]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFC r353611: 10330 merge recent ZoL vdev and metaslab changes
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  */
31
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/trim_map.h>
54 #include <sys/vdev_initialize.h>
55
56 SYSCTL_DECL(_vfs_zfs);
57 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
58
59 /*
60  * Virtual device management.
61  */
62
63 /*
64  * The limit for ZFS to automatically increase a top-level vdev's ashift
65  * from logical ashift to physical ashift.
66  *
67  * Example: one or more 512B emulation child vdevs
68  *          child->vdev_ashift = 9 (512 bytes)
69  *          child->vdev_physical_ashift = 12 (4096 bytes)
70  *          zfs_max_auto_ashift = 11 (2048 bytes)
71  *          zfs_min_auto_ashift = 9 (512 bytes)
72  *
73  * On pool creation or the addition of a new top-level vdev, ZFS will
74  * increase the ashift of the top-level vdev to 2048 as limited by
75  * zfs_max_auto_ashift.
76  *
77  * Example: one or more 512B emulation child vdevs
78  *          child->vdev_ashift = 9 (512 bytes)
79  *          child->vdev_physical_ashift = 12 (4096 bytes)
80  *          zfs_max_auto_ashift = 13 (8192 bytes)
81  *          zfs_min_auto_ashift = 9 (512 bytes)
82  *
83  * On pool creation or the addition of a new top-level vdev, ZFS will
84  * increase the ashift of the top-level vdev to 4096 to match the
85  * max vdev_physical_ashift.
86  *
87  * Example: one or more 512B emulation child vdevs
88  *          child->vdev_ashift = 9 (512 bytes)
89  *          child->vdev_physical_ashift = 9 (512 bytes)
90  *          zfs_max_auto_ashift = 13 (8192 bytes)
91  *          zfs_min_auto_ashift = 12 (4096 bytes)
92  *
93  * On pool creation or the addition of a new top-level vdev, ZFS will
94  * increase the ashift of the top-level vdev to 4096 to match the
95  * zfs_min_auto_ashift.
96  */
97 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
98 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
99
100 static int
101 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
102 {
103         uint64_t val;
104         int err;
105
106         val = zfs_max_auto_ashift;
107         err = sysctl_handle_64(oidp, &val, 0, req);
108         if (err != 0 || req->newptr == NULL)
109                 return (err);
110
111         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
112                 return (EINVAL);
113
114         zfs_max_auto_ashift = val;
115
116         return (0);
117 }
118 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
119     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
120     sysctl_vfs_zfs_max_auto_ashift, "QU",
121     "Max ashift used when optimising for logical -> physical sectors size on "
122     "new top-level vdevs.");
123
124 static int
125 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
126 {
127         uint64_t val;
128         int err;
129
130         val = zfs_min_auto_ashift;
131         err = sysctl_handle_64(oidp, &val, 0, req);
132         if (err != 0 || req->newptr == NULL)
133                 return (err);
134
135         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
136                 return (EINVAL);
137
138         zfs_min_auto_ashift = val;
139
140         return (0);
141 }
142 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
143     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
144     sysctl_vfs_zfs_min_auto_ashift, "QU",
145     "Min ashift used when creating new top-level vdevs.");
146
147 static vdev_ops_t *vdev_ops_table[] = {
148         &vdev_root_ops,
149         &vdev_raidz_ops,
150         &vdev_mirror_ops,
151         &vdev_replacing_ops,
152         &vdev_spare_ops,
153 #ifdef _KERNEL
154         &vdev_geom_ops,
155 #else
156         &vdev_disk_ops,
157 #endif
158         &vdev_file_ops,
159         &vdev_missing_ops,
160         &vdev_hole_ops,
161         &vdev_indirect_ops,
162         NULL
163 };
164
165
166 /* default target for number of metaslabs per top-level vdev */
167 int zfs_vdev_default_ms_count = 200;
168 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, default_ms_count, CTLFLAG_RWTUN,
169     &zfs_vdev_default_ms_count, 0,
170     "Target number of metaslabs per top-level vdev");
171
172 /* minimum number of metaslabs per top-level vdev */
173 int zfs_vdev_min_ms_count = 16;
174 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, min_ms_count, CTLFLAG_RWTUN,
175     &zfs_vdev_min_ms_count, 0,
176     "Minimum number of metaslabs per top-level vdev");
177
178 /* practical upper limit of total metaslabs per top-level vdev */
179 int zfs_vdev_ms_count_limit = 1ULL << 17;
180 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_count_limit, CTLFLAG_RWTUN,
181     &zfs_vdev_ms_count_limit, 0,
182     "Maximum number of metaslabs per top-level vdev");
183
184 /* lower limit for metaslab size (512M) */
185 int zfs_vdev_default_ms_shift = 29;
186 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, default_ms_shift, CTLFLAG_RWTUN,
187     &zfs_vdev_default_ms_shift, 0,
188     "Default shift between vdev size and number of metaslabs");
189
190 /* upper limit for metaslab size (16G) */
191 int zfs_vdev_max_ms_shift = 34;
192 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_shift, CTLFLAG_RWTUN,
193     &zfs_vdev_max_ms_shift, 0,
194     "Maximum shift between vdev size and number of metaslabs");
195
196 boolean_t vdev_validate_skip = B_FALSE;
197 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, validate_skip, CTLFLAG_RWTUN,
198     &vdev_validate_skip, 0,
199     "Bypass vdev validation");
200
201 /*
202  * Since the DTL space map of a vdev is not expected to have a lot of
203  * entries, we default its block size to 4K.
204  */
205 int vdev_dtl_sm_blksz = (1 << 12);
206 SYSCTL_INT(_vfs_zfs, OID_AUTO, dtl_sm_blksz, CTLFLAG_RDTUN,
207     &vdev_dtl_sm_blksz, 0,
208     "Block size for DTL space map.  Power of 2 and greater than 4096.");
209
210 /*
211  * vdev-wide space maps that have lots of entries written to them at
212  * the end of each transaction can benefit from a higher I/O bandwidth
213  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
214  */
215 int vdev_standard_sm_blksz = (1 << 17);
216 SYSCTL_INT(_vfs_zfs, OID_AUTO, standard_sm_blksz, CTLFLAG_RDTUN,
217     &vdev_standard_sm_blksz, 0,
218     "Block size for standard space map.  Power of 2 and greater than 4096.");
219
220 /*
221  * Tunable parameter for debugging or performance analysis. Setting this
222  * will cause pool corruption on power loss if a volatile out-of-order
223  * write cache is enabled.
224  */
225 boolean_t zfs_nocacheflush = B_FALSE;
226 SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RWTUN,
227     &zfs_nocacheflush, 0, "Disable cache flush");
228
229 /*PRINTFLIKE2*/
230 void
231 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
232 {
233         va_list adx;
234         char buf[256];
235
236         va_start(adx, fmt);
237         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
238         va_end(adx);
239
240         if (vd->vdev_path != NULL) {
241                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
242                     vd->vdev_path, buf);
243         } else {
244                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
245                     vd->vdev_ops->vdev_op_type,
246                     (u_longlong_t)vd->vdev_id,
247                     (u_longlong_t)vd->vdev_guid, buf);
248         }
249 }
250
251 void
252 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
253 {
254         char state[20];
255
256         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
257                 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
258                     vd->vdev_ops->vdev_op_type);
259                 return;
260         }
261
262         switch (vd->vdev_state) {
263         case VDEV_STATE_UNKNOWN:
264                 (void) snprintf(state, sizeof (state), "unknown");
265                 break;
266         case VDEV_STATE_CLOSED:
267                 (void) snprintf(state, sizeof (state), "closed");
268                 break;
269         case VDEV_STATE_OFFLINE:
270                 (void) snprintf(state, sizeof (state), "offline");
271                 break;
272         case VDEV_STATE_REMOVED:
273                 (void) snprintf(state, sizeof (state), "removed");
274                 break;
275         case VDEV_STATE_CANT_OPEN:
276                 (void) snprintf(state, sizeof (state), "can't open");
277                 break;
278         case VDEV_STATE_FAULTED:
279                 (void) snprintf(state, sizeof (state), "faulted");
280                 break;
281         case VDEV_STATE_DEGRADED:
282                 (void) snprintf(state, sizeof (state), "degraded");
283                 break;
284         case VDEV_STATE_HEALTHY:
285                 (void) snprintf(state, sizeof (state), "healthy");
286                 break;
287         default:
288                 (void) snprintf(state, sizeof (state), "<state %u>",
289                     (uint_t)vd->vdev_state);
290         }
291
292         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
293             "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
294             vd->vdev_islog ? " (log)" : "",
295             (u_longlong_t)vd->vdev_guid,
296             vd->vdev_path ? vd->vdev_path : "N/A", state);
297
298         for (uint64_t i = 0; i < vd->vdev_children; i++)
299                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
300 }
301
302 /*
303  * Given a vdev type, return the appropriate ops vector.
304  */
305 static vdev_ops_t *
306 vdev_getops(const char *type)
307 {
308         vdev_ops_t *ops, **opspp;
309
310         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
311                 if (strcmp(ops->vdev_op_type, type) == 0)
312                         break;
313
314         return (ops);
315 }
316
317 /* ARGSUSED */
318 void
319 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
320 {
321         res->rs_start = in->rs_start;
322         res->rs_end = in->rs_end;
323 }
324
325 /*
326  * Default asize function: return the MAX of psize with the asize of
327  * all children.  This is what's used by anything other than RAID-Z.
328  */
329 uint64_t
330 vdev_default_asize(vdev_t *vd, uint64_t psize)
331 {
332         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
333         uint64_t csize;
334
335         for (int c = 0; c < vd->vdev_children; c++) {
336                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
337                 asize = MAX(asize, csize);
338         }
339
340         return (asize);
341 }
342
343 /*
344  * Get the minimum allocatable size. We define the allocatable size as
345  * the vdev's asize rounded to the nearest metaslab. This allows us to
346  * replace or attach devices which don't have the same physical size but
347  * can still satisfy the same number of allocations.
348  */
349 uint64_t
350 vdev_get_min_asize(vdev_t *vd)
351 {
352         vdev_t *pvd = vd->vdev_parent;
353
354         /*
355          * If our parent is NULL (inactive spare or cache) or is the root,
356          * just return our own asize.
357          */
358         if (pvd == NULL)
359                 return (vd->vdev_asize);
360
361         /*
362          * The top-level vdev just returns the allocatable size rounded
363          * to the nearest metaslab.
364          */
365         if (vd == vd->vdev_top)
366                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
367
368         /*
369          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
370          * so each child must provide at least 1/Nth of its asize.
371          */
372         if (pvd->vdev_ops == &vdev_raidz_ops)
373                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
374                     pvd->vdev_children);
375
376         return (pvd->vdev_min_asize);
377 }
378
379 void
380 vdev_set_min_asize(vdev_t *vd)
381 {
382         vd->vdev_min_asize = vdev_get_min_asize(vd);
383
384         for (int c = 0; c < vd->vdev_children; c++)
385                 vdev_set_min_asize(vd->vdev_child[c]);
386 }
387
388 vdev_t *
389 vdev_lookup_top(spa_t *spa, uint64_t vdev)
390 {
391         vdev_t *rvd = spa->spa_root_vdev;
392
393         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
394
395         if (vdev < rvd->vdev_children) {
396                 ASSERT(rvd->vdev_child[vdev] != NULL);
397                 return (rvd->vdev_child[vdev]);
398         }
399
400         return (NULL);
401 }
402
403 vdev_t *
404 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
405 {
406         vdev_t *mvd;
407
408         if (vd->vdev_guid == guid)
409                 return (vd);
410
411         for (int c = 0; c < vd->vdev_children; c++)
412                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
413                     NULL)
414                         return (mvd);
415
416         return (NULL);
417 }
418
419 static int
420 vdev_count_leaves_impl(vdev_t *vd)
421 {
422         int n = 0;
423
424         if (vd->vdev_ops->vdev_op_leaf)
425                 return (1);
426
427         for (int c = 0; c < vd->vdev_children; c++)
428                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
429
430         return (n);
431 }
432
433 int
434 vdev_count_leaves(spa_t *spa)
435 {
436         return (vdev_count_leaves_impl(spa->spa_root_vdev));
437 }
438
439 void
440 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
441 {
442         size_t oldsize, newsize;
443         uint64_t id = cvd->vdev_id;
444         vdev_t **newchild;
445         spa_t *spa = cvd->vdev_spa;
446
447         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
448         ASSERT(cvd->vdev_parent == NULL);
449
450         cvd->vdev_parent = pvd;
451
452         if (pvd == NULL)
453                 return;
454
455         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
456
457         oldsize = pvd->vdev_children * sizeof (vdev_t *);
458         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
459         newsize = pvd->vdev_children * sizeof (vdev_t *);
460
461         newchild = kmem_zalloc(newsize, KM_SLEEP);
462         if (pvd->vdev_child != NULL) {
463                 bcopy(pvd->vdev_child, newchild, oldsize);
464                 kmem_free(pvd->vdev_child, oldsize);
465         }
466
467         pvd->vdev_child = newchild;
468         pvd->vdev_child[id] = cvd;
469
470         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
471         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
472
473         /*
474          * Walk up all ancestors to update guid sum.
475          */
476         for (; pvd != NULL; pvd = pvd->vdev_parent)
477                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
478 }
479
480 void
481 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
482 {
483         int c;
484         uint_t id = cvd->vdev_id;
485
486         ASSERT(cvd->vdev_parent == pvd);
487
488         if (pvd == NULL)
489                 return;
490
491         ASSERT(id < pvd->vdev_children);
492         ASSERT(pvd->vdev_child[id] == cvd);
493
494         pvd->vdev_child[id] = NULL;
495         cvd->vdev_parent = NULL;
496
497         for (c = 0; c < pvd->vdev_children; c++)
498                 if (pvd->vdev_child[c])
499                         break;
500
501         if (c == pvd->vdev_children) {
502                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
503                 pvd->vdev_child = NULL;
504                 pvd->vdev_children = 0;
505         }
506
507         /*
508          * Walk up all ancestors to update guid sum.
509          */
510         for (; pvd != NULL; pvd = pvd->vdev_parent)
511                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
512 }
513
514 /*
515  * Remove any holes in the child array.
516  */
517 void
518 vdev_compact_children(vdev_t *pvd)
519 {
520         vdev_t **newchild, *cvd;
521         int oldc = pvd->vdev_children;
522         int newc;
523
524         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
525
526         if (oldc == 0)
527                 return;
528
529         for (int c = newc = 0; c < oldc; c++)
530                 if (pvd->vdev_child[c])
531                         newc++;
532
533         if (newc > 0) {
534                 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
535
536                 for (int c = newc = 0; c < oldc; c++) {
537                         if ((cvd = pvd->vdev_child[c]) != NULL) {
538                                 newchild[newc] = cvd;
539                                 cvd->vdev_id = newc++;
540                         }
541                 }
542         } else {
543                 newchild = NULL;
544         }
545
546         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
547         pvd->vdev_child = newchild;
548         pvd->vdev_children = newc;
549 }
550
551 /*
552  * Allocate and minimally initialize a vdev_t.
553  */
554 vdev_t *
555 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
556 {
557         vdev_t *vd;
558         vdev_indirect_config_t *vic;
559
560         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
561         vic = &vd->vdev_indirect_config;
562
563         if (spa->spa_root_vdev == NULL) {
564                 ASSERT(ops == &vdev_root_ops);
565                 spa->spa_root_vdev = vd;
566                 spa->spa_load_guid = spa_generate_guid(NULL);
567         }
568
569         if (guid == 0 && ops != &vdev_hole_ops) {
570                 if (spa->spa_root_vdev == vd) {
571                         /*
572                          * The root vdev's guid will also be the pool guid,
573                          * which must be unique among all pools.
574                          */
575                         guid = spa_generate_guid(NULL);
576                 } else {
577                         /*
578                          * Any other vdev's guid must be unique within the pool.
579                          */
580                         guid = spa_generate_guid(spa);
581                 }
582                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
583         }
584
585         vd->vdev_spa = spa;
586         vd->vdev_id = id;
587         vd->vdev_guid = guid;
588         vd->vdev_guid_sum = guid;
589         vd->vdev_ops = ops;
590         vd->vdev_state = VDEV_STATE_CLOSED;
591         vd->vdev_ishole = (ops == &vdev_hole_ops);
592         vic->vic_prev_indirect_vdev = UINT64_MAX;
593
594         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
595         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
596         vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
597
598         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
599         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
600         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
601         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
602         mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
603         mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
604         mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
605         cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
606         cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
607
608         for (int t = 0; t < DTL_TYPES; t++) {
609                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
610         }
611         txg_list_create(&vd->vdev_ms_list, spa,
612             offsetof(struct metaslab, ms_txg_node));
613         txg_list_create(&vd->vdev_dtl_list, spa,
614             offsetof(struct vdev, vdev_dtl_node));
615         vd->vdev_stat.vs_timestamp = gethrtime();
616         vdev_queue_init(vd);
617         vdev_cache_init(vd);
618
619         return (vd);
620 }
621
622 /*
623  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
624  * creating a new vdev or loading an existing one - the behavior is slightly
625  * different for each case.
