]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
Import libxo-1.0.2
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  */
31
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/trim_map.h>
54 #include <sys/vdev_initialize.h>
55
56 SYSCTL_DECL(_vfs_zfs);
57 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
58
59 /*
60  * Virtual device management.
61  */
62
63 /*
64  * The limit for ZFS to automatically increase a top-level vdev's ashift
65  * from logical ashift to physical ashift.
66  *
67  * Example: one or more 512B emulation child vdevs
68  *          child->vdev_ashift = 9 (512 bytes)
69  *          child->vdev_physical_ashift = 12 (4096 bytes)
70  *          zfs_max_auto_ashift = 11 (2048 bytes)
71  *          zfs_min_auto_ashift = 9 (512 bytes)
72  *
73  * On pool creation or the addition of a new top-level vdev, ZFS will
74  * increase the ashift of the top-level vdev to 2048 as limited by
75  * zfs_max_auto_ashift.
76  *
77  * Example: one or more 512B emulation child vdevs
78  *          child->vdev_ashift = 9 (512 bytes)
79  *          child->vdev_physical_ashift = 12 (4096 bytes)
80  *          zfs_max_auto_ashift = 13 (8192 bytes)
81  *          zfs_min_auto_ashift = 9 (512 bytes)
82  *
83  * On pool creation or the addition of a new top-level vdev, ZFS will
84  * increase the ashift of the top-level vdev to 4096 to match the
85  * max vdev_physical_ashift.
86  *
87  * Example: one or more 512B emulation child vdevs
88  *          child->vdev_ashift = 9 (512 bytes)
89  *          child->vdev_physical_ashift = 9 (512 bytes)
90  *          zfs_max_auto_ashift = 13 (8192 bytes)
91  *          zfs_min_auto_ashift = 12 (4096 bytes)
92  *
93  * On pool creation or the addition of a new top-level vdev, ZFS will
94  * increase the ashift of the top-level vdev to 4096 to match the
95  * zfs_min_auto_ashift.
96  */
97 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
98 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
99
100 static int
101 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
102 {
103         uint64_t val;
104         int err;
105
106         val = zfs_max_auto_ashift;
107         err = sysctl_handle_64(oidp, &val, 0, req);
108         if (err != 0 || req->newptr == NULL)
109                 return (err);
110
111         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
112                 return (EINVAL);
113
114         zfs_max_auto_ashift = val;
115
116         return (0);
117 }
118 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
119     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
120     sysctl_vfs_zfs_max_auto_ashift, "QU",
121     "Max ashift used when optimising for logical -> physical sectors size on "
122     "new top-level vdevs.");
123
124 static int
125 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
126 {
127         uint64_t val;
128         int err;
129
130         val = zfs_min_auto_ashift;
131         err = sysctl_handle_64(oidp, &val, 0, req);
132         if (err != 0 || req->newptr == NULL)
133                 return (err);
134
135         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
136                 return (EINVAL);
137
138         zfs_min_auto_ashift = val;
139
140         return (0);
141 }
142 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
143     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
144     sysctl_vfs_zfs_min_auto_ashift, "QU",
145     "Min ashift used when creating new top-level vdevs.");
146
147 static vdev_ops_t *vdev_ops_table[] = {
148         &vdev_root_ops,
149         &vdev_raidz_ops,
150         &vdev_mirror_ops,
151         &vdev_replacing_ops,
152         &vdev_spare_ops,
153 #ifdef _KERNEL
154         &vdev_geom_ops,
155 #else
156         &vdev_disk_ops,
157 #endif
158         &vdev_file_ops,
159         &vdev_missing_ops,
160         &vdev_hole_ops,
161         &vdev_indirect_ops,
162         NULL
163 };
164
165
166 /* target number of metaslabs per top-level vdev */
167 int vdev_max_ms_count = 200;
168 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_count, CTLFLAG_RWTUN,
169     &vdev_max_ms_count, 0,
170     "Target number of metaslabs per top-level vdev");
171
172 /* minimum number of metaslabs per top-level vdev */
173 int vdev_min_ms_count = 16;
174 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, min_ms_count, CTLFLAG_RWTUN,
175     &vdev_min_ms_count, 0,
176     "Minimum number of metaslabs per top-level vdev");
177
178 /* practical upper limit of total metaslabs per top-level vdev */
179 int vdev_ms_count_limit = 1ULL << 17;
180 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_count_limit, CTLFLAG_RWTUN,
181     &vdev_ms_count_limit, 0,
182     "Maximum number of metaslabs per top-level vdev");
183
184 /* lower limit for metaslab size (512M) */
185 int vdev_default_ms_shift = 29;
186 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, default_ms_shift, CTLFLAG_RWTUN,
187     &vdev_default_ms_shift, 0,
188     "Default shift between vdev size and number of metaslabs");
189
190 /* upper limit for metaslab size (256G) */
191 int vdev_max_ms_shift = 38;
192 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_shift, CTLFLAG_RWTUN,
193     &vdev_max_ms_shift, 0,
194     "Maximum shift between vdev size and number of metaslabs");
195
196 boolean_t vdev_validate_skip = B_FALSE;
197 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, validate_skip, CTLFLAG_RWTUN,
198     &vdev_validate_skip, 0,
199     "Bypass vdev validation");
200
201 /*
202  * Since the DTL space map of a vdev is not expected to have a lot of
203  * entries, we default its block size to 4K.
204  */
205 int vdev_dtl_sm_blksz = (1 << 12);
206 SYSCTL_INT(_vfs_zfs, OID_AUTO, dtl_sm_blksz, CTLFLAG_RDTUN,
207     &vdev_dtl_sm_blksz, 0,
208     "Block size for DTL space map.  Power of 2 and greater than 4096.");
209
210 /*
211  * vdev-wide space maps that have lots of entries written to them at
212  * the end of each transaction can benefit from a higher I/O bandwidth
213  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
214  */
215 int vdev_standard_sm_blksz = (1 << 17);
216 SYSCTL_INT(_vfs_zfs, OID_AUTO, standard_sm_blksz, CTLFLAG_RDTUN,
217     &vdev_standard_sm_blksz, 0,
218     "Block size for standard space map.  Power of 2 and greater than 4096.");
219
220 /*PRINTFLIKE2*/
221 void
222 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
223 {
224         va_list adx;
225         char buf[256];
226
227         va_start(adx, fmt);
228         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
229         va_end(adx);
230
231         if (vd->vdev_path != NULL) {
232                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
233                     vd->vdev_path, buf);
234         } else {
235                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
236                     vd->vdev_ops->vdev_op_type,
237                     (u_longlong_t)vd->vdev_id,
238                     (u_longlong_t)vd->vdev_guid, buf);
239         }
240 }
241
242 void
243 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
244 {
245         char state[20];
246
247         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
248                 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
249                     vd->vdev_ops->vdev_op_type);
250                 return;
251         }
252
253         switch (vd->vdev_state) {
254         case VDEV_STATE_UNKNOWN:
255                 (void) snprintf(state, sizeof (state), "unknown");
256                 break;
257         case VDEV_STATE_CLOSED:
258                 (void) snprintf(state, sizeof (state), "closed");
259                 break;
260         case VDEV_STATE_OFFLINE:
261                 (void) snprintf(state, sizeof (state), "offline");
262                 break;
263         case VDEV_STATE_REMOVED:
264                 (void) snprintf(state, sizeof (state), "removed");
265                 break;
266         case VDEV_STATE_CANT_OPEN:
267                 (void) snprintf(state, sizeof (state), "can't open");
268                 break;
269         case VDEV_STATE_FAULTED:
270                 (void) snprintf(state, sizeof (state), "faulted");
271                 break;
272         case VDEV_STATE_DEGRADED:
273                 (void) snprintf(state, sizeof (state), "degraded");
274                 break;
275         case VDEV_STATE_HEALTHY:
276                 (void) snprintf(state, sizeof (state), "healthy");
277                 break;
278         default:
279                 (void) snprintf(state, sizeof (state), "<state %u>",
280                     (uint_t)vd->vdev_state);
281         }
282
283         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
284             "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
285             vd->vdev_islog ? " (log)" : "",
286             (u_longlong_t)vd->vdev_guid,
287             vd->vdev_path ? vd->vdev_path : "N/A", state);
288
289         for (uint64_t i = 0; i < vd->vdev_children; i++)
290                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
291 }
292
293 /*
294  * Given a vdev type, return the appropriate ops vector.
295  */
296 static vdev_ops_t *
297 vdev_getops(const char *type)
298 {
299         vdev_ops_t *ops, **opspp;
300
301         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
302                 if (strcmp(ops->vdev_op_type, type) == 0)
303                         break;
304
305         return (ops);
306 }
307
308 /* ARGSUSED */
309 void
310 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
311 {
312         res->rs_start = in->rs_start;
313         res->rs_end = in->rs_end;
314 }
315
316 /*
317  * Default asize function: return the MAX of psize with the asize of
318  * all children.  This is what's used by anything other than RAID-Z.
