]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
Add the llvm-cov and llvm-profdata tools, when WITH_CLANG_EXTRAS is
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/trim_map.h>
48
49 SYSCTL_DECL(_vfs_zfs);
50 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52 /*
53  * Virtual device management.
54  */
55
56 /*
57  * The limit for ZFS to automatically increase a top-level vdev's ashift
58  * from logical ashift to physical ashift.
59  *
60  * Example: one or more 512B emulation child vdevs
61  *          child->vdev_ashift = 9 (512 bytes)
62  *          child->vdev_physical_ashift = 12 (4096 bytes)
63  *          zfs_max_auto_ashift = 11 (2048 bytes)
64  *          zfs_min_auto_ashift = 9 (512 bytes)
65  *
66  * On pool creation or the addition of a new top-level vdev, ZFS will
67  * increase the ashift of the top-level vdev to 2048 as limited by
68  * zfs_max_auto_ashift.
69  *
70  * Example: one or more 512B emulation child vdevs
71  *          child->vdev_ashift = 9 (512 bytes)
72  *          child->vdev_physical_ashift = 12 (4096 bytes)
73  *          zfs_max_auto_ashift = 13 (8192 bytes)
74  *          zfs_min_auto_ashift = 9 (512 bytes)
75  *
76  * On pool creation or the addition of a new top-level vdev, ZFS will
77  * increase the ashift of the top-level vdev to 4096 to match the
78  * max vdev_physical_ashift.
79  *
80  * Example: one or more 512B emulation child vdevs
81  *          child->vdev_ashift = 9 (512 bytes)
82  *          child->vdev_physical_ashift = 9 (512 bytes)
83  *          zfs_max_auto_ashift = 13 (8192 bytes)
84  *          zfs_min_auto_ashift = 12 (4096 bytes)
85  *
86  * On pool creation or the addition of a new top-level vdev, ZFS will
87  * increase the ashift of the top-level vdev to 4096 to match the
88  * zfs_min_auto_ashift.
89  */
90 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93 static int
94 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95 {
96         uint64_t val;
97         int err;
98
99         val = zfs_max_auto_ashift;
100         err = sysctl_handle_64(oidp, &val, 0, req);
101         if (err != 0 || req->newptr == NULL)
102                 return (err);
103
104         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105                 return (EINVAL);
106
107         zfs_max_auto_ashift = val;
108
109         return (0);
110 }
111 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113     sysctl_vfs_zfs_max_auto_ashift, "QU",
114     "Max ashift used when optimising for logical -> physical sectors size on "
115     "new top-level vdevs.");
116
117 static int
118 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119 {
120         uint64_t val;
121         int err;
122
123         val = zfs_min_auto_ashift;
124         err = sysctl_handle_64(oidp, &val, 0, req);
125         if (err != 0 || req->newptr == NULL)
126                 return (err);
127
128         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129                 return (EINVAL);
130
131         zfs_min_auto_ashift = val;
132
133         return (0);
134 }
135 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137     sysctl_vfs_zfs_min_auto_ashift, "QU",
138     "Min ashift used when creating new top-level vdevs.");
139
140 static vdev_ops_t *vdev_ops_table[] = {
141         &vdev_root_ops,
142         &vdev_raidz_ops,
143         &vdev_mirror_ops,
144         &vdev_replacing_ops,
145         &vdev_spare_ops,
146 #ifdef _KERNEL
147         &vdev_geom_ops,
148 #else
149         &vdev_disk_ops,
150 #endif
151         &vdev_file_ops,
152         &vdev_missing_ops,
153         &vdev_hole_ops,
154         NULL
155 };
156
157
158 /*
159  * When a vdev is added, it will be divided into approximately (but no
160  * more than) this number of metaslabs.
161  */
162 int metaslabs_per_vdev = 200;
163 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164     &metaslabs_per_vdev, 0,
165     "When a vdev is added, how many metaslabs the vdev should be divided into");
166
167 /*
168  * Given a vdev type, return the appropriate ops vector.
169  */
170 static vdev_ops_t *
171 vdev_getops(const char *type)
172 {
173         vdev_ops_t *ops, **opspp;
174
175         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176                 if (strcmp(ops->vdev_op_type, type) == 0)
177                         break;
178
179         return (ops);
180 }
181
182 /*
183  * Default asize function: return the MAX of psize with the asize of
184  * all children.  This is what's used by anything other than RAID-Z.
185  */
186 uint64_t
187 vdev_default_asize(vdev_t *vd, uint64_t psize)
188 {
189         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190         uint64_t csize;
191
192         for (int c = 0; c < vd->vdev_children; c++) {
193                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194                 asize = MAX(asize, csize);
195         }
196
197         return (asize);
198 }
199
200 /*
201  * Get the minimum allocatable size. We define the allocatable size as
202  * the vdev's asize rounded to the nearest metaslab. This allows us to
203  * replace or attach devices which don't have the same physical size but
204  * can still satisfy the same number of allocations.
205  */
206 uint64_t
207 vdev_get_min_asize(vdev_t *vd)
208 {
209         vdev_t *pvd = vd->vdev_parent;
210
211         /*
212          * If our parent is NULL (inactive spare or cache) or is the root,
213          * just return our own asize.
214          */
215         if (pvd == NULL)
216                 return (vd->vdev_asize);
217
218         /*
219          * The top-level vdev just returns the allocatable size rounded
220          * to the nearest metaslab.
221          */
222         if (vd == vd->vdev_top)
223                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224
225         /*
226          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227          * so each child must provide at least 1/Nth of its asize.
228          */
229         if (pvd->vdev_ops == &vdev_raidz_ops)
230                 return (pvd->vdev_min_asize / pvd->vdev_children);
231
232         return (pvd->vdev_min_asize);
233 }
234
235 void
236 vdev_set_min_asize(vdev_t *vd)
237 {
238         vd->vdev_min_asize = vdev_get_min_asize(vd);
239
240         for (int c = 0; c < vd->vdev_children; c++)
241                 vdev_set_min_asize(vd->vdev_child[c]);
242 }
243
244 vdev_t *
245 vdev_lookup_top(spa_t *spa, uint64_t vdev)
246 {
247         vdev_t *rvd = spa->spa_root_vdev;
248
249         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250
251         if (vdev < rvd->vdev_children) {
252                 ASSERT(rvd->vdev_child[vdev] != NULL);
253                 return (rvd->vdev_child[vdev]);
254         }
255
256         return (NULL);
257 }
258
259 vdev_t *
260 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261 {
262         vdev_t *mvd;
263
264         if (vd->vdev_guid == guid)
265                 return (vd);
266
267         for (int c = 0; c < vd->vdev_children; c++)
268                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269                     NULL)
270                         return (mvd);
271
272         return (NULL);
273 }
274
275 void
276 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
277 {
278         size_t oldsize, newsize;
279         uint64_t id = cvd->vdev_id;
280         vdev_t **newchild;
281
282         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
283         ASSERT(cvd->vdev_parent == NULL);
284
285         cvd->vdev_parent = pvd;
286
287         if (pvd == NULL)
288                 return;
289
290         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
291
292         oldsize = pvd->vdev_children * sizeof (vdev_t *);
293         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
294         newsize = pvd->vdev_children * sizeof (vdev_t *);
295
296         newchild = kmem_zalloc(newsize, KM_SLEEP);
297         if (pvd->vdev_child != NULL) {
298                 bcopy(pvd->vdev_child, newchild, oldsize);
299                 kmem_free(pvd->vdev_child, oldsize);
300         }
301
302         pvd->vdev_child = newchild;
303         pvd->vdev_child[id] = cvd;
304
305         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
306         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
307
308         /*
309          * Walk up all ancestors to update guid sum.
310          */
311         for (; pvd != NULL; pvd = pvd->vdev_parent)
312                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
313 }
314
315 void
316 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
317 {
318         int c;
319         uint_t id = cvd->vdev_id;
320
321         ASSERT(cvd->vdev_parent == pvd);
322
323         if (pvd == NULL)
324                 return;
325
326         ASSERT(id < pvd->vdev_children);
327         ASSERT(pvd->vdev_child[id] == cvd);
328
329         pvd->vdev_child[id] = NULL;
330         cvd->vdev_parent = NULL;
331
332         for (c = 0; c < pvd->vdev_children; c++)
333                 if (pvd->vdev_child[c])
334                         break;
335
336         if (c == pvd->vdev_children) {
337                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
338                 pvd->vdev_child = NULL;
339                 pvd->vdev_children = 0;
340         }
341
342         /*
343          * Walk up all ancestors to update guid sum.
344          */
345         for (; pvd != NULL; pvd = pvd->vdev_parent)
346                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
347 }
348
349 /*
350  * Remove any holes in the child array.
351  */
352 void
353 vdev_compact_children(vdev_t *pvd)
354 {
355         vdev_t **newchild, *cvd;
356         int oldc = pvd->vdev_children;
357         int newc;
358
359         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
360
361         for (int c = newc = 0; c < oldc; c++)
362                 if (pvd->vdev_child[c])
363                         newc++;
364
365         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
366
367         for (int c = newc = 0; c < oldc; c++) {
368                 if ((cvd = pvd->vdev_child[c]) != NULL) {
369                         newchild[newc] = cvd;
370                         cvd->vdev_id = newc++;
371                 }
372         }
373
374         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
375         pvd->vdev_child = newchild;
376         pvd->vdev_children = newc;
377 }
378
379 /*
380  * Allocate and minimally initialize a vdev_t.
381  */
382 vdev_t *
383 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
384 {
385         vdev_t *vd;
386
387         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
388
389         if (spa->spa_root_vdev == NULL) {
390                 ASSERT(ops == &vdev_root_ops);
391                 spa->spa_root_vdev = vd;
392                 spa->spa_load_guid = spa_generate_guid(NULL);
393         }
394
395         if (guid == 0 && ops != &vdev_hole_ops) {
396                 if (spa->spa_root_vdev == vd) {
397                         /*
398                          * The root vdev's guid will also be the pool guid,
399                          * which must be unique among all pools.
400                          */
401                         guid = spa_generate_guid(NULL);
402                 } else {
403                         /*
404                          * Any other vdev's guid must be unique within the pool.
405                          */
406                         guid = spa_generate_guid(spa);
407                 }
408                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
409         }
410
411         vd->vdev_spa = spa;
412         vd->vdev_id = id;
413         vd->vdev_guid = guid;
414         vd->vdev_guid_sum = guid;
415         vd->vdev_ops = ops;
416         vd->vdev_state = VDEV_STATE_CLOSED;
417         vd->vdev_ishole = (ops == &vdev_hole_ops);
418
419         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
420         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
421         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
422         for (int t = 0; t < DTL_TYPES; t++) {
423                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
424                     &vd->vdev_dtl_lock);
425         }
426         txg_list_create(&vd->vdev_ms_list,
427             offsetof(struct metaslab, ms_txg_node));
428         txg_list_create(&vd->vdev_dtl_list,
429             offsetof(struct vdev, vdev_dtl_node));
430         vd->vdev_stat.vs_timestamp = gethrtime();
431         vdev_queue_init(vd);
432         vdev_cache_init(vd);
433
434         return (vd);
435 }
436
437 /*
438  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
439  * creating a new vdev or loading an existing one - the behavior is slightly
440  * different for each case.
441  */
442 int
443 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
444     int alloctype)
445 {
446         vdev_ops_t *ops;
447         char *type;
448         uint64_t guid = 0, islog, nparity;
449         vdev_t *vd;
450
451         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
452
453         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
454                 return (SET_ERROR(EINVAL));
455
456         if ((ops = vdev_getops(type)) == NULL)
457                 return (SET_ERROR(EINVAL));
458
459         /*
460          * If this is a load, get the vdev guid from the nvlist.
461          * Otherwise, vdev_alloc_common() will generate one for us.
462          */
463         if (alloctype == VDEV_ALLOC_LOAD) {
464                 uint64_t label_id;
465
466                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
467                     label_id != id)
468                         return (SET_ERROR(EINVAL));
469
470                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
471                         return (SET_ERROR(EINVAL));
472         } else if (alloctype == VDEV_ALLOC_SPARE) {
473                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
474                         return (SET_ERROR(EINVAL));
475         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
476                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
477                         return (SET_ERROR(EINVAL));
478         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
479                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
480                         return (SET_ERROR(EINVAL));
481         }
482
483         /*
484          * The first allocated vdev must be of type 'root'.
485          */
486         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
487                 return (SET_ERROR(EINVAL));
488
489         /*
490          * Determine whether we're a log vdev.
491          */
492         islog = 0;
493         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
494         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
495                 return (SET_ERROR(ENOTSUP));
496
497         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
498                 return (SET_ERROR(ENOTSUP));
499
500         /*
501          * Set the nparity property for RAID-Z vdevs.
502          */
503         nparity = -1ULL;
504         if (ops == &vdev_raidz_ops) {
505                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
506                     &nparity) == 0) {
507                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
508                                 return (SET_ERROR(EINVAL));
509                         /*
510                          * Previous versions could only support 1 or 2 parity
511                          * device.