626  */
627 int
628 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
629     int alloctype)
630 {
631         vdev_ops_t *ops;
632         char *type;
633         uint64_t guid = 0, islog, nparity;
634         vdev_t *vd;
635         vdev_indirect_config_t *vic;
636
637         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
638
639         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
640                 return (SET_ERROR(EINVAL));
641
642         if ((ops = vdev_getops(type)) == NULL)
643                 return (SET_ERROR(EINVAL));
644
645         /*
646          * If this is a load, get the vdev guid from the nvlist.
647          * Otherwise, vdev_alloc_common() will generate one for us.
648          */
649         if (alloctype == VDEV_ALLOC_LOAD) {
650                 uint64_t label_id;
651
652                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
653                     label_id != id)
654                         return (SET_ERROR(EINVAL));
655
656                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
657                         return (SET_ERROR(EINVAL));
658         } else if (alloctype == VDEV_ALLOC_SPARE) {
659                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
660                         return (SET_ERROR(EINVAL));
661         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
662                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
663                         return (SET_ERROR(EINVAL));
664         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
665                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
666                         return (SET_ERROR(EINVAL));
667         }
668
669         /*
670          * The first allocated vdev must be of type 'root'.
671          */
672         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
673                 return (SET_ERROR(EINVAL));
674
675         /*
676          * Determine whether we're a log vdev.
677          */
678         islog = 0;
679         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
680         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
681                 return (SET_ERROR(ENOTSUP));
682
683         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
684                 return (SET_ERROR(ENOTSUP));
685
686         /*
687          * Set the nparity property for RAID-Z vdevs.
688          */
689         nparity = -1ULL;
690         if (ops == &vdev_raidz_ops) {
691                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
692                     &nparity) == 0) {
693                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
694                                 return (SET_ERROR(EINVAL));
695                         /*
696                          * Previous versions could only support 1 or 2 parity
697                          * device.
698                          */
699                         if (nparity > 1 &&
700                             spa_version(spa) < SPA_VERSION_RAIDZ2)
701                                 return (SET_ERROR(ENOTSUP));
702                         if (nparity > 2 &&
703                             spa_version(spa) < SPA_VERSION_RAIDZ3)
704                                 return (SET_ERROR(ENOTSUP));
705                 } else {
706                         /*
707                          * We require the parity to be specified for SPAs that
708                          * support multiple parity levels.
709                          */
710                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
711                                 return (SET_ERROR(EINVAL));
712                         /*
713                          * Otherwise, we default to 1 parity device for RAID-Z.
714                          */
715                         nparity = 1;
716                 }
717         } else {
718                 nparity = 0;
719         }
720         ASSERT(nparity != -1ULL);
721
722         vd = vdev_alloc_common(spa, id, guid, ops);
723         vic = &vd->vdev_indirect_config;
724
725         vd->vdev_islog = islog;
726         vd->vdev_nparity = nparity;
727
728         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
729                 vd->vdev_path = spa_strdup(vd->vdev_path);
730         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
731                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
732         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
733             &vd->vdev_physpath) == 0)
734                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
735         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
736                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
737
738         /*
739          * Set the whole_disk property.  If it's not specified, leave the value
740          * as -1.
741          */
742         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
743             &vd->vdev_wholedisk) != 0)
744                 vd->vdev_wholedisk = -1ULL;
745
746         ASSERT0(vic->vic_mapping_object);
747         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
748             &vic->vic_mapping_object);
749         ASSERT0(vic->vic_births_object);
750         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
751             &vic->vic_births_object);
752         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
753         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
754             &vic->vic_prev_indirect_vdev);
755
756         /*
757          * Look for the 'not present' flag.  This will only be set if the device
758          * was not present at the time of import.
759          */
760         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
761             &vd->vdev_not_present);
762
763         /*
764          * Get the alignment requirement.
765          */
766         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
767
768         /*
769          * Retrieve the vdev creation time.
770          */
771         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
772             &vd->vdev_crtxg);
773
774         /*
775          * If we're a top-level vdev, try to load the allocation parameters.
776          */
777         if (parent && !parent->vdev_parent &&
778             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
779                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
780                     &vd->vdev_ms_array);
781                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
782                     &vd->vdev_ms_shift);
783                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
784                     &vd->vdev_asize);
785                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
786                     &vd->vdev_removing);
787                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
788                     &vd->vdev_top_zap);
789         } else {
790                 ASSERT0(vd->vdev_top_zap);
791         }
792
793         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
794                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
795                     alloctype == VDEV_ALLOC_ADD ||
796                     alloctype == VDEV_ALLOC_SPLIT ||
797                     alloctype == VDEV_ALLOC_ROOTPOOL);
798                 vd->vdev_mg = metaslab_group_create(islog ?
799                     spa_log_class(spa) : spa_normal_class(spa), vd,
800                     spa->spa_alloc_count);
801         }
802
803         if (vd->vdev_ops->vdev_op_leaf &&
804             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
805                 (void) nvlist_lookup_uint64(nv,
806                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
807         } else {
808                 ASSERT0(vd->vdev_leaf_zap);
809         }
810
811         /*
812          * If we're a leaf vdev, try to load the DTL object and other state.
813          */
814
815         if (vd->vdev_ops->vdev_op_leaf &&
816             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
817             alloctype == VDEV_ALLOC_ROOTPOOL)) {
818                 if (alloctype == VDEV_ALLOC_LOAD) {
819                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
820                             &vd->vdev_dtl_object);
821                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
822                             &vd->vdev_unspare);
823                 }
824
825                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
826                         uint64_t spare = 0;
827
828                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
829                             &spare) == 0 && spare)
830                                 spa_spare_add(vd);
831                 }
832
833                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
834                     &vd->vdev_offline);
835
836                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
837                     &vd->vdev_resilver_txg);
838
839                 /*
840                  * When importing a pool, we want to ignore the persistent fault
841                  * state, as the diagnosis made on another system may not be
842                  * valid in the current context.  Local vdevs will
843                  * remain in the faulted state.
844                  */
845                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
846                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
847                             &vd->vdev_faulted);
848                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
849                             &vd->vdev_degraded);
850                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
851                             &vd->vdev_removed);
852
853                         if (vd->vdev_faulted || vd->vdev_degraded) {
854                                 char *aux;
855
856                                 vd->vdev_label_aux =
857                                     VDEV_AUX_ERR_EXCEEDED;
858                                 if (nvlist_lookup_string(nv,
859                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
860                                     strcmp(aux, "external") == 0)
861                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
862                         }
863                 }
864         }
865
866         /*
867          * Add ourselves to the parent's list of children.
868          */
869         vdev_add_child(parent, vd);
870
871         *vdp = vd;
872
873         return (0);
874 }
875
876 void
877 vdev_free(vdev_t *vd)
878 {
879         spa_t *spa = vd->vdev_spa;
880         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
881
882         /*
883          * Scan queues are normally destroyed at the end of a scan. If the
884          * queue exists here, that implies the vdev is being removed while
885          * the scan is still running.
886          */
887         if (vd->vdev_scan_io_queue != NULL) {
888                 mutex_enter(&vd->vdev_scan_io_queue_lock);
889                 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
890                 vd->vdev_scan_io_queue = NULL;
891                 mutex_exit(&vd->vdev_scan_io_queue_lock);
892         }
893
894         /*
895          * vdev_free() implies closing the vdev first.  This is simpler than
896          * trying to ensure complicated semantics for all callers.
897          */
898         vdev_close(vd);
899
900         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
901         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
902
903         /*
904          * Free all children.
905          */
906         for (int c = 0; c < vd->vdev_children; c++)
907                 vdev_free(vd->vdev_child[c]);
908
909         ASSERT(vd->vdev_child == NULL);
910         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
911         ASSERT(vd->vdev_initialize_thread == NULL);
912
913         /*
914          * Discard allocation state.
915          */
916         if (vd->vdev_mg != NULL) {
917                 vdev_metaslab_fini(vd);
918                 metaslab_group_destroy(vd->vdev_mg);
919         }
920
921         ASSERT0(vd->vdev_stat.vs_space);
922         ASSERT0(vd->vdev_stat.vs_dspace);
923         ASSERT0(vd->vdev_stat.vs_alloc);
924
925         /*
926          * Remove this vdev from its parent's child list.
927          */
928         vdev_remove_child(vd->vdev_parent, vd);
929
930         ASSERT(vd->vdev_parent == NULL);
931
932         /*
933          * Clean up vdev structure.
934          */
935         vdev_queue_fini(vd);
936         vdev_cache_fini(vd);
937
938         if (vd->vdev_path)
939                 spa_strfree(vd->vdev_path);
940         if (vd->vdev_devid)
941                 spa_strfree(vd->vdev_devid);
942         if (vd->vdev_physpath)
943                 spa_strfree(vd->vdev_physpath);
944         if (vd->vdev_fru)
945                 spa_strfree(vd->vdev_fru);
946
947         if (vd->vdev_isspare)
948                 spa_spare_remove(vd);
949         if (vd->vdev_isl2cache)
950                 spa_l2cache_remove(vd);
951
952         txg_list_destroy(&vd->vdev_ms_list);
953         txg_list_destroy(&vd->vdev_dtl_list);
954
955         mutex_enter(&vd->vdev_dtl_lock);
956         space_map_close(vd->vdev_dtl_sm);
957         for (int t = 0; t < DTL_TYPES; t++) {
958                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
959                 range_tree_destroy(vd->vdev_dtl[t]);
960         }
961         mutex_exit(&vd->vdev_dtl_lock);
962
963         EQUIV(vd->vdev_indirect_births != NULL,
964             vd->vdev_indirect_mapping != NULL);
965         if (vd->vdev_indirect_births != NULL) {
966                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
967                 vdev_indirect_births_close(vd->vdev_indirect_births);
968         }
969
970         if (vd->vdev_obsolete_sm != NULL) {
971                 ASSERT(vd->vdev_removing ||
972                     vd->vdev_ops == &vdev_indirect_ops);
973                 space_map_close(vd->vdev_obsolete_sm);
974                 vd->vdev_obsolete_sm = NULL;
975         }
976         range_tree_destroy(vd->vdev_obsolete_segments);
977         rw_destroy(&vd->vdev_indirect_rwlock);
978         mutex_destroy(&vd->vdev_obsolete_lock);
979
980         mutex_destroy(&vd->vdev_queue_lock);
981         mutex_destroy(&vd->vdev_dtl_lock);
982         mutex_destroy(&vd->vdev_stat_lock);
983         mutex_destroy(&vd->vdev_probe_lock);
984         mutex_destroy(&vd->vdev_scan_io_queue_lock);
985         mutex_destroy(&vd->vdev_initialize_lock);
986         mutex_destroy(&vd->vdev_initialize_io_lock);
987         cv_destroy(&vd->vdev_initialize_io_cv);
988         cv_destroy(&vd->vdev_initialize_cv);
989
990         if (vd == spa->spa_root_vdev)
991                 spa->spa_root_vdev = NULL;
992
993         kmem_free(vd, sizeof (vdev_t));
994 }
995
996 /*
997  * Transfer top-level vdev state from svd to tvd.
998  */
999 static void
1000 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1001 {
1002         spa_t *spa = svd->vdev_spa;
1003         metaslab_t *msp;
1004         vdev_t *vd;
1005         int t;
1006
1007         ASSERT(tvd == tvd->vdev_top);
1008
1009         tvd->vdev_ms_array = svd->vdev_ms_array;
1010         tvd->vdev_ms_shift = svd->vdev_ms_shift;
1011         tvd->vdev_ms_count = svd->vdev_ms_count;
1012         tvd->vdev_top_zap = svd->vdev_top_zap;
1013
1014         svd->vdev_ms_array = 0;
1015         svd->vdev_ms_shift = 0;
1016         svd->vdev_ms_count = 0;
1017         svd->vdev_top_zap = 0;
1018
1019         if (tvd->vdev_mg)
1020                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1021         tvd->vdev_mg = svd->vdev_mg;
1022         tvd->vdev_ms = svd->vdev_ms;
1023
1024         svd->vdev_mg = NULL;
1025         svd->vdev_ms = NULL;
1026
1027         if (tvd->vdev_mg != NULL)
1028                 tvd->vdev_mg->mg_vd = tvd;
1029
1030         tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1031         svd->vdev_checkpoint_sm = NULL;
1032
1033         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1034         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1035         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1036
1037         svd->vdev_stat.vs_alloc = 0;
1038         svd->vdev_stat.vs_space = 0;
1039         svd->vdev_stat.vs_dspace = 0;
1040
1041         /*
1042          * State which may be set on a top-level vdev that's in the
1043          * process of being removed.
1044          */
1045         ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1046         ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1047         ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1048         ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1049         ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1050         ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1051         ASSERT0(tvd->vdev_removing);
1052         tvd->vdev_removing = svd->vdev_removing;
1053         tvd->vdev_indirect_config = svd->vdev_indirect_config;
1054         tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1055         tvd->vdev_indirect_births = svd->vdev_indirect_births;
1056         range_tree_swap(&svd->vdev_obsolete_segments,
1057             &tvd->vdev_obsolete_segments);
1058         tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1059         svd->vdev_indirect_config.vic_mapping_object = 0;
1060         svd->vdev_indirect_config.vic_births_object = 0;
1061         svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1062         svd->vdev_indirect_mapping = NULL;
1063         svd->vdev_indirect_births = NULL;
1064         svd->vdev_obsolete_sm = NULL;
1065         svd->vdev_removing = 0;
1066
1067         for (t = 0; t < TXG_SIZE; t++) {
1068                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1069                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1070                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1071                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1072                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1073                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1074         }
1075
1076         if (list_link_active(&svd->vdev_config_dirty_node)) {
1077                 vdev_config_clean(svd);
1078                 vdev_config_dirty(tvd);
1079         }
1080
1081         if (list_link_active(&svd->vdev_state_dirty_node)) {
1082                 vdev_state_clean(svd);
1083                 vdev_state_dirty(tvd);
1084         }
1085
1086         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1087         svd->vdev_deflate_ratio = 0;
1088
1089         tvd->vdev_islog = svd->vdev_islog;
1090         svd->vdev_islog = 0;
1091
1092         dsl_scan_io_queue_vdev_xfer(svd, tvd);
1093 }
1094
1095 static void
1096 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1097 {
1098         if (vd == NULL)
1099                 return;
1100
1101         vd->vdev_top = tvd;
1102
1103         for (int c = 0; c < vd->vdev_children; c++)
1104                 vdev_top_update(tvd, vd->vdev_child[c]);
1105 }
1106
1107 /*
1108  * Add a mirror/replacing vdev above an existing vdev.
1109  */
1110 vdev_t *
1111 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1112 {
1113         spa_t *spa = cvd->vdev_spa;
1114         vdev_t *pvd = cvd->vdev_parent;
1115         vdev_t *mvd;
1116
1117         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1118
1119         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1120
1121         mvd->vdev_asize = cvd->vdev_asize;
1122         mvd->vdev_min_asize = cvd->vdev_min_asize;
1123         mvd->vdev_max_asize = cvd->vdev_max_asize;
1124         mvd->vdev_psize = cvd->vdev_psize;
1125         mvd->vdev_ashift = cvd->vdev_ashift;
1126         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1127         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1128         mvd->vdev_state = cvd->vdev_state;
1129         mvd->vdev_crtxg = cvd->vdev_crtxg;
1130
1131         vdev_remove_child(pvd, cvd);
1132         vdev_add_child(pvd, mvd);
1133         cvd->vdev_id = mvd->vdev_children;
1134         vdev_add_child(mvd, cvd);
1135         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1136
1137         if (mvd == mvd->vdev_top)
1138                 vdev_top_transfer(cvd, mvd);
1139
1140         return (mvd);
1141 }
1142
1143 /*
1144  * Remove a 1-way mirror/replacing vdev from the tree.
1145  */
1146 void
1147 vdev_remove_parent(vdev_t *cvd)
1148 {
1149         vdev_t *mvd = cvd->vdev_parent;
1150         vdev_t *pvd = mvd->vdev_parent;
1151
1152         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1153
1154         ASSERT(mvd->vdev_children == 1);
1155         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1156             mvd->vdev_ops == &vdev_replacing_ops ||
1157             mvd->vdev_ops == &vdev_spare_ops);
1158         cvd->vdev_ashift = mvd->vdev_ashift;
1159         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1160         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1161
1162         vdev_remove_child(mvd, cvd);
1163         vdev_remove_child(pvd, mvd);
1164
1165         /*
1166          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1167          * Otherwise, we could have detached an offline device, and when we
1168          * go to import the pool we'll think we have two top-level vdevs,
1169          * instead of a different version of the same top-level vdev.