319  */
320 uint64_t
321 vdev_default_asize(vdev_t *vd, uint64_t psize)
322 {
323         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
324         uint64_t csize;
325
326         for (int c = 0; c < vd->vdev_children; c++) {
327                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
328                 asize = MAX(asize, csize);
329         }
330
331         return (asize);
332 }
333
334 /*
335  * Get the minimum allocatable size. We define the allocatable size as
336  * the vdev's asize rounded to the nearest metaslab. This allows us to
337  * replace or attach devices which don't have the same physical size but
338  * can still satisfy the same number of allocations.
339  */
340 uint64_t
341 vdev_get_min_asize(vdev_t *vd)
342 {
343         vdev_t *pvd = vd->vdev_parent;
344
345         /*
346          * If our parent is NULL (inactive spare or cache) or is the root,
347          * just return our own asize.
348          */
349         if (pvd == NULL)
350                 return (vd->vdev_asize);
351
352         /*
353          * The top-level vdev just returns the allocatable size rounded
354          * to the nearest metaslab.
355          */
356         if (vd == vd->vdev_top)
357                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
358
359         /*
360          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
361          * so each child must provide at least 1/Nth of its asize.
362          */
363         if (pvd->vdev_ops == &vdev_raidz_ops)
364                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
365                     pvd->vdev_children);
366
367         return (pvd->vdev_min_asize);
368 }
369
370 void
371 vdev_set_min_asize(vdev_t *vd)
372 {
373         vd->vdev_min_asize = vdev_get_min_asize(vd);
374
375         for (int c = 0; c < vd->vdev_children; c++)
376                 vdev_set_min_asize(vd->vdev_child[c]);
377 }
378
379 vdev_t *
380 vdev_lookup_top(spa_t *spa, uint64_t vdev)
381 {
382         vdev_t *rvd = spa->spa_root_vdev;
383
384         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
385
386         if (vdev < rvd->vdev_children) {
387                 ASSERT(rvd->vdev_child[vdev] != NULL);
388                 return (rvd->vdev_child[vdev]);
389         }
390
391         return (NULL);
392 }
393
394 vdev_t *
395 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
396 {
397         vdev_t *mvd;
398
399         if (vd->vdev_guid == guid)
400                 return (vd);
401
402         for (int c = 0; c < vd->vdev_children; c++)
403                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
404                     NULL)
405                         return (mvd);
406
407         return (NULL);
408 }
409
410 static int
411 vdev_count_leaves_impl(vdev_t *vd)
412 {
413         int n = 0;
414
415         if (vd->vdev_ops->vdev_op_leaf)
416                 return (1);
417
418         for (int c = 0; c < vd->vdev_children; c++)
419                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
420
421         return (n);
422 }
423
424 int
425 vdev_count_leaves(spa_t *spa)
426 {
427         return (vdev_count_leaves_impl(spa->spa_root_vdev));
428 }
429
430 void
431 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
432 {
433         size_t oldsize, newsize;
434         uint64_t id = cvd->vdev_id;
435         vdev_t **newchild;
436         spa_t *spa = cvd->vdev_spa;
437
438         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
439         ASSERT(cvd->vdev_parent == NULL);
440
441         cvd->vdev_parent = pvd;
442
443         if (pvd == NULL)
444                 return;
445
446         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
447
448         oldsize = pvd->vdev_children * sizeof (vdev_t *);
449         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
450         newsize = pvd->vdev_children * sizeof (vdev_t *);
451
452         newchild = kmem_zalloc(newsize, KM_SLEEP);
453         if (pvd->vdev_child != NULL) {
454                 bcopy(pvd->vdev_child, newchild, oldsize);
455                 kmem_free(pvd->vdev_child, oldsize);
456         }
457
458         pvd->vdev_child = newchild;
459         pvd->vdev_child[id] = cvd;
460
461         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
462         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
463
464         /*
465          * Walk up all ancestors to update guid sum.
466          */
467         for (; pvd != NULL; pvd = pvd->vdev_parent)
468                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
469 }
470
471 void
472 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
473 {
474         int c;
475         uint_t id = cvd->vdev_id;
476
477         ASSERT(cvd->vdev_parent == pvd);
478
479         if (pvd == NULL)
480                 return;
481
482         ASSERT(id < pvd->vdev_children);
483         ASSERT(pvd->vdev_child[id] == cvd);
484
485         pvd->vdev_child[id] = NULL;
486         cvd->vdev_parent = NULL;
487
488         for (c = 0; c < pvd->vdev_children; c++)
489                 if (pvd->vdev_child[c])
490                         break;
491
492         if (c == pvd->vdev_children) {
493                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
494                 pvd->vdev_child = NULL;
495                 pvd->vdev_children = 0;
496         }
497
498         /*
499          * Walk up all ancestors to update guid sum.
500          */
501         for (; pvd != NULL; pvd = pvd->vdev_parent)
502                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
503 }
504
505 /*
506  * Remove any holes in the child array.
507  */
508 void
509 vdev_compact_children(vdev_t *pvd)
510 {
511         vdev_t **newchild, *cvd;
512         int oldc = pvd->vdev_children;
513         int newc;
514
515         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
516
517         if (oldc == 0)
518                 return;
519
520         for (int c = newc = 0; c < oldc; c++)
521                 if (pvd->vdev_child[c])
522                         newc++;
523
524         if (newc > 0) {
525                 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
526
527                 for (int c = newc = 0; c < oldc; c++) {
528                         if ((cvd = pvd->vdev_child[c]) != NULL) {
529                                 newchild[newc] = cvd;
530                                 cvd->vdev_id = newc++;
531                         }
532                 }
533         } else {
534                 newchild = NULL;
535         }
536
537         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
538         pvd->vdev_child = newchild;
539         pvd->vdev_children = newc;
540 }
541
542 /*
543  * Allocate and minimally initialize a vdev_t.
544  */
545 vdev_t *
546 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
547 {
548         vdev_t *vd;
549         vdev_indirect_config_t *vic;
550
551         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
552         vic = &vd->vdev_indirect_config;
553
554         if (spa->spa_root_vdev == NULL) {
555                 ASSERT(ops == &vdev_root_ops);
556                 spa->spa_root_vdev = vd;
557                 spa->spa_load_guid = spa_generate_guid(NULL);
558         }
559
560         if (guid == 0 && ops != &vdev_hole_ops) {
561                 if (spa->spa_root_vdev == vd) {
562                         /*
563                          * The root vdev's guid will also be the pool guid,
564                          * which must be unique among all pools.
565                          */
566                         guid = spa_generate_guid(NULL);
567                 } else {
568                         /*
569                          * Any other vdev's guid must be unique within the pool.
570                          */
571                         guid = spa_generate_guid(spa);
572                 }
573                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
574         }
575
576         vd->vdev_spa = spa;
577         vd->vdev_id = id;
578         vd->vdev_guid = guid;
579         vd->vdev_guid_sum = guid;
580         vd->vdev_ops = ops;
581         vd->vdev_state = VDEV_STATE_CLOSED;
582         vd->vdev_ishole = (ops == &vdev_hole_ops);
583         vic->vic_prev_indirect_vdev = UINT64_MAX;
584
585         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
586         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
587         vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
588
589         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
590         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
591         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
592         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
593         mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
594         mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
595         mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
596         cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
597         cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
598
599         for (int t = 0; t < DTL_TYPES; t++) {
600                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
601         }
602         txg_list_create(&vd->vdev_ms_list, spa,
603             offsetof(struct metaslab, ms_txg_node));
604         txg_list_create(&vd->vdev_dtl_list, spa,
605             offsetof(struct vdev, vdev_dtl_node));
606         vd->vdev_stat.vs_timestamp = gethrtime();
607         vdev_queue_init(vd);
608         vdev_cache_init(vd);
609
610         return (vd);
611 }
612
613 /*
614  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
615  * creating a new vdev or loading an existing one - the behavior is slightly
616  * different for each case.
617  */
618 int
619 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
620     int alloctype)
621 {
622         vdev_ops_t *ops;
623         char *type;
624         uint64_t guid = 0, islog, nparity;
625         vdev_t *vd;
626         vdev_indirect_config_t *vic;
627
628         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
629
630         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
631                 return (SET_ERROR(EINVAL));
632
633         if ((ops = vdev_getops(type)) == NULL)
634                 return (SET_ERROR(EINVAL));
635
636         /*
637          * If this is a load, get the vdev guid from the nvlist.
638          * Otherwise, vdev_alloc_common() will generate one for us.