512                          */
513                         if (nparity > 1 &&
514                             spa_version(spa) < SPA_VERSION_RAIDZ2)
515                                 return (SET_ERROR(ENOTSUP));
516                         if (nparity > 2 &&
517                             spa_version(spa) < SPA_VERSION_RAIDZ3)
518                                 return (SET_ERROR(ENOTSUP));
519                 } else {
520                         /*
521                          * We require the parity to be specified for SPAs that
522                          * support multiple parity levels.
523                          */
524                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
525                                 return (SET_ERROR(EINVAL));
526                         /*
527                          * Otherwise, we default to 1 parity device for RAID-Z.
528                          */
529                         nparity = 1;
530                 }
531         } else {
532                 nparity = 0;
533         }
534         ASSERT(nparity != -1ULL);
535
536         vd = vdev_alloc_common(spa, id, guid, ops);
537
538         vd->vdev_islog = islog;
539         vd->vdev_nparity = nparity;
540
541         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
542                 vd->vdev_path = spa_strdup(vd->vdev_path);
543         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
544                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
545         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
546             &vd->vdev_physpath) == 0)
547                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
548         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
549                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
550
551         /*
552          * Set the whole_disk property.  If it's not specified, leave the value
553          * as -1.
554          */
555         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
556             &vd->vdev_wholedisk) != 0)
557                 vd->vdev_wholedisk = -1ULL;
558
559         /*
560          * Look for the 'not present' flag.  This will only be set if the device
561          * was not present at the time of import.
562          */
563         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
564             &vd->vdev_not_present);
565
566         /*
567          * Get the alignment requirement.
568          */
569         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
570
571         /*
572          * Retrieve the vdev creation time.
573          */
574         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
575             &vd->vdev_crtxg);
576
577         /*
578          * If we're a top-level vdev, try to load the allocation parameters.
579          */
580         if (parent && !parent->vdev_parent &&
581             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
582                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
583                     &vd->vdev_ms_array);
584                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
585                     &vd->vdev_ms_shift);
586                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
587                     &vd->vdev_asize);
588                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
589                     &vd->vdev_removing);
590         }
591
592         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
593                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
594                     alloctype == VDEV_ALLOC_ADD ||
595                     alloctype == VDEV_ALLOC_SPLIT ||
596                     alloctype == VDEV_ALLOC_ROOTPOOL);
597                 vd->vdev_mg = metaslab_group_create(islog ?
598                     spa_log_class(spa) : spa_normal_class(spa), vd);
599         }
600
601         /*
602          * If we're a leaf vdev, try to load the DTL object and other state.
603          */
604         if (vd->vdev_ops->vdev_op_leaf &&
605             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
606             alloctype == VDEV_ALLOC_ROOTPOOL)) {
607                 if (alloctype == VDEV_ALLOC_LOAD) {
608                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
609                             &vd->vdev_dtl_object);
610                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
611                             &vd->vdev_unspare);
612                 }
613
614                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
615                         uint64_t spare = 0;
616
617                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
618                             &spare) == 0 && spare)
619                                 spa_spare_add(vd);
620                 }
621
622                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
623                     &vd->vdev_offline);
624
625                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
626                     &vd->vdev_resilver_txg);
627
628                 /*
629                  * When importing a pool, we want to ignore the persistent fault
630                  * state, as the diagnosis made on another system may not be
631                  * valid in the current context.  Local vdevs will
632                  * remain in the faulted state.
633                  */
634                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
635                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
636                             &vd->vdev_faulted);
637                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
638                             &vd->vdev_degraded);
639                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
640                             &vd->vdev_removed);
641
642                         if (vd->vdev_faulted || vd->vdev_degraded) {
643                                 char *aux;
644
645                                 vd->vdev_label_aux =
646                                     VDEV_AUX_ERR_EXCEEDED;
647                                 if (nvlist_lookup_string(nv,
648                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
649                                     strcmp(aux, "external") == 0)
650                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
651                         }
652                 }
653         }
654
655         /*
656          * Add ourselves to the parent's list of children.
657          */
658         vdev_add_child(parent, vd);
659
660         *vdp = vd;
661
662         return (0);
663 }
664
665 void
666 vdev_free(vdev_t *vd)
667 {
668         spa_t *spa = vd->vdev_spa;
669
670         /*
671          * vdev_free() implies closing the vdev first.  This is simpler than
672          * trying to ensure complicated semantics for all callers.
673          */
674         vdev_close(vd);
675
676         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
677         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
678
679         /*
680          * Free all children.
681          */
682         for (int c = 0; c < vd->vdev_children; c++)
683                 vdev_free(vd->vdev_child[c]);
684
685         ASSERT(vd->vdev_child == NULL);
686         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
687
688         /*
689          * Discard allocation state.
690          */
691         if (vd->vdev_mg != NULL) {
692                 vdev_metaslab_fini(vd);
693                 metaslab_group_destroy(vd->vdev_mg);
694         }
695
696         ASSERT0(vd->vdev_stat.vs_space);
697         ASSERT0(vd->vdev_stat.vs_dspace);
698         ASSERT0(vd->vdev_stat.vs_alloc);
699
700         /*
701          * Remove this vdev from its parent's child list.
702          */
703         vdev_remove_child(vd->vdev_parent, vd);
704
705         ASSERT(vd->vdev_parent == NULL);
706
707         /*
708          * Clean up vdev structure.
709          */
710         vdev_queue_fini(vd);
711         vdev_cache_fini(vd);
712
713         if (vd->vdev_path)
714                 spa_strfree(vd->vdev_path);
715         if (vd->vdev_devid)
716                 spa_strfree(vd->vdev_devid);
717         if (vd->vdev_physpath)
718                 spa_strfree(vd->vdev_physpath);
719         if (vd->vdev_fru)
720                 spa_strfree(vd->vdev_fru);
721
722         if (vd->vdev_isspare)
723                 spa_spare_remove(vd);
724         if (vd->vdev_isl2cache)
725                 spa_l2cache_remove(vd);
726
727         txg_list_destroy(&vd->vdev_ms_list);
728         txg_list_destroy(&vd->vdev_dtl_list);
729
730         mutex_enter(&vd->vdev_dtl_lock);
731         space_map_close(vd->vdev_dtl_sm);
732         for (int t = 0; t < DTL_TYPES; t++) {
733                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
734                 range_tree_destroy(vd->vdev_dtl[t]);
735         }
736         mutex_exit(&vd->vdev_dtl_lock);
737
738         mutex_destroy(&vd->vdev_dtl_lock);
739         mutex_destroy(&vd->vdev_stat_lock);
740         mutex_destroy(&vd->vdev_probe_lock);
741
742         if (vd == spa->spa_root_vdev)
743                 spa->spa_root_vdev = NULL;
744
745         kmem_free(vd, sizeof (vdev_t));
746 }
747
748 /*
749  * Transfer top-level vdev state from svd to tvd.
750  */
751 static void
752 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
753 {
754         spa_t *spa = svd->vdev_spa;
755         metaslab_t *msp;
756         vdev_t *vd;
757         int t;
758
759         ASSERT(tvd == tvd->vdev_top);
760
761         tvd->vdev_ms_array = svd->vdev_ms_array;
762         tvd->vdev_ms_shift = svd->vdev_ms_shift;
763         tvd->vdev_ms_count = svd->vdev_ms_count;
764
765         svd->vdev_ms_array = 0;
766         svd->vdev_ms_shift = 0;
767         svd->vdev_ms_count = 0;
768
769         if (tvd->vdev_mg)
770                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
771         tvd->vdev_mg = svd->vdev_mg;
772         tvd->vdev_ms = svd->vdev_ms;
773
774         svd->vdev_mg = NULL;
775         svd->vdev_ms = NULL;
776
777         if (tvd->vdev_mg != NULL)
778                 tvd->vdev_mg->mg_vd = tvd;
779
780         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
781         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
782         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
783
784         svd->vdev_stat.vs_alloc = 0;
785         svd->vdev_stat.vs_space = 0;
786         svd->vdev_stat.vs_dspace = 0;
787
788         for (t = 0; t < TXG_SIZE; t++) {
789                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
790                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
791                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
792                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
793                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
794                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
795         }
796
797         if (list_link_active(&svd->vdev_config_dirty_node)) {
798                 vdev_config_clean(svd);
799                 vdev_config_dirty(tvd);
800         }
801
802         if (list_link_active(&svd->vdev_state_dirty_node)) {
803                 vdev_state_clean(svd);
804                 vdev_state_dirty(tvd);
805         }
806
807         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
808         svd->vdev_deflate_ratio = 0;
809
810         tvd->vdev_islog = svd->vdev_islog;
811         svd->vdev_islog = 0;
812 }
813
814 static void
815 vdev_top_update(vdev_t *tvd, vdev_t *vd)
816 {
817         if (vd == NULL)
818                 return;
819
820         vd->vdev_top = tvd;
821
822         for (int c = 0; c < vd->vdev_children; c++)
823                 vdev_top_update(tvd, vd->vdev_child[c]);
824 }
825
826 /*
827  * Add a mirror/replacing vdev above an existing vdev.
828  */
829 vdev_t *
830 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
831 {
832         spa_t *spa = cvd->vdev_spa;
833         vdev_t *pvd = cvd->vdev_parent;
834         vdev_t *mvd;
835
836         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
837
838         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
839
840         mvd->vdev_asize = cvd->vdev_asize;
841         mvd->vdev_min_asize = cvd->vdev_min_asize;
842         mvd->vdev_max_asize = cvd->vdev_max_asize;
843         mvd->vdev_ashift = cvd->vdev_ashift;
844         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
845         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
846         mvd->vdev_state = cvd->vdev_state;
847         mvd->vdev_crtxg = cvd->vdev_crtxg;
848
849         vdev_remove_child(pvd, cvd);
850         vdev_add_child(pvd, mvd);
851         cvd->vdev_id = mvd->vdev_children;
852         vdev_add_child(mvd, cvd);
853         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
854
855         if (mvd == mvd->vdev_top)
856                 vdev_top_transfer(cvd, mvd);
857
858         return (mvd);
859 }
860
861 /*
862  * Remove a 1-way mirror/replacing vdev from the tree.
863  */
864 void
865 vdev_remove_parent(vdev_t *cvd)
866 {
867         vdev_t *mvd = cvd->vdev_parent;
868         vdev_t *pvd = mvd->vdev_parent;
869
870         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
871
872         ASSERT(mvd->vdev_children == 1);
873         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
874             mvd->vdev_ops == &vdev_replacing_ops ||
875             mvd->vdev_ops == &vdev_spare_ops);
876         cvd->vdev_ashift = mvd->vdev_ashift;
877         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
878         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
879
880         vdev_remove_child(mvd, cvd);
881         vdev_remove_child(pvd, mvd);
882
883         /*
884          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
885          * Otherwise, we could have detached an offline device, and when we
886          * go to import the pool we'll think we have two top-level vdevs,
887          * instead of a different version of the same top-level vdev.
888          */
889         if (mvd->vdev_top == mvd) {
890                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
891                 cvd->vdev_orig_guid = cvd->vdev_guid;
892                 cvd->vdev_guid += guid_delta;
893                 cvd->vdev_guid_sum += guid_delta;
894         }
895         cvd->vdev_id = mvd->vdev_id;
896         vdev_add_child(pvd, cvd);
897         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
898
899         if (cvd == cvd->vdev_top)
900                 vdev_top_transfer(mvd, cvd);
901
902         ASSERT(mvd->vdev_children == 0);
903         vdev_free(mvd);
904 }
905
906 int
907 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
908 {
909         spa_t *spa = vd->vdev_spa;
910         objset_t *mos = spa->spa_meta_objset;
911         uint64_t m;
912         uint64_t oldc = vd->vdev_ms_count;
913         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
914         metaslab_t **mspp;
915         int error;
916
917         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
918
919         /*
920          * This vdev is not being allocated from yet or is a hole.
921          */
922         if (vd->vdev_ms_shift == 0)
923                 return (0);
924
925         ASSERT(!vd->vdev_ishole);
926
927         /*
928          * Compute the raidz-deflation ratio.  Note, we hard-code
929          * in 128k (1 << 17) because it is the "typical" blocksize.
930          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
931          * otherwise it would inconsistently account for existing bp's.
932          */
933         vd->vdev_deflate_ratio = (1 << 17) /
934             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
935
936         ASSERT(oldc <= newc);
937
938         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
939
940         if (oldc != 0) {
941                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
942                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
943         }
944
945         vd->vdev_ms = mspp;
946         vd->vdev_ms_count = newc;
947
948         for (m = oldc; m < newc; m++) {
949                 uint64_t object = 0;
950
951                 if (txg == 0) {
952                         error = dmu_read(mos, vd->vdev_ms_array,
953                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
954                             DMU_READ_PREFETCH);
955                         if (error)
956                                 return (error);
957                 }
958
959                 error = metaslab_init(vd->vdev_mg, m, object, txg,
960                     &(vd->vdev_ms[m]));
961                 if (error)
962                         return (error);
963         }
964
965         if (txg == 0)
966                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
967
968         /*
969          * If the vdev is being removed we don't activate
970          * the metaslabs since we want to ensure that no new
971          * allocations are performed on this device.