1170          */
1171         if (mvd->vdev_top == mvd) {
1172                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1173                 cvd->vdev_orig_guid = cvd->vdev_guid;
1174                 cvd->vdev_guid += guid_delta;
1175                 cvd->vdev_guid_sum += guid_delta;
1176         }
1177         cvd->vdev_id = mvd->vdev_id;
1178         vdev_add_child(pvd, cvd);
1179         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1180
1181         if (cvd == cvd->vdev_top)
1182                 vdev_top_transfer(mvd, cvd);
1183
1184         ASSERT(mvd->vdev_children == 0);
1185         vdev_free(mvd);
1186 }
1187
1188 int
1189 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1190 {
1191         spa_t *spa = vd->vdev_spa;
1192         objset_t *mos = spa->spa_meta_objset;
1193         uint64_t m;
1194         uint64_t oldc = vd->vdev_ms_count;
1195         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1196         metaslab_t **mspp;
1197         int error;
1198
1199         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1200
1201         /*
1202          * This vdev is not being allocated from yet or is a hole.
1203          */
1204         if (vd->vdev_ms_shift == 0)
1205                 return (0);
1206
1207         ASSERT(!vd->vdev_ishole);
1208
1209         ASSERT(oldc <= newc);
1210
1211         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1212
1213         if (oldc != 0) {
1214                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1215                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1216         }
1217
1218         vd->vdev_ms = mspp;
1219         vd->vdev_ms_count = newc;
1220         for (m = oldc; m < newc; m++) {
1221                 uint64_t object = 0;
1222
1223                 /*
1224                  * vdev_ms_array may be 0 if we are creating the "fake"
1225                  * metaslabs for an indirect vdev for zdb's leak detection.
1226                  * See zdb_leak_init().
1227                  */
1228                 if (txg == 0 && vd->vdev_ms_array != 0) {
1229                         error = dmu_read(mos, vd->vdev_ms_array,
1230                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1231                             DMU_READ_PREFETCH);
1232                         if (error != 0) {
1233                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1234                                     "array [error=%d]", error);
1235                                 return (error);
1236                         }
1237                 }
1238
1239                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1240                     &(vd->vdev_ms[m]));
1241                 if (error != 0) {
1242                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1243                             error);
1244                         return (error);
1245                 }
1246         }
1247
1248         if (txg == 0)
1249                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1250
1251         /*
1252          * If the vdev is being removed we don't activate
1253          * the metaslabs since we want to ensure that no new
1254          * allocations are performed on this device.
1255          */
1256         if (oldc == 0 && !vd->vdev_removing)
1257                 metaslab_group_activate(vd->vdev_mg);
1258
1259         if (txg == 0)
1260                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1261
1262         return (0);
1263 }
1264
1265 void
1266 vdev_metaslab_fini(vdev_t *vd)
1267 {
1268         if (vd->vdev_checkpoint_sm != NULL) {
1269                 ASSERT(spa_feature_is_active(vd->vdev_spa,
1270                     SPA_FEATURE_POOL_CHECKPOINT));
1271                 space_map_close(vd->vdev_checkpoint_sm);
1272                 /*
1273                  * Even though we close the space map, we need to set its
1274                  * pointer to NULL. The reason is that vdev_metaslab_fini()
1275                  * may be called multiple times for certain operations
1276                  * (i.e. when destroying a pool) so we need to ensure that
1277                  * this clause never executes twice. This logic is similar
1278                  * to the one used for the vdev_ms clause below.
1279                  */
1280                 vd->vdev_checkpoint_sm = NULL;
1281         }
1282
1283         if (vd->vdev_ms != NULL) {
1284                 uint64_t count = vd->vdev_ms_count;
1285
1286                 metaslab_group_passivate(vd->vdev_mg);
1287                 for (uint64_t m = 0; m < count; m++) {
1288                         metaslab_t *msp = vd->vdev_ms[m];
1289
1290                         if (msp != NULL)
1291                                 metaslab_fini(msp);
1292                 }
1293                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1294                 vd->vdev_ms = NULL;
1295
1296                 vd->vdev_ms_count = 0;
1297         }
1298         ASSERT0(vd->vdev_ms_count);
1299 }
1300
1301 typedef struct vdev_probe_stats {
1302         boolean_t       vps_readable;
1303         boolean_t       vps_writeable;
1304         int             vps_flags;
1305 } vdev_probe_stats_t;
1306
1307 static void
1308 vdev_probe_done(zio_t *zio)
1309 {
1310         spa_t *spa = zio->io_spa;
1311         vdev_t *vd = zio->io_vd;
1312         vdev_probe_stats_t *vps = zio->io_private;
1313
1314         ASSERT(vd->vdev_probe_zio != NULL);
1315
1316         if (zio->io_type == ZIO_TYPE_READ) {
1317                 if (zio->io_error == 0)
1318                         vps->vps_readable = 1;
1319                 if (zio->io_error == 0 && spa_writeable(spa)) {
1320                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1321                             zio->io_offset, zio->io_size, zio->io_abd,
1322                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1323                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1324                 } else {
1325                         abd_free(zio->io_abd);
1326                 }
1327         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1328                 if (zio->io_error == 0)
1329                         vps->vps_writeable = 1;
1330                 abd_free(zio->io_abd);
1331         } else if (zio->io_type == ZIO_TYPE_NULL) {
1332                 zio_t *pio;
1333
1334                 vd->vdev_cant_read |= !vps->vps_readable;
1335                 vd->vdev_cant_write |= !vps->vps_writeable;
1336
1337                 if (vdev_readable(vd) &&
1338                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1339                         zio->io_error = 0;
1340                 } else {
1341                         ASSERT(zio->io_error != 0);
1342                         vdev_dbgmsg(vd, "failed probe");
1343                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1344                             spa, vd, NULL, 0, 0);
1345                         zio->io_error = SET_ERROR(ENXIO);
1346                 }
1347
1348                 mutex_enter(&vd->vdev_probe_lock);
1349                 ASSERT(vd->vdev_probe_zio == zio);
1350                 vd->vdev_probe_zio = NULL;
1351                 mutex_exit(&vd->vdev_probe_lock);
1352
1353                 zio_link_t *zl = NULL;
1354                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1355                         if (!vdev_accessible(vd, pio))
1356                                 pio->io_error = SET_ERROR(ENXIO);
1357
1358                 kmem_free(vps, sizeof (*vps));
1359         }
1360 }
1361
1362 /*
1363  * Determine whether this device is accessible.
1364  *
1365  * Read and write to several known locations: the pad regions of each
1366  * vdev label but the first, which we leave alone in case it contains
1367  * a VTOC.
1368  */
1369 zio_t *
1370 vdev_probe(vdev_t *vd, zio_t *zio)
1371 {
1372         spa_t *spa = vd->vdev_spa;
1373         vdev_probe_stats_t *vps = NULL;
1374         zio_t *pio;
1375
1376         ASSERT(vd->vdev_ops->vdev_op_leaf);
1377
1378         /*
1379          * Don't probe the probe.
1380          */
1381         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1382                 return (NULL);
1383
1384         /*
1385          * To prevent 'probe storms' when a device fails, we create
1386          * just one probe i/o at a time.  All zios that want to probe
1387          * this vdev will become parents of the probe io.
1388          */
1389         mutex_enter(&vd->vdev_probe_lock);
1390
1391         if ((pio = vd->vdev_probe_zio) == NULL) {
1392                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1393
1394                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1395                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1396                     ZIO_FLAG_TRYHARD;
1397
1398                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1399                         /*
1400                          * vdev_cant_read and vdev_cant_write can only
1401                          * transition from TRUE to FALSE when we have the
1402                          * SCL_ZIO lock as writer; otherwise they can only
1403                          * transition from FALSE to TRUE.  This ensures that
1404                          * any zio looking at these values can assume that
1405                          * failures persist for the life of the I/O.  That's
1406                          * important because when a device has intermittent
1407                          * connectivity problems, we want to ensure that
1408                          * they're ascribed to the device (ENXIO) and not
1409                          * the zio (EIO).
1410                          *
1411                          * Since we hold SCL_ZIO as writer here, clear both
1412                          * values so the probe can reevaluate from first
1413                          * principles.
1414                          */
1415                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1416                         vd->vdev_cant_read = B_FALSE;
1417                         vd->vdev_cant_write = B_FALSE;
1418                 }
1419
1420                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1421                     vdev_probe_done, vps,
1422                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1423
1424                 /*
1425                  * We can't change the vdev state in this context, so we
1426                  * kick off an async task to do it on our behalf.
1427                  */
1428                 if (zio != NULL) {
1429                         vd->vdev_probe_wanted = B_TRUE;
1430                         spa_async_request(spa, SPA_ASYNC_PROBE);
1431                 }
1432         }
1433
1434         if (zio != NULL)
1435                 zio_add_child(zio, pio);
1436
1437         mutex_exit(&vd->vdev_probe_lock);
1438
1439         if (vps == NULL) {
1440                 ASSERT(zio != NULL);
1441                 return (NULL);
1442         }
1443
1444         for (int l = 1; l < VDEV_LABELS; l++) {
1445                 zio_nowait(zio_read_phys(pio, vd,
1446                     vdev_label_offset(vd->vdev_psize, l,
1447                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1448                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1449                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1450                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1451         }
1452
1453         if (zio == NULL)
1454                 return (pio);
1455
1456         zio_nowait(pio);
1457         return (NULL);
1458 }
1459
1460 static void
1461 vdev_open_child(void *arg)
1462 {
1463         vdev_t *vd = arg;
1464
1465         vd->vdev_open_thread = curthread;
1466         vd->vdev_open_error = vdev_open(vd);
1467         vd->vdev_open_thread = NULL;
1468 }
1469
1470 boolean_t
1471 vdev_uses_zvols(vdev_t *vd)
1472 {
1473         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1474             strlen(ZVOL_DIR)) == 0)
1475                 return (B_TRUE);
1476         for (int c = 0; c < vd->vdev_children; c++)
1477                 if (vdev_uses_zvols(vd->vdev_child[c]))
1478                         return (B_TRUE);
1479         return (B_FALSE);
1480 }
1481
1482 void
1483 vdev_open_children(vdev_t *vd)
1484 {
1485         taskq_t *tq;
1486         int children = vd->vdev_children;
1487
1488         vd->vdev_nonrot = B_TRUE;
1489
1490         /*
1491          * in order to handle pools on top of zvols, do the opens
1492          * in a single thread so that the same thread holds the
1493          * spa_namespace_lock
1494          */
1495         if (B_TRUE || vdev_uses_zvols(vd)) {
1496                 for (int c = 0; c < children; c++) {
1497                         vd->vdev_child[c]->vdev_open_error =
1498                             vdev_open(vd->vdev_child[c]);
1499                         vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1500                 }
1501                 return;
1502         }
1503         tq = taskq_create("vdev_open", children, minclsyspri,
1504             children, children, TASKQ_PREPOPULATE);
1505
1506         for (int c = 0; c < children; c++)
1507                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1508                     TQ_SLEEP) != 0);
1509
1510         taskq_destroy(tq);
1511
1512         for (int c = 0; c < children; c++)
1513                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1514 }
1515
1516 /*
1517  * Compute the raidz-deflation ratio.  Note, we hard-code
1518  * in 128k (1 << 17) because it is the "typical" blocksize.
1519  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1520  * otherwise it would inconsistently account for existing bp's.
1521  */
1522 static void
1523 vdev_set_deflate_ratio(vdev_t *vd)
1524 {
1525         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1526                 vd->vdev_deflate_ratio = (1 << 17) /
1527                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1528         }
1529 }
1530
1531 /*
1532  * Prepare a virtual device for access.
1533  */
1534 int
1535 vdev_open(vdev_t *vd)
1536 {
1537         spa_t *spa = vd->vdev_spa;
1538         int error;
1539         uint64_t osize = 0;
1540         uint64_t max_osize = 0;
1541         uint64_t asize, max_asize, psize;
1542         uint64_t logical_ashift = 0;
1543         uint64_t physical_ashift = 0;
1544
1545         ASSERT(vd->vdev_open_thread == curthread ||
1546             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1547         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1548             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1549             vd->vdev_state == VDEV_STATE_OFFLINE);
1550
1551         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1552         vd->vdev_cant_read = B_FALSE;
1553         vd->vdev_cant_write = B_FALSE;
1554         vd->vdev_notrim = B_FALSE;
1555         vd->vdev_min_asize = vdev_get_min_asize(vd);
1556
1557         /*
1558          * If this vdev is not removed, check its fault status.  If it's
1559          * faulted, bail out of the open.
1560          */
1561         if (!vd->vdev_removed && vd->vdev_faulted) {
1562                 ASSERT(vd->vdev_children == 0);
1563                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1564                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1565                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1566                     vd->vdev_label_aux);
1567                 return (SET_ERROR(ENXIO));
1568         } else if (vd->vdev_offline) {
1569                 ASSERT(vd->vdev_children == 0);
1570                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1571                 return (SET_ERROR(ENXIO));
1572         }
1573
1574         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1575             &logical_ashift, &physical_ashift);
1576
1577         /*
1578          * Reset the vdev_reopening flag so that we actually close
1579          * the vdev on error.
1580          */
1581         vd->vdev_reopening = B_FALSE;
1582         if (zio_injection_enabled && error == 0)
1583                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1584
1585         if (error) {
1586                 if (vd->vdev_removed &&
1587                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1588                         vd->vdev_removed = B_FALSE;
1589
1590                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1591                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1592                             vd->vdev_stat.vs_aux);
1593                 } else {
1594                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1595                             vd->vdev_stat.vs_aux);
1596                 }
1597                 return (error);
1598         }
1599
1600         vd->vdev_removed = B_FALSE;
1601
1602         /*
1603          * Recheck the faulted flag now that we have confirmed that
1604          * the vdev is accessible.  If we're faulted, bail.
1605          */
1606         if (vd->vdev_faulted) {
1607                 ASSERT(vd->vdev_children == 0);
1608                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1609                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1610                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1611                     vd->vdev_label_aux);
1612                 return (SET_ERROR(ENXIO));
1613         }
1614
1615         if (vd->vdev_degraded) {
1616                 ASSERT(vd->vdev_children == 0);
1617                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1618                     VDEV_AUX_ERR_EXCEEDED);
1619         } else {
1620                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1621         }
1622
1623         /*
1624          * For hole or missing vdevs we just return success.
1625          */
1626         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1627                 return (0);
1628
1629         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1630                 trim_map_create(vd);
1631
1632         for (int c = 0; c < vd->vdev_children; c++) {
1633                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1634                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1635                             VDEV_AUX_NONE);
1636                         break;
1637                 }
1638         }
1639
1640         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1641         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1642
1643         if (vd->vdev_children == 0) {
1644                 if (osize < SPA_MINDEVSIZE) {
1645                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1646                             VDEV_AUX_TOO_SMALL);
1647                         return (SET_ERROR(EOVERFLOW));
1648                 }
1649                 psize = osize;
1650                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1651                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1652                     VDEV_LABEL_END_SIZE);
1653         } else {
1654                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1655                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1656                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1657                             VDEV_AUX_TOO_SMALL);
1658                         return (SET_ERROR(EOVERFLOW));
1659                 }
1660                 psize = 0;
1661                 asize = osize;
1662                 max_asize = max_osize;
1663         }
1664
1665         vd->vdev_psize = psize;
1666
1667         /*
1668          * Make sure the allocatable size hasn't shrunk too much.
1669          */
1670         if (asize < vd->vdev_min_asize) {
1671                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1672                     VDEV_AUX_BAD_LABEL);
1673                 return (SET_ERROR(EINVAL));
1674         }
1675
1676         vd->vdev_physical_ashift =
1677             MAX(physical_ashift, vd->vdev_physical_ashift);
1678         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1679         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1680
1681         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1682                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1683                     VDEV_AUX_ASHIFT_TOO_BIG);
1684                 return (EINVAL);
1685         }
1686
1687         if (vd->vdev_asize == 0) {
1688                 /*
1689                  * This is the first-ever open, so use the computed values.
1690                  * For testing purposes, a higher ashift can be requested.
1691                  */
1692                 vd->vdev_asize = asize;
1693                 vd->vdev_max_asize = max_asize;
1694         } else {
1695                 /*
1696                  * Make sure the alignment requirement hasn't increased.