639          */
640         if (alloctype == VDEV_ALLOC_LOAD) {
641                 uint64_t label_id;
642
643                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
644                     label_id != id)
645                         return (SET_ERROR(EINVAL));
646
647                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
648                         return (SET_ERROR(EINVAL));
649         } else if (alloctype == VDEV_ALLOC_SPARE) {
650                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
651                         return (SET_ERROR(EINVAL));
652         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
653                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
654                         return (SET_ERROR(EINVAL));
655         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
656                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
657                         return (SET_ERROR(EINVAL));
658         }
659
660         /*
661          * The first allocated vdev must be of type 'root'.
662          */
663         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
664                 return (SET_ERROR(EINVAL));
665
666         /*
667          * Determine whether we're a log vdev.
668          */
669         islog = 0;
670         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
671         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
672                 return (SET_ERROR(ENOTSUP));
673
674         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
675                 return (SET_ERROR(ENOTSUP));
676
677         /*
678          * Set the nparity property for RAID-Z vdevs.
679          */
680         nparity = -1ULL;
681         if (ops == &vdev_raidz_ops) {
682                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
683                     &nparity) == 0) {
684                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
685                                 return (SET_ERROR(EINVAL));
686                         /*
687                          * Previous versions could only support 1 or 2 parity
688                          * device.
689                          */
690                         if (nparity > 1 &&
691                             spa_version(spa) < SPA_VERSION_RAIDZ2)
692                                 return (SET_ERROR(ENOTSUP));
693                         if (nparity > 2 &&
694                             spa_version(spa) < SPA_VERSION_RAIDZ3)
695                                 return (SET_ERROR(ENOTSUP));
696                 } else {
697                         /*
698                          * We require the parity to be specified for SPAs that
699                          * support multiple parity levels.
700                          */
701                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
702                                 return (SET_ERROR(EINVAL));
703                         /*
704                          * Otherwise, we default to 1 parity device for RAID-Z.
705                          */
706                         nparity = 1;
707                 }
708         } else {
709                 nparity = 0;
710         }
711         ASSERT(nparity != -1ULL);
712
713         vd = vdev_alloc_common(spa, id, guid, ops);
714         vic = &vd->vdev_indirect_config;
715
716         vd->vdev_islog = islog;
717         vd->vdev_nparity = nparity;
718
719         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
720                 vd->vdev_path = spa_strdup(vd->vdev_path);
721         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
722                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
723         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
724             &vd->vdev_physpath) == 0)
725                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
726         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
727                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
728
729         /*
730          * Set the whole_disk property.  If it's not specified, leave the value
731          * as -1.
732          */
733         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
734             &vd->vdev_wholedisk) != 0)
735                 vd->vdev_wholedisk = -1ULL;
736
737         ASSERT0(vic->vic_mapping_object);
738         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
739             &vic->vic_mapping_object);
740         ASSERT0(vic->vic_births_object);
741         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
742             &vic->vic_births_object);
743         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
744         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
745             &vic->vic_prev_indirect_vdev);
746
747         /*
748          * Look for the 'not present' flag.  This will only be set if the device
749          * was not present at the time of import.
750          */
751         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
752             &vd->vdev_not_present);
753
754         /*
755          * Get the alignment requirement.
756          */
757         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
758
759         /*
760          * Retrieve the vdev creation time.
761          */
762         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
763             &vd->vdev_crtxg);
764
765         /*
766          * If we're a top-level vdev, try to load the allocation parameters.
767          */
768         if (parent && !parent->vdev_parent &&
769             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
770                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
771                     &vd->vdev_ms_array);
772                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
773                     &vd->vdev_ms_shift);
774                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
775                     &vd->vdev_asize);
776                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
777                     &vd->vdev_removing);
778                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
779                     &vd->vdev_top_zap);
780         } else {
781                 ASSERT0(vd->vdev_top_zap);
782         }
783
784         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
785                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
786                     alloctype == VDEV_ALLOC_ADD ||
787                     alloctype == VDEV_ALLOC_SPLIT ||
788                     alloctype == VDEV_ALLOC_ROOTPOOL);
789                 vd->vdev_mg = metaslab_group_create(islog ?
790                     spa_log_class(spa) : spa_normal_class(spa), vd,
791                     spa->spa_alloc_count);
792         }
793
794         if (vd->vdev_ops->vdev_op_leaf &&
795             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
796                 (void) nvlist_lookup_uint64(nv,
797                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
798         } else {
799                 ASSERT0(vd->vdev_leaf_zap);
800         }
801
802         /*
803          * If we're a leaf vdev, try to load the DTL object and other state.
804          */
805
806         if (vd->vdev_ops->vdev_op_leaf &&
807             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
808             alloctype == VDEV_ALLOC_ROOTPOOL)) {
809                 if (alloctype == VDEV_ALLOC_LOAD) {
810                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
811                             &vd->vdev_dtl_object);
812                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
813                             &vd->vdev_unspare);
814                 }
815
816                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
817                         uint64_t spare = 0;
818
819                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
820                             &spare) == 0 && spare)
821                                 spa_spare_add(vd);
822                 }
823
824                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
825                     &vd->vdev_offline);
826
827                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
828                     &vd->vdev_resilver_txg);
829
830                 /*
831                  * When importing a pool, we want to ignore the persistent fault
832                  * state, as the diagnosis made on another system may not be
833                  * valid in the current context.  Local vdevs will
834                  * remain in the faulted state.
835                  */
836                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
837                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
838                             &vd->vdev_faulted);
839                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
840                             &vd->vdev_degraded);
841                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
842                             &vd->vdev_removed);
843
844                         if (vd->vdev_faulted || vd->vdev_degraded) {
845                                 char *aux;
846
847                                 vd->vdev_label_aux =
848                                     VDEV_AUX_ERR_EXCEEDED;
849                                 if (nvlist_lookup_string(nv,
850                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
851                                     strcmp(aux, "external") == 0)
852                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
853                         }
854                 }
855         }
856
857         /*
858          * Add ourselves to the parent's list of children.
859          */
860         vdev_add_child(parent, vd);
861
862         *vdp = vd;
863
864         return (0);
865 }
866
867 void
868 vdev_free(vdev_t *vd)
869 {
870         spa_t *spa = vd->vdev_spa;
871         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
872
873         /*
874          * Scan queues are normally destroyed at the end of a scan. If the
875          * queue exists here, that implies the vdev is being removed while
876          * the scan is still running.
877          */
878         if (vd->vdev_scan_io_queue != NULL) {
879                 mutex_enter(&vd->vdev_scan_io_queue_lock);
880                 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
881                 vd->vdev_scan_io_queue = NULL;
882                 mutex_exit(&vd->vdev_scan_io_queue_lock);
883         }
884
885         /*
886          * vdev_free() implies closing the vdev first.  This is simpler than
887          * trying to ensure complicated semantics for all callers.
888          */
889         vdev_close(vd);
890
891         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
892         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
893
894         /*
895          * Free all children.
896          */
897         for (int c = 0; c < vd->vdev_children; c++)
898                 vdev_free(vd->vdev_child[c]);
899
900         ASSERT(vd->vdev_child == NULL);
901         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
902         ASSERT(vd->vdev_initialize_thread == NULL);
903
904         /*
905          * Discard allocation state.
906          */
907         if (vd->vdev_mg != NULL) {
908                 vdev_metaslab_fini(vd);
909                 metaslab_group_destroy(vd->vdev_mg);
910         }
911
912         ASSERT0(vd->vdev_stat.vs_space);
913         ASSERT0(vd->vdev_stat.vs_dspace);
914         ASSERT0(vd->vdev_stat.vs_alloc);
915
916         /*
917          * Remove this vdev from its parent's child list.
918          */
919         vdev_remove_child(vd->vdev_parent, vd);
920
921         ASSERT(vd->vdev_parent == NULL);
922
923         /*
924          * Clean up vdev structure.