972          */
973         if (oldc == 0 && !vd->vdev_removing)
974                 metaslab_group_activate(vd->vdev_mg);
975
976         if (txg == 0)
977                 spa_config_exit(spa, SCL_ALLOC, FTAG);
978
979         return (0);
980 }
981
982 void
983 vdev_metaslab_fini(vdev_t *vd)
984 {
985         uint64_t m;
986         uint64_t count = vd->vdev_ms_count;
987
988         if (vd->vdev_ms != NULL) {
989                 metaslab_group_passivate(vd->vdev_mg);
990                 for (m = 0; m < count; m++) {
991                         metaslab_t *msp = vd->vdev_ms[m];
992
993                         if (msp != NULL)
994                                 metaslab_fini(msp);
995                 }
996                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
997                 vd->vdev_ms = NULL;
998         }
999 }
1000
1001 typedef struct vdev_probe_stats {
1002         boolean_t       vps_readable;
1003         boolean_t       vps_writeable;
1004         int             vps_flags;
1005 } vdev_probe_stats_t;
1006
1007 static void
1008 vdev_probe_done(zio_t *zio)
1009 {
1010         spa_t *spa = zio->io_spa;
1011         vdev_t *vd = zio->io_vd;
1012         vdev_probe_stats_t *vps = zio->io_private;
1013
1014         ASSERT(vd->vdev_probe_zio != NULL);
1015
1016         if (zio->io_type == ZIO_TYPE_READ) {
1017                 if (zio->io_error == 0)
1018                         vps->vps_readable = 1;
1019                 if (zio->io_error == 0 && spa_writeable(spa)) {
1020                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1021                             zio->io_offset, zio->io_size, zio->io_data,
1022                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1023                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1024                 } else {
1025                         zio_buf_free(zio->io_data, zio->io_size);
1026                 }
1027         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1028                 if (zio->io_error == 0)
1029                         vps->vps_writeable = 1;
1030                 zio_buf_free(zio->io_data, zio->io_size);
1031         } else if (zio->io_type == ZIO_TYPE_NULL) {
1032                 zio_t *pio;
1033
1034                 vd->vdev_cant_read |= !vps->vps_readable;
1035                 vd->vdev_cant_write |= !vps->vps_writeable;
1036
1037                 if (vdev_readable(vd) &&
1038                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1039                         zio->io_error = 0;
1040                 } else {
1041                         ASSERT(zio->io_error != 0);
1042                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1043                             spa, vd, NULL, 0, 0);
1044                         zio->io_error = SET_ERROR(ENXIO);
1045                 }
1046
1047                 mutex_enter(&vd->vdev_probe_lock);
1048                 ASSERT(vd->vdev_probe_zio == zio);
1049                 vd->vdev_probe_zio = NULL;
1050                 mutex_exit(&vd->vdev_probe_lock);
1051
1052                 while ((pio = zio_walk_parents(zio)) != NULL)
1053                         if (!vdev_accessible(vd, pio))
1054                                 pio->io_error = SET_ERROR(ENXIO);
1055
1056                 kmem_free(vps, sizeof (*vps));
1057         }
1058 }
1059
1060 /*
1061  * Determine whether this device is accessible.
1062  *
1063  * Read and write to several known locations: the pad regions of each
1064  * vdev label but the first, which we leave alone in case it contains
1065  * a VTOC.
1066  */
1067 zio_t *
1068 vdev_probe(vdev_t *vd, zio_t *zio)
1069 {
1070         spa_t *spa = vd->vdev_spa;
1071         vdev_probe_stats_t *vps = NULL;
1072         zio_t *pio;
1073
1074         ASSERT(vd->vdev_ops->vdev_op_leaf);
1075
1076         /*
1077          * Don't probe the probe.
1078          */
1079         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1080                 return (NULL);
1081
1082         /*
1083          * To prevent 'probe storms' when a device fails, we create
1084          * just one probe i/o at a time.  All zios that want to probe
1085          * this vdev will become parents of the probe io.
1086          */
1087         mutex_enter(&vd->vdev_probe_lock);
1088
1089         if ((pio = vd->vdev_probe_zio) == NULL) {
1090                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1091
1092                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1093                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1094                     ZIO_FLAG_TRYHARD;
1095
1096                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1097                         /*
1098                          * vdev_cant_read and vdev_cant_write can only
1099                          * transition from TRUE to FALSE when we have the
1100                          * SCL_ZIO lock as writer; otherwise they can only
1101                          * transition from FALSE to TRUE.  This ensures that
1102                          * any zio looking at these values can assume that
1103                          * failures persist for the life of the I/O.  That's
1104                          * important because when a device has intermittent
1105                          * connectivity problems, we want to ensure that
1106                          * they're ascribed to the device (ENXIO) and not
1107                          * the zio (EIO).
1108                          *
1109                          * Since we hold SCL_ZIO as writer here, clear both
1110                          * values so the probe can reevaluate from first
1111                          * principles.
1112                          */
1113                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1114                         vd->vdev_cant_read = B_FALSE;
1115                         vd->vdev_cant_write = B_FALSE;
1116                 }
1117
1118                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1119                     vdev_probe_done, vps,
1120                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1121
1122                 /*
1123                  * We can't change the vdev state in this context, so we
1124                  * kick off an async task to do it on our behalf.
1125                  */
1126                 if (zio != NULL) {
1127                         vd->vdev_probe_wanted = B_TRUE;
1128                         spa_async_request(spa, SPA_ASYNC_PROBE);
1129                 }
1130         }
1131
1132         if (zio != NULL)
1133                 zio_add_child(zio, pio);
1134
1135         mutex_exit(&vd->vdev_probe_lock);
1136
1137         if (vps == NULL) {
1138                 ASSERT(zio != NULL);
1139                 return (NULL);
1140         }
1141
1142         for (int l = 1; l < VDEV_LABELS; l++) {
1143                 zio_nowait(zio_read_phys(pio, vd,
1144                     vdev_label_offset(vd->vdev_psize, l,
1145                     offsetof(vdev_label_t, vl_pad2)),
1146                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1147                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1148                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1149         }
1150
1151         if (zio == NULL)
1152                 return (pio);
1153
1154         zio_nowait(pio);
1155         return (NULL);
1156 }
1157
1158 static void
1159 vdev_open_child(void *arg)
1160 {
1161         vdev_t *vd = arg;
1162
1163         vd->vdev_open_thread = curthread;
1164         vd->vdev_open_error = vdev_open(vd);
1165         vd->vdev_open_thread = NULL;
1166 }
1167
1168 boolean_t
1169 vdev_uses_zvols(vdev_t *vd)
1170 {
1171         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1172             strlen(ZVOL_DIR)) == 0)
1173                 return (B_TRUE);
1174         for (int c = 0; c < vd->vdev_children; c++)
1175                 if (vdev_uses_zvols(vd->vdev_child[c]))
1176                         return (B_TRUE);
1177         return (B_FALSE);
1178 }
1179
1180 void
1181 vdev_open_children(vdev_t *vd)
1182 {
1183         taskq_t *tq;
1184         int children = vd->vdev_children;
1185
1186         /*
1187          * in order to handle pools on top of zvols, do the opens
1188          * in a single thread so that the same thread holds the
1189          * spa_namespace_lock
1190          */
1191         if (B_TRUE || vdev_uses_zvols(vd)) {
1192                 for (int c = 0; c < children; c++)
1193                         vd->vdev_child[c]->vdev_open_error =
1194                             vdev_open(vd->vdev_child[c]);
1195                 return;
1196         }
1197         tq = taskq_create("vdev_open", children, minclsyspri,
1198             children, children, TASKQ_PREPOPULATE);
1199
1200         for (int c = 0; c < children; c++)
1201                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1202                     TQ_SLEEP) != 0);
1203
1204         taskq_destroy(tq);
1205 }
1206
1207 /*
1208  * Prepare a virtual device for access.
1209  */
1210 int
1211 vdev_open(vdev_t *vd)
1212 {
1213         spa_t *spa = vd->vdev_spa;
1214         int error;
1215         uint64_t osize = 0;
1216         uint64_t max_osize = 0;
1217         uint64_t asize, max_asize, psize;
1218         uint64_t logical_ashift = 0;
1219         uint64_t physical_ashift = 0;
1220
1221         ASSERT(vd->vdev_open_thread == curthread ||
1222             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1223         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1224             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1225             vd->vdev_state == VDEV_STATE_OFFLINE);
1226
1227         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1228         vd->vdev_cant_read = B_FALSE;
1229         vd->vdev_cant_write = B_FALSE;
1230         vd->vdev_notrim = B_FALSE;
1231         vd->vdev_min_asize = vdev_get_min_asize(vd);
1232
1233         /*
1234          * If this vdev is not removed, check its fault status.  If it's
1235          * faulted, bail out of the open.
1236          */
1237         if (!vd->vdev_removed && vd->vdev_faulted) {
1238                 ASSERT(vd->vdev_children == 0);
1239                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1240                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1241                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1242                     vd->vdev_label_aux);
1243                 return (SET_ERROR(ENXIO));
1244         } else if (vd->vdev_offline) {
1245                 ASSERT(vd->vdev_children == 0);
1246                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1247                 return (SET_ERROR(ENXIO));
1248         }
1249
1250         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1251             &logical_ashift, &physical_ashift);
1252
1253         /*
1254          * Reset the vdev_reopening flag so that we actually close
1255          * the vdev on error.
1256          */
1257         vd->vdev_reopening = B_FALSE;
1258         if (zio_injection_enabled && error == 0)
1259                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1260
1261         if (error) {
1262                 if (vd->vdev_removed &&
1263                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1264                         vd->vdev_removed = B_FALSE;
1265
1266                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1267                     vd->vdev_stat.vs_aux);
1268                 return (error);
1269         }
1270
1271         vd->vdev_removed = B_FALSE;
1272
1273         /*
1274          * Recheck the faulted flag now that we have confirmed that
1275          * the vdev is accessible.  If we're faulted, bail.
1276          */
1277         if (vd->vdev_faulted) {
1278                 ASSERT(vd->vdev_children == 0);
1279                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1280                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1281                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1282                     vd->vdev_label_aux);
1283                 return (SET_ERROR(ENXIO));
1284         }
1285
1286         if (vd->vdev_degraded) {
1287                 ASSERT(vd->vdev_children == 0);
1288                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1289                     VDEV_AUX_ERR_EXCEEDED);
1290         } else {
1291                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1292         }
1293
1294         /*
1295          * For hole or missing vdevs we just return success.
1296          */
1297         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1298                 return (0);
1299
1300         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1301                 trim_map_create(vd);
1302
1303         for (int c = 0; c < vd->vdev_children; c++) {
1304                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1305                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1306                             VDEV_AUX_NONE);
1307                         break;
1308                 }
1309         }
1310
1311         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1312         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1313
1314         if (vd->vdev_children == 0) {
1315                 if (osize < SPA_MINDEVSIZE) {
1316                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1317                             VDEV_AUX_TOO_SMALL);
1318                         return (SET_ERROR(EOVERFLOW));
1319                 }
1320                 psize = osize;
1321                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1322                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1323                     VDEV_LABEL_END_SIZE);
1324         } else {
1325                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1326                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1327                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1328                             VDEV_AUX_TOO_SMALL);
1329                         return (SET_ERROR(EOVERFLOW));
1330                 }
1331                 psize = 0;
1332                 asize = osize;
1333                 max_asize = max_osize;
1334         }
1335
1336         vd->vdev_psize = psize;
1337
1338         /*
1339          * Make sure the allocatable size hasn't shrunk.
1340          */
1341         if (asize < vd->vdev_min_asize) {
1342                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1343                     VDEV_AUX_BAD_LABEL);
1344                 return (SET_ERROR(EINVAL));
1345         }
1346
1347         vd->vdev_physical_ashift =
1348             MAX(physical_ashift, vd->vdev_physical_ashift);
1349         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1350         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1351
1352         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1353                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1354                     VDEV_AUX_ASHIFT_TOO_BIG);
1355                 return (EINVAL);
1356         }
1357
1358         if (vd->vdev_asize == 0) {
1359                 /*
1360                  * This is the first-ever open, so use the computed values.
1361                  * For testing purposes, a higher ashift can be requested.
1362                  */
1363                 vd->vdev_asize = asize;
1364                 vd->vdev_max_asize = max_asize;
1365         } else {
1366                 /*
1367                  * Make sure the alignment requirement hasn't increased.
1368                  */
1369                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1370                     vd->vdev_ops->vdev_op_leaf) {
1371                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1372                             VDEV_AUX_BAD_LABEL);
1373                         return (EINVAL);
1374                 }
1375                 vd->vdev_max_asize = max_asize;
1376         }
1377
1378         /*
1379          * If all children are healthy and the asize has increased,
1380          * then we've experienced dynamic LUN growth.  If automatic
1381          * expansion is enabled then use the additional space.