1697                  */
1698                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1699                     vd->vdev_ops->vdev_op_leaf) {
1700                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1701                             VDEV_AUX_BAD_LABEL);
1702                         return (EINVAL);
1703                 }
1704                 vd->vdev_max_asize = max_asize;
1705         }
1706
1707         /*
1708          * If all children are healthy we update asize if either:
1709          * The asize has increased, due to a device expansion caused by dynamic
1710          * LUN growth or vdev replacement, and automatic expansion is enabled;
1711          * making the additional space available.
1712          *
1713          * The asize has decreased, due to a device shrink usually caused by a
1714          * vdev replace with a smaller device. This ensures that calculations
1715          * based of max_asize and asize e.g. esize are always valid. It's safe
1716          * to do this as we've already validated that asize is greater than
1717          * vdev_min_asize.
1718          */
1719         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1720             ((asize > vd->vdev_asize &&
1721             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1722             (asize < vd->vdev_asize)))
1723                 vd->vdev_asize = asize;
1724
1725         vdev_set_min_asize(vd);
1726
1727         /*
1728          * Ensure we can issue some IO before declaring the
1729          * vdev open for business.
1730          */
1731         if (vd->vdev_ops->vdev_op_leaf &&
1732             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1733                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1734                     VDEV_AUX_ERR_EXCEEDED);
1735                 return (error);
1736         }
1737
1738         /*
1739          * Track the min and max ashift values for normal data devices.
1740          */
1741         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1742             !vd->vdev_islog && vd->vdev_aux == NULL) {
1743                 if (vd->vdev_ashift > spa->spa_max_ashift)
1744                         spa->spa_max_ashift = vd->vdev_ashift;
1745                 if (vd->vdev_ashift < spa->spa_min_ashift)
1746                         spa->spa_min_ashift = vd->vdev_ashift;
1747         }
1748
1749         /*
1750          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1751          * resilver.  But don't do this if we are doing a reopen for a scrub,
1752          * since this would just restart the scrub we are already doing.
1753          */
1754         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1755             vdev_resilver_needed(vd, NULL, NULL))
1756                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1757
1758         return (0);
1759 }
1760
1761 /*
1762  * Called once the vdevs are all opened, this routine validates the label
1763  * contents. This needs to be done before vdev_load() so that we don't
1764  * inadvertently do repair I/Os to the wrong device.
1765  *
1766  * This function will only return failure if one of the vdevs indicates that it
1767  * has since been destroyed or exported.  This is only possible if
1768  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1769  * will be updated but the function will return 0.
1770  */
1771 int
1772 vdev_validate(vdev_t *vd)
1773 {
1774         spa_t *spa = vd->vdev_spa;
1775         nvlist_t *label;
1776         uint64_t guid = 0, aux_guid = 0, top_guid;
1777         uint64_t state;
1778         nvlist_t *nvl;
1779         uint64_t txg;
1780
1781         if (vdev_validate_skip)
1782                 return (0);
1783
1784         for (uint64_t c = 0; c < vd->vdev_children; c++)
1785                 if (vdev_validate(vd->vdev_child[c]) != 0)
1786                         return (SET_ERROR(EBADF));
1787
1788         /*
1789          * If the device has already failed, or was marked offline, don't do
1790          * any further validation.  Otherwise, label I/O will fail and we will
1791          * overwrite the previous state.
1792          */
1793         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1794                 return (0);
1795
1796         /*
1797          * If we are performing an extreme rewind, we allow for a label that
1798          * was modified at a point after the current txg.
1799          * If config lock is not held do not check for the txg. spa_sync could
1800          * be updating the vdev's label before updating spa_last_synced_txg.
1801          */
1802         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1803             spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1804                 txg = UINT64_MAX;
1805         else
1806                 txg = spa_last_synced_txg(spa);
1807
1808         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1809                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1810                     VDEV_AUX_BAD_LABEL);
1811                 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1812                     "txg %llu", (u_longlong_t)txg);
1813                 return (0);
1814         }
1815
1816         /*
1817          * Determine if this vdev has been split off into another
1818          * pool.  If so, then refuse to open it.
1819          */
1820         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1821             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1822                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1823                     VDEV_AUX_SPLIT_POOL);
1824                 nvlist_free(label);
1825                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1826                 return (0);
1827         }
1828
1829         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1830                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1831                     VDEV_AUX_CORRUPT_DATA);
1832                 nvlist_free(label);
1833                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1834                     ZPOOL_CONFIG_POOL_GUID);
1835                 return (0);
1836         }
1837
1838         /*
1839          * If config is not trusted then ignore the spa guid check. This is
1840          * necessary because if the machine crashed during a re-guid the new
1841          * guid might have been written to all of the vdev labels, but not the
1842          * cached config. The check will be performed again once we have the
1843          * trusted config from the MOS.
1844          */
1845         if (spa->spa_trust_config && guid != spa_guid(spa)) {
1846                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1847                     VDEV_AUX_CORRUPT_DATA);
1848                 nvlist_free(label);
1849                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1850                     "match config (%llu != %llu)", (u_longlong_t)guid,
1851                     (u_longlong_t)spa_guid(spa));
1852                 return (0);
1853         }
1854
1855         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1856             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1857             &aux_guid) != 0)
1858                 aux_guid = 0;
1859
1860         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1861                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1862                     VDEV_AUX_CORRUPT_DATA);
1863                 nvlist_free(label);
1864                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1865                     ZPOOL_CONFIG_GUID);
1866                 return (0);
1867         }
1868
1869         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1870             != 0) {
1871                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1872                     VDEV_AUX_CORRUPT_DATA);
1873                 nvlist_free(label);
1874                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1875                     ZPOOL_CONFIG_TOP_GUID);
1876                 return (0);
1877         }
1878
1879         /*
1880          * If this vdev just became a top-level vdev because its sibling was
1881          * detached, it will have adopted the parent's vdev guid -- but the
1882          * label may or may not be on disk yet. Fortunately, either version
1883          * of the label will have the same top guid, so if we're a top-level
1884          * vdev, we can safely compare to that instead.
1885          * However, if the config comes from a cachefile that failed to update
1886          * after the detach, a top-level vdev will appear as a non top-level
1887          * vdev in the config. Also relax the constraints if we perform an
1888          * extreme rewind.
1889          *
1890          * If we split this vdev off instead, then we also check the
1891          * original pool's guid. We don't want to consider the vdev
1892          * corrupt if it is partway through a split operation.
1893          */
1894         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1895                 boolean_t mismatch = B_FALSE;
1896                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1897                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1898                                 mismatch = B_TRUE;
1899                 } else {
1900                         if (vd->vdev_guid != top_guid &&
1901                             vd->vdev_top->vdev_guid != guid)
1902                                 mismatch = B_TRUE;
1903                 }
1904
1905                 if (mismatch) {
1906                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1907                             VDEV_AUX_CORRUPT_DATA);
1908                         nvlist_free(label);
1909                         vdev_dbgmsg(vd, "vdev_validate: config guid "
1910                             "doesn't match label guid");
1911                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1912                             (u_longlong_t)vd->vdev_guid,
1913                             (u_longlong_t)vd->vdev_top->vdev_guid);
1914                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1915                             "aux_guid %llu", (u_longlong_t)guid,
1916                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1917                         return (0);
1918                 }
1919         }
1920
1921         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1922             &state) != 0) {
1923                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1924                     VDEV_AUX_CORRUPT_DATA);
1925                 nvlist_free(label);
1926                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1927                     ZPOOL_CONFIG_POOL_STATE);
1928                 return (0);
1929         }
1930
1931         nvlist_free(label);
1932
1933         /*
1934          * If this is a verbatim import, no need to check the
1935          * state of the pool.
1936          */
1937         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1938             spa_load_state(spa) == SPA_LOAD_OPEN &&
1939             state != POOL_STATE_ACTIVE) {
1940                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1941                     "for spa %s", (u_longlong_t)state, spa->spa_name);
1942                 return (SET_ERROR(EBADF));
1943         }
1944
1945         /*
1946          * If we were able to open and validate a vdev that was
1947          * previously marked permanently unavailable, clear that state
1948          * now.
1949          */
1950         if (vd->vdev_not_present)
1951                 vd->vdev_not_present = 0;
1952
1953         return (0);
1954 }
1955
1956 static void
1957 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1958 {
1959         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1960                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1961                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1962                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1963                             dvd->vdev_path, svd->vdev_path);
1964                         spa_strfree(dvd->vdev_path);
1965                         dvd->vdev_path = spa_strdup(svd->vdev_path);
1966                 }
1967         } else if (svd->vdev_path != NULL) {
1968                 dvd->vdev_path = spa_strdup(svd->vdev_path);
1969                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1970                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1971         }
1972 }
1973
1974 /*
1975  * Recursively copy vdev paths from one vdev to another. Source and destination
1976  * vdev trees must have same geometry otherwise return error. Intended to copy
1977  * paths from userland config into MOS config.
1978  */
1979 int
1980 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1981 {
1982         if ((svd->vdev_ops == &vdev_missing_ops) ||
1983             (svd->vdev_ishole && dvd->vdev_ishole) ||
1984             (dvd->vdev_ops == &vdev_indirect_ops))
1985                 return (0);
1986
1987         if (svd->vdev_ops != dvd->vdev_ops) {
1988                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1989                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1990                 return (SET_ERROR(EINVAL));
1991         }
1992
1993         if (svd->vdev_guid != dvd->vdev_guid) {
1994                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1995                     "%llu)", (u_longlong_t)svd->vdev_guid,
1996                     (u_longlong_t)dvd->vdev_guid);
1997                 return (SET_ERROR(EINVAL));
1998         }
1999
2000         if (svd->vdev_children != dvd->vdev_children) {
2001                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2002                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
2003                     (u_longlong_t)dvd->vdev_children);
2004                 return (SET_ERROR(EINVAL));
2005         }
2006
2007         for (uint64_t i = 0; i < svd->vdev_children; i++) {
2008                 int error = vdev_copy_path_strict(svd->vdev_child[i],
2009                     dvd->vdev_child[i]);
2010                 if (error != 0)
2011                         return (error);
2012         }
2013
2014         if (svd->vdev_ops->vdev_op_leaf)
2015                 vdev_copy_path_impl(svd, dvd);
2016
2017         return (0);
2018 }
2019
2020 static void
2021 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2022 {
2023         ASSERT(stvd->vdev_top == stvd);
2024         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2025
2026         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2027                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2028         }
2029
2030         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2031                 return;
2032
2033         /*
2034          * The idea here is that while a vdev can shift positions within
2035          * a top vdev (when replacing, attaching mirror, etc.) it cannot
2036          * step outside of it.
2037          */
2038         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2039
2040         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2041                 return;
2042
2043         ASSERT(vd->vdev_ops->vdev_op_leaf);
2044
2045         vdev_copy_path_impl(vd, dvd);
2046 }
2047
2048 /*
2049  * Recursively copy vdev paths from one root vdev to another. Source and
2050  * destination vdev trees may differ in geometry. For each destination leaf
2051  * vdev, search a vdev with the same guid and top vdev id in the source.
2052  * Intended to copy paths from userland config into MOS config.
2053  */
2054 void
2055 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2056 {
2057         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2058         ASSERT(srvd->vdev_ops == &vdev_root_ops);
2059         ASSERT(drvd->vdev_ops == &vdev_root_ops);
2060
2061         for (uint64_t i = 0; i < children; i++) {
2062                 vdev_copy_path_search(srvd->vdev_child[i],
2063                     drvd->vdev_child[i]);
2064         }
2065 }
2066
2067 /*
2068  * Close a virtual device.
2069  */
2070 void
2071 vdev_close(vdev_t *vd)
2072 {
2073         spa_t *spa = vd->vdev_spa;
2074         vdev_t *pvd = vd->vdev_parent;
2075
2076         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2077
2078         /*
2079          * If our parent is reopening, then we are as well, unless we are
2080          * going offline.
2081          */
2082         if (pvd != NULL && pvd->vdev_reopening)
2083                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2084
2085         vd->vdev_ops->vdev_op_close(vd);
2086
2087         vdev_cache_purge(vd);
2088
2089         if (vd->vdev_ops->vdev_op_leaf)
2090                 trim_map_destroy(vd);
2091
2092         /*
2093          * We record the previous state before we close it, so that if we are
2094          * doing a reopen(), we don't generate FMA ereports if we notice that
2095          * it's still faulted.
2096          */
2097         vd->vdev_prevstate = vd->vdev_state;
2098
2099         if (vd->vdev_offline)
2100                 vd->vdev_state = VDEV_STATE_OFFLINE;
2101         else
2102                 vd->vdev_state = VDEV_STATE_CLOSED;
2103         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2104 }
2105
2106 void
2107 vdev_hold(vdev_t *vd)
2108 {
2109         spa_t *spa = vd->vdev_spa;
2110
2111         ASSERT(spa_is_root(spa));
2112         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2113                 return;
2114
2115         for (int c = 0; c < vd->vdev_children; c++)
2116                 vdev_hold(vd->vdev_child[c]);
2117
2118         if (vd->vdev_ops->vdev_op_leaf)
2119                 vd->vdev_ops->vdev_op_hold(vd);
2120 }
2121
2122 void
2123 vdev_rele(vdev_t *vd)
2124 {
2125         spa_t *spa = vd->vdev_spa;
2126
2127         ASSERT(spa_is_root(spa));
2128         for (int c = 0; c < vd->vdev_children; c++)
2129                 vdev_rele(vd->vdev_child[c]);
2130
2131         if (vd->vdev_ops->vdev_op_leaf)
2132                 vd->vdev_ops->vdev_op_rele(vd);
2133 }
2134
2135 /*
2136  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2137  * reopen leaf vdevs which had previously been opened as they might deadlock
2138  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2139  * If the leaf has never been opened then open it, as usual.
2140  */
2141 void
2142 vdev_reopen(vdev_t *vd)
2143 {
2144         spa_t *spa = vd->vdev_spa;
2145
2146         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2147
2148         /* set the reopening flag unless we're taking the vdev offline */
2149         vd->vdev_reopening = !vd->vdev_offline;
2150         vdev_close(vd);
2151         (void) vdev_open(vd);
2152
2153         /*
2154          * Call vdev_validate() here to make sure we have the same device.
2155          * Otherwise, a device with an invalid label could be successfully
2156          * opened in response to vdev_reopen().
2157          */
2158         if (vd->vdev_aux) {
2159                 (void) vdev_validate_aux(vd);
2160                 if (vdev_readable(vd) && vdev_writeable(vd) &&
2161                     vd->vdev_aux == &spa->spa_l2cache &&
2162                     !l2arc_vdev_present(vd))
2163                         l2arc_add_vdev(spa, vd);
2164         } else {
2165                 (void) vdev_validate(vd);
2166         }
2167
2168         /*
2169          * Reassess parent vdev's health.
2170          */
2171         vdev_propagate_state(vd);
2172 }
2173
2174 int
2175 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2176 {
2177         int error;
2178
2179         /*
2180          * Normally, partial opens (e.g. of a mirror) are allowed.
2181          * For a create, however, we want to fail the request if
2182          * there are any components we can't open.
2183          */
2184         error = vdev_open(vd);
2185
2186         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2187                 vdev_close(vd);
2188                 return (error ? error : ENXIO);
2189         }
2190
2191         /*
2192          * Recursively load DTLs and initialize all labels.
2193          */
2194         if ((error = vdev_dtl_load(vd)) != 0 ||
2195             (error = vdev_label_init(vd, txg, isreplacing ?
2196             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2197                 vdev_close(vd);
2198                 return (error);
2199         }
2200
2201         return (0);
2202 }
2203
2204 void
2205 vdev_metaslab_set_size(vdev_t *vd)
2206 {
2207         uint64_t asize = vd->vdev_asize;
2208         uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2209         uint64_t ms_shift;
2210
2211         /*
2212          * There are two dimensions to the metaslab sizing calculation:
2213          * the size of the metaslab and the count of metaslabs per vdev.
2214          *
2215          * The default values used below are a good balance between memory
2216          * usage (larger metaslab size means more memory needed for loaded
2217          * metaslabs; more metaslabs means more memory needed for the
2218          * metaslab_t structs), metaslab load time (larger metaslabs take
2219          * longer to load), and metaslab sync time (more metaslabs means
2220          * more time spent syncing all of them).
2221          *
2222          * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2223          * The range of the dimensions are as follows:
2224          *
2225          *      2^29 <= ms_size  <= 2^34
2226          *        16 <= ms_count <= 131,072
2227          *
2228          * On the lower end of vdev sizes, we aim for metaslabs sizes of
2229          * at least 512MB (2^29) to minimize fragmentation effects when
2230          * testing with smaller devices.  However, the count constraint
2231          * of at least 16 metaslabs will override this minimum size goal.
2232          *
2233          * On the upper end of vdev sizes, we aim for a maximum metaslab
2234          * size of 16GB.  However, we will cap the total count to 2^17
2235          * metaslabs to keep our memory footprint in check and let the
2236          * metaslab size grow from there if that limit is hit.