925          */
926         vdev_queue_fini(vd);
927         vdev_cache_fini(vd);
928
929         if (vd->vdev_path)
930                 spa_strfree(vd->vdev_path);
931         if (vd->vdev_devid)
932                 spa_strfree(vd->vdev_devid);
933         if (vd->vdev_physpath)
934                 spa_strfree(vd->vdev_physpath);
935         if (vd->vdev_fru)
936                 spa_strfree(vd->vdev_fru);
937
938         if (vd->vdev_isspare)
939                 spa_spare_remove(vd);
940         if (vd->vdev_isl2cache)
941                 spa_l2cache_remove(vd);
942
943         txg_list_destroy(&vd->vdev_ms_list);
944         txg_list_destroy(&vd->vdev_dtl_list);
945
946         mutex_enter(&vd->vdev_dtl_lock);
947         space_map_close(vd->vdev_dtl_sm);
948         for (int t = 0; t < DTL_TYPES; t++) {
949                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
950                 range_tree_destroy(vd->vdev_dtl[t]);
951         }
952         mutex_exit(&vd->vdev_dtl_lock);
953
954         EQUIV(vd->vdev_indirect_births != NULL,
955             vd->vdev_indirect_mapping != NULL);
956         if (vd->vdev_indirect_births != NULL) {
957                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
958                 vdev_indirect_births_close(vd->vdev_indirect_births);
959         }
960
961         if (vd->vdev_obsolete_sm != NULL) {
962                 ASSERT(vd->vdev_removing ||
963                     vd->vdev_ops == &vdev_indirect_ops);
964                 space_map_close(vd->vdev_obsolete_sm);
965                 vd->vdev_obsolete_sm = NULL;
966         }
967         range_tree_destroy(vd->vdev_obsolete_segments);
968         rw_destroy(&vd->vdev_indirect_rwlock);
969         mutex_destroy(&vd->vdev_obsolete_lock);
970
971         mutex_destroy(&vd->vdev_queue_lock);
972         mutex_destroy(&vd->vdev_dtl_lock);
973         mutex_destroy(&vd->vdev_stat_lock);
974         mutex_destroy(&vd->vdev_probe_lock);
975         mutex_destroy(&vd->vdev_scan_io_queue_lock);
976         mutex_destroy(&vd->vdev_initialize_lock);
977         mutex_destroy(&vd->vdev_initialize_io_lock);
978         cv_destroy(&vd->vdev_initialize_io_cv);
979         cv_destroy(&vd->vdev_initialize_cv);
980
981         if (vd == spa->spa_root_vdev)
982                 spa->spa_root_vdev = NULL;
983
984         kmem_free(vd, sizeof (vdev_t));
985 }
986
987 /*
988  * Transfer top-level vdev state from svd to tvd.
989  */
990 static void
991 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
992 {
993         spa_t *spa = svd->vdev_spa;
994         metaslab_t *msp;
995         vdev_t *vd;
996         int t;
997
998         ASSERT(tvd == tvd->vdev_top);
999
1000         tvd->vdev_ms_array = svd->vdev_ms_array;
1001         tvd->vdev_ms_shift = svd->vdev_ms_shift;
1002         tvd->vdev_ms_count = svd->vdev_ms_count;
1003         tvd->vdev_top_zap = svd->vdev_top_zap;
1004
1005         svd->vdev_ms_array = 0;
1006         svd->vdev_ms_shift = 0;
1007         svd->vdev_ms_count = 0;
1008         svd->vdev_top_zap = 0;
1009
1010         if (tvd->vdev_mg)
1011                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1012         tvd->vdev_mg = svd->vdev_mg;
1013         tvd->vdev_ms = svd->vdev_ms;
1014
1015         svd->vdev_mg = NULL;
1016         svd->vdev_ms = NULL;
1017
1018         if (tvd->vdev_mg != NULL)
1019                 tvd->vdev_mg->mg_vd = tvd;
1020
1021         tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1022         svd->vdev_checkpoint_sm = NULL;
1023
1024         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1025         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1026         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1027
1028         svd->vdev_stat.vs_alloc = 0;
1029         svd->vdev_stat.vs_space = 0;
1030         svd->vdev_stat.vs_dspace = 0;
1031
1032         /*
1033          * State which may be set on a top-level vdev that's in the
1034          * process of being removed.
1035          */
1036         ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1037         ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1038         ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1039         ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1040         ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1041         ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1042         ASSERT0(tvd->vdev_removing);
1043         tvd->vdev_removing = svd->vdev_removing;
1044         tvd->vdev_indirect_config = svd->vdev_indirect_config;
1045         tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1046         tvd->vdev_indirect_births = svd->vdev_indirect_births;
1047         range_tree_swap(&svd->vdev_obsolete_segments,
1048             &tvd->vdev_obsolete_segments);
1049         tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1050         svd->vdev_indirect_config.vic_mapping_object = 0;
1051         svd->vdev_indirect_config.vic_births_object = 0;
1052         svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1053         svd->vdev_indirect_mapping = NULL;
1054         svd->vdev_indirect_births = NULL;
1055         svd->vdev_obsolete_sm = NULL;
1056         svd->vdev_removing = 0;
1057
1058         for (t = 0; t < TXG_SIZE; t++) {
1059                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1060                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1061                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1062                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1063                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1064                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1065         }
1066
1067         if (list_link_active(&svd->vdev_config_dirty_node)) {
1068                 vdev_config_clean(svd);
1069                 vdev_config_dirty(tvd);
1070         }
1071
1072         if (list_link_active(&svd->vdev_state_dirty_node)) {
1073                 vdev_state_clean(svd);
1074                 vdev_state_dirty(tvd);
1075         }
1076
1077         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1078         svd->vdev_deflate_ratio = 0;
1079
1080         tvd->vdev_islog = svd->vdev_islog;
1081         svd->vdev_islog = 0;
1082
1083         dsl_scan_io_queue_vdev_xfer(svd, tvd);
1084 }
1085
1086 static void
1087 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1088 {
1089         if (vd == NULL)
1090                 return;
1091
1092         vd->vdev_top = tvd;
1093
1094         for (int c = 0; c < vd->vdev_children; c++)
1095                 vdev_top_update(tvd, vd->vdev_child[c]);
1096 }
1097
1098 /*
1099  * Add a mirror/replacing vdev above an existing vdev.
1100  */
1101 vdev_t *
1102 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1103 {
1104         spa_t *spa = cvd->vdev_spa;
1105         vdev_t *pvd = cvd->vdev_parent;
1106         vdev_t *mvd;
1107
1108         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1109
1110         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1111
1112         mvd->vdev_asize = cvd->vdev_asize;
1113         mvd->vdev_min_asize = cvd->vdev_min_asize;
1114         mvd->vdev_max_asize = cvd->vdev_max_asize;
1115         mvd->vdev_psize = cvd->vdev_psize;
1116         mvd->vdev_ashift = cvd->vdev_ashift;
1117         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1118         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1119         mvd->vdev_state = cvd->vdev_state;
1120         mvd->vdev_crtxg = cvd->vdev_crtxg;
1121
1122         vdev_remove_child(pvd, cvd);
1123         vdev_add_child(pvd, mvd);
1124         cvd->vdev_id = mvd->vdev_children;
1125         vdev_add_child(mvd, cvd);
1126         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1127
1128         if (mvd == mvd->vdev_top)
1129                 vdev_top_transfer(cvd, mvd);
1130
1131         return (mvd);
1132 }
1133
1134 /*
1135  * Remove a 1-way mirror/replacing vdev from the tree.
1136  */
1137 void
1138 vdev_remove_parent(vdev_t *cvd)
1139 {
1140         vdev_t *mvd = cvd->vdev_parent;
1141         vdev_t *pvd = mvd->vdev_parent;
1142
1143         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1144
1145         ASSERT(mvd->vdev_children == 1);
1146         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1147             mvd->vdev_ops == &vdev_replacing_ops ||
1148             mvd->vdev_ops == &vdev_spare_ops);
1149         cvd->vdev_ashift = mvd->vdev_ashift;
1150         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1151         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1152
1153         vdev_remove_child(mvd, cvd);
1154         vdev_remove_child(pvd, mvd);
1155
1156         /*
1157          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1158          * Otherwise, we could have detached an offline device, and when we
1159          * go to import the pool we'll think we have two top-level vdevs,
1160          * instead of a different version of the same top-level vdev.
1161          */
1162         if (mvd->vdev_top == mvd) {
1163                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1164                 cvd->vdev_orig_guid = cvd->vdev_guid;
1165                 cvd->vdev_guid += guid_delta;
1166                 cvd->vdev_guid_sum += guid_delta;
1167         }
1168         cvd->vdev_id = mvd->vdev_id;
1169         vdev_add_child(pvd, cvd);
1170         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1171
1172         if (cvd == cvd->vdev_top)
1173                 vdev_top_transfer(mvd, cvd);
1174
1175         ASSERT(mvd->vdev_children == 0);
1176         vdev_free(mvd);
1177 }
1178
1179 int
1180 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1181 {
1182         spa_t *spa = vd->vdev_spa;
1183         objset_t *mos = spa->spa_meta_objset;
1184         uint64_t m;
1185         uint64_t oldc = vd->vdev_ms_count;
1186         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1187         metaslab_t **mspp;
1188         int error;
1189
1190         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1191
1192         /*
1193          * This vdev is not being allocated from yet or is a hole.
1194          */
1195         if (vd->vdev_ms_shift == 0)
1196                 return (0);
1197
1198         ASSERT(!vd->vdev_ishole);
1199
1200         ASSERT(oldc <= newc);
1201
1202         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1203
1204         if (oldc != 0) {
1205                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1206                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1207         }
1208
1209         vd->vdev_ms = mspp;
1210         vd->vdev_ms_count = newc;
1211         for (m = oldc; m < newc; m++) {
1212                 uint64_t object = 0;
1213
1214                 /*
1215                  * vdev_ms_array may be 0 if we are creating the "fake"
1216                  * metaslabs for an indirect vdev for zdb's leak detection.
1217                  * See zdb_leak_init().