1382          */
1383         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1384             (vd->vdev_expanding || spa->spa_autoexpand))
1385                 vd->vdev_asize = asize;
1386
1387         vdev_set_min_asize(vd);
1388
1389         /*
1390          * Ensure we can issue some IO before declaring the
1391          * vdev open for business.
1392          */
1393         if (vd->vdev_ops->vdev_op_leaf &&
1394             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1395                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1396                     VDEV_AUX_ERR_EXCEEDED);
1397                 return (error);
1398         }
1399
1400         /*
1401          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1402          * resilver.  But don't do this if we are doing a reopen for a scrub,
1403          * since this would just restart the scrub we are already doing.
1404          */
1405         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1406             vdev_resilver_needed(vd, NULL, NULL))
1407                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1408
1409         return (0);
1410 }
1411
1412 /*
1413  * Called once the vdevs are all opened, this routine validates the label
1414  * contents.  This needs to be done before vdev_load() so that we don't
1415  * inadvertently do repair I/Os to the wrong device.
1416  *
1417  * If 'strict' is false ignore the spa guid check. This is necessary because
1418  * if the machine crashed during a re-guid the new guid might have been written
1419  * to all of the vdev labels, but not the cached config. The strict check
1420  * will be performed when the pool is opened again using the mos config.
1421  *
1422  * This function will only return failure if one of the vdevs indicates that it
1423  * has since been destroyed or exported.  This is only possible if
1424  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1425  * will be updated but the function will return 0.
1426  */
1427 int
1428 vdev_validate(vdev_t *vd, boolean_t strict)
1429 {
1430         spa_t *spa = vd->vdev_spa;
1431         nvlist_t *label;
1432         uint64_t guid = 0, top_guid;
1433         uint64_t state;
1434
1435         for (int c = 0; c < vd->vdev_children; c++)
1436                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1437                         return (SET_ERROR(EBADF));
1438
1439         /*
1440          * If the device has already failed, or was marked offline, don't do
1441          * any further validation.  Otherwise, label I/O will fail and we will
1442          * overwrite the previous state.
1443          */
1444         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1445                 uint64_t aux_guid = 0;
1446                 nvlist_t *nvl;
1447                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1448                     spa_last_synced_txg(spa) : -1ULL;
1449
1450                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1451                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1452                             VDEV_AUX_BAD_LABEL);
1453                         return (0);
1454                 }
1455
1456                 /*
1457                  * Determine if this vdev has been split off into another
1458                  * pool.  If so, then refuse to open it.
1459                  */
1460                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1461                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1462                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1463                             VDEV_AUX_SPLIT_POOL);
1464                         nvlist_free(label);
1465                         return (0);
1466                 }
1467
1468                 if (strict && (nvlist_lookup_uint64(label,
1469                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1470                     guid != spa_guid(spa))) {
1471                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1472                             VDEV_AUX_CORRUPT_DATA);
1473                         nvlist_free(label);
1474                         return (0);
1475                 }
1476
1477                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1478                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1479                     &aux_guid) != 0)
1480                         aux_guid = 0;
1481
1482                 /*
1483                  * If this vdev just became a top-level vdev because its
1484                  * sibling was detached, it will have adopted the parent's
1485                  * vdev guid -- but the label may or may not be on disk yet.
1486                  * Fortunately, either version of the label will have the
1487                  * same top guid, so if we're a top-level vdev, we can
1488                  * safely compare to that instead.
1489                  *
1490                  * If we split this vdev off instead, then we also check the
1491                  * original pool's guid.  We don't want to consider the vdev
1492                  * corrupt if it is partway through a split operation.
1493                  */
1494                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1495                     &guid) != 0 ||
1496                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1497                     &top_guid) != 0 ||
1498                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1499                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1500                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1501                             VDEV_AUX_CORRUPT_DATA);
1502                         nvlist_free(label);
1503                         return (0);
1504                 }
1505
1506                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1507                     &state) != 0) {
1508                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1509                             VDEV_AUX_CORRUPT_DATA);
1510                         nvlist_free(label);
1511                         return (0);
1512                 }
1513
1514                 nvlist_free(label);
1515
1516                 /*
1517                  * If this is a verbatim import, no need to check the
1518                  * state of the pool.
1519                  */
1520                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1521                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1522                     state != POOL_STATE_ACTIVE)
1523                         return (SET_ERROR(EBADF));
1524
1525                 /*
1526                  * If we were able to open and validate a vdev that was
1527                  * previously marked permanently unavailable, clear that state
1528                  * now.
1529                  */
1530                 if (vd->vdev_not_present)
1531                         vd->vdev_not_present = 0;
1532         }
1533
1534         return (0);
1535 }
1536
1537 /*
1538  * Close a virtual device.
1539  */
1540 void
1541 vdev_close(vdev_t *vd)
1542 {
1543         spa_t *spa = vd->vdev_spa;
1544         vdev_t *pvd = vd->vdev_parent;
1545
1546         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1547
1548         /*
1549          * If our parent is reopening, then we are as well, unless we are
1550          * going offline.
1551          */
1552         if (pvd != NULL && pvd->vdev_reopening)
1553                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1554
1555         vd->vdev_ops->vdev_op_close(vd);
1556
1557         vdev_cache_purge(vd);
1558
1559         if (vd->vdev_ops->vdev_op_leaf)
1560                 trim_map_destroy(vd);
1561
1562         /*
1563          * We record the previous state before we close it, so that if we are
1564          * doing a reopen(), we don't generate FMA ereports if we notice that
1565          * it's still faulted.
1566          */
1567         vd->vdev_prevstate = vd->vdev_state;
1568
1569         if (vd->vdev_offline)
1570                 vd->vdev_state = VDEV_STATE_OFFLINE;
1571         else
1572                 vd->vdev_state = VDEV_STATE_CLOSED;
1573         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1574 }
1575
1576 void
1577 vdev_hold(vdev_t *vd)
1578 {
1579         spa_t *spa = vd->vdev_spa;
1580
1581         ASSERT(spa_is_root(spa));
1582         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1583                 return;
1584
1585         for (int c = 0; c < vd->vdev_children; c++)
1586                 vdev_hold(vd->vdev_child[c]);
1587
1588         if (vd->vdev_ops->vdev_op_leaf)
1589                 vd->vdev_ops->vdev_op_hold(vd);
1590 }
1591
1592 void
1593 vdev_rele(vdev_t *vd)
1594 {
1595         spa_t *spa = vd->vdev_spa;
1596
1597         ASSERT(spa_is_root(spa));
1598         for (int c = 0; c < vd->vdev_children; c++)
1599                 vdev_rele(vd->vdev_child[c]);
1600
1601         if (vd->vdev_ops->vdev_op_leaf)
1602                 vd->vdev_ops->vdev_op_rele(vd);
1603 }
1604
1605 /*
1606  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1607  * reopen leaf vdevs which had previously been opened as they might deadlock
1608  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1609  * If the leaf has never been opened then open it, as usual.
1610  */
1611 void
1612 vdev_reopen(vdev_t *vd)
1613 {
1614         spa_t *spa = vd->vdev_spa;
1615
1616         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1617
1618         /* set the reopening flag unless we're taking the vdev offline */
1619         vd->vdev_reopening = !vd->vdev_offline;
1620         vdev_close(vd);
1621         (void) vdev_open(vd);
1622
1623         /*
1624          * Call vdev_validate() here to make sure we have the same device.
1625          * Otherwise, a device with an invalid label could be successfully
1626          * opened in response to vdev_reopen().
1627          */
1628         if (vd->vdev_aux) {
1629                 (void) vdev_validate_aux(vd);
1630                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1631                     vd->vdev_aux == &spa->spa_l2cache &&
1632                     !l2arc_vdev_present(vd))
1633                         l2arc_add_vdev(spa, vd);
1634         } else {
1635                 (void) vdev_validate(vd, B_TRUE);
1636         }
1637
1638         /*
1639          * Reassess parent vdev's health.
1640          */
1641         vdev_propagate_state(vd);
1642 }
1643
1644 int
1645 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1646 {
1647         int error;
1648
1649         /*
1650          * Normally, partial opens (e.g. of a mirror) are allowed.
1651          * For a create, however, we want to fail the request if
1652          * there are any components we can't open.
1653          */
1654         error = vdev_open(vd);
1655
1656         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1657                 vdev_close(vd);
1658                 return (error ? error : ENXIO);
1659         }
1660
1661         /*
1662          * Recursively load DTLs and initialize all labels.
1663          */
1664         if ((error = vdev_dtl_load(vd)) != 0 ||
1665             (error = vdev_label_init(vd, txg, isreplacing ?
1666             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1667                 vdev_close(vd);
1668                 return (error);
1669         }
1670
1671         return (0);
1672 }
1673
1674 void
1675 vdev_metaslab_set_size(vdev_t *vd)
1676 {
1677         /*
1678          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1679          */
1680         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1681         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1682 }
1683
1684 /*
1685  * Maximize performance by inflating the configured ashift for top level
1686  * vdevs to be as close to the physical ashift as possible while maintaining
1687  * administrator defined limits and ensuring it doesn't go below the
1688  * logical ashift.
1689  */
1690 void
1691 vdev_ashift_optimize(vdev_t *vd)
1692 {
1693         if (vd == vd->vdev_top) {
1694                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1695                         vd->vdev_ashift = MIN(
1696                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1697                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1698                 } else {
1699                         /*
1700                          * Unusual case where logical ashift > physical ashift
1701                          * so we can't cap the calculated ashift based on max
1702                          * ashift as that would cause failures.
1703                          * We still check if we need to increase it to match
1704                          * the min ashift.
1705                          */
1706                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1707                             vd->vdev_ashift);
1708                 }
1709         }
1710 }
1711
1712 void
1713 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1714 {
1715         ASSERT(vd == vd->vdev_top);
1716         ASSERT(!vd->vdev_ishole);
1717         ASSERT(ISP2(flags));
1718         ASSERT(spa_writeable(vd->vdev_spa));
1719
1720         if (flags & VDD_METASLAB)
1721                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1722
1723         if (flags & VDD_DTL)
1724                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1725
1726         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1727 }
1728
1729 void
1730 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1731 {
1732         for (int c = 0; c < vd->vdev_children; c++)
1733                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1734
1735         if (vd->vdev_ops->vdev_op_leaf)
1736                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1737 }
1738
1739 /*
1740  * DTLs.
1741  *
1742  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1743  * the vdev has less than perfect replication.  There are four kinds of DTL:
1744  *
1745  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1746  *
1747  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1748  *
1749  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1750  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1751  *      txgs that was scrubbed.
1752  *
1753  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1754  *      persistent errors or just some device being offline.
1755  *      Unlike the other three, the DTL_OUTAGE map is not generally
1756  *      maintained; it's only computed when needed, typically to
1757  *      determine whether a device can be detached.
1758  *
1759  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1760  * either has the data or it doesn't.
1761  *
1762  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1763  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1764  * if any child is less than fully replicated, then so is its parent.
1765  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1766  * comprising only those txgs which appear in 'maxfaults' or more children;
1767  * those are the txgs we don't have enough replication to read.  For example,
1768  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1769  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1770  * two child DTL_MISSING maps.
1771  *
1772  * It should be clear from the above that to compute the DTLs and outage maps
1773  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1774  * Therefore, that is all we keep on disk.  When loading the pool, or after
1775  * a configuration change, we generate all other DTLs from first principles.
1776  */
1777 void
1778 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1779 {
1780         range_tree_t *rt = vd->vdev_dtl[t];
1781
1782         ASSERT(t < DTL_TYPES);
1783         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1784         ASSERT(spa_writeable(vd->vdev_spa));
1785
1786         mutex_enter(rt->rt_lock);
1787         if (!range_tree_contains(rt, txg, size))
1788                 range_tree_add(rt, txg, size);
1789         mutex_exit(rt->rt_lock);
1790 }
1791
1792 boolean_t
1793 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1794 {
1795         range_tree_t *rt = vd->vdev_dtl[t];
1796         boolean_t dirty = B_FALSE;
1797
1798         ASSERT(t < DTL_TYPES);
1799         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1800
1801         mutex_enter(rt->rt_lock);
1802         if (range_tree_space(rt) != 0)
1803                 dirty = range_tree_contains(rt, txg, size);
1804         mutex_exit(rt->rt_lock);
1805
1806         return (dirty);
1807 }
1808
1809 boolean_t
1810 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1811 {
1812         range_tree_t *rt = vd->vdev_dtl[t];
1813         boolean_t empty;
1814
1815         mutex_enter(rt->rt_lock);
1816         empty = (range_tree_space(rt) == 0);
1817         mutex_exit(rt->rt_lock);
1818
1819         return (empty);
1820 }
1821
1822 /*
1823  * Returns the lowest txg in the DTL range.
1824  */
1825 static uint64_t
1826 vdev_dtl_min(vdev_t *vd)
1827 {
1828         range_seg_t *rs;
1829
1830         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1831         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1832         ASSERT0(vd->vdev_children);
1833
1834         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1835         return (rs->rs_start - 1);
1836 }
1837
1838 /*
1839  * Returns the highest txg in the DTL.