2237          *
2238          * The net effect of applying above constrains is summarized below.
2239          *
2240          *   vdev size       metaslab count
2241          *  --------------|-----------------
2242          *      < 8GB        ~16
2243          *  8GB   - 100GB   one per 512MB
2244          *  100GB - 3TB     ~200
2245          *  3TB   - 2PB     one per 16GB
2246          *      > 2PB       ~131,072
2247          *  --------------------------------
2248          *
2249          *  Finally, note that all of the above calculate the initial
2250          *  number of metaslabs. Expanding a top-level vdev will result
2251          *  in additional metaslabs being allocated making it possible
2252          *  to exceed the zfs_vdev_ms_count_limit.
2253          */
2254
2255         if (ms_count < zfs_vdev_min_ms_count)
2256                 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2257         else if (ms_count > zfs_vdev_default_ms_count)
2258                 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2259         else
2260                 ms_shift = zfs_vdev_default_ms_shift;
2261
2262         if (ms_shift < SPA_MAXBLOCKSHIFT) {
2263                 ms_shift = SPA_MAXBLOCKSHIFT;
2264         } else if (ms_shift > zfs_vdev_max_ms_shift) {
2265                 ms_shift = zfs_vdev_max_ms_shift;
2266                 /* cap the total count to constrain memory footprint */
2267                 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2268                         ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2269         }
2270
2271         vd->vdev_ms_shift = ms_shift;
2272         ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2273 }
2274
2275 /*
2276  * Maximize performance by inflating the configured ashift for top level
2277  * vdevs to be as close to the physical ashift as possible while maintaining
2278  * administrator defined limits and ensuring it doesn't go below the
2279  * logical ashift.
2280  */
2281 void
2282 vdev_ashift_optimize(vdev_t *vd)
2283 {
2284         if (vd == vd->vdev_top) {
2285                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
2286                         vd->vdev_ashift = MIN(
2287                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
2288                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
2289                 } else {
2290                         /*
2291                          * Unusual case where logical ashift > physical ashift
2292                          * so we can't cap the calculated ashift based on max
2293                          * ashift as that would cause failures.
2294                          * We still check if we need to increase it to match
2295                          * the min ashift.
2296                          */
2297                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
2298                             vd->vdev_ashift);
2299                 }
2300         }
2301 }
2302
2303 void
2304 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2305 {
2306         ASSERT(vd == vd->vdev_top);
2307         /* indirect vdevs don't have metaslabs or dtls */
2308         ASSERT(vdev_is_concrete(vd) || flags == 0);
2309         ASSERT(ISP2(flags));
2310         ASSERT(spa_writeable(vd->vdev_spa));
2311
2312         if (flags & VDD_METASLAB)
2313                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2314
2315         if (flags & VDD_DTL)
2316                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2317
2318         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2319 }
2320
2321 void
2322 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2323 {
2324         for (int c = 0; c < vd->vdev_children; c++)
2325                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2326
2327         if (vd->vdev_ops->vdev_op_leaf)
2328                 vdev_dirty(vd->vdev_top, flags, vd, txg);
2329 }
2330
2331 /*
2332  * DTLs.
2333  *
2334  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2335  * the vdev has less than perfect replication.  There are four kinds of DTL:
2336  *
2337  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2338  *
2339  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2340  *
2341  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2342  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2343  *      txgs that was scrubbed.
2344  *
2345  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2346  *      persistent errors or just some device being offline.
2347  *      Unlike the other three, the DTL_OUTAGE map is not generally
2348  *      maintained; it's only computed when needed, typically to
2349  *      determine whether a device can be detached.
2350  *
2351  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2352  * either has the data or it doesn't.
2353  *
2354  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2355  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2356  * if any child is less than fully replicated, then so is its parent.
2357  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2358  * comprising only those txgs which appear in 'maxfaults' or more children;
2359  * those are the txgs we don't have enough replication to read.  For example,
2360  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2361  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2362  * two child DTL_MISSING maps.
2363  *
2364  * It should be clear from the above that to compute the DTLs and outage maps
2365  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2366  * Therefore, that is all we keep on disk.  When loading the pool, or after
2367  * a configuration change, we generate all other DTLs from first principles.
2368  */
2369 void
2370 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2371 {
2372         range_tree_t *rt = vd->vdev_dtl[t];
2373
2374         ASSERT(t < DTL_TYPES);
2375         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2376         ASSERT(spa_writeable(vd->vdev_spa));
2377
2378         mutex_enter(&vd->vdev_dtl_lock);
2379         if (!range_tree_contains(rt, txg, size))
2380                 range_tree_add(rt, txg, size);
2381         mutex_exit(&vd->vdev_dtl_lock);
2382 }
2383
2384 boolean_t
2385 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2386 {
2387         range_tree_t *rt = vd->vdev_dtl[t];
2388         boolean_t dirty = B_FALSE;
2389
2390         ASSERT(t < DTL_TYPES);
2391         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2392
2393         /*
2394          * While we are loading the pool, the DTLs have not been loaded yet.
2395          * Ignore the DTLs and try all devices.  This avoids a recursive
2396          * mutex enter on the vdev_dtl_lock, and also makes us try hard
2397          * when loading the pool (relying on the checksum to ensure that
2398          * we get the right data -- note that we while loading, we are
2399          * only reading the MOS, which is always checksummed).
2400          */
2401         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2402                 return (B_FALSE);
2403
2404         mutex_enter(&vd->vdev_dtl_lock);
2405         if (!range_tree_is_empty(rt))
2406                 dirty = range_tree_contains(rt, txg, size);
2407         mutex_exit(&vd->vdev_dtl_lock);
2408
2409         return (dirty);
2410 }
2411
2412 boolean_t
2413 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2414 {
2415         range_tree_t *rt = vd->vdev_dtl[t];
2416         boolean_t empty;
2417
2418         mutex_enter(&vd->vdev_dtl_lock);
2419         empty = range_tree_is_empty(rt);
2420         mutex_exit(&vd->vdev_dtl_lock);
2421
2422         return (empty);
2423 }
2424
2425 /*
2426  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2427  */
2428 boolean_t
2429 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2430 {
2431         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2432
2433         if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2434             vd->vdev_ops->vdev_op_leaf)
2435                 return (B_TRUE);
2436
2437         return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2438 }
2439
2440 /*
2441  * Returns the lowest txg in the DTL range.
2442  */
2443 static uint64_t
2444 vdev_dtl_min(vdev_t *vd)
2445 {
2446         range_seg_t *rs;
2447
2448         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2449         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2450         ASSERT0(vd->vdev_children);
2451
2452         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2453         return (rs->rs_start - 1);
2454 }
2455
2456 /*
2457  * Returns the highest txg in the DTL.
2458  */
2459 static uint64_t
2460 vdev_dtl_max(vdev_t *vd)
2461 {
2462         range_seg_t *rs;
2463
2464         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2465         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2466         ASSERT0(vd->vdev_children);
2467
2468         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2469         return (rs->rs_end);
2470 }
2471
2472 /*
2473  * Determine if a resilvering vdev should remove any DTL entries from
2474  * its range. If the vdev was resilvering for the entire duration of the
2475  * scan then it should excise that range from its DTLs. Otherwise, this
2476  * vdev is considered partially resilvered and should leave its DTL
2477  * entries intact. The comment in vdev_dtl_reassess() describes how we
2478  * excise the DTLs.
2479  */
2480 static boolean_t
2481 vdev_dtl_should_excise(vdev_t *vd)
2482 {
2483         spa_t *spa = vd->vdev_spa;
2484         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2485
2486         ASSERT0(scn->scn_phys.scn_errors);
2487         ASSERT0(vd->vdev_children);
2488
2489         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2490                 return (B_FALSE);
2491
2492         if (vd->vdev_resilver_txg == 0 ||
2493             range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2494                 return (B_TRUE);
2495
2496         /*
2497          * When a resilver is initiated the scan will assign the scn_max_txg
2498          * value to the highest txg value that exists in all DTLs. If this
2499          * device's max DTL is not part of this scan (i.e. it is not in
2500          * the range (scn_min_txg, scn_max_txg] then it is not eligible
2501          * for excision.
2502          */
2503         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2504                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2505                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2506                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2507                 return (B_TRUE);
2508         }
2509         return (B_FALSE);
2510 }
2511
2512 /*
2513  * Reassess DTLs after a config change or scrub completion.
2514  */
2515 void
2516 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2517 {
2518         spa_t *spa = vd->vdev_spa;
2519         avl_tree_t reftree;
2520         int minref;
2521
2522         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2523
2524         for (int c = 0; c < vd->vdev_children; c++)
2525                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2526                     scrub_txg, scrub_done);
2527
2528         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2529                 return;
2530
2531         if (vd->vdev_ops->vdev_op_leaf) {
2532                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2533
2534                 mutex_enter(&vd->vdev_dtl_lock);
2535
2536                 /*
2537                  * If we've completed a scan cleanly then determine
2538                  * if this vdev should remove any DTLs. We only want to
2539                  * excise regions on vdevs that were available during
2540                  * the entire duration of this scan.
2541                  */
2542                 if (scrub_txg != 0 &&
2543                     (spa->spa_scrub_started ||
2544                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2545                     vdev_dtl_should_excise(vd)) {
2546                         /*
2547                          * We completed a scrub up to scrub_txg.  If we
2548                          * did it without rebooting, then the scrub dtl
2549                          * will be valid, so excise the old region and
2550                          * fold in the scrub dtl.  Otherwise, leave the
2551                          * dtl as-is if there was an error.
2552                          *
2553                          * There's little trick here: to excise the beginning
2554                          * of the DTL_MISSING map, we put it into a reference
2555                          * tree and then add a segment with refcnt -1 that
2556                          * covers the range [0, scrub_txg).  This means
2557                          * that each txg in that range has refcnt -1 or 0.
2558                          * We then add DTL_SCRUB with a refcnt of 2, so that
2559                          * entries in the range [0, scrub_txg) will have a
2560                          * positive refcnt -- either 1 or 2.  We then convert
2561                          * the reference tree into the new DTL_MISSING map.
2562                          */
2563                         space_reftree_create(&reftree);
2564                         space_reftree_add_map(&reftree,
2565                             vd->vdev_dtl[DTL_MISSING], 1);
2566                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2567                         space_reftree_add_map(&reftree,
2568                             vd->vdev_dtl[DTL_SCRUB], 2);
2569                         space_reftree_generate_map(&reftree,
2570                             vd->vdev_dtl[DTL_MISSING], 1);
2571                         space_reftree_destroy(&reftree);
2572                 }
2573                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2574                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2575                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2576                 if (scrub_done)
2577                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2578                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2579                 if (!vdev_readable(vd))
2580                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2581                 else
2582                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2583                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2584
2585                 /*
2586                  * If the vdev was resilvering and no longer has any
2587                  * DTLs then reset its resilvering flag and dirty
2588                  * the top level so that we persist the change.
2589                  */
2590                 if (vd->vdev_resilver_txg != 0 &&
2591                     range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2592                     range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2593                         vd->vdev_resilver_txg = 0;
2594                         vdev_config_dirty(vd->vdev_top);
2595                 }
2596
2597                 mutex_exit(&vd->vdev_dtl_lock);
2598
2599                 if (txg != 0)
2600                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2601                 return;
2602         }
2603
2604         mutex_enter(&vd->vdev_dtl_lock);
2605         for (int t = 0; t < DTL_TYPES; t++) {
2606                 /* account for child's outage in parent's missing map */
2607                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2608                 if (t == DTL_SCRUB)
2609                         continue;                       /* leaf vdevs only */
2610                 if (t == DTL_PARTIAL)
2611                         minref = 1;                     /* i.e. non-zero */
2612                 else if (vd->vdev_nparity != 0)
2613                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2614                 else
2615                         minref = vd->vdev_children;     /* any kind of mirror */
2616                 space_reftree_create(&reftree);
2617                 for (int c = 0; c < vd->vdev_children; c++) {
2618                         vdev_t *cvd = vd->vdev_child[c];
2619                         mutex_enter(&cvd->vdev_dtl_lock);
2620                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2621                         mutex_exit(&cvd->vdev_dtl_lock);
2622                 }
2623                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2624                 space_reftree_destroy(&reftree);
2625         }
2626         mutex_exit(&vd->vdev_dtl_lock);
2627 }
2628
2629 int
2630 vdev_dtl_load(vdev_t *vd)
2631 {
2632         spa_t *spa = vd->vdev_spa;
2633         objset_t *mos = spa->spa_meta_objset;
2634         int error = 0;
2635
2636         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2637                 ASSERT(vdev_is_concrete(vd));
2638
2639                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2640                     vd->vdev_dtl_object, 0, -1ULL, 0);
2641                 if (error)
2642                         return (error);
2643                 ASSERT(vd->vdev_dtl_sm != NULL);
2644
2645                 mutex_enter(&vd->vdev_dtl_lock);
2646
2647                 /*
2648                  * Now that we've opened the space_map we need to update
2649                  * the in-core DTL.
2650                  */
2651                 space_map_update(vd->vdev_dtl_sm);
2652
2653                 error = space_map_load(vd->vdev_dtl_sm,
2654                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2655                 mutex_exit(&vd->vdev_dtl_lock);
2656
2657                 return (error);
2658         }
2659
2660         for (int c = 0; c < vd->vdev_children; c++) {
2661                 error = vdev_dtl_load(vd->vdev_child[c]);
2662                 if (error != 0)
2663                         break;
2664         }
2665
2666         return (error);
2667 }
2668
2669 void
2670 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2671 {
2672         spa_t *spa = vd->vdev_spa;
2673
2674         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2675         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2676             zapobj, tx));
2677 }
2678
2679 uint64_t
2680 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2681 {
2682         spa_t *spa = vd->vdev_spa;
2683         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2684             DMU_OT_NONE, 0, tx);
2685
2686         ASSERT(zap != 0);
2687         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2688             zap, tx));
2689
2690         return (zap);
2691 }
2692
2693 void
2694 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2695 {
2696         if (vd->vdev_ops != &vdev_hole_ops &&
2697             vd->vdev_ops != &vdev_missing_ops &&
2698             vd->vdev_ops != &vdev_root_ops &&
2699             !vd->vdev_top->vdev_removing) {
2700                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2701                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2702                 }
2703                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2704                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2705                 }
2706         }
2707         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2708                 vdev_construct_zaps(vd->vdev_child[i], tx);
2709         }
2710 }
2711
2712 void
2713 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2714 {
2715         spa_t *spa = vd->vdev_spa;
2716         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2717         objset_t *mos = spa->spa_meta_objset;
2718         range_tree_t *rtsync;
2719         dmu_tx_t *tx;
2720         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2721
2722         ASSERT(vdev_is_concrete(vd));
2723         ASSERT(vd->vdev_ops->vdev_op_leaf);
2724
2725         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2726
2727         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2728                 mutex_enter(&vd->vdev_dtl_lock);
2729                 space_map_free(vd->vdev_dtl_sm, tx);
2730                 space_map_close(vd->vdev_dtl_sm);
2731                 vd->vdev_dtl_sm = NULL;
2732                 mutex_exit(&vd->vdev_dtl_lock);
2733
2734                 /*
2735                  * We only destroy the leaf ZAP for detached leaves or for
2736                  * removed log devices. Removed data devices handle leaf ZAP
2737                  * cleanup later, once cancellation is no longer possible.
2738                  */
2739                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2740                     vd->vdev_top->vdev_islog)) {
2741                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2742                         vd->vdev_leaf_zap = 0;
2743                 }
2744
2745                 dmu_tx_commit(tx);
2746                 return;
2747         }
2748
2749         if (vd->vdev_dtl_sm == NULL) {
2750                 uint64_t new_object;
2751
2752                 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2753                 VERIFY3U(new_object, !=, 0);
2754
2755                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2756                     0, -1ULL, 0));
2757                 ASSERT(vd->vdev_dtl_sm != NULL);
2758         }
2759
2760         rtsync = range_tree_create(NULL, NULL);
2761
2762         mutex_enter(&vd->vdev_dtl_lock);
2763         range_tree_walk(rt, range_tree_add, rtsync);
2764         mutex_exit(&vd->vdev_dtl_lock);
2765
2766         space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2767         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2768         range_tree_vacate(rtsync, NULL, NULL);
2769
2770         range_tree_destroy(rtsync);
2771
2772         /*
2773          * If the object for the space map has changed then dirty
2774          * the top level so that we update the config.
2775          */
2776         if (object != space_map_object(vd->vdev_dtl_sm)) {
2777                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2778                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
2779                     (u_longlong_t)object,
2780                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2781                 vdev_config_dirty(vd->vdev_top);
2782         }
2783
2784         dmu_tx_commit(tx);
2785
2786         mutex_enter(&vd->vdev_dtl_lock);
2787         space_map_update(vd->vdev_dtl_sm);
2788         mutex_exit(&vd->vdev_dtl_lock);
2789 }
2790
2791 /*
2792  * Determine whether the specified vdev can be offlined/detached/removed
2793  * without losing data.