1218                  */
1219                 if (txg == 0 && vd->vdev_ms_array != 0) {
1220                         error = dmu_read(mos, vd->vdev_ms_array,
1221                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1222                             DMU_READ_PREFETCH);
1223                         if (error != 0) {
1224                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1225                                     "array [error=%d]", error);
1226                                 return (error);
1227                         }
1228                 }
1229
1230                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1231                     &(vd->vdev_ms[m]));
1232                 if (error != 0) {
1233                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1234                             error);
1235                         return (error);
1236                 }
1237         }
1238
1239         if (txg == 0)
1240                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1241
1242         /*
1243          * If the vdev is being removed we don't activate
1244          * the metaslabs since we want to ensure that no new
1245          * allocations are performed on this device.
1246          */
1247         if (oldc == 0 && !vd->vdev_removing)
1248                 metaslab_group_activate(vd->vdev_mg);
1249
1250         if (txg == 0)
1251                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1252
1253         return (0);
1254 }
1255
1256 void
1257 vdev_metaslab_fini(vdev_t *vd)
1258 {
1259         if (vd->vdev_checkpoint_sm != NULL) {
1260                 ASSERT(spa_feature_is_active(vd->vdev_spa,
1261                     SPA_FEATURE_POOL_CHECKPOINT));
1262                 space_map_close(vd->vdev_checkpoint_sm);
1263                 /*
1264                  * Even though we close the space map, we need to set its
1265                  * pointer to NULL. The reason is that vdev_metaslab_fini()
1266                  * may be called multiple times for certain operations
1267                  * (i.e. when destroying a pool) so we need to ensure that
1268                  * this clause never executes twice. This logic is similar
1269                  * to the one used for the vdev_ms clause below.
1270                  */
1271                 vd->vdev_checkpoint_sm = NULL;
1272         }
1273
1274         if (vd->vdev_ms != NULL) {
1275                 uint64_t count = vd->vdev_ms_count;
1276
1277                 metaslab_group_passivate(vd->vdev_mg);
1278                 for (uint64_t m = 0; m < count; m++) {
1279                         metaslab_t *msp = vd->vdev_ms[m];
1280
1281                         if (msp != NULL)
1282                                 metaslab_fini(msp);
1283                 }
1284                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1285                 vd->vdev_ms = NULL;
1286
1287                 vd->vdev_ms_count = 0;
1288         }
1289         ASSERT0(vd->vdev_ms_count);
1290 }
1291
1292 typedef struct vdev_probe_stats {
1293         boolean_t       vps_readable;
1294         boolean_t       vps_writeable;
1295         int             vps_flags;
1296 } vdev_probe_stats_t;
1297
1298 static void
1299 vdev_probe_done(zio_t *zio)
1300 {
1301         spa_t *spa = zio->io_spa;
1302         vdev_t *vd = zio->io_vd;
1303         vdev_probe_stats_t *vps = zio->io_private;
1304
1305         ASSERT(vd->vdev_probe_zio != NULL);
1306
1307         if (zio->io_type == ZIO_TYPE_READ) {
1308                 if (zio->io_error == 0)
1309                         vps->vps_readable = 1;
1310                 if (zio->io_error == 0 && spa_writeable(spa)) {
1311                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1312                             zio->io_offset, zio->io_size, zio->io_abd,
1313                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1314                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1315                 } else {
1316                         abd_free(zio->io_abd);
1317                 }
1318         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1319                 if (zio->io_error == 0)
1320                         vps->vps_writeable = 1;
1321                 abd_free(zio->io_abd);
1322         } else if (zio->io_type == ZIO_TYPE_NULL) {
1323                 zio_t *pio;
1324
1325                 vd->vdev_cant_read |= !vps->vps_readable;
1326                 vd->vdev_cant_write |= !vps->vps_writeable;
1327
1328                 if (vdev_readable(vd) &&
1329                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1330                         zio->io_error = 0;
1331                 } else {
1332                         ASSERT(zio->io_error != 0);
1333                         vdev_dbgmsg(vd, "failed probe");
1334                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1335                             spa, vd, NULL, 0, 0);
1336                         zio->io_error = SET_ERROR(ENXIO);
1337                 }
1338
1339                 mutex_enter(&vd->vdev_probe_lock);
1340                 ASSERT(vd->vdev_probe_zio == zio);
1341                 vd->vdev_probe_zio = NULL;
1342                 mutex_exit(&vd->vdev_probe_lock);
1343
1344                 zio_link_t *zl = NULL;
1345                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1346                         if (!vdev_accessible(vd, pio))
1347                                 pio->io_error = SET_ERROR(ENXIO);
1348
1349                 kmem_free(vps, sizeof (*vps));
1350         }
1351 }
1352
1353 /*
1354  * Determine whether this device is accessible.
1355  *
1356  * Read and write to several known locations: the pad regions of each
1357  * vdev label but the first, which we leave alone in case it contains
1358  * a VTOC.
1359  */
1360 zio_t *
1361 vdev_probe(vdev_t *vd, zio_t *zio)
1362 {
1363         spa_t *spa = vd->vdev_spa;
1364         vdev_probe_stats_t *vps = NULL;
1365         zio_t *pio;
1366
1367         ASSERT(vd->vdev_ops->vdev_op_leaf);
1368
1369         /*
1370          * Don't probe the probe.
1371          */
1372         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1373                 return (NULL);
1374
1375         /*
1376          * To prevent 'probe storms' when a device fails, we create
1377          * just one probe i/o at a time.  All zios that want to probe
1378          * this vdev will become parents of the probe io.
1379          */
1380         mutex_enter(&vd->vdev_probe_lock);
1381
1382         if ((pio = vd->vdev_probe_zio) == NULL) {
1383                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1384
1385                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1386                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1387                     ZIO_FLAG_TRYHARD;
1388
1389                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1390                         /*
1391                          * vdev_cant_read and vdev_cant_write can only
1392                          * transition from TRUE to FALSE when we have the
1393                          * SCL_ZIO lock as writer; otherwise they can only
1394                          * transition from FALSE to TRUE.  This ensures that
1395                          * any zio looking at these values can assume that
1396                          * failures persist for the life of the I/O.  That's
1397                          * important because when a device has intermittent
1398                          * connectivity problems, we want to ensure that
1399                          * they're ascribed to the device (ENXIO) and not
1400                          * the zio (EIO).
1401                          *
1402                          * Since we hold SCL_ZIO as writer here, clear both
1403                          * values so the probe can reevaluate from first
1404                          * principles.
1405                          */
1406                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1407                         vd->vdev_cant_read = B_FALSE;
1408                         vd->vdev_cant_write = B_FALSE;
1409                 }
1410
1411                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1412                     vdev_probe_done, vps,
1413                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1414
1415                 /*
1416                  * We can't change the vdev state in this context, so we
1417                  * kick off an async task to do it on our behalf.
1418                  */
1419                 if (zio != NULL) {
1420                         vd->vdev_probe_wanted = B_TRUE;
1421                         spa_async_request(spa, SPA_ASYNC_PROBE);
1422                 }
1423         }
1424
1425         if (zio != NULL)
1426                 zio_add_child(zio, pio);
1427
1428         mutex_exit(&vd->vdev_probe_lock);
1429
1430         if (vps == NULL) {
1431                 ASSERT(zio != NULL);
1432                 return (NULL);
1433         }
1434
1435         for (int l = 1; l < VDEV_LABELS; l++) {
1436                 zio_nowait(zio_read_phys(pio, vd,
1437                     vdev_label_offset(vd->vdev_psize, l,
1438                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1439                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1440                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1441                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1442         }
1443
1444         if (zio == NULL)
1445                 return (pio);
1446
1447         zio_nowait(pio);
1448         return (NULL);
1449 }
1450
1451 static void
1452 vdev_open_child(void *arg)
1453 {
1454         vdev_t *vd = arg;
1455
1456         vd->vdev_open_thread = curthread;
1457         vd->vdev_open_error = vdev_open(vd);
1458         vd->vdev_open_thread = NULL;
1459 }
1460
1461 boolean_t
1462 vdev_uses_zvols(vdev_t *vd)
1463 {
1464         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1465             strlen(ZVOL_DIR)) == 0)
1466                 return (B_TRUE);
1467         for (int c = 0; c < vd->vdev_children; c++)
1468                 if (vdev_uses_zvols(vd->vdev_child[c]))
1469                         return (B_TRUE);
1470         return (B_FALSE);
1471 }
1472
1473 void
1474 vdev_open_children(vdev_t *vd)
1475 {
1476         taskq_t *tq;
1477         int children = vd->vdev_children;
1478
1479         vd->vdev_nonrot = B_TRUE;
1480
1481         /*
1482          * in order to handle pools on top of zvols, do the opens
1483          * in a single thread so that the same thread holds the
1484          * spa_namespace_lock
1485          */
1486         if (B_TRUE || vdev_uses_zvols(vd)) {
1487                 for (int c = 0; c < children; c++) {
1488                         vd->vdev_child[c]->vdev_open_error =
1489                             vdev_open(vd->vdev_child[c]);
1490                         vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1491                 }
1492                 return;
1493         }
1494         tq = taskq_create("vdev_open", children, minclsyspri,
1495             children, children, TASKQ_PREPOPULATE);
1496
1497         for (int c = 0; c < children; c++)
1498                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1499                     TQ_SLEEP) != 0);
1500
1501         taskq_destroy(tq);
1502
1503         for (int c = 0; c < children; c++)
1504                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1505 }
1506
1507 /*
1508  * Compute the raidz-deflation ratio.  Note, we hard-code
1509  * in 128k (1 << 17) because it is the "typical" blocksize.