1840  */
1841 static uint64_t
1842 vdev_dtl_max(vdev_t *vd)
1843 {
1844         range_seg_t *rs;
1845
1846         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1847         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1848         ASSERT0(vd->vdev_children);
1849
1850         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1851         return (rs->rs_end);
1852 }
1853
1854 /*
1855  * Determine if a resilvering vdev should remove any DTL entries from
1856  * its range. If the vdev was resilvering for the entire duration of the
1857  * scan then it should excise that range from its DTLs. Otherwise, this
1858  * vdev is considered partially resilvered and should leave its DTL
1859  * entries intact. The comment in vdev_dtl_reassess() describes how we
1860  * excise the DTLs.
1861  */
1862 static boolean_t
1863 vdev_dtl_should_excise(vdev_t *vd)
1864 {
1865         spa_t *spa = vd->vdev_spa;
1866         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1867
1868         ASSERT0(scn->scn_phys.scn_errors);
1869         ASSERT0(vd->vdev_children);
1870
1871         if (vd->vdev_resilver_txg == 0 ||
1872             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1873                 return (B_TRUE);
1874
1875         /*
1876          * When a resilver is initiated the scan will assign the scn_max_txg
1877          * value to the highest txg value that exists in all DTLs. If this
1878          * device's max DTL is not part of this scan (i.e. it is not in
1879          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1880          * for excision.
1881          */
1882         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1883                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1884                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1885                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1886                 return (B_TRUE);
1887         }
1888         return (B_FALSE);
1889 }
1890
1891 /*
1892  * Reassess DTLs after a config change or scrub completion.
1893  */
1894 void
1895 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1896 {
1897         spa_t *spa = vd->vdev_spa;
1898         avl_tree_t reftree;
1899         int minref;
1900
1901         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1902
1903         for (int c = 0; c < vd->vdev_children; c++)
1904                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1905                     scrub_txg, scrub_done);
1906
1907         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1908                 return;
1909
1910         if (vd->vdev_ops->vdev_op_leaf) {
1911                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1912
1913                 mutex_enter(&vd->vdev_dtl_lock);
1914
1915                 /*
1916                  * If we've completed a scan cleanly then determine
1917                  * if this vdev should remove any DTLs. We only want to
1918                  * excise regions on vdevs that were available during
1919                  * the entire duration of this scan.
1920                  */
1921                 if (scrub_txg != 0 &&
1922                     (spa->spa_scrub_started ||
1923                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1924                     vdev_dtl_should_excise(vd)) {
1925                         /*
1926                          * We completed a scrub up to scrub_txg.  If we
1927                          * did it without rebooting, then the scrub dtl
1928                          * will be valid, so excise the old region and
1929                          * fold in the scrub dtl.  Otherwise, leave the
1930                          * dtl as-is if there was an error.
1931                          *
1932                          * There's little trick here: to excise the beginning
1933                          * of the DTL_MISSING map, we put it into a reference
1934                          * tree and then add a segment with refcnt -1 that
1935                          * covers the range [0, scrub_txg).  This means
1936                          * that each txg in that range has refcnt -1 or 0.
1937                          * We then add DTL_SCRUB with a refcnt of 2, so that
1938                          * entries in the range [0, scrub_txg) will have a
1939                          * positive refcnt -- either 1 or 2.  We then convert
1940                          * the reference tree into the new DTL_MISSING map.
1941                          */
1942                         space_reftree_create(&reftree);
1943                         space_reftree_add_map(&reftree,
1944                             vd->vdev_dtl[DTL_MISSING], 1);
1945                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1946                         space_reftree_add_map(&reftree,
1947                             vd->vdev_dtl[DTL_SCRUB], 2);
1948                         space_reftree_generate_map(&reftree,
1949                             vd->vdev_dtl[DTL_MISSING], 1);
1950                         space_reftree_destroy(&reftree);
1951                 }
1952                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1953                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1954                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1955                 if (scrub_done)
1956                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1957                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1958                 if (!vdev_readable(vd))
1959                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1960                 else
1961                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1962                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1963
1964                 /*
1965                  * If the vdev was resilvering and no longer has any
1966                  * DTLs then reset its resilvering flag and dirty
1967                  * the top level so that we persist the change.
1968                  */
1969                 if (vd->vdev_resilver_txg != 0 &&
1970                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1971                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1972                         vd->vdev_resilver_txg = 0;
1973                         vdev_config_dirty(vd->vdev_top);
1974                 }
1975
1976                 mutex_exit(&vd->vdev_dtl_lock);
1977
1978                 if (txg != 0)
1979                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1980                 return;
1981         }
1982
1983         mutex_enter(&vd->vdev_dtl_lock);
1984         for (int t = 0; t < DTL_TYPES; t++) {
1985                 /* account for child's outage in parent's missing map */
1986                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1987                 if (t == DTL_SCRUB)
1988                         continue;                       /* leaf vdevs only */
1989                 if (t == DTL_PARTIAL)
1990                         minref = 1;                     /* i.e. non-zero */
1991                 else if (vd->vdev_nparity != 0)
1992                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1993                 else
1994                         minref = vd->vdev_children;     /* any kind of mirror */
1995                 space_reftree_create(&reftree);
1996                 for (int c = 0; c < vd->vdev_children; c++) {
1997                         vdev_t *cvd = vd->vdev_child[c];
1998                         mutex_enter(&cvd->vdev_dtl_lock);
1999                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2000                         mutex_exit(&cvd->vdev_dtl_lock);
2001                 }
2002                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2003                 space_reftree_destroy(&reftree);
2004         }
2005         mutex_exit(&vd->vdev_dtl_lock);
2006 }
2007
2008 int
2009 vdev_dtl_load(vdev_t *vd)
2010 {
2011         spa_t *spa = vd->vdev_spa;
2012         objset_t *mos = spa->spa_meta_objset;
2013         int error = 0;
2014
2015         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2016                 ASSERT(!vd->vdev_ishole);
2017
2018                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2019                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2020                 if (error)
2021                         return (error);
2022                 ASSERT(vd->vdev_dtl_sm != NULL);
2023
2024                 mutex_enter(&vd->vdev_dtl_lock);
2025
2026                 /*
2027                  * Now that we've opened the space_map we need to update
2028                  * the in-core DTL.
2029                  */
2030                 space_map_update(vd->vdev_dtl_sm);
2031
2032                 error = space_map_load(vd->vdev_dtl_sm,
2033                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2034                 mutex_exit(&vd->vdev_dtl_lock);
2035
2036                 return (error);
2037         }
2038
2039         for (int c = 0; c < vd->vdev_children; c++) {
2040                 error = vdev_dtl_load(vd->vdev_child[c]);
2041                 if (error != 0)
2042                         break;
2043         }
2044
2045         return (error);
2046 }
2047
2048 void
2049 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2050 {
2051         spa_t *spa = vd->vdev_spa;
2052         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2053         objset_t *mos = spa->spa_meta_objset;
2054         range_tree_t *rtsync;
2055         kmutex_t rtlock;
2056         dmu_tx_t *tx;
2057         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2058
2059         ASSERT(!vd->vdev_ishole);
2060         ASSERT(vd->vdev_ops->vdev_op_leaf);
2061
2062         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2063
2064         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2065                 mutex_enter(&vd->vdev_dtl_lock);
2066                 space_map_free(vd->vdev_dtl_sm, tx);
2067                 space_map_close(vd->vdev_dtl_sm);
2068                 vd->vdev_dtl_sm = NULL;
2069                 mutex_exit(&vd->vdev_dtl_lock);
2070                 dmu_tx_commit(tx);
2071                 return;
2072         }
2073
2074         if (vd->vdev_dtl_sm == NULL) {
2075                 uint64_t new_object;
2076
2077                 new_object = space_map_alloc(mos, tx);
2078                 VERIFY3U(new_object, !=, 0);
2079
2080                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2081                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2082                 ASSERT(vd->vdev_dtl_sm != NULL);
2083         }
2084
2085         bzero(&rtlock, sizeof(rtlock));
2086         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2087
2088         rtsync = range_tree_create(NULL, NULL, &rtlock);
2089
2090         mutex_enter(&rtlock);
2091
2092         mutex_enter(&vd->vdev_dtl_lock);
2093         range_tree_walk(rt, range_tree_add, rtsync);
2094         mutex_exit(&vd->vdev_dtl_lock);
2095
2096         space_map_truncate(vd->vdev_dtl_sm, tx);
2097         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2098         range_tree_vacate(rtsync, NULL, NULL);
2099
2100         range_tree_destroy(rtsync);
2101
2102         mutex_exit(&rtlock);
2103         mutex_destroy(&rtlock);
2104
2105         /*
2106          * If the object for the space map has changed then dirty
2107          * the top level so that we update the config.
2108          */
2109         if (object != space_map_object(vd->vdev_dtl_sm)) {
2110                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2111                     "new object %llu", txg, spa_name(spa), object,
2112                     space_map_object(vd->vdev_dtl_sm));
2113                 vdev_config_dirty(vd->vdev_top);
2114         }
2115
2116         dmu_tx_commit(tx);
2117
2118         mutex_enter(&vd->vdev_dtl_lock);
2119         space_map_update(vd->vdev_dtl_sm);
2120         mutex_exit(&vd->vdev_dtl_lock);
2121 }
2122
2123 /*
2124  * Determine whether the specified vdev can be offlined/detached/removed
2125  * without losing data.
2126  */
2127 boolean_t
2128 vdev_dtl_required(vdev_t *vd)
2129 {
2130         spa_t *spa = vd->vdev_spa;
2131         vdev_t *tvd = vd->vdev_top;
2132         uint8_t cant_read = vd->vdev_cant_read;
2133         boolean_t required;
2134
2135         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2136
2137         if (vd == spa->spa_root_vdev || vd == tvd)
2138                 return (B_TRUE);
2139
2140         /*
2141          * Temporarily mark the device as unreadable, and then determine
2142          * whether this results in any DTL outages in the top-level vdev.
2143          * If not, we can safely offline/detach/remove the device.
2144          */
2145         vd->vdev_cant_read = B_TRUE;
2146         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2147         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2148         vd->vdev_cant_read = cant_read;
2149         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2150
2151         if (!required && zio_injection_enabled)
2152                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2153
2154         return (required);
2155 }
2156
2157 /*
2158  * Determine if resilver is needed, and if so the txg range.
2159  */
2160 boolean_t
2161 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2162 {
2163         boolean_t needed = B_FALSE;
2164         uint64_t thismin = UINT64_MAX;
2165         uint64_t thismax = 0;
2166
2167         if (vd->vdev_children == 0) {
2168                 mutex_enter(&vd->vdev_dtl_lock);
2169                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2170                     vdev_writeable(vd)) {
2171
2172                         thismin = vdev_dtl_min(vd);
2173                         thismax = vdev_dtl_max(vd);
2174                         needed = B_TRUE;
2175                 }
2176                 mutex_exit(&vd->vdev_dtl_lock);
2177         } else {
2178                 for (int c = 0; c < vd->vdev_children; c++) {
2179                         vdev_t *cvd = vd->vdev_child[c];
2180                         uint64_t cmin, cmax;
2181
2182                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2183                                 thismin = MIN(thismin, cmin);
2184                                 thismax = MAX(thismax, cmax);
2185                                 needed = B_TRUE;
2186                         }
2187                 }
2188         }
2189
2190         if (needed && minp) {
2191                 *minp = thismin;
2192                 *maxp = thismax;
2193         }
2194         return (needed);
2195 }
2196
2197 void
2198 vdev_load(vdev_t *vd)
2199 {
2200         /*
2201          * Recursively load all children.
2202          */
2203         for (int c = 0; c < vd->vdev_children; c++)
2204                 vdev_load(vd->vdev_child[c]);
2205
2206         /*
2207          * If this is a top-level vdev, initialize its metaslabs.
2208          */
2209         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2210             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2211             vdev_metaslab_init(vd, 0) != 0))
2212                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2213                     VDEV_AUX_CORRUPT_DATA);
2214
2215         /*
2216          * If this is a leaf vdev, load its DTL.
2217          */
2218         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2219                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2220                     VDEV_AUX_CORRUPT_DATA);
2221 }
2222
2223 /*
2224  * The special vdev case is used for hot spares and l2cache devices.  Its
2225  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2226  * we make sure that we can open the underlying device, then try to read the
2227  * label, and make sure that the label is sane and that it hasn't been
2228  * repurposed to another pool.
2229  */
2230 int
2231 vdev_validate_aux(vdev_t *vd)
2232 {
2233         nvlist_t *label;
2234         uint64_t guid, version;
2235         uint64_t state;
2236
2237         if (!vdev_readable(vd))
2238                 return (0);
2239
2240         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2241                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2242                     VDEV_AUX_CORRUPT_DATA);
2243                 return (-1);
2244         }
2245
2246         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2247             !SPA_VERSION_IS_SUPPORTED(version) ||
2248             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2249             guid != vd->vdev_guid ||
2250             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2251                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2252                     VDEV_AUX_CORRUPT_DATA);
2253                 nvlist_free(label);
2254                 return (-1);
2255         }
2256
2257         /*
2258          * We don't actually check the pool state here.  If it's in fact in
2259          * use by another pool, we update this fact on the fly when requested.