2794  */
2795 boolean_t
2796 vdev_dtl_required(vdev_t *vd)
2797 {
2798         spa_t *spa = vd->vdev_spa;
2799         vdev_t *tvd = vd->vdev_top;
2800         uint8_t cant_read = vd->vdev_cant_read;
2801         boolean_t required;
2802
2803         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2804
2805         if (vd == spa->spa_root_vdev || vd == tvd)
2806                 return (B_TRUE);
2807
2808         /*
2809          * Temporarily mark the device as unreadable, and then determine
2810          * whether this results in any DTL outages in the top-level vdev.
2811          * If not, we can safely offline/detach/remove the device.
2812          */
2813         vd->vdev_cant_read = B_TRUE;
2814         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2815         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2816         vd->vdev_cant_read = cant_read;
2817         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2818
2819         if (!required && zio_injection_enabled)
2820                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2821
2822         return (required);
2823 }
2824
2825 /*
2826  * Determine if resilver is needed, and if so the txg range.
2827  */
2828 boolean_t
2829 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2830 {
2831         boolean_t needed = B_FALSE;
2832         uint64_t thismin = UINT64_MAX;
2833         uint64_t thismax = 0;
2834
2835         if (vd->vdev_children == 0) {
2836                 mutex_enter(&vd->vdev_dtl_lock);
2837                 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2838                     vdev_writeable(vd)) {
2839
2840                         thismin = vdev_dtl_min(vd);
2841                         thismax = vdev_dtl_max(vd);
2842                         needed = B_TRUE;
2843                 }
2844                 mutex_exit(&vd->vdev_dtl_lock);
2845         } else {
2846                 for (int c = 0; c < vd->vdev_children; c++) {
2847                         vdev_t *cvd = vd->vdev_child[c];
2848                         uint64_t cmin, cmax;
2849
2850                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2851                                 thismin = MIN(thismin, cmin);
2852                                 thismax = MAX(thismax, cmax);
2853                                 needed = B_TRUE;
2854                         }
2855                 }
2856         }
2857
2858         if (needed && minp) {
2859                 *minp = thismin;
2860                 *maxp = thismax;
2861         }
2862         return (needed);
2863 }
2864
2865 /*
2866  * Gets the checkpoint space map object from the vdev's ZAP.
2867  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2868  * or the ZAP doesn't exist yet.
2869  */
2870 int
2871 vdev_checkpoint_sm_object(vdev_t *vd)
2872 {
2873         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2874         if (vd->vdev_top_zap == 0) {
2875                 return (0);
2876         }
2877
2878         uint64_t sm_obj = 0;
2879         int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2880             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2881
2882         ASSERT(err == 0 || err == ENOENT);
2883
2884         return (sm_obj);
2885 }
2886
2887 int
2888 vdev_load(vdev_t *vd)
2889 {
2890         int error = 0;
2891         /*
2892          * Recursively load all children.
2893          */
2894         for (int c = 0; c < vd->vdev_children; c++) {
2895                 error = vdev_load(vd->vdev_child[c]);
2896                 if (error != 0) {
2897                         return (error);
2898                 }
2899         }
2900
2901         vdev_set_deflate_ratio(vd);
2902
2903         /*
2904          * If this is a top-level vdev, initialize its metaslabs.
2905          */
2906         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2907                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2908                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2909                             VDEV_AUX_CORRUPT_DATA);
2910                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2911                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2912                             (u_longlong_t)vd->vdev_asize);
2913                         return (SET_ERROR(ENXIO));
2914                 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2915                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2916                             "[error=%d]", error);
2917                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2918                             VDEV_AUX_CORRUPT_DATA);
2919                         return (error);
2920                 }
2921
2922                 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2923                 if (checkpoint_sm_obj != 0) {
2924                         objset_t *mos = spa_meta_objset(vd->vdev_spa);
2925                         ASSERT(vd->vdev_asize != 0);
2926                         ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2927
2928                         if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2929                             mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2930                             vd->vdev_ashift))) {
2931                                 vdev_dbgmsg(vd, "vdev_load: space_map_open "
2932                                     "failed for checkpoint spacemap (obj %llu) "
2933                                     "[error=%d]",
2934                                     (u_longlong_t)checkpoint_sm_obj, error);
2935                                 return (error);
2936                         }
2937                         ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2938                         space_map_update(vd->vdev_checkpoint_sm);
2939
2940                         /*
2941                          * Since the checkpoint_sm contains free entries
2942                          * exclusively we can use sm_alloc to indicate the
2943                          * culmulative checkpointed space that has been freed.
2944                          */
2945                         vd->vdev_stat.vs_checkpoint_space =
2946                             -vd->vdev_checkpoint_sm->sm_alloc;
2947                         vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2948                             vd->vdev_stat.vs_checkpoint_space;
2949                 }
2950         }
2951
2952         /*
2953          * If this is a leaf vdev, load its DTL.
2954          */
2955         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2956                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2957                     VDEV_AUX_CORRUPT_DATA);
2958                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2959                     "[error=%d]", error);
2960                 return (error);
2961         }
2962
2963         uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2964         if (obsolete_sm_object != 0) {
2965                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2966                 ASSERT(vd->vdev_asize != 0);
2967                 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2968
2969                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2970                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2971                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2972                             VDEV_AUX_CORRUPT_DATA);
2973                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2974                             "obsolete spacemap (obj %llu) [error=%d]",
2975                             (u_longlong_t)obsolete_sm_object, error);
2976                         return (error);
2977                 }
2978                 space_map_update(vd->vdev_obsolete_sm);
2979         }
2980
2981         return (0);
2982 }
2983
2984 /*
2985  * The special vdev case is used for hot spares and l2cache devices.  Its
2986  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2987  * we make sure that we can open the underlying device, then try to read the
2988  * label, and make sure that the label is sane and that it hasn't been
2989  * repurposed to another pool.
2990  */
2991 int
2992 vdev_validate_aux(vdev_t *vd)
2993 {
2994         nvlist_t *label;
2995         uint64_t guid, version;
2996         uint64_t state;
2997
2998         if (!vdev_readable(vd))
2999                 return (0);
3000
3001         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3002                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3003                     VDEV_AUX_CORRUPT_DATA);
3004                 return (-1);
3005         }
3006
3007         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3008             !SPA_VERSION_IS_SUPPORTED(version) ||
3009             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3010             guid != vd->vdev_guid ||
3011             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3012                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3013                     VDEV_AUX_CORRUPT_DATA);
3014                 nvlist_free(label);
3015                 return (-1);
3016         }
3017
3018         /*
3019          * We don't actually check the pool state here.  If it's in fact in
3020          * use by another pool, we update this fact on the fly when requested.
3021          */
3022         nvlist_free(label);
3023         return (0);
3024 }
3025
3026 /*
3027  * Free the objects used to store this vdev's spacemaps, and the array
3028  * that points to them.
3029  */
3030 void
3031 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3032 {
3033         if (vd->vdev_ms_array == 0)
3034                 return;
3035
3036         objset_t *mos = vd->vdev_spa->spa_meta_objset;
3037         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3038         size_t array_bytes = array_count * sizeof (uint64_t);
3039         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3040         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3041             array_bytes, smobj_array, 0));
3042
3043         for (uint64_t i = 0; i < array_count; i++) {
3044                 uint64_t smobj = smobj_array[i];
3045                 if (smobj == 0)
3046                         continue;
3047
3048                 space_map_free_obj(mos, smobj, tx);
3049         }
3050
3051         kmem_free(smobj_array, array_bytes);
3052         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3053         vd->vdev_ms_array = 0;
3054 }
3055
3056 static void
3057 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3058 {
3059         spa_t *spa = vd->vdev_spa;
3060
3061         ASSERT(vd->vdev_islog);
3062         ASSERT(vd == vd->vdev_top);
3063         ASSERT3U(txg, ==, spa_syncing_txg(spa));
3064
3065         if (vd->vdev_ms != NULL) {
3066                 metaslab_group_t *mg = vd->vdev_mg;
3067
3068                 metaslab_group_histogram_verify(mg);
3069                 metaslab_class_histogram_verify(mg->mg_class);
3070
3071                 for (int m = 0; m < vd->vdev_ms_count; m++) {
3072                         metaslab_t *msp = vd->vdev_ms[m];
3073
3074                         if (msp == NULL || msp->ms_sm == NULL)
3075                                 continue;
3076
3077                         mutex_enter(&msp->ms_lock);
3078                         /*
3079                          * If the metaslab was not loaded when the vdev
3080                          * was removed then the histogram accounting may
3081                          * not be accurate. Update the histogram information
3082                          * here so that we ensure that the metaslab group
3083                          * and metaslab class are up-to-date.
3084                          */
3085                         metaslab_group_histogram_remove(mg, msp);
3086
3087                         VERIFY0(space_map_allocated(msp->ms_sm));
3088                         space_map_close(msp->ms_sm);
3089                         msp->ms_sm = NULL;
3090                         mutex_exit(&msp->ms_lock);
3091                 }
3092
3093                 if (vd->vdev_checkpoint_sm != NULL) {
3094                         ASSERT(spa_has_checkpoint(spa));
3095                         space_map_close(vd->vdev_checkpoint_sm);
3096                         vd->vdev_checkpoint_sm = NULL;
3097                 }
3098
3099                 metaslab_group_histogram_verify(mg);
3100                 metaslab_class_histogram_verify(mg->mg_class);
3101                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
3102                         ASSERT0(mg->mg_histogram[i]);
3103         }
3104
3105         dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3106
3107         vdev_destroy_spacemaps(vd, tx);
3108         if (vd->vdev_top_zap != 0) {
3109                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3110                 vd->vdev_top_zap = 0;
3111         }
3112
3113         dmu_tx_commit(tx);
3114 }
3115
3116 void
3117 vdev_sync_done(vdev_t *vd, uint64_t txg)
3118 {
3119         metaslab_t *msp;
3120         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3121
3122         ASSERT(vdev_is_concrete(vd));
3123
3124         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3125             != NULL)
3126                 metaslab_sync_done(msp, txg);
3127
3128         if (reassess)
3129                 metaslab_sync_reassess(vd->vdev_mg);
3130 }
3131
3132 void
3133 vdev_sync(vdev_t *vd, uint64_t txg)
3134 {
3135         spa_t *spa = vd->vdev_spa;
3136         vdev_t *lvd;
3137         metaslab_t *msp;
3138         dmu_tx_t *tx;
3139
3140         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3141                 dmu_tx_t *tx;
3142
3143                 ASSERT(vd->vdev_removing ||
3144                     vd->vdev_ops == &vdev_indirect_ops);
3145
3146                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3147                 vdev_indirect_sync_obsolete(vd, tx);
3148                 dmu_tx_commit(tx);
3149
3150                 /*
3151                  * If the vdev is indirect, it can't have dirty
3152                  * metaslabs or DTLs.
3153                  */
3154                 if (vd->vdev_ops == &vdev_indirect_ops) {
3155                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3156                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3157                         return;
3158                 }
3159         }
3160
3161         ASSERT(vdev_is_concrete(vd));
3162
3163         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3164             !vd->vdev_removing) {
3165                 ASSERT(vd == vd->vdev_top);
3166                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3167                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3168                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3169                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3170                 ASSERT(vd->vdev_ms_array != 0);
3171                 vdev_config_dirty(vd);
3172                 dmu_tx_commit(tx);
3173         }
3174
3175         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3176                 metaslab_sync(msp, txg);
3177                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3178         }
3179
3180         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3181                 vdev_dtl_sync(lvd, txg);
3182
3183         /*
3184          * If this is an empty log device being removed, destroy the
3185          * metadata associated with it.
3186          */
3187         if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3188                 vdev_remove_empty_log(vd, txg);
3189
3190         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3191 }
3192
3193 uint64_t
3194 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3195 {
3196         return (vd->vdev_ops->vdev_op_asize(vd, psize));
3197 }
3198
3199 /*
3200  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3201  * not be opened, and no I/O is attempted.
3202  */
3203 int
3204 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3205 {
3206         vdev_t *vd, *tvd;
3207
3208         spa_vdev_state_enter(spa, SCL_NONE);
3209
3210         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3211                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3212
3213         if (!vd->vdev_ops->vdev_op_leaf)
3214                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3215
3216         tvd = vd->vdev_top;
3217
3218         /*
3219          * We don't directly use the aux state here, but if we do a
3220          * vdev_reopen(), we need this value to be present to remember why we
3221          * were faulted.
3222          */
3223         vd->vdev_label_aux = aux;
3224
3225         /*
3226          * Faulted state takes precedence over degraded.
3227          */
3228         vd->vdev_delayed_close = B_FALSE;
3229         vd->vdev_faulted = 1ULL;
3230         vd->vdev_degraded = 0ULL;
3231         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3232
3233         /*
3234          * If this device has the only valid copy of the data, then
3235          * back off and simply mark the vdev as degraded instead.
3236          */
3237         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3238                 vd->vdev_degraded = 1ULL;
3239                 vd->vdev_faulted = 0ULL;
3240
3241                 /*
3242                  * If we reopen the device and it's not dead, only then do we
3243                  * mark it degraded.
3244                  */
3245                 vdev_reopen(tvd);
3246
3247                 if (vdev_readable(vd))
3248                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3249         }
3250
3251         return (spa_vdev_state_exit(spa, vd, 0));
3252 }
3253
3254 /*
3255  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3256  * user that something is wrong.  The vdev continues to operate as normal as far
3257  * as I/O is concerned.
3258  */
3259 int
3260 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3261 {
3262         vdev_t *vd;
3263
3264         spa_vdev_state_enter(spa, SCL_NONE);
3265
3266         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3267                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3268
3269         if (!vd->vdev_ops->vdev_op_leaf)
3270                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3271
3272         /*
3273          * If the vdev is already faulted, then don't do anything.
3274          */
3275         if (vd->vdev_faulted || vd->vdev_degraded)
3276                 return (spa_vdev_state_exit(spa, NULL, 0));
3277
3278         vd->vdev_degraded = 1ULL;
3279         if (!vdev_is_dead(vd))
3280                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3281                     aux);
3282
3283         return (spa_vdev_state_exit(spa, vd, 0));
3284 }
3285
3286 /*
3287  * Online the given vdev.
3288  *
3289  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3290  * spare device should be detached when the device finishes resilvering.
3291  * Second, the online should be treated like a 'test' online case, so no FMA
3292  * events are generated if the device fails to open.
3293  */
3294 int
3295 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3296 {
3297         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3298         boolean_t wasoffline;
3299         vdev_state_t oldstate;
3300
3301         spa_vdev_state_enter(spa, SCL_NONE);
3302
3303         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3304                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3305
3306         if (!vd->vdev_ops->vdev_op_leaf)
3307                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3308
3309         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3310         oldstate = vd->vdev_state;
3311
3312         tvd = vd->vdev_top;
3313         vd->vdev_offline = B_FALSE;
3314         vd->vdev_tmpoffline = B_FALSE;
3315         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3316         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3317
3318         /* XXX - L2ARC 1.0 does not support expansion */
3319         if (!vd->vdev_aux) {
3320                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3321                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3322         }
3323
3324         vdev_reopen(tvd);
3325         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3326
3327         if (!vd->vdev_aux) {
3328                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3329                         pvd->vdev_expanding = B_FALSE;
3330         }
3331
3332         if (newstate)
3333                 *newstate = vd->vdev_state;
3334         if ((flags & ZFS_ONLINE_UNSPARE) &&
3335             !vdev_is_dead(vd) && vd->vdev_parent &&
3336             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3337             vd->vdev_parent->vdev_child[0] == vd)
3338                 vd->vdev_unspare = B_TRUE;
3339
3340         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3341
3342                 /* XXX - L2ARC 1.0 does not support expansion */
3343                 if (vd->vdev_aux)
3344                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3345                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3346         }
3347
3348         /* Restart initializing if necessary */
3349         mutex_enter(&vd->vdev_initialize_lock);
3350         if (vdev_writeable(vd) &&
3351             vd->vdev_initialize_thread == NULL &&
3352             vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3353                 (void) vdev_initialize(vd);
3354         }
3355         mutex_exit(&vd->vdev_initialize_lock);
3356
3357         if (wasoffline ||
3358             (oldstate < VDEV_STATE_DEGRADED &&
3359             vd->vdev_state >= VDEV_STATE_DEGRADED))
3360                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3361
3362         return (spa_vdev_state_exit(spa, vd, 0));
3363 }
3364
3365 static int
3366 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3367 {
3368         vdev_t *vd, *tvd;
3369         int error = 0;
3370         uint64_t generation;
3371         metaslab_group_t *mg;
3372
3373 top:
3374         spa_vdev_state_enter(spa, SCL_ALLOC);
3375
3376         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3377                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3378
3379         if (!vd->vdev_ops->vdev_op_leaf)
3380                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3381
3382         tvd = vd->vdev_top;
3383         mg = tvd->vdev_mg;
3384         generation = spa->spa_config_generation + 1;
3385
3386         /*
3387          * If the device isn't already offline, try to offline it.
