zs->zs_lock);
234                         /*
235                          * zs_blkid could have changed before we
236                          * acquired zs_lock; re-check them here.
237                          */
238                         if (blkid != zs->zs_blkid) {
239                                 mutex_exit(&zs->zs_lock);
240                                 continue;
241                         }
242                         break;
243                 }
244         }
245
246         if (zs == NULL) {
247                 /*
248                  * This access is not part of any existing stream.  Create
249                  * a new stream for it.
250                  */
251                 ZFETCHSTAT_BUMP(zfetchstat_misses);
252                 if (rw_tryupgrade(&zf->zf_rwlock))
253                         dmu_zfetch_stream_create(zf, blkid + nblks);
254                 rw_exit(&zf->zf_rwlock);
255                 return;
256         }
257
258         /*
259          * This access was to a block that we issued a prefetch for on
260          * behalf of this stream. Issue further prefetches for this stream.
261          *
262          * Normally, we start prefetching where we stopped
263          * prefetching last (zs_pf_blkid).  But when we get our first
264          * hit on this stream, zs_pf_blkid == zs_blkid, we don't
265          * want to prefetch to block we just accessed.  In this case,
266          * start just after the block we just accessed.
267          */
268         int64_t pf_start = MAX(zs->zs_pf_blkid, blkid + nblks);
269
270         /*
271          * Double our amount of prefetched data, but don't let the
272          * prefetch get further ahead than zfetch_max_distance.
273          */
274         int pf_nblks =
275             MIN((int64_t)zs->zs_pf_blkid - zs->zs_blkid + nblks,
276             zs->zs_blkid + nblks +
277             (zfetch_max_distance >> zf->zf_dnode->dn_datablkshift) - pf_start);
278
279         zs->zs_pf_blkid = pf_start + pf_nblks;
280         zs->zs_atime = gethrtime();
281         zs->zs_blkid = blkid + nblks;
282
283         /*
284          * dbuf_prefetch() issues the prefetch i/o
285          * asynchronously, but it may need to wait for an
286          * indirect block to be read from disk.  Therefore
287          * we do not want to hold any locks while we call it.
288          */
289         mutex_exit(&zs->zs_lock);
290         rw_exit(&zf->zf_rwlock);
291         for (int i = 0; i < pf_nblks; i++) {
292                 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
293                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
294         }
295         ZFETCHSTAT_BUMP(zfetchstat_hits);
296 }