2260          */
2261         nvlist_free(label);
2262         return (0);
2263 }
2264
2265 void
2266 vdev_remove(vdev_t *vd, uint64_t txg)
2267 {
2268         spa_t *spa = vd->vdev_spa;
2269         objset_t *mos = spa->spa_meta_objset;
2270         dmu_tx_t *tx;
2271
2272         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2273
2274         if (vd->vdev_ms != NULL) {
2275                 metaslab_group_t *mg = vd->vdev_mg;
2276
2277                 metaslab_group_histogram_verify(mg);
2278                 metaslab_class_histogram_verify(mg->mg_class);
2279
2280                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2281                         metaslab_t *msp = vd->vdev_ms[m];
2282
2283                         if (msp == NULL || msp->ms_sm == NULL)
2284                                 continue;
2285
2286                         mutex_enter(&msp->ms_lock);
2287                         /*
2288                          * If the metaslab was not loaded when the vdev
2289                          * was removed then the histogram accounting may
2290                          * not be accurate. Update the histogram information
2291                          * here so that we ensure that the metaslab group
2292                          * and metaslab class are up-to-date.
2293                          */
2294                         metaslab_group_histogram_remove(mg, msp);
2295
2296                         VERIFY0(space_map_allocated(msp->ms_sm));
2297                         space_map_free(msp->ms_sm, tx);
2298                         space_map_close(msp->ms_sm);
2299                         msp->ms_sm = NULL;
2300                         mutex_exit(&msp->ms_lock);
2301                 }
2302
2303                 metaslab_group_histogram_verify(mg);
2304                 metaslab_class_histogram_verify(mg->mg_class);
2305                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2306                         ASSERT0(mg->mg_histogram[i]);
2307
2308         }
2309
2310         if (vd->vdev_ms_array) {
2311                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2312                 vd->vdev_ms_array = 0;
2313         }
2314         dmu_tx_commit(tx);
2315 }
2316
2317 void
2318 vdev_sync_done(vdev_t *vd, uint64_t txg)
2319 {
2320         metaslab_t *msp;
2321         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2322
2323         ASSERT(!vd->vdev_ishole);
2324
2325         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2326                 metaslab_sync_done(msp, txg);
2327
2328         if (reassess)
2329                 metaslab_sync_reassess(vd->vdev_mg);
2330 }
2331
2332 void
2333 vdev_sync(vdev_t *vd, uint64_t txg)
2334 {
2335         spa_t *spa = vd->vdev_spa;
2336         vdev_t *lvd;
2337         metaslab_t *msp;
2338         dmu_tx_t *tx;
2339
2340         ASSERT(!vd->vdev_ishole);
2341
2342         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2343                 ASSERT(vd == vd->vdev_top);
2344                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2345                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2346                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2347                 ASSERT(vd->vdev_ms_array != 0);
2348                 vdev_config_dirty(vd);
2349                 dmu_tx_commit(tx);
2350         }
2351
2352         /*
2353          * Remove the metadata associated with this vdev once it's empty.
2354          */
2355         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2356                 vdev_remove(vd, txg);
2357
2358         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2359                 metaslab_sync(msp, txg);
2360                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2361         }
2362
2363         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2364                 vdev_dtl_sync(lvd, txg);
2365
2366         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2367 }
2368
2369 uint64_t
2370 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2371 {
2372         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2373 }
2374
2375 /*
2376  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2377  * not be opened, and no I/O is attempted.
2378  */
2379 int
2380 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2381 {
2382         vdev_t *vd, *tvd;
2383
2384         spa_vdev_state_enter(spa, SCL_NONE);
2385
2386         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2387                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2388
2389         if (!vd->vdev_ops->vdev_op_leaf)
2390                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2391
2392         tvd = vd->vdev_top;
2393
2394         /*
2395          * We don't directly use the aux state here, but if we do a
2396          * vdev_reopen(), we need this value to be present to remember why we
2397          * were faulted.
2398          */
2399         vd->vdev_label_aux = aux;
2400
2401         /*
2402          * Faulted state takes precedence over degraded.
2403          */
2404         vd->vdev_delayed_close = B_FALSE;
2405         vd->vdev_faulted = 1ULL;
2406         vd->vdev_degraded = 0ULL;
2407         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2408
2409         /*
2410          * If this device has the only valid copy of the data, then
2411          * back off and simply mark the vdev as degraded instead.
2412          */
2413         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2414                 vd->vdev_degraded = 1ULL;
2415                 vd->vdev_faulted = 0ULL;
2416
2417                 /*
2418                  * If we reopen the device and it's not dead, only then do we
2419                  * mark it degraded.
2420                  */
2421                 vdev_reopen(tvd);
2422
2423                 if (vdev_readable(vd))
2424                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2425         }
2426
2427         return (spa_vdev_state_exit(spa, vd, 0));
2428 }
2429
2430 /*
2431  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2432  * user that something is wrong.  The vdev continues to operate as normal as far
2433  * as I/O is concerned.
2434  */
2435 int
2436 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2437 {
2438         vdev_t *vd;
2439
2440         spa_vdev_state_enter(spa, SCL_NONE);
2441
2442         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2443                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2444
2445         if (!vd->vdev_ops->vdev_op_leaf)
2446                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2447
2448         /*
2449          * If the vdev is already faulted, then don't do anything.
2450          */
2451         if (vd->vdev_faulted || vd->vdev_degraded)
2452                 return (spa_vdev_state_exit(spa, NULL, 0));
2453
2454         vd->vdev_degraded = 1ULL;
2455         if (!vdev_is_dead(vd))
2456                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2457                     aux);
2458
2459         return (spa_vdev_state_exit(spa, vd, 0));
2460 }
2461
2462 /*
2463  * Online the given vdev.
2464  *
2465  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2466  * spare device should be detached when the device finishes resilvering.
2467  * Second, the online should be treated like a 'test' online case, so no FMA
2468  * events are generated if the device fails to open.
2469  */
2470 int
2471 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2472 {
2473         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2474
2475         spa_vdev_state_enter(spa, SCL_NONE);
2476
2477         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2478                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2479
2480         if (!vd->vdev_ops->vdev_op_leaf)
2481                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2482
2483         tvd = vd->vdev_top;
2484         vd->vdev_offline = B_FALSE;
2485         vd->vdev_tmpoffline = B_FALSE;
2486         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2487         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2488
2489         /* XXX - L2ARC 1.0 does not support expansion */
2490         if (!vd->vdev_aux) {
2491                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2492                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2493         }
2494
2495         vdev_reopen(tvd);
2496         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2497
2498         if (!vd->vdev_aux) {
2499                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2500                         pvd->vdev_expanding = B_FALSE;
2501         }
2502
2503         if (newstate)
2504                 *newstate = vd->vdev_state;
2505         if ((flags & ZFS_ONLINE_UNSPARE) &&
2506             !vdev_is_dead(vd) && vd->vdev_parent &&
2507             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2508             vd->vdev_parent->vdev_child[0] == vd)
2509                 vd->vdev_unspare = B_TRUE;
2510
2511         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2512
2513                 /* XXX - L2ARC 1.0 does not support expansion */
2514                 if (vd->vdev_aux)
2515                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2516                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2517         }
2518         return (spa_vdev_state_exit(spa, vd, 0));
2519 }
2520
2521 static int
2522 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2523 {
2524         vdev_t *vd, *tvd;
2525         int error = 0;
2526         uint64_t generation;
2527         metaslab_group_t *mg;
2528
2529 top:
2530         spa_vdev_state_enter(spa, SCL_ALLOC);
2531
2532         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2533                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2534
2535         if (!vd->vdev_ops->vdev_op_leaf)
2536                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2537
2538         tvd = vd->vdev_top;
2539         mg = tvd->vdev_mg;
2540         generation = spa->spa_config_generation + 1;
2541
2542         /*
2543          * If the device isn't already offline, try to offline it.
2544          */
2545         if (!vd->vdev_offline) {
2546                 /*
2547                  * If this device has the only valid copy of some data,
2548                  * don't allow it to be offlined. Log devices are always
2549                  * expendable.
2550                  */
2551                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2552                     vdev_dtl_required(vd))
2553                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2554
2555                 /*
2556                  * If the top-level is a slog and it has had allocations
2557                  * then proceed.  We check that the vdev's metaslab group
2558                  * is not NULL since it's possible that we may have just
2559                  * added this vdev but not yet initialized its metaslabs.
2560                  */
2561                 if (tvd->vdev_islog && mg != NULL) {
2562                         /*
2563                          * Prevent any future allocations.
2564                          */
2565                         metaslab_group_passivate(mg);
2566                         (void) spa_vdev_state_exit(spa, vd, 0);
2567
2568                         error = spa_offline_log(spa);
2569
2570                         spa_vdev_state_enter(spa, SCL_ALLOC);
2571
2572                         /*
2573                          * Check to see if the config has changed.
2574                          */
2575                         if (error || generation != spa->spa_config_generation) {
2576                                 metaslab_group_activate(mg);
2577                                 if (error)
2578                                         return (spa_vdev_state_exit(spa,
2579                                             vd, error));
2580                                 (void) spa_vdev_state_exit(spa, vd, 0);
2581                                 goto top;
2582                         }
2583                         ASSERT0(tvd->vdev_stat.vs_alloc);
2584                 }
2585
2586                 /*
2587                  * Offline this device and reopen its top-level vdev.
2588                  * If the top-level vdev is a log device then just offline
2589                  * it. Otherwise, if this action results in the top-level
2590                  * vdev becoming unusable, undo it and fail the request.
2591                  */
2592                 vd->vdev_offline = B_TRUE;
2593                 vdev_reopen(tvd);
2594
2595                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2596                     vdev_is_dead(tvd)) {
2597                         vd->vdev_offline = B_FALSE;
2598                         vdev_reopen(tvd);
2599                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2600                 }
2601
2602                 /*
2603                  * Add the device back into the metaslab rotor so that
2604                  * once we online the device it's open for business.
2605                  */
2606                 if (tvd->vdev_islog && mg != NULL)
2607                         metaslab_group_activate(mg);
2608         }
2609
2610         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2611
2612         return (spa_vdev_state_exit(spa, vd, 0));
2613 }
2614
2615 int
2616 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2617 {
2618         int error;
2619
2620         mutex_enter(&spa->spa_vdev_top_lock);
2621         error = vdev_offline_locked(spa, guid, flags);
2622         mutex_exit(&spa->spa_vdev_top_lock);
2623
2624         return (error);
2625 }
2626
2627 /*
2628  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2629  * vdev_offline(), we assume the spa config is locked.  We also clear all
2630  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2631  */
2632 void
2633 vdev_clear(spa_t *spa, vdev_t *vd)
2634 {
2635         vdev_t *rvd = spa->spa_root_vdev;
2636
2637         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2638
2639         if (vd == NULL)
2640                 vd = rvd;
2641
2642         vd->vdev_stat.vs_read_errors = 0;
2643         vd->vdev_stat.vs_write_errors = 0;
2644         vd->vdev_stat.vs_checksum_errors = 0;
2645
2646         for (int c = 0; c < vd->vdev_children; c++)
2647                 vdev_clear(spa, vd->vdev_child[c]);
2648
2649         if (vd == rvd) {
2650                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2651                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2652
2653                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2654                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2655         }
2656
2657         /*
2658          * If we're in the FAULTED state or have experienced failed I/O, then
2659          * clear the persistent state and attempt to reopen the device.  We
2660          * also mark the vdev config dirty, so that the new faulted state is
2661          * written out to disk.
2662          */
2663         if (vd->vdev_faulted || vd->vdev_degraded ||
2664             !vdev_readable(vd) || !vdev_writeable(vd)) {
2665
2666                 /*
2667                  * When reopening in reponse to a clear event, it may be due to
2668                  * a fmadm repair request.  In this case, if the device is
2669                  * still broken, we want to still post the ereport again.
2670                  */
2671                 vd->vdev_forcefault = B_TRUE;
2672
2673                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2674                 vd->vdev_cant_read = B_FALSE;
2675                 vd->vdev_cant_write = B_FALSE;
2676
2677                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2678
2679                 vd->vdev_forcefault = B_FALSE;
2680
2681                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2682                         vdev_state_dirty(vd->vdev_top);
2683
2684                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2685                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2686
2687                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2688         }
2689
2690         /*
2691          * When clearing a FMA-diagnosed fault, we always want to
2692          * unspare the device, as we assume that the original spare was
2693          * done in response to the FMA fault.
2694          */
2695         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2696             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2697             vd->vdev_parent->vdev_child[0] == vd)
2698                 vd->vdev_unspare = B_TRUE;
2699 }
2700
2701 boolean_t
2702 vdev_is_dead(vdev_t *vd)
2703 {
2704         /*
2705          * Holes and missing devices are always considered "dead".
2706          * This simplifies the code since we don't have to check for
2707          * these types of devices in the various code paths.