3388          */
3389         if (!vd->vdev_offline) {
3390                 /*
3391                  * If this device has the only valid copy of some data,
3392                  * don't allow it to be offlined. Log devices are always
3393                  * expendable.
3394                  */
3395                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3396                     vdev_dtl_required(vd))
3397                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
3398
3399                 /*
3400                  * If the top-level is a slog and it has had allocations
3401                  * then proceed.  We check that the vdev's metaslab group
3402                  * is not NULL since it's possible that we may have just
3403                  * added this vdev but not yet initialized its metaslabs.
3404                  */
3405                 if (tvd->vdev_islog && mg != NULL) {
3406                         /*
3407                          * Prevent any future allocations.
3408                          */
3409                         metaslab_group_passivate(mg);
3410                         (void) spa_vdev_state_exit(spa, vd, 0);
3411
3412                         error = spa_reset_logs(spa);
3413
3414                         /*
3415                          * If the log device was successfully reset but has
3416                          * checkpointed data, do not offline it.
3417                          */
3418                         if (error == 0 &&
3419                             tvd->vdev_checkpoint_sm != NULL) {
3420                                 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3421                                     !=, 0);
3422                                 error = ZFS_ERR_CHECKPOINT_EXISTS;
3423                         }
3424
3425                         spa_vdev_state_enter(spa, SCL_ALLOC);
3426
3427                         /*
3428                          * Check to see if the config has changed.
3429                          */
3430                         if (error || generation != spa->spa_config_generation) {
3431                                 metaslab_group_activate(mg);
3432                                 if (error)
3433                                         return (spa_vdev_state_exit(spa,
3434                                             vd, error));
3435                                 (void) spa_vdev_state_exit(spa, vd, 0);
3436                                 goto top;
3437                         }
3438                         ASSERT0(tvd->vdev_stat.vs_alloc);
3439                 }
3440
3441                 /*
3442                  * Offline this device and reopen its top-level vdev.
3443                  * If the top-level vdev is a log device then just offline
3444                  * it. Otherwise, if this action results in the top-level
3445                  * vdev becoming unusable, undo it and fail the request.
3446                  */
3447                 vd->vdev_offline = B_TRUE;
3448                 vdev_reopen(tvd);
3449
3450                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3451                     vdev_is_dead(tvd)) {
3452                         vd->vdev_offline = B_FALSE;
3453                         vdev_reopen(tvd);
3454                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
3455                 }
3456
3457                 /*
3458                  * Add the device back into the metaslab rotor so that
3459                  * once we online the device it's open for business.
3460                  */
3461                 if (tvd->vdev_islog && mg != NULL)
3462                         metaslab_group_activate(mg);
3463         }
3464
3465         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3466
3467         return (spa_vdev_state_exit(spa, vd, 0));
3468 }
3469
3470 int
3471 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3472 {
3473         int error;
3474
3475         mutex_enter(&spa->spa_vdev_top_lock);
3476         error = vdev_offline_locked(spa, guid, flags);
3477         mutex_exit(&spa->spa_vdev_top_lock);
3478
3479         return (error);
3480 }
3481
3482 /*
3483  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3484  * vdev_offline(), we assume the spa config is locked.  We also clear all
3485  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3486  */
3487 void
3488 vdev_clear(spa_t *spa, vdev_t *vd)
3489 {
3490         vdev_t *rvd = spa->spa_root_vdev;
3491
3492         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3493
3494         if (vd == NULL)
3495                 vd = rvd;
3496
3497         vd->vdev_stat.vs_read_errors = 0;
3498         vd->vdev_stat.vs_write_errors = 0;
3499         vd->vdev_stat.vs_checksum_errors = 0;
3500
3501         for (int c = 0; c < vd->vdev_children; c++)
3502                 vdev_clear(spa, vd->vdev_child[c]);
3503
3504         if (vd == rvd) {
3505                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
3506                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
3507
3508                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
3509                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
3510         }
3511
3512         /*
3513          * It makes no sense to "clear" an indirect vdev.
3514          */
3515         if (!vdev_is_concrete(vd))
3516                 return;
3517
3518         /*
3519          * If we're in the FAULTED state or have experienced failed I/O, then
3520          * clear the persistent state and attempt to reopen the device.  We
3521          * also mark the vdev config dirty, so that the new faulted state is
3522          * written out to disk.
3523          */
3524         if (vd->vdev_faulted || vd->vdev_degraded ||
3525             !vdev_readable(vd) || !vdev_writeable(vd)) {
3526
3527                 /*
3528                  * When reopening in reponse to a clear event, it may be due to
3529                  * a fmadm repair request.  In this case, if the device is
3530                  * still broken, we want to still post the ereport again.
3531                  */
3532                 vd->vdev_forcefault = B_TRUE;
3533
3534                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3535                 vd->vdev_cant_read = B_FALSE;
3536                 vd->vdev_cant_write = B_FALSE;
3537
3538                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3539
3540                 vd->vdev_forcefault = B_FALSE;
3541
3542                 if (vd != rvd && vdev_writeable(vd->vdev_top))
3543                         vdev_state_dirty(vd->vdev_top);
3544
3545                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3546                         spa_async_request(spa, SPA_ASYNC_RESILVER);
3547
3548                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3549         }
3550
3551         /*
3552          * When clearing a FMA-diagnosed fault, we always want to
3553          * unspare the device, as we assume that the original spare was
3554          * done in response to the FMA fault.
3555          */
3556         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3557             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3558             vd->vdev_parent->vdev_child[0] == vd)
3559                 vd->vdev_unspare = B_TRUE;
3560 }
3561
3562 boolean_t
3563 vdev_is_dead(vdev_t *vd)
3564 {
3565         /*
3566          * Holes and missing devices are always considered "dead".
3567          * This simplifies the code since we don't have to check for
3568          * these types of devices in the various code paths.
3569          * Instead we rely on the fact that we skip over dead devices
3570          * before issuing I/O to them.
3571          */
3572         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3573             vd->vdev_ops == &vdev_hole_ops ||
3574             vd->vdev_ops == &vdev_missing_ops);
3575 }
3576
3577 boolean_t
3578 vdev_readable(vdev_t *vd)
3579 {
3580         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3581 }
3582
3583 boolean_t
3584 vdev_writeable(vdev_t *vd)
3585 {
3586         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3587             vdev_is_concrete(vd));
3588 }
3589
3590 boolean_t
3591 vdev_allocatable(vdev_t *vd)
3592 {
3593         uint64_t state = vd->vdev_state;
3594
3595         /*
3596          * We currently allow allocations from vdevs which may be in the
3597          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3598          * fails to reopen then we'll catch it later when we're holding
3599          * the proper locks.  Note that we have to get the vdev state
3600          * in a local variable because although it changes atomically,
3601          * we're asking two separate questions about it.
3602          */
3603         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3604             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3605             vd->vdev_mg->mg_initialized);
3606 }
3607
3608 boolean_t
3609 vdev_accessible(vdev_t *vd, zio_t *zio)
3610 {
3611         ASSERT(zio->io_vd == vd);
3612
3613         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3614                 return (B_FALSE);
3615
3616         if (zio->io_type == ZIO_TYPE_READ)
3617                 return (!vd->vdev_cant_read);
3618
3619         if (zio->io_type == ZIO_TYPE_WRITE)
3620                 return (!vd->vdev_cant_write);
3621
3622         return (B_TRUE);
3623 }
3624
3625 boolean_t
3626 vdev_is_spacemap_addressable(vdev_t *vd)
3627 {
3628         if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3629                 return (B_TRUE);
3630
3631         /*
3632          * If double-word space map entries are not enabled we assume
3633          * 47 bits of the space map entry are dedicated to the entry's
3634          * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3635          * to calculate the maximum address that can be described by a
3636          * space map entry for the given device.
3637          */
3638         uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3639
3640         if (shift >= 63) /* detect potential overflow */
3641                 return (B_TRUE);
3642
3643         return (vd->vdev_asize < (1ULL << shift));
3644 }
3645
3646 /*
3647  * Get statistics for the given vdev.
3648  */
3649 void
3650 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3651 {
3652         spa_t *spa = vd->vdev_spa;
3653         vdev_t *rvd = spa->spa_root_vdev;
3654         vdev_t *tvd = vd->vdev_top;
3655
3656         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3657
3658         mutex_enter(&vd->vdev_stat_lock);
3659         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3660         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3661         vs->vs_state = vd->vdev_state;
3662         vs->vs_rsize = vdev_get_min_asize(vd);
3663         if (vd->vdev_ops->vdev_op_leaf) {
3664                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3665                 /*
3666                  * Report intializing progress. Since we don't have the
3667                  * initializing locks held, this is only an estimate (although a
3668                  * fairly accurate one).
3669                  */
3670                 vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3671                 vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3672                 vs->vs_initialize_state = vd->vdev_initialize_state;
3673                 vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3674         }
3675         /*
3676          * Report expandable space on top-level, non-auxillary devices only.
3677          * The expandable space is reported in terms of metaslab sized units
3678          * since that determines how much space the pool can expand.
3679          */
3680         if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
3681                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3682                     spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3683         }
3684         vs->vs_configured_ashift = vd->vdev_top != NULL
3685             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
3686         vs->vs_logical_ashift = vd->vdev_logical_ashift;
3687         vs->vs_physical_ashift = vd->vdev_physical_ashift;
3688         if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3689             vdev_is_concrete(vd)) {
3690                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3691         }
3692
3693         /*
3694          * If we're getting stats on the root vdev, aggregate the I/O counts
3695          * over all top-level vdevs (i.e. the direct children of the root).
3696          */
3697         if (vd == rvd) {
3698                 for (int c = 0; c < rvd->vdev_children; c++) {
3699                         vdev_t *cvd = rvd->vdev_child[c];
3700                         vdev_stat_t *cvs = &cvd->vdev_stat;
3701
3702                         for (int t = 0; t < ZIO_TYPES; t++) {
3703                                 vs->vs_ops[t] += cvs->vs_ops[t];
3704                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3705                         }
3706                         cvs->vs_scan_removing = cvd->vdev_removing;
3707                 }
3708         }
3709         mutex_exit(&vd->vdev_stat_lock);
3710 }
3711
3712 void
3713 vdev_clear_stats(vdev_t *vd)
3714 {
3715         mutex_enter(&vd->vdev_stat_lock);
3716         vd->vdev_stat.vs_space = 0;
3717         vd->vdev_stat.vs_dspace = 0;
3718         vd->vdev_stat.vs_alloc = 0;
3719         mutex_exit(&vd->vdev_stat_lock);
3720 }
3721
3722 void
3723 vdev_scan_stat_init(vdev_t *vd)
3724 {
3725         vdev_stat_t *vs = &vd->vdev_stat;
3726
3727         for (int c = 0; c < vd->vdev_children; c++)
3728                 vdev_scan_stat_init(vd->vdev_child[c]);
3729
3730         mutex_enter(&vd->vdev_stat_lock);
3731         vs->vs_scan_processed = 0;
3732         mutex_exit(&vd->vdev_stat_lock);
3733 }
3734
3735 void
3736 vdev_stat_update(zio_t *zio, uint64_t psize)
3737 {
3738         spa_t *spa = zio->io_spa;
3739         vdev_t *rvd = spa->spa_root_vdev;
3740         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3741         vdev_t *pvd;
3742         uint64_t txg = zio->io_txg;
3743         vdev_stat_t *vs = &vd->vdev_stat;
3744         zio_type_t type = zio->io_type;
3745         int flags = zio->io_flags;
3746
3747         /*
3748          * If this i/o is a gang leader, it didn't do any actual work.
3749          */
3750         if (zio->io_gang_tree)
3751                 return;
3752
3753         if (zio->io_error == 0) {
3754                 /*
3755                  * If this is a root i/o, don't count it -- we've already
3756                  * counted the top-level vdevs, and vdev_get_stats() will
3757                  * aggregate them when asked.  This reduces contention on
3758                  * the root vdev_stat_lock and implicitly handles blocks
3759                  * that compress away to holes, for which there is no i/o.
3760                  * (Holes never create vdev children, so all the counters
3761                  * remain zero, which is what we want.)
3762                  *
3763                  * Note: this only applies to successful i/o (io_error == 0)
3764                  * because unlike i/o counts, errors are not additive.
3765                  * When reading a ditto block, for example, failure of
3766                  * one top-level vdev does not imply a root-level error.
3767                  */
3768                 if (vd == rvd)
3769                         return;
3770
3771                 ASSERT(vd == zio->io_vd);
3772
3773                 if (flags & ZIO_FLAG_IO_BYPASS)
3774                         return;
3775
3776                 mutex_enter(&vd->vdev_stat_lock);
3777
3778                 if (flags & ZIO_FLAG_IO_REPAIR) {
3779                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3780                                 dsl_scan_phys_t *scn_phys =
3781                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3782                                 uint64_t *processed = &scn_phys->scn_processed;
3783
3784                                 /* XXX cleanup? */
3785                                 if (vd->vdev_ops->vdev_op_leaf)
3786                                         atomic_add_64(processed, psize);
3787                                 vs->vs_scan_processed += psize;
3788                         }
3789
3790                         if (flags & ZIO_FLAG_SELF_HEAL)
3791                                 vs->vs_self_healed += psize;
3792                 }
3793
3794                 vs->vs_ops[type]++;
3795                 vs->vs_bytes[type] += psize;
3796
3797                 mutex_exit(&vd->vdev_stat_lock);
3798                 return;
3799         }
3800
3801         if (flags & ZIO_FLAG_SPECULATIVE)
3802                 return;
3803
3804         /*
3805          * If this is an I/O error that is going to be retried, then ignore the
3806          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3807          * hard errors, when in reality they can happen for any number of
3808          * innocuous reasons (bus resets, MPxIO link failure, etc).
3809          */
3810         if (zio->io_error == EIO &&
3811             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3812                 return;
3813
3814         /*
3815          * Intent logs writes won't propagate their error to the root
3816          * I/O so don't mark these types of failures as pool-level
3817          * errors.
3818          */
3819         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3820                 return;
3821
3822         mutex_enter(&vd->vdev_stat_lock);
3823         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3824                 if (zio->io_error == ECKSUM)
3825                         vs->vs_checksum_errors++;
3826                 else
3827                         vs->vs_read_errors++;
3828         }
3829         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3830                 vs->vs_write_errors++;
3831         mutex_exit(&vd->vdev_stat_lock);
3832
3833         if (spa->spa_load_state == SPA_LOAD_NONE &&
3834             type == ZIO_TYPE_WRITE && txg != 0 &&
3835             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3836             (flags & ZIO_FLAG_SCAN_THREAD) ||
3837             spa->spa_claiming)) {
3838                 /*
3839                  * This is either a normal write (not a repair), or it's
3840                  * a repair induced by the scrub thread, or it's a repair
3841                  * made by zil_claim() during spa_load() in the first txg.
3842                  * In the normal case, we commit the DTL change in the same
3843                  * txg as the block was born.  In the scrub-induced repair
3844                  * case, we know that scrubs run in first-pass syncing context,
3845                  * so we commit the DTL change in spa_syncing_txg(spa).
3846                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3847                  *
3848                  * We currently do not make DTL entries for failed spontaneous
3849                  * self-healing writes triggered by normal (non-scrubbing)
3850                  * reads, because we have no transactional context in which to
3851                  * do so -- and it's not clear that it'd be desirable anyway.
3852                  */
3853                 if (vd->vdev_ops->vdev_op_leaf) {
3854                         uint64_t commit_txg = txg;
3855                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3856                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3857                                 ASSERT(spa_sync_pass(spa) == 1);
3858                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3859                                 commit_txg = spa_syncing_txg(spa);
3860                         } else if (spa->spa_claiming) {
3861                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3862                                 commit_txg = spa_first_txg(spa);
3863                         }
3864                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3865                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3866                                 return;
3867                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3868                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3869                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3870                 }
3871                 if (vd != rvd)
3872                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3873         }
3874 }
3875
3876 /*
3877  * Update the in-core space usage stats for this vdev, its metaslab class,
3878  * and the root vdev.