1510  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1511  * otherwise it would inconsistently account for existing bp's.
1512  */
1513 static void
1514 vdev_set_deflate_ratio(vdev_t *vd)
1515 {
1516         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1517                 vd->vdev_deflate_ratio = (1 << 17) /
1518                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1519         }
1520 }
1521
1522 /*
1523  * Prepare a virtual device for access.
1524  */
1525 int
1526 vdev_open(vdev_t *vd)
1527 {
1528         spa_t *spa = vd->vdev_spa;
1529         int error;
1530         uint64_t osize = 0;
1531         uint64_t max_osize = 0;
1532         uint64_t asize, max_asize, psize;
1533         uint64_t logical_ashift = 0;
1534         uint64_t physical_ashift = 0;
1535
1536         ASSERT(vd->vdev_open_thread == curthread ||
1537             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1538         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1539             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1540             vd->vdev_state == VDEV_STATE_OFFLINE);
1541
1542         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1543         vd->vdev_cant_read = B_FALSE;
1544         vd->vdev_cant_write = B_FALSE;
1545         vd->vdev_notrim = B_FALSE;
1546         vd->vdev_min_asize = vdev_get_min_asize(vd);
1547
1548         /*
1549          * If this vdev is not removed, check its fault status.  If it's
1550          * faulted, bail out of the open.
1551          */
1552         if (!vd->vdev_removed && vd->vdev_faulted) {
1553                 ASSERT(vd->vdev_children == 0);
1554                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1555                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1556                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1557                     vd->vdev_label_aux);
1558                 return (SET_ERROR(ENXIO));
1559         } else if (vd->vdev_offline) {
1560                 ASSERT(vd->vdev_children == 0);
1561                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1562                 return (SET_ERROR(ENXIO));
1563         }
1564
1565         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1566             &logical_ashift, &physical_ashift);
1567
1568         /*
1569          * Reset the vdev_reopening flag so that we actually close
1570          * the vdev on error.
1571          */
1572         vd->vdev_reopening = B_FALSE;
1573         if (zio_injection_enabled && error == 0)
1574                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1575
1576         if (error) {
1577                 if (vd->vdev_removed &&
1578                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1579                         vd->vdev_removed = B_FALSE;
1580
1581                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1582                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1583                             vd->vdev_stat.vs_aux);
1584                 } else {
1585                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1586                             vd->vdev_stat.vs_aux);
1587                 }
1588                 return (error);
1589         }
1590
1591         vd->vdev_removed = B_FALSE;
1592
1593         /*
1594          * Recheck the faulted flag now that we have confirmed that
1595          * the vdev is accessible.  If we're faulted, bail.
1596          */
1597         if (vd->vdev_faulted) {
1598                 ASSERT(vd->vdev_children == 0);
1599                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1600                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1601                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1602                     vd->vdev_label_aux);
1603                 return (SET_ERROR(ENXIO));
1604         }
1605
1606         if (vd->vdev_degraded) {
1607                 ASSERT(vd->vdev_children == 0);
1608                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1609                     VDEV_AUX_ERR_EXCEEDED);
1610         } else {
1611                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1612         }
1613
1614         /*
1615          * For hole or missing vdevs we just return success.
1616          */
1617         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1618                 return (0);
1619
1620         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1621                 trim_map_create(vd);
1622
1623         for (int c = 0; c < vd->vdev_children; c++) {
1624                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1625                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1626                             VDEV_AUX_NONE);
1627                         break;
1628                 }
1629         }
1630
1631         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1632         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1633
1634         if (vd->vdev_children == 0) {
1635                 if (osize < SPA_MINDEVSIZE) {
1636                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1637                             VDEV_AUX_TOO_SMALL);
1638                         return (SET_ERROR(EOVERFLOW));
1639                 }
1640                 psize = osize;
1641                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1642                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1643                     VDEV_LABEL_END_SIZE);
1644         } else {
1645                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1646                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1647                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1648                             VDEV_AUX_TOO_SMALL);
1649                         return (SET_ERROR(EOVERFLOW));
1650                 }
1651                 psize = 0;
1652                 asize = osize;
1653                 max_asize = max_osize;
1654         }
1655
1656         vd->vdev_psize = psize;
1657
1658         /*
1659          * Make sure the allocatable size hasn't shrunk too much.
1660          */
1661         if (asize < vd->vdev_min_asize) {
1662                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1663                     VDEV_AUX_BAD_LABEL);
1664                 return (SET_ERROR(EINVAL));
1665         }
1666
1667         vd->vdev_physical_ashift =
1668             MAX(physical_ashift, vd->vdev_physical_ashift);
1669         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1670         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1671
1672         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1673                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1674                     VDEV_AUX_ASHIFT_TOO_BIG);
1675                 return (EINVAL);
1676         }
1677
1678         if (vd->vdev_asize == 0) {
1679                 /*
1680                  * This is the first-ever open, so use the computed values.
1681                  * For testing purposes, a higher ashift can be requested.
1682                  */
1683                 vd->vdev_asize = asize;
1684                 vd->vdev_max_asize = max_asize;
1685         } else {
1686                 /*
1687                  * Make sure the alignment requirement hasn't increased.
1688                  */
1689                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1690                     vd->vdev_ops->vdev_op_leaf) {
1691                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1692                             VDEV_AUX_BAD_LABEL);
1693                         return (EINVAL);
1694                 }
1695                 vd->vdev_max_asize = max_asize;
1696         }
1697
1698         /*
1699          * If all children are healthy we update asize if either:
1700          * The asize has increased, due to a device expansion caused by dynamic
1701          * LUN growth or vdev replacement, and automatic expansion is enabled;
1702          * making the additional space available.
1703          *
1704          * The asize has decreased, due to a device shrink usually caused by a
1705          * vdev replace with a smaller device. This ensures that calculations
1706          * based of max_asize and asize e.g. esize are always valid. It's safe
1707          * to do this as we've already validated that asize is greater than
1708          * vdev_min_asize.
1709          */
1710         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1711             ((asize > vd->vdev_asize &&
1712             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1713             (asize < vd->vdev_asize)))
1714                 vd->vdev_asize = asize;
1715
1716         vdev_set_min_asize(vd);
1717
1718         /*
1719          * Ensure we can issue some IO before declaring the
1720          * vdev open for business.
1721          */
1722         if (vd->vdev_ops->vdev_op_leaf &&
1723             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1724                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1725                     VDEV_AUX_ERR_EXCEEDED);
1726                 return (error);
1727         }
1728
1729         /*
1730          * Track the min and max ashift values for normal data devices.
1731          */
1732         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1733             !vd->vdev_islog && vd->vdev_aux == NULL) {
1734                 if (vd->vdev_ashift > spa->spa_max_ashift)
1735                         spa->spa_max_ashift = vd->vdev_ashift;
1736                 if (vd->vdev_ashift < spa->spa_min_ashift)
1737                         spa->spa_min_ashift = vd->vdev_ashift;
1738         }
1739
1740         /*
1741          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1742          * resilver.  But don't do this if we are doing a reopen for a scrub,
1743          * since this would just restart the scrub we are already doing.
1744          */
1745         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1746             vdev_resilver_needed(vd, NULL, NULL))
1747                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1748
1749         return (0);
1750 }
1751
1752 /*
1753  * Called once the vdevs are all opened, this routine validates the label
1754  * contents. This needs to be done before vdev_load() so that we don't
1755  * inadvertently do repair I/Os to the wrong device.
1756  *
1757  * This function will only return failure if one of the vdevs indicates that it
1758  * has since been destroyed or exported.  This is only possible if
1759  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1760  * will be updated but the function will return 0.
1761  */
1762 int
1763 vdev_validate(vdev_t *vd)
1764 {
1765         spa_t *spa = vd->vdev_spa;
1766         nvlist_t *label;
1767         uint64_t guid = 0, aux_guid = 0, top_guid;
1768         uint64_t state;
1769         nvlist_t *nvl;
1770         uint64_t txg;
1771
1772         if (vdev_validate_skip)
1773                 return (0);
1774
1775         for (uint64_t c = 0; c < vd->vdev_children; c++)
1776                 if (vdev_validate(vd->vdev_child[c]) != 0)
1777                         return (SET_ERROR(EBADF));
1778
1779         /*
1780          * If the device has already failed, or was marked offline, don't do
1781          * any further validation.  Otherwise, label I/O will fail and we will
1782          * overwrite the previous state.