2708          * Instead we rely on the fact that we skip over dead devices
2709          * before issuing I/O to them.
2710          */
2711         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2712             vd->vdev_ops == &vdev_missing_ops);
2713 }
2714
2715 boolean_t
2716 vdev_readable(vdev_t *vd)
2717 {
2718         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2719 }
2720
2721 boolean_t
2722 vdev_writeable(vdev_t *vd)
2723 {
2724         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2725 }
2726
2727 boolean_t
2728 vdev_allocatable(vdev_t *vd)
2729 {
2730         uint64_t state = vd->vdev_state;
2731
2732         /*
2733          * We currently allow allocations from vdevs which may be in the
2734          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2735          * fails to reopen then we'll catch it later when we're holding
2736          * the proper locks.  Note that we have to get the vdev state
2737          * in a local variable because although it changes atomically,
2738          * we're asking two separate questions about it.
2739          */
2740         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2741             !vd->vdev_cant_write && !vd->vdev_ishole);
2742 }
2743
2744 boolean_t
2745 vdev_accessible(vdev_t *vd, zio_t *zio)
2746 {
2747         ASSERT(zio->io_vd == vd);
2748
2749         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2750                 return (B_FALSE);
2751
2752         if (zio->io_type == ZIO_TYPE_READ)
2753                 return (!vd->vdev_cant_read);
2754
2755         if (zio->io_type == ZIO_TYPE_WRITE)
2756                 return (!vd->vdev_cant_write);
2757
2758         return (B_TRUE);
2759 }
2760
2761 /*
2762  * Get statistics for the given vdev.
2763  */
2764 void
2765 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2766 {
2767         spa_t *spa = vd->vdev_spa;
2768         vdev_t *rvd = spa->spa_root_vdev;
2769
2770         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2771
2772         mutex_enter(&vd->vdev_stat_lock);
2773         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2774         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2775         vs->vs_state = vd->vdev_state;
2776         vs->vs_rsize = vdev_get_min_asize(vd);
2777         if (vd->vdev_ops->vdev_op_leaf)
2778                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2779         if (vd->vdev_max_asize != 0)
2780                 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2781         vs->vs_configured_ashift = vd->vdev_top != NULL
2782             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2783         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2784         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2785         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2786                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2787         }
2788
2789         /*
2790          * If we're getting stats on the root vdev, aggregate the I/O counts
2791          * over all top-level vdevs (i.e. the direct children of the root).
2792          */
2793         if (vd == rvd) {
2794                 for (int c = 0; c < rvd->vdev_children; c++) {
2795                         vdev_t *cvd = rvd->vdev_child[c];
2796                         vdev_stat_t *cvs = &cvd->vdev_stat;
2797
2798                         for (int t = 0; t < ZIO_TYPES; t++) {
2799                                 vs->vs_ops[t] += cvs->vs_ops[t];
2800                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2801                         }
2802                         cvs->vs_scan_removing = cvd->vdev_removing;
2803                 }
2804         }
2805         mutex_exit(&vd->vdev_stat_lock);
2806 }
2807
2808 void
2809 vdev_clear_stats(vdev_t *vd)
2810 {
2811         mutex_enter(&vd->vdev_stat_lock);
2812         vd->vdev_stat.vs_space = 0;
2813         vd->vdev_stat.vs_dspace = 0;
2814         vd->vdev_stat.vs_alloc = 0;
2815         mutex_exit(&vd->vdev_stat_lock);
2816 }
2817
2818 void
2819 vdev_scan_stat_init(vdev_t *vd)
2820 {
2821         vdev_stat_t *vs = &vd->vdev_stat;
2822
2823         for (int c = 0; c < vd->vdev_children; c++)
2824                 vdev_scan_stat_init(vd->vdev_child[c]);
2825
2826         mutex_enter(&vd->vdev_stat_lock);
2827         vs->vs_scan_processed = 0;
2828         mutex_exit(&vd->vdev_stat_lock);
2829 }
2830
2831 void
2832 vdev_stat_update(zio_t *zio, uint64_t psize)
2833 {
2834         spa_t *spa = zio->io_spa;
2835         vdev_t *rvd = spa->spa_root_vdev;
2836         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2837         vdev_t *pvd;
2838         uint64_t txg = zio->io_txg;
2839         vdev_stat_t *vs = &vd->vdev_stat;
2840         zio_type_t type = zio->io_type;
2841         int flags = zio->io_flags;
2842
2843         /*
2844          * If this i/o is a gang leader, it didn't do any actual work.
2845          */
2846         if (zio->io_gang_tree)
2847                 return;
2848
2849         if (zio->io_error == 0) {
2850                 /*
2851                  * If this is a root i/o, don't count it -- we've already
2852                  * counted the top-level vdevs, and vdev_get_stats() will
2853                  * aggregate them when asked.  This reduces contention on
2854                  * the root vdev_stat_lock and implicitly handles blocks
2855                  * that compress away to holes, for which there is no i/o.
2856                  * (Holes never create vdev children, so all the counters
2857                  * remain zero, which is what we want.)
2858                  *
2859                  * Note: this only applies to successful i/o (io_error == 0)
2860                  * because unlike i/o counts, errors are not additive.
2861                  * When reading a ditto block, for example, failure of
2862                  * one top-level vdev does not imply a root-level error.
2863                  */
2864                 if (vd == rvd)
2865                         return;
2866
2867                 ASSERT(vd == zio->io_vd);
2868
2869                 if (flags & ZIO_FLAG_IO_BYPASS)
2870                         return;
2871
2872                 mutex_enter(&vd->vdev_stat_lock);
2873
2874                 if (flags & ZIO_FLAG_IO_REPAIR) {
2875                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2876                                 dsl_scan_phys_t *scn_phys =
2877                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2878                                 uint64_t *processed = &scn_phys->scn_processed;
2879
2880                                 /* XXX cleanup? */
2881                                 if (vd->vdev_ops->vdev_op_leaf)
2882                                         atomic_add_64(processed, psize);
2883                                 vs->vs_scan_processed += psize;
2884                         }
2885
2886                         if (flags & ZIO_FLAG_SELF_HEAL)
2887                                 vs->vs_self_healed += psize;
2888                 }
2889
2890                 vs->vs_ops[type]++;
2891                 vs->vs_bytes[type] += psize;
2892
2893                 mutex_exit(&vd->vdev_stat_lock);
2894                 return;
2895         }
2896
2897         if (flags & ZIO_FLAG_SPECULATIVE)
2898                 return;
2899
2900         /*
2901          * If this is an I/O error that is going to be retried, then ignore the
2902          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2903          * hard errors, when in reality they can happen for any number of
2904          * innocuous reasons (bus resets, MPxIO link failure, etc).
2905          */
2906         if (zio->io_error == EIO &&
2907             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2908                 return;
2909
2910         /*
2911          * Intent logs writes won't propagate their error to the root
2912          * I/O so don't mark these types of failures as pool-level
2913          * errors.
2914          */
2915         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2916                 return;
2917
2918         mutex_enter(&vd->vdev_stat_lock);
2919         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2920                 if (zio->io_error == ECKSUM)
2921                         vs->vs_checksum_errors++;
2922                 else
2923                         vs->vs_read_errors++;
2924         }
2925         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2926                 vs->vs_write_errors++;
2927         mutex_exit(&vd->vdev_stat_lock);
2928
2929         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2930             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2931             (flags & ZIO_FLAG_SCAN_THREAD) ||
2932             spa->spa_claiming)) {
2933                 /*
2934                  * This is either a normal write (not a repair), or it's
2935                  * a repair induced by the scrub thread, or it's a repair
2936                  * made by zil_claim() during spa_load() in the first txg.
2937                  * In the normal case, we commit the DTL change in the same
2938                  * txg as the block was born.  In the scrub-induced repair
2939                  * case, we know that scrubs run in first-pass syncing context,
2940                  * so we commit the DTL change in spa_syncing_txg(spa).
2941                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2942                  *
2943                  * We currently do not make DTL entries for failed spontaneous
2944                  * self-healing writes triggered by normal (non-scrubbing)
2945                  * reads, because we have no transactional context in which to
2946                  * do so -- and it's not clear that it'd be desirable anyway.
2947                  */
2948                 if (vd->vdev_ops->vdev_op_leaf) {
2949                         uint64_t commit_txg = txg;
2950                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2951                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2952                                 ASSERT(spa_sync_pass(spa) == 1);
2953                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2954                                 commit_txg = spa_syncing_txg(spa);
2955                         } else if (spa->spa_claiming) {
2956                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2957                                 commit_txg = spa_first_txg(spa);
2958                         }
2959                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2960                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2961                                 return;
2962                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2963                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2964                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2965                 }
2966                 if (vd != rvd)
2967                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2968         }
2969 }
2970
2971 /*
2972  * Update the in-core space usage stats for this vdev, its metaslab class,
2973  * and the root vdev.
2974  */
2975 void
2976 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2977     int64_t space_delta)
2978 {
2979         int64_t dspace_delta = space_delta;
2980         spa_t *spa = vd->vdev_spa;
2981         vdev_t *rvd = spa->spa_root_vdev;
2982         metaslab_group_t *mg = vd->vdev_mg;
2983         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2984
2985         ASSERT(vd == vd->vdev_top);
2986
2987         /*
2988          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2989          * factor.  We must calculate this here and not at the root vdev
2990          * because the root vdev's psize-to-asize is simply the max of its
2991          * childrens', thus not accurate enough for us.
2992          */
2993         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2994         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2995         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2996             vd->vdev_deflate_ratio;
2997
2998         mutex_enter(&vd->vdev_stat_lock);
2999         vd->vdev_stat.vs_alloc += alloc_delta;
3000         vd->vdev_stat.vs_space += space_delta;
3001         vd->vdev_stat.vs_dspace += dspace_delta;
3002         mutex_exit(&vd->vdev_stat_lock);
3003
3004         if (mc == spa_normal_class(spa)) {
3005                 mutex_enter(&rvd->vdev_stat_lock);
3006                 rvd->vdev_stat.vs_alloc += alloc_delta;
3007                 rvd->vdev_stat.vs_space += space_delta;
3008                 rvd->vdev_stat.vs_dspace += dspace_delta;
3009                 mutex_exit(&rvd->vdev_stat_lock);
3010         }
3011
3012         if (mc != NULL) {
3013                 ASSERT(rvd == vd->vdev_parent);
3014                 ASSERT(vd->vdev_ms_count != 0);
3015
3016                 metaslab_class_space_update(mc,
3017                     alloc_delta, defer_delta, space_delta, dspace_delta);
3018         }
3019 }
3020
3021 /*
3022  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3023  * so that it will be written out next time the vdev configuration is synced.
3024  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3025  */
3026 void
3027 vdev_config_dirty(vdev_t *vd)
3028 {
3029         spa_t *spa = vd->vdev_spa;
3030         vdev_t *rvd = spa->spa_root_vdev;
3031         int c;
3032
3033         ASSERT(spa_writeable(spa));
3034
3035         /*
3036          * If this is an aux vdev (as with l2cache and spare devices), then we
3037          * update the vdev config manually and set the sync flag.
3038          */
3039         if (vd->vdev_aux != NULL) {
3040                 spa_aux_vdev_t *sav = vd->vdev_aux;
3041                 nvlist_t **aux;
3042                 uint_t naux;
3043
3044                 for (c = 0; c < sav->sav_count; c++) {
3045                         if (sav->sav_vdevs[c] == vd)
3046                                 break;
3047                 }
3048
3049                 if (c == sav->sav_count) {
3050                         /*
3051                          * We're being removed.  There's nothing more to do.
3052                          */
3053                         ASSERT(sav->sav_sync == B_TRUE);
3054                         return;
3055                 }
3056
3057                 sav->sav_sync = B_TRUE;
3058
3059                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3060                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3061                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3062                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3063                 }
3064
3065                 ASSERT(c < naux);
3066
3067                 /*
3068                  * Setting the nvlist in the middle if the array is a little
3069                  * sketchy, but it will work.
3070                  */
3071                 nvlist_free(aux[c]);
3072                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3073
3074                 return;
3075         }
3076
3077         /*
3078          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3079          * must either hold SCL_CONFIG as writer, or must be the sync thread
3080          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3081          * so this is sufficient to ensure mutual exclusion.
3082          */
3083         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3084             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3085             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3086
3087         if (vd == rvd) {
3088                 for (c = 0; c < rvd->vdev_children; c++)
3089                         vdev_config_dirty(rvd->vdev_child[c]);
3090         } else {
3091                 ASSERT(vd == vd->vdev_top);
3092
3093                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3094                     !vd->vdev_ishole)
3095                         list_insert_head(&spa->spa_config_dirty_list, vd);
3096         }
3097 }
3098
3099 void
3100 vdev_config_clean(vdev_t *vd)
3101 {
3102         spa_t *spa = vd->vdev_spa;
3103
3104         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3105             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3106             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3107
3108         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3109         list_remove(&spa->spa_config_dirty_list, vd);
3110 }
3111
3112 /*
3113  * Mark a top-level vdev's state as dirty, so that the next pass of
3114  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3115  * the state changes from larger config changes because they require
3116  * much less locking, and are often needed for administrative actions.