3879  */
3880 void
3881 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3882     int64_t space_delta)
3883 {
3884         int64_t dspace_delta = space_delta;
3885         spa_t *spa = vd->vdev_spa;
3886         vdev_t *rvd = spa->spa_root_vdev;
3887         metaslab_group_t *mg = vd->vdev_mg;
3888         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3889
3890         ASSERT(vd == vd->vdev_top);
3891
3892         /*
3893          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3894          * factor.  We must calculate this here and not at the root vdev
3895          * because the root vdev's psize-to-asize is simply the max of its
3896          * childrens', thus not accurate enough for us.
3897          */
3898         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3899         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3900         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3901             vd->vdev_deflate_ratio;
3902
3903         mutex_enter(&vd->vdev_stat_lock);
3904         vd->vdev_stat.vs_alloc += alloc_delta;
3905         vd->vdev_stat.vs_space += space_delta;
3906         vd->vdev_stat.vs_dspace += dspace_delta;
3907         mutex_exit(&vd->vdev_stat_lock);
3908
3909         if (mc == spa_normal_class(spa)) {
3910                 mutex_enter(&rvd->vdev_stat_lock);
3911                 rvd->vdev_stat.vs_alloc += alloc_delta;
3912                 rvd->vdev_stat.vs_space += space_delta;
3913                 rvd->vdev_stat.vs_dspace += dspace_delta;
3914                 mutex_exit(&rvd->vdev_stat_lock);
3915         }
3916
3917         if (mc != NULL) {
3918                 ASSERT(rvd == vd->vdev_parent);
3919                 ASSERT(vd->vdev_ms_count != 0);
3920
3921                 metaslab_class_space_update(mc,
3922                     alloc_delta, defer_delta, space_delta, dspace_delta);
3923         }
3924 }
3925
3926 /*
3927  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3928  * so that it will be written out next time the vdev configuration is synced.
3929  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3930  */
3931 void
3932 vdev_config_dirty(vdev_t *vd)
3933 {
3934         spa_t *spa = vd->vdev_spa;
3935         vdev_t *rvd = spa->spa_root_vdev;
3936         int c;
3937
3938         ASSERT(spa_writeable(spa));
3939
3940         /*
3941          * If this is an aux vdev (as with l2cache and spare devices), then we
3942          * update the vdev config manually and set the sync flag.
3943          */
3944         if (vd->vdev_aux != NULL) {
3945                 spa_aux_vdev_t *sav = vd->vdev_aux;
3946                 nvlist_t **aux;
3947                 uint_t naux;
3948
3949                 for (c = 0; c < sav->sav_count; c++) {
3950                         if (sav->sav_vdevs[c] == vd)
3951                                 break;
3952                 }
3953
3954                 if (c == sav->sav_count) {
3955                         /*
3956                          * We're being removed.  There's nothing more to do.
3957                          */
3958                         ASSERT(sav->sav_sync == B_TRUE);
3959                         return;
3960                 }
3961
3962                 sav->sav_sync = B_TRUE;
3963
3964                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3965                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3966                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3967                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3968                 }
3969
3970                 ASSERT(c < naux);
3971
3972                 /*
3973                  * Setting the nvlist in the middle if the array is a little
3974                  * sketchy, but it will work.
3975                  */
3976                 nvlist_free(aux[c]);
3977                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3978
3979                 return;
3980         }
3981
3982         /*
3983          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3984          * must either hold SCL_CONFIG as writer, or must be the sync thread
3985          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3986          * so this is sufficient to ensure mutual exclusion.
3987          */
3988         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3989             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3990             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3991
3992         if (vd == rvd) {
3993                 for (c = 0; c < rvd->vdev_children; c++)
3994                         vdev_config_dirty(rvd->vdev_child[c]);
3995         } else {
3996                 ASSERT(vd == vd->vdev_top);
3997
3998                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3999                     vdev_is_concrete(vd)) {
4000                         list_insert_head(&spa->spa_config_dirty_list, vd);
4001                 }
4002         }
4003 }
4004
4005 void
4006 vdev_config_clean(vdev_t *vd)
4007 {
4008         spa_t *spa = vd->vdev_spa;
4009
4010         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4011             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4012             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4013
4014         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4015         list_remove(&spa->spa_config_dirty_list, vd);
4016 }
4017
4018 /*
4019  * Mark a top-level vdev's state as dirty, so that the next pass of
4020  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4021  * the state changes from larger config changes because they require
4022  * much less locking, and are often needed for administrative actions.
4023  */
4024 void
4025 vdev_state_dirty(vdev_t *vd)
4026 {
4027         spa_t *spa = vd->vdev_spa;
4028
4029         ASSERT(spa_writeable(spa));
4030         ASSERT(vd == vd->vdev_top);
4031
4032         /*
4033          * The state list is protected by the SCL_STATE lock.  The caller
4034          * must either hold SCL_STATE as writer, or must be the sync thread
4035          * (which holds SCL_STATE as reader).  There's only one sync thread,
4036          * so this is sufficient to ensure mutual exclusion.
4037          */
4038         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4039             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4040             spa_config_held(spa, SCL_STATE, RW_READER)));
4041
4042         if (!list_link_active(&vd->vdev_state_dirty_node) &&
4043             vdev_is_concrete(vd))
4044                 list_insert_head(&spa->spa_state_dirty_list, vd);
4045 }
4046
4047 void
4048 vdev_state_clean(vdev_t *vd)
4049 {
4050         spa_t *spa = vd->vdev_spa;
4051
4052         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4053             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4054             spa_config_held(spa, SCL_STATE, RW_READER)));
4055
4056         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4057         list_remove(&spa->spa_state_dirty_list, vd);
4058 }
4059
4060 /*
4061  * Propagate vdev state up from children to parent.
4062  */
4063 void
4064 vdev_propagate_state(vdev_t *vd)
4065 {
4066         spa_t *spa = vd->vdev_spa;
4067         vdev_t *rvd = spa->spa_root_vdev;
4068         int degraded = 0, faulted = 0;
4069         int corrupted = 0;
4070         vdev_t *child;
4071
4072         if (vd->vdev_children > 0) {
4073                 for (int c = 0; c < vd->vdev_children; c++) {
4074                         child = vd->vdev_child[c];
4075
4076                         /*
4077                          * Don't factor holes or indirect vdevs into the
4078                          * decision.
4079                          */
4080                         if (!vdev_is_concrete(child))
4081                                 continue;
4082
4083                         if (!vdev_readable(child) ||
4084                             (!vdev_writeable(child) && spa_writeable(spa))) {
4085                                 /*
4086                                  * Root special: if there is a top-level log
4087                                  * device, treat the root vdev as if it were
4088                                  * degraded.
4089                                  */
4090                                 if (child->vdev_islog && vd == rvd)
4091                                         degraded++;
4092                                 else
4093                                         faulted++;
4094                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4095                                 degraded++;
4096                         }
4097
4098                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4099                                 corrupted++;
4100                 }
4101
4102                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4103
4104                 /*
4105                  * Root special: if there is a top-level vdev that cannot be
4106                  * opened due to corrupted metadata, then propagate the root
4107                  * vdev's aux state as 'corrupt' rather than 'insufficient
4108                  * replicas'.
4109                  */
4110                 if (corrupted && vd == rvd &&
4111                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4112                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4113                             VDEV_AUX_CORRUPT_DATA);
4114         }
4115
4116         if (vd->vdev_parent)
4117                 vdev_propagate_state(vd->vdev_parent);
4118 }
4119
4120 /*
4121  * Set a vdev's state.  If this is during an open, we don't update the parent
4122  * state, because we're in the process of opening children depth-first.
4123  * Otherwise, we propagate the change to the parent.
4124  *
4125  * If this routine places a device in a faulted state, an appropriate ereport is
4126  * generated.
4127  */
4128 void
4129 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4130 {
4131         uint64_t save_state;
4132         spa_t *spa = vd->vdev_spa;
4133
4134         if (state == vd->vdev_state) {
4135                 vd->vdev_stat.vs_aux = aux;
4136                 return;
4137         }
4138
4139         save_state = vd->vdev_state;
4140
4141         vd->vdev_state = state;
4142         vd->vdev_stat.vs_aux = aux;
4143
4144         /*
4145          * If we are setting the vdev state to anything but an open state, then
4146          * always close the underlying device unless the device has requested
4147          * a delayed close (i.e. we're about to remove or fault the device).
4148          * Otherwise, we keep accessible but invalid devices open forever.
4149          * We don't call vdev_close() itself, because that implies some extra
4150          * checks (offline, etc) that we don't want here.  This is limited to
4151          * leaf devices, because otherwise closing the device will affect other
4152          * children.
4153          */
4154         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4155             vd->vdev_ops->vdev_op_leaf)
4156                 vd->vdev_ops->vdev_op_close(vd);
4157
4158         if (vd->vdev_removed &&
4159             state == VDEV_STATE_CANT_OPEN &&
4160             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4161                 /*
4162                  * If the previous state is set to VDEV_STATE_REMOVED, then this
4163                  * device was previously marked removed and someone attempted to
4164                  * reopen it.  If this failed due to a nonexistent device, then
4165                  * keep the device in the REMOVED state.  We also let this be if
4166                  * it is one of our special test online cases, which is only
4167                  * attempting to online the device and shouldn't generate an FMA
4168                  * fault.
4169                  */
4170                 vd->vdev_state = VDEV_STATE_REMOVED;
4171                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4172         } else if (state == VDEV_STATE_REMOVED) {
4173                 vd->vdev_removed = B_TRUE;
4174         } else if (state == VDEV_STATE_CANT_OPEN) {
4175                 /*
4176                  * If we fail to open a vdev during an import or recovery, we
4177                  * mark it as "not available", which signifies that it was
4178                  * never there to begin with.  Failure to open such a device
4179                  * is not considered an error.
4180                  */
4181                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4182                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4183                     vd->vdev_ops->vdev_op_leaf)
4184                         vd->vdev_not_present = 1;
4185
4186                 /*
4187                  * Post the appropriate ereport.  If the 'prevstate' field is
4188                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
4189                  * that this is part of a vdev_reopen().  In this case, we don't
4190                  * want to post the ereport if the device was already in the
4191                  * CANT_OPEN state beforehand.
4192                  *
4193                  * If the 'checkremove' flag is set, then this is an attempt to
4194                  * online the device in response to an insertion event.  If we
4195                  * hit this case, then we have detected an insertion event for a
4196                  * faulted or offline device that wasn't in the removed state.
4197                  * In this scenario, we don't post an ereport because we are
4198                  * about to replace the device, or attempt an online with
4199                  * vdev_forcefault, which will generate the fault for us.
4200                  */
4201                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4202                     !vd->vdev_not_present && !vd->vdev_checkremove &&
4203                     vd != spa->spa_root_vdev) {
4204                         const char *class;
4205
4206                         switch (aux) {
4207                         case VDEV_AUX_OPEN_FAILED:
4208                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4209                                 break;
4210                         case VDEV_AUX_CORRUPT_DATA:
4211                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4212                                 break;
4213                         case VDEV_AUX_NO_REPLICAS:
4214                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4215                                 break;
4216                         case VDEV_AUX_BAD_GUID_SUM:
4217                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4218                                 break;
4219                         case VDEV_AUX_TOO_SMALL:
4220                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4221                                 break;
4222                         case VDEV_AUX_BAD_LABEL:
4223                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4224                                 break;
4225                         default:
4226                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4227                         }
4228
4229                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
4230                 }
4231
4232                 /* Erase any notion of persistent removed state */
4233                 vd->vdev_removed = B_FALSE;
4234         } else {
4235                 vd->vdev_removed = B_FALSE;
4236         }
4237
4238         /*
4239         * Notify the fmd of the state change.  Be verbose and post
4240         * notifications even for stuff that's not important; the fmd agent can
4241         * sort it out.  Don't emit state change events for non-leaf vdevs since
4242         * they can't change state on their own.  The FMD can check their state
4243         * if it wants to when it sees that a leaf vdev had a state change.
4244         */
4245         if (vd->vdev_ops->vdev_op_leaf)
4246                 zfs_post_state_change(spa, vd);
4247
4248         if (!isopen && vd->vdev_parent)
4249                 vdev_propagate_state(vd->vdev_parent);
4250 }
4251
4252 boolean_t
4253 vdev_children_are_offline(vdev_t *vd)
4254 {
4255         ASSERT(!vd->vdev_ops->vdev_op_leaf);
4256
4257         for (uint64_t i = 0; i < vd->vdev_children; i++) {
4258                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4259                         return (B_FALSE);
4260         }
4261
4262         return (B_TRUE);
4263 }
4264
4265 /*
4266  * Check the vdev configuration to ensure that it's capable of supporting
4267  * a root pool. We do not support partial configuration.
4268  * In addition, only a single top-level vdev is allowed.
4269  *
4270  * FreeBSD does not have above limitations.
4271  */
4272 boolean_t
4273 vdev_is_bootable(vdev_t *vd)
4274 {
4275 #ifdef illumos
4276         if (!vd->vdev_ops->vdev_op_leaf) {
4277                 char *vdev_type = vd->vdev_ops->vdev_op_type;
4278
4279                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4280                     vd->vdev_children > 1) {
4281                         return (B_FALSE);
4282                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4283                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4284                         return (B_FALSE);
4285                 }
4286         }
4287
4288         for (int c = 0; c < vd->vdev_children; c++) {
4289                 if (!vdev_is_bootable(vd->vdev_child[c]))
4290                         return (B_FALSE);
4291         }
4292 #endif  /* illumos */
4293         return (B_TRUE);
4294 }
4295
4296 boolean_t
4297 vdev_is_concrete(vdev_t *vd)
4298 {
4299         vdev_ops_t *ops = vd->vdev_ops;
4300         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4301             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4302                 return (B_FALSE);
4303         } else {
4304                 return (B_TRUE);
4305         }
4306 }
4307
4308 /*
4309  * Determine if a log device has valid content.  If the vdev was
4310  * removed or faulted in the MOS config then we know that
4311  * the content on the log device has already been written to the pool.
4312  */
4313 boolean_t
4314 vdev_log_state_valid(vdev_t *vd)
4315 {
4316         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4317             !vd->vdev_removed)
4318                 return (B_TRUE);
4319
4320         for (int c = 0; c < vd->vdev_children; c++)
4321                 if (vdev_log_state_valid(vd->vdev_child[c]))
4322                         return (B_TRUE);
4323
4324         return (B_FALSE);
4325 }
4326
4327 /*
4328  * Expand a vdev if possible.
4329  */
4330 void
4331 vdev_expand(vdev_t *vd, uint64_t txg)
4332 {
4333         ASSERT(vd->vdev_top == vd);
4334         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4335         ASSERT(vdev_is_concrete(vd));
4336
4337         vdev_set_deflate_ratio(vd);
4338
4339         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
4340                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4341                 vdev_config_dirty(vd);
4342         }
4343 }
4344
4345 /*
4346  * Split a vdev.
4347  */
4348 void
4349 vdev_split(vdev_t *vd)
4350 {
4351         vdev_t *cvd, *pvd = vd->vdev_parent;
4352
4353         vdev_remove_child(pvd, vd);
4354         vdev_compact_children(pvd);
4355
4356         cvd = pvd->vdev_child[0];
4357         if (pvd->vdev_children == 1) {
4358                 vdev_remove_parent(cvd);
4359                 cvd->vdev_splitting = B_TRUE;
4360         }
4361         vdev_propagate_state(cvd);
4362 }
4363
4364 void
4365 vdev_deadman(vdev_t *vd)
4366 {
4367         for (int c = 0; c < vd->vdev_children; c++) {
4368                 vdev_t *cvd = vd->vdev_child[c];
4369
4370                 vdev_deadman(cvd);
4371         }
4372
4373         if (vd->vdev_ops->vdev_op_leaf) {
4374                 vdev_queue_t *vq = &vd->vdev_queue;
4375
4376                 mutex_enter(&vq->vq_lock);
4377                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4378                         spa_t *spa = vd->vdev_spa;
4379                         zio_t *fio;
4380                         uint64_t delta;
4381
4382                         /*
4383                          * Look at the head of all the pending queues,
4384                          * if any I/O has been outstanding for longer than
4385                          * the spa_deadman_synctime we panic the system.
4386                          */
4387                         fio = avl_first(&vq->vq_active_tree);
4388                         delta = gethrtime() - fio->io_timestamp;
4389                         if (delta > spa_deadman_synctime(spa)) {
4390                                 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4391                                     "%lluns, delta %lluns, last io %lluns",
4392                                     fio->io_timestamp, (u_longlong_t)delta,
4393                                     vq->vq_io_complete_ts);
4394                                 fm_panic("I/O to pool '%s' appears to be "
4395                                     "hung on vdev guid %llu at '%s'.",
4396                                     spa_name(spa),
4397                                     (long long unsigned int) vd->vdev_guid,
4398                                     vd->vdev_path);
4399                         }
4400                 }
4401                 mutex_exit(&vq->vq_lock);
4402         }
4403 }