]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu_zfetch.c
MFV r323792: 8602 remove unused "dp_early_sync_tasks" field from "dsl_pool" structure
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44 boolean_t zfs_prefetch_disable = B_FALSE;
45
46 /* max # of streams per zfetch */
47 uint32_t        zfetch_max_streams = 8;
48 /* min time before stream reclaim */
49 uint32_t        zfetch_min_sec_reap = 2;
50 /* max bytes to prefetch per stream (default 8MB) */
51 uint32_t        zfetch_max_distance = 8 * 1024 * 1024;
52 /* max bytes to prefetch indirects for per stream (default 64MB) */
53 uint32_t        zfetch_max_idistance = 64 * 1024 * 1024;
54 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
55 uint64_t        zfetch_array_rd_sz = 1024 * 1024;
56
57 SYSCTL_DECL(_vfs_zfs);
58 SYSCTL_INT(_vfs_zfs, OID_AUTO, prefetch_disable, CTLFLAG_RW,
59     &zfs_prefetch_disable, 0, "Disable prefetch");
60 SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW, 0, "ZFS ZFETCH");
61 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_streams, CTLFLAG_RWTUN,
62     &zfetch_max_streams, 0, "Max # of streams per zfetch");
63 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, min_sec_reap, CTLFLAG_RWTUN,
64     &zfetch_min_sec_reap, 0, "Min time before stream reclaim");
65 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN,
66     &zfetch_max_distance, 0, "Max bytes to prefetch per stream");
67 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_idistance, CTLFLAG_RWTUN,
68     &zfetch_max_idistance, 0, "Max bytes to prefetch indirects for per stream");
69 SYSCTL_UQUAD(_vfs_zfs_zfetch, OID_AUTO, array_rd_sz, CTLFLAG_RWTUN,
70     &zfetch_array_rd_sz, 0,
71     "Number of bytes in a array_read at which we stop prefetching");
72
73 typedef struct zfetch_stats {
74         kstat_named_t zfetchstat_hits;
75         kstat_named_t zfetchstat_misses;
76         kstat_named_t zfetchstat_max_streams;
77 } zfetch_stats_t;
78
79 static zfetch_stats_t zfetch_stats = {
80         { "hits",                       KSTAT_DATA_UINT64 },
81         { "misses",                     KSTAT_DATA_UINT64 },
82         { "max_streams",                KSTAT_DATA_UINT64 },
83 };
84
85 #define ZFETCHSTAT_BUMP(stat) \
86         atomic_inc_64(&zfetch_stats.stat.value.ui64);
87
88 kstat_t         *zfetch_ksp;
89
90 void
91 zfetch_init(void)
92 {
93         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
94             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
95             KSTAT_FLAG_VIRTUAL);
96
97         if (zfetch_ksp != NULL) {
98                 zfetch_ksp->ks_data = &zfetch_stats;
99                 kstat_install(zfetch_ksp);
100         }
101 }
102
103 void
104 zfetch_fini(void)
105 {
106         if (zfetch_ksp != NULL) {
107                 kstat_delete(zfetch_ksp);
108                 zfetch_ksp = NULL;
109         }
110 }
111
112 /*
113  * This takes a pointer to a zfetch structure and a dnode.  It performs the
114  * necessary setup for the zfetch structure, grokking data from the
115  * associated dnode.
116  */
117 void
118 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
119 {
120         if (zf == NULL)
121                 return;
122
123         zf->zf_dnode = dno;
124
125         list_create(&zf->zf_stream, sizeof (zstream_t),
126             offsetof(zstream_t, zs_node));
127
128         rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
129 }
130
131 static void
132 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
133 {
134         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
135         list_remove(&zf->zf_stream, zs);
136         mutex_destroy(&zs->zs_lock);
137         kmem_free(zs, sizeof (*zs));
138 }
139
140 /*
141  * Clean-up state associated with a zfetch structure (e.g. destroy the
142  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
143  */
144 void
145 dmu_zfetch_fini(zfetch_t *zf)
146 {
147         zstream_t *zs;
148
149         ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
150
151         rw_enter(&zf->zf_rwlock, RW_WRITER);
152         while ((zs = list_head(&zf->zf_stream)) != NULL)
153                 dmu_zfetch_stream_remove(zf, zs);
154         rw_exit(&zf->zf_rwlock);
155         list_destroy(&zf->zf_stream);
156         rw_destroy(&zf->zf_rwlock);
157
158         zf->zf_dnode = NULL;
159 }
160
161 /*
162  * If there aren't too many streams already, create a new stream.
163  * The "blkid" argument is the next block that we expect this stream to access.
164  * While we're here, clean up old streams (which haven't been
165  * accessed for at least zfetch_min_sec_reap seconds).
166  */
167 static void
168 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
169 {
170         zstream_t *zs_next;
171         int numstreams = 0;
172
173         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
174
175         /*
176          * Clean up old streams.
177          */
178         for (zstream_t *zs = list_head(&zf->zf_stream);
179             zs != NULL; zs = zs_next) {
180                 zs_next = list_next(&zf->zf_stream, zs);
181                 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
182                     zfetch_min_sec_reap)
183                         dmu_zfetch_stream_remove(zf, zs);
184                 else
185                         numstreams++;
186         }
187
188         /*
189          * The maximum number of streams is normally zfetch_max_streams,
190          * but for small files we lower it such that it's at least possible
191          * for all the streams to be non-overlapping.