3117  */
3118 void
3119 vdev_state_dirty(vdev_t *vd)
3120 {
3121         spa_t *spa = vd->vdev_spa;
3122
3123         ASSERT(spa_writeable(spa));
3124         ASSERT(vd == vd->vdev_top);
3125
3126         /*
3127          * The state list is protected by the SCL_STATE lock.  The caller
3128          * must either hold SCL_STATE as writer, or must be the sync thread
3129          * (which holds SCL_STATE as reader).  There's only one sync thread,
3130          * so this is sufficient to ensure mutual exclusion.
3131          */
3132         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3133             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3134             spa_config_held(spa, SCL_STATE, RW_READER)));
3135
3136         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3137                 list_insert_head(&spa->spa_state_dirty_list, vd);
3138 }
3139
3140 void
3141 vdev_state_clean(vdev_t *vd)
3142 {
3143         spa_t *spa = vd->vdev_spa;
3144
3145         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3146             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3147             spa_config_held(spa, SCL_STATE, RW_READER)));
3148
3149         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3150         list_remove(&spa->spa_state_dirty_list, vd);
3151 }
3152
3153 /*
3154  * Propagate vdev state up from children to parent.
3155  */
3156 void
3157 vdev_propagate_state(vdev_t *vd)
3158 {
3159         spa_t *spa = vd->vdev_spa;
3160         vdev_t *rvd = spa->spa_root_vdev;
3161         int degraded = 0, faulted = 0;
3162         int corrupted = 0;
3163         vdev_t *child;
3164
3165         if (vd->vdev_children > 0) {
3166                 for (int c = 0; c < vd->vdev_children; c++) {
3167                         child = vd->vdev_child[c];
3168
3169                         /*
3170                          * Don't factor holes into the decision.
3171                          */
3172                         if (child->vdev_ishole)
3173                                 continue;
3174
3175                         if (!vdev_readable(child) ||
3176                             (!vdev_writeable(child) && spa_writeable(spa))) {
3177                                 /*
3178                                  * Root special: if there is a top-level log
3179                                  * device, treat the root vdev as if it were
3180                                  * degraded.
3181                                  */
3182                                 if (child->vdev_islog && vd == rvd)
3183                                         degraded++;
3184                                 else
3185                                         faulted++;
3186                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3187                                 degraded++;
3188                         }
3189
3190                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3191                                 corrupted++;
3192                 }
3193
3194                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3195
3196                 /*
3197                  * Root special: if there is a top-level vdev that cannot be
3198                  * opened due to corrupted metadata, then propagate the root
3199                  * vdev's aux state as 'corrupt' rather than 'insufficient
3200                  * replicas'.
3201                  */
3202                 if (corrupted && vd == rvd &&
3203                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3204                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3205                             VDEV_AUX_CORRUPT_DATA);
3206         }
3207
3208         if (vd->vdev_parent)
3209                 vdev_propagate_state(vd->vdev_parent);
3210 }
3211
3212 /*
3213  * Set a vdev's state.  If this is during an open, we don't update the parent
3214  * state, because we're in the process of opening children depth-first.
3215  * Otherwise, we propagate the change to the parent.
3216  *
3217  * If this routine places a device in a faulted state, an appropriate ereport is
3218  * generated.
3219  */
3220 void
3221 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3222 {
3223         uint64_t save_state;
3224         spa_t *spa = vd->vdev_spa;
3225
3226         if (state == vd->vdev_state) {
3227                 vd->vdev_stat.vs_aux = aux;
3228                 return;
3229         }
3230
3231         save_state = vd->vdev_state;
3232
3233         vd->vdev_state = state;
3234         vd->vdev_stat.vs_aux = aux;
3235
3236         /*
3237          * If we are setting the vdev state to anything but an open state, then
3238          * always close the underlying device unless the device has requested
3239          * a delayed close (i.e. we're about to remove or fault the device).
3240          * Otherwise, we keep accessible but invalid devices open forever.
3241          * We don't call vdev_close() itself, because that implies some extra
3242          * checks (offline, etc) that we don't want here.  This is limited to
3243          * leaf devices, because otherwise closing the device will affect other
3244          * children.
3245          */
3246         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3247             vd->vdev_ops->vdev_op_leaf)
3248                 vd->vdev_ops->vdev_op_close(vd);
3249
3250         /*
3251          * If we have brought this vdev back into service, we need
3252          * to notify fmd so that it can gracefully repair any outstanding
3253          * cases due to a missing device.  We do this in all cases, even those
3254          * that probably don't correlate to a repaired fault.  This is sure to
3255          * catch all cases, and we let the zfs-retire agent sort it out.  If
3256          * this is a transient state it's OK, as the retire agent will
3257          * double-check the state of the vdev before repairing it.
3258          */
3259         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3260             vd->vdev_prevstate != state)
3261                 zfs_post_state_change(spa, vd);
3262
3263         if (vd->vdev_removed &&
3264             state == VDEV_STATE_CANT_OPEN &&
3265             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3266                 /*
3267                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3268                  * device was previously marked removed and someone attempted to
3269                  * reopen it.  If this failed due to a nonexistent device, then
3270                  * keep the device in the REMOVED state.  We also let this be if
3271                  * it is one of our special test online cases, which is only
3272                  * attempting to online the device and shouldn't generate an FMA
3273                  * fault.
3274                  */
3275                 vd->vdev_state = VDEV_STATE_REMOVED;
3276                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3277         } else if (state == VDEV_STATE_REMOVED) {
3278                 vd->vdev_removed = B_TRUE;
3279         } else if (state == VDEV_STATE_CANT_OPEN) {
3280                 /*
3281                  * If we fail to open a vdev during an import or recovery, we
3282                  * mark it as "not available", which signifies that it was
3283                  * never there to begin with.  Failure to open such a device
3284                  * is not considered an error.
3285                  */
3286                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3287                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3288                     vd->vdev_ops->vdev_op_leaf)
3289                         vd->vdev_not_present = 1;
3290
3291                 /*
3292                  * Post the appropriate ereport.  If the 'prevstate' field is
3293                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3294                  * that this is part of a vdev_reopen().  In this case, we don't
3295                  * want to post the ereport if the device was already in the
3296                  * CANT_OPEN state beforehand.
3297                  *
3298                  * If the 'checkremove' flag is set, then this is an attempt to
3299                  * online the device in response to an insertion event.  If we
3300                  * hit this case, then we have detected an insertion event for a
3301                  * faulted or offline device that wasn't in the removed state.
3302                  * In this scenario, we don't post an ereport because we are
3303                  * about to replace the device, or attempt an online with
3304                  * vdev_forcefault, which will generate the fault for us.
3305                  */
3306                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3307                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3308                     vd != spa->spa_root_vdev) {
3309                         const char *class;
3310
3311                         switch (aux) {
3312                         case VDEV_AUX_OPEN_FAILED:
3313                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3314                                 break;
3315                         case VDEV_AUX_CORRUPT_DATA:
3316                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3317                                 break;
3318                         case VDEV_AUX_NO_REPLICAS:
3319                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3320                                 break;
3321                         case VDEV_AUX_BAD_GUID_SUM:
3322                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3323                                 break;
3324                         case VDEV_AUX_TOO_SMALL:
3325                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3326                                 break;
3327                         case VDEV_AUX_BAD_LABEL:
3328                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3329                                 break;
3330                         default:
3331                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3332                         }
3333
3334                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3335                 }
3336
3337                 /* Erase any notion of persistent removed state */
3338                 vd->vdev_removed = B_FALSE;
3339         } else {
3340                 vd->vdev_removed = B_FALSE;
3341         }
3342
3343         if (!isopen && vd->vdev_parent)
3344                 vdev_propagate_state(vd->vdev_parent);
3345 }
3346
3347 /*
3348  * Check the vdev configuration to ensure that it's capable of supporting
3349  * a root pool.
3350  *
3351  * On Solaris, we do not support RAID-Z or partial configuration.  In
3352  * addition, only a single top-level vdev is allowed and none of the
3353  * leaves can be wholedisks.
3354  *
3355  * For FreeBSD, we can boot from any configuration. There is a
3356  * limitation that the boot filesystem must be either uncompressed or
3357  * compresses with lzjb compression but I'm not sure how to enforce
3358  * that here.
3359  */
3360 boolean_t
3361 vdev_is_bootable(vdev_t *vd)
3362 {
3363 #ifdef illumos
3364         if (!vd->vdev_ops->vdev_op_leaf) {
3365                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3366
3367                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3368                     vd->vdev_children > 1) {
3369                         return (B_FALSE);
3370                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3371                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3372                         return (B_FALSE);
3373                 }
3374         } else if (vd->vdev_wholedisk == 1) {
3375                 return (B_FALSE);
3376         }
3377
3378         for (int c = 0; c < vd->vdev_children; c++) {
3379                 if (!vdev_is_bootable(vd->vdev_child[c]))
3380                         return (B_FALSE);
3381         }
3382 #endif  /* illumos */
3383         return (B_TRUE);
3384 }
3385
3386 /*
3387  * Load the state from the original vdev tree (ovd) which
3388  * we've retrieved from the MOS config object. If the original
3389  * vdev was offline or faulted then we transfer that state to the
3390  * device in the current vdev tree (nvd).
3391  */
3392 void
3393 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3394 {
3395         spa_t *spa = nvd->vdev_spa;
3396
3397         ASSERT(nvd->vdev_top->vdev_islog);
3398         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3399         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3400
3401         for (int c = 0; c < nvd->vdev_children; c++)
3402                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3403
3404         if (nvd->vdev_ops->vdev_op_leaf) {
3405                 /*
3406                  * Restore the persistent vdev state
3407                  */
3408                 nvd->vdev_offline = ovd->vdev_offline;
3409                 nvd->vdev_faulted = ovd->vdev_faulted;
3410                 nvd->vdev_degraded = ovd->vdev_degraded;
3411                 nvd->vdev_removed = ovd->vdev_removed;
3412         }
3413 }
3414
3415 /*
3416  * Determine if a log device has valid content.  If the vdev was
3417  * removed or faulted in the MOS config then we know that
3418  * the content on the log device has already been written to the pool.
3419  */
3420 boolean_t
3421 vdev_log_state_valid(vdev_t *vd)
3422 {
3423         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3424             !vd->vdev_removed)
3425                 return (B_TRUE);
3426
3427         for (int c = 0; c < vd->vdev_children; c++)
3428                 if (vdev_log_state_valid(vd->vdev_child[c]))
3429                         return (B_TRUE);
3430
3431         return (B_FALSE);
3432 }
3433
3434 /*
3435  * Expand a vdev if possible.
3436  */
3437 void
3438 vdev_expand(vdev_t *vd, uint64_t txg)
3439 {
3440         ASSERT(vd->vdev_top == vd);
3441         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3442
3443         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3444                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3445                 vdev_config_dirty(vd);
3446         }
3447 }
3448
3449 /*
3450  * Split a vdev.
3451  */
3452 void
3453 vdev_split(vdev_t *vd)
3454 {
3455         vdev_t *cvd, *pvd = vd->vdev_parent;
3456
3457         vdev_remove_child(pvd, vd);
3458         vdev_compact_children(pvd);
3459
3460         cvd = pvd->vdev_child[0];
3461         if (pvd->vdev_children == 1) {
3462                 vdev_remove_parent(cvd);
3463                 cvd->vdev_splitting = B_TRUE;
3464         }
3465         vdev_propagate_state(cvd);
3466 }
3467
3468 void
3469 vdev_deadman(vdev_t *vd)
3470 {
3471         for (int c = 0; c < vd->vdev_children; c++) {
3472                 vdev_t *cvd = vd->vdev_child[c];
3473
3474                 vdev_deadman(cvd);
3475         }
3476
3477         if (vd->vdev_ops->vdev_op_leaf) {
3478                 vdev_queue_t *vq = &vd->vdev_queue;
3479
3480                 mutex_enter(&vq->vq_lock);
3481                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3482                         spa_t *spa = vd->vdev_spa;
3483                         zio_t *fio;
3484                         uint64_t delta;
3485
3486                         /*
3487                          * Look at the head of all the pending queues,
3488                          * if any I/O has been outstanding for longer than
3489                          * the spa_deadman_synctime we panic the system.
3490                          */
3491                         fio = avl_first(&vq->vq_active_tree);
3492                         delta = gethrtime() - fio->io_timestamp;
3493                         if (delta > spa_deadman_synctime(spa)) {
3494                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3495                                     "delta %lluns, last io %lluns",
3496                                     fio->io_timestamp, delta,
3497                                     vq->vq_io_complete_ts);
3498                                 fm_panic("I/O to pool '%s' appears to be "
3499                                     "hung on vdev guid %llu at '%s'.",
3500                                     spa_name(spa),
3501                                     (long long unsigned int) vd->vdev_guid,
3502                                     vd->vdev_path);
3503                         }
3504                 }
3505                 mutex_exit(&vq->vq_lock);
3506         }
3507 }