1783          */
1784         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1785                 return (0);
1786
1787         /*
1788          * If we are performing an extreme rewind, we allow for a label that
1789          * was modified at a point after the current txg.
1790          * If config lock is not held do not check for the txg. spa_sync could
1791          * be updating the vdev's label before updating spa_last_synced_txg.
1792          */
1793         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1794             spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1795                 txg = UINT64_MAX;
1796         else
1797                 txg = spa_last_synced_txg(spa);
1798
1799         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1800                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1801                     VDEV_AUX_BAD_LABEL);
1802                 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1803                     "txg %llu", (u_longlong_t)txg);
1804                 return (0);
1805         }
1806
1807         /*
1808          * Determine if this vdev has been split off into another
1809          * pool.  If so, then refuse to open it.
1810          */
1811         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1812             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1813                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1814                     VDEV_AUX_SPLIT_POOL);
1815                 nvlist_free(label);
1816                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1817                 return (0);
1818         }
1819
1820         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1821                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1822                     VDEV_AUX_CORRUPT_DATA);
1823                 nvlist_free(label);
1824                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1825                     ZPOOL_CONFIG_POOL_GUID);
1826                 return (0);
1827         }
1828
1829         /*
1830          * If config is not trusted then ignore the spa guid check. This is
1831          * necessary because if the machine crashed during a re-guid the new
1832          * guid might have been written to all of the vdev labels, but not the
1833          * cached config. The check will be performed again once we have the
1834          * trusted config from the MOS.
1835          */
1836         if (spa->spa_trust_config && guid != spa_guid(spa)) {
1837                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1838                     VDEV_AUX_CORRUPT_DATA);
1839                 nvlist_free(label);
1840                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1841                     "match config (%llu != %llu)", (u_longlong_t)guid,
1842                     (u_longlong_t)spa_guid(spa));
1843                 return (0);
1844         }
1845
1846         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1847             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1848             &aux_guid) != 0)
1849                 aux_guid = 0;
1850
1851         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1852                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1853                     VDEV_AUX_CORRUPT_DATA);
1854                 nvlist_free(label);
1855                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1856                     ZPOOL_CONFIG_GUID);
1857                 return (0);
1858         }
1859
1860         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1861             != 0) {
1862                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1863                     VDEV_AUX_CORRUPT_DATA);
1864                 nvlist_free(label);
1865                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1866                     ZPOOL_CONFIG_TOP_GUID);
1867                 return (0);
1868         }
1869
1870         /*
1871          * If this vdev just became a top-level vdev because its sibling was
1872          * detached, it will have adopted the parent's vdev guid -- but the
1873          * label may or may not be on disk yet. Fortunately, either version
1874          * of the label will have the same top guid, so if we're a top-level
1875          * vdev, we can safely compare to that instead.
1876          * However, if the config comes from a cachefile that failed to update
1877          * after the detach, a top-level vdev will appear as a non top-level
1878          * vdev in the config. Also relax the constraints if we perform an
1879          * extreme rewind.
1880          *
1881          * If we split this vdev off instead, then we also check the
1882          * original pool's guid. We don't want to consider the vdev
1883          * corrupt if it is partway through a split operation.
1884          */
1885         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1886                 boolean_t mismatch = B_FALSE;
1887                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1888                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1889                                 mismatch = B_TRUE;
1890                 } else {
1891                         if (vd->vdev_guid != top_guid &&
1892                             vd->vdev_top->vdev_guid != guid)
1893                                 mismatch = B_TRUE;
1894                 }
1895
1896                 if (mismatch) {
1897                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1898                             VDEV_AUX_CORRUPT_DATA);
1899                         nvlist_free(label);
1900                         vdev_dbgmsg(vd, "vdev_validate: config guid "
1901                             "doesn't match label guid");
1902                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1903                             (u_longlong_t)vd->vdev_guid,
1904                             (u_longlong_t)vd->vdev_top->vdev_guid);
1905                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1906                             "aux_guid %llu", (u_longlong_t)guid,
1907                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1908                         return (0);
1909                 }
1910         }
1911
1912         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1913             &state) != 0) {
1914                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1915                     VDEV_AUX_CORRUPT_DATA);
1916                 nvlist_free(label);
1917                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1918                     ZPOOL_CONFIG_POOL_STATE);
1919                 return (0);
1920         }
1921
1922         nvlist_free(label);
1923
1924         /*
1925          * If this is a verbatim import, no need to check the
1926          * state of the pool.
1927          */
1928         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1929             spa_load_state(spa) == SPA_LOAD_OPEN &&
1930             state != POOL_STATE_ACTIVE) {
1931                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1932                     "for spa %s", (u_longlong_t)state, spa->spa_name);
1933                 return (SET_ERROR(EBADF));
1934         }
1935
1936         /*
1937          * If we were able to open and validate a vdev that was
1938          * previously marked permanently unavailable, clear that state
1939          * now.
1940          */
1941         if (vd->vdev_not_present)
1942                 vd->vdev_not_present = 0;
1943
1944         return (0);
1945 }
1946
1947 static void
1948 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1949 {
1950         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1951                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1952                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1953                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1954                             dvd->vdev_path, svd->vdev_path);
1955                         spa_strfree(dvd->vdev_path);
1956                         dvd->vdev_path = spa_strdup(svd->vdev_path);
1957                 }
1958         } else if (svd->vdev_path != NULL) {
1959                 dvd->vdev_path = spa_strdup(svd->vdev_path);
1960                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1961                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1962         }
1963 }
1964
1965 /*
1966  * Recursively copy vdev paths from one vdev to another. Source and destination
1967  * vdev trees must have same geometry otherwise return error. Intended to copy
1968  * paths from userland config into MOS config.
1969  */
1970 int
1971 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1972 {
1973         if ((svd->vdev_ops == &vdev_missing_ops) ||
1974             (svd->vdev_ishole && dvd->vdev_ishole) ||
1975             (dvd->vdev_ops == &vdev_indirect_ops))
1976                 return (0);
1977
1978         if (svd->vdev_ops != dvd->vdev_ops) {
1979                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1980                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1981                 return (SET_ERROR(EINVAL));
1982         }
1983
1984         if (svd->vdev_guid != dvd->vdev_guid) {
1985                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1986                     "%llu)", (u_longlong_t)svd->vdev_guid,
1987                     (u_longlong_t)dvd->vdev_guid);
1988                 return (SET_ERROR(EINVAL));
1989         }
1990
1991         if (svd->vdev_children != dvd->vdev_children) {
1992                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1993                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
1994                     (u_longlong_t)dvd->vdev_children);
1995                 return (SET_ERROR(EINVAL));
1996         }
1997
1998         for (uint64_t i = 0; i < svd->vdev_children; i++) {
1999                 int error = vdev_copy_path_strict(svd->vdev_child[i],
2000                     dvd->vdev_child[i]);
2001                 if (error != 0)
2002                         return (error);
2003         }
2004
2005         if (svd->vdev_ops->vdev_op_leaf)
2006                 vdev_copy_path_impl(svd, dvd);
2007
2008         return (0);
2009 }
2010
2011 static void
2012 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2013 {
2014         ASSERT(stvd->vdev_top == stvd);
2015         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2016
2017         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2018                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2019         }
2020
2021         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2022                 return;
2023
2024         /*
2025          * The idea here is that while a vdev can shift positions within
2026          * a top vdev (when replacing, attaching mirror, etc.) it cannot
2027          * step outside of it.
2028          */
2029         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2030
2031         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2032                 return;
2033
2034         ASSERT(vd->vdev_ops->vdev_op_leaf);
2035
2036         vdev_copy_path_impl(vd, dvd);
2037 }
2038
2039 /*
2040  * Recursively copy vdev paths from one root vdev to another. Source and
2041  * destination vdev trees may differ in geometry. For each destination leaf
2042  * vdev, search a vdev with the same guid and top vdev id in the source.
2043  * Intended to copy paths from userland config into MOS config.
2044  */
2045 void
2046 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2047 {
2048         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2049         ASSERT(srvd->vdev_ops == &vdev_root_ops);
2050         ASSERT(drvd->vdev_ops == &vdev_root_ops);
2051
2052         for (uint64_t i = 0; i < children; i++) {
2053                 vdev_copy_path_search(srvd->vdev_child[i],
2054                     drvd->vdev_child[i]);
2055         }
2056 }
2057
2058 /*
2059  * Close a virtual device.
2060  */
2061 void
2062 vdev_close(vdev_t *vd)
2063 {
2064         spa_t *spa = vd->vdev_spa;
2065         vdev_t *pvd = vd->vdev_parent;
2066
2067         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2068
2069         /*
2070          * If our parent is reopening, then we are as well, unless we are
2071          * going offline.