192          *
193          * If we are already at the maximum number of streams for this file,
194          * even after removing old streams, then don't create this stream.
195          */
196         uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
197             zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
198             zfetch_max_distance));
199         if (numstreams >= max_streams) {
200                 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
201                 return;
202         }
203
204         zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
205         zs->zs_blkid = blkid;
206         zs->zs_pf_blkid = blkid;
207         zs->zs_ipf_blkid = blkid;
208         zs->zs_atime = gethrtime();
209         mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
210
211         list_insert_head(&zf->zf_stream, zs);
212 }
213
214 /*
215  * This is the predictive prefetch entry point.  It associates dnode access
216  * specified with blkid and nblks arguments with prefetch stream, predicts
217  * further accesses based on that stats and initiates speculative prefetch.
218  * fetch_data argument specifies whether actual data blocks should be fetched:
219  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
220  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
221  */
222 void
223 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
224 {
225         zstream_t *zs;
226         int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
227         int64_t pf_ahead_blks, max_blks;
228         int epbs, max_dist_blks, pf_nblks, ipf_nblks;
229         uint64_t end_of_access_blkid = blkid + nblks;
230
231         if (zfs_prefetch_disable)
232                 return;
233
234         /*
235          * As a fast path for small (single-block) files, ignore access
236          * to the first block.
237          */
238         if (blkid == 0)
239                 return;
240
241         rw_enter(&zf->zf_rwlock, RW_READER);
242
243         for (zs = list_head(&zf->zf_stream); zs != NULL;
244             zs = list_next(&zf->zf_stream, zs)) {
245                 if (blkid == zs->zs_blkid) {
246                         mutex_enter(&zs->zs_lock);
247                         /*
248                          * zs_blkid could have changed before we
249                          * acquired zs_lock; re-check them here.
250                          */
251                         if (blkid != zs->zs_blkid) {
252                                 mutex_exit(&zs->zs_lock);
253                                 continue;
254                         }
255                         break;
256                 }
257         }
258
259         if (zs == NULL) {
260                 /*
261                  * This access is not part of any existing stream.  Create
262                  * a new stream for it.
263                  */
264                 ZFETCHSTAT_BUMP(zfetchstat_misses);
265                 if (rw_tryupgrade(&zf->zf_rwlock))
266                         dmu_zfetch_stream_create(zf, end_of_access_blkid);
267                 rw_exit(&zf->zf_rwlock);
268                 return;
269         }
270
271         /*
272          * This access was to a block that we issued a prefetch for on
273          * behalf of this stream. Issue further prefetches for this stream.
274          *
275          * Normally, we start prefetching where we stopped
276          * prefetching last (zs_pf_blkid).  But when we get our first
277          * hit on this stream, zs_pf_blkid == zs_blkid, we don't
278          * want to prefetch the block we just accessed.  In this case,
279          * start just after the block we just accessed.
280          */
281         pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
282
283         /*
284          * Double our amount of prefetched data, but don't let the
285          * prefetch get further ahead than zfetch_max_distance.
286          */
287         if (fetch_data) {
288                 max_dist_blks =
289                     zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
290                 /*
291                  * Previously, we were (zs_pf_blkid - blkid) ahead.  We
292                  * want to now be double that, so read that amount again,
293                  * plus the amount we are catching up by (i.e. the amount
294                  * read just now).
295                  */
296                 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
297                 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
298                 pf_nblks = MIN(pf_ahead_blks, max_blks);
299         } else {
300                 pf_nblks = 0;
301         }
302
303         zs->zs_pf_blkid = pf_start + pf_nblks;
304
305         /*
306          * Do the same for indirects, starting from where we stopped last,
307          * or where we will stop reading data blocks (and the indirects
308          * that point to them).
309          */
310         ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
311         max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
312         /*
313          * We want to double our distance ahead of the data prefetch
314          * (or reader, if we are not prefetching data).  Previously, we
315          * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
316          * that amount again, plus the amount we are catching up by
317          * (i.e. the amount read now + the amount of data prefetched now).
318          */
319         pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
320         max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
321         ipf_nblks = MIN(pf_ahead_blks, max_blks);
322         zs->zs_ipf_blkid = ipf_start + ipf_nblks;
323
324         epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
325         ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
326         ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
327
328         zs->zs_atime = gethrtime();
329         zs->zs_blkid = end_of_access_blkid;
330         mutex_exit(&zs->zs_lock);
331         rw_exit(&zf->zf_rwlock);
332
333         /*
334          * dbuf_prefetch() is asynchronous (even when it needs to read
335          * indirect blocks), but we still prefer to drop our locks before
336          * calling it to reduce the time we hold them.
337          */
338
339         for (int i = 0; i < pf_nblks; i++) {
340                 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
341                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
342         }
343         for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
344                 dbuf_prefetch(zf->zf_dnode, 1, iblk,
345                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
346         }
347         ZFETCHSTAT_BUMP(zfetchstat_hits);
348 }