2072          */
2073         if (pvd != NULL && pvd->vdev_reopening)
2074                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2075
2076         vd->vdev_ops->vdev_op_close(vd);
2077
2078         vdev_cache_purge(vd);
2079
2080         if (vd->vdev_ops->vdev_op_leaf)
2081                 trim_map_destroy(vd);
2082
2083         /*
2084          * We record the previous state before we close it, so that if we are
2085          * doing a reopen(), we don't generate FMA ereports if we notice that
2086          * it's still faulted.
2087          */
2088         vd->vdev_prevstate = vd->vdev_state;
2089
2090         if (vd->vdev_offline)
2091                 vd->vdev_state = VDEV_STATE_OFFLINE;
2092         else
2093                 vd->vdev_state = VDEV_STATE_CLOSED;
2094         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2095 }
2096
2097 void
2098 vdev_hold(vdev_t *vd)
2099 {
2100         spa_t *spa = vd->vdev_spa;
2101
2102         ASSERT(spa_is_root(spa));
2103         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2104                 return;
2105
2106         for (int c = 0; c < vd->vdev_children; c++)
2107                 vdev_hold(vd->vdev_child[c]);
2108
2109         if (vd->vdev_ops->vdev_op_leaf)
2110                 vd->vdev_ops->vdev_op_hold(vd);
2111 }
2112
2113 void
2114 vdev_rele(vdev_t *vd)
2115 {
2116         spa_t *spa = vd->vdev_spa;
2117
2118         ASSERT(spa_is_root(spa));
2119         for (int c = 0; c < vd->vdev_children; c++)
2120                 vdev_rele(vd->vdev_child[c]);
2121
2122         if (vd->vdev_ops->vdev_op_leaf)
2123                 vd->vdev_ops->vdev_op_rele(vd);
2124 }
2125
2126 /*
2127  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2128  * reopen leaf vdevs which had previously been opened as they might deadlock
2129  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2130  * If the leaf has never been opened then open it, as usual.
2131  */
2132 void
2133 vdev_reopen(vdev_t *vd)
2134 {
2135         spa_t *spa = vd->vdev_spa;
2136
2137         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2138
2139         /* set the reopening flag unless we're taking the vdev offline */
2140         vd->vdev_reopening = !vd->vdev_offline;
2141         vdev_close(vd);
2142         (void) vdev_open(vd);
2143
2144         /*
2145          * Call vdev_validate() here to make sure we have the same device.
2146          * Otherwise, a device with an invalid label could be successfully
2147          * opened in response to vdev_reopen().
2148          */
2149         if (vd->vdev_aux) {
2150                 (void) vdev_validate_aux(vd);
2151                 if (vdev_readable(vd) && vdev_writeable(vd) &&
2152                     vd->vdev_aux == &spa->spa_l2cache &&
2153                     !l2arc_vdev_present(vd))
2154                         l2arc_add_vdev(spa, vd);
2155         } else {
2156                 (void) vdev_validate(vd);
2157         }
2158
2159         /*
2160          * Reassess parent vdev's health.
2161          */
2162         vdev_propagate_state(vd);
2163 }
2164
2165 int
2166 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2167 {
2168         int error;
2169
2170         /*
2171          * Normally, partial opens (e.g. of a mirror) are allowed.
2172          * For a create, however, we want to fail the request if
2173          * there are any components we can't open.
2174          */
2175         error = vdev_open(vd);
2176
2177         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2178                 vdev_close(vd);
2179                 return (error ? error : ENXIO);
2180         }
2181
2182         /*
2183          * Recursively load DTLs and initialize all labels.
2184          */
2185         if ((error = vdev_dtl_load(vd)) != 0 ||
2186             (error = vdev_label_init(vd, txg, isreplacing ?
2187             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2188                 vdev_close(vd);
2189                 return (error);
2190         }
2191
2192         return (0);
2193 }
2194
2195 void
2196 vdev_metaslab_set_size(vdev_t *vd)
2197 {
2198         uint64_t asize = vd->vdev_asize;
2199         uint64_t ms_count = asize >> vdev_default_ms_shift;
2200         uint64_t ms_shift;
2201
2202         /*
2203          * There are two dimensions to the metaslab sizing calculation:
2204          * the size of the metaslab and the count of metaslabs per vdev.
2205          * In general, we aim for vdev_max_ms_count (200) metaslabs. The
2206          * range of the dimensions are as follows:
2207          *
2208          *      2^29 <= ms_size  <= 2^38
2209          *        16 <= ms_count <= 131,072
2210          *
2211          * On the lower end of vdev sizes, we aim for metaslabs sizes of
2212          * at least 512MB (2^29) to minimize fragmentation effects when
2213          * testing with smaller devices.  However, the count constraint
2214          * of at least 16 metaslabs will override this minimum size goal.
2215          *
2216          * On the upper end of vdev sizes, we aim for a maximum metaslab
2217          * size of 256GB.  However, we will cap the total count to 2^17
2218          * metaslabs to keep our memory footprint in check.
2219          *
2220          * The net effect of applying above constrains is summarized below.
2221          *
2222          *      vdev size       metaslab count
2223          *      -------------|-----------------
2224          *      < 8GB           ~16
2225          *      8GB - 100GB     one per 512MB
2226          *      100GB - 50TB    ~200
2227          *      50TB - 32PB     one per 256GB
2228          *      > 32PB          ~131,072
2229          *      -------------------------------
2230          */
2231
2232         if (ms_count < vdev_min_ms_count)
2233                 ms_shift = highbit64(asize / vdev_min_ms_count);
2234         else if (ms_count > vdev_max_ms_count)
2235                 ms_shift = highbit64(asize / vdev_max_ms_count);
2236         else
2237                 ms_shift = vdev_default_ms_shift;
2238
2239         if (ms_shift < SPA_MAXBLOCKSHIFT) {
2240                 ms_shift = SPA_MAXBLOCKSHIFT;
2241         } else if (ms_shift > vdev_max_ms_shift) {
2242                 ms_shift = vdev_max_ms_shift;
2243                 /* cap the total count to constrain memory footprint */
2244                 if ((asize >> ms_shift) > vdev_ms_count_limit)
2245                         ms_shift = highbit64(asize / vdev_ms_count_limit);
2246         }
2247
2248         vd->vdev_ms_shift = ms_shift;
2249         ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2250 }
2251
2252 /*
2253  * Maximize performance by inflating the configured ashift for top level
2254  * vdevs to be as close to the physical ashift as possible while maintaining
2255  * administrator defined limits and ensuring it doesn't go below the
2256  * logical ashift.
2257  */
2258 void
2259 vdev_ashift_optimize(vdev_t *vd)
2260 {
2261         if (vd == vd->vdev_top) {
2262                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
2263                         vd->vdev_ashift = MIN(
2264                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
2265                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
2266                 } else {
2267                         /*
2268                          * Unusual case where logical ashift > physical ashift
2269                          * so we can't cap the calculated ashift based on max
2270                          * ashift as that would cause failures.
2271                          * We still check if we need to increase it to match
2272                          * the min ashift.
2273                          */
2274                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
2275                             vd->vdev_ashift);
2276                 }
2277         }
2278 }
2279
2280 void
2281 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2282 {
2283         ASSERT(vd == vd->vdev_top);
2284         /* indirect vdevs don't have metaslabs or dtls */
2285         ASSERT(vdev_is_concrete(vd) || flags == 0);
2286         ASSERT(ISP2(flags));
2287         ASSERT(spa_writeable(vd->vdev_spa));
2288
2289         if (flags & VDD_METASLAB)
2290                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2291
2292         if (flags & VDD_DTL)
2293                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2294
2295         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2296 }
2297
2298 void
2299 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2300 {
2301         for (int c = 0; c < vd->vdev_children; c++)
2302                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2303
2304         if (vd->vdev_ops->vdev_op_leaf)
2305                 vdev_dirty(vd->vdev_top, flags, vd, txg);
2306 }
2307
2308 /*
2309  * DTLs.
2310  *
2311  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2312  * the vdev has less than perfect replication.  There are four kinds of DTL:
2313  *
2314  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2315  *
2316  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2317  *
2318  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2319  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2320  *      txgs that was scrubbed.
2321  *
2322  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2323  *      persistent errors or just some device being offline.
2324  *      Unlike the other three, the DTL_OUTAGE map is not generally
2325  *      maintained; it's only computed when needed, typically to
2326  *      determine whether a device can be detached.
2327  *
2328  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2329  * either has the data or it doesn't.
2330  *
2331  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2332  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2333  * if any child is less than fully replicated, then so is its parent.
2334  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2335  * comprising only those txgs which appear in 'maxfaults' or more children;
2336  * those are the txgs we don't have enough replication to read.  For example,
2337  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2338  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2339  * two child DTL_MISSING maps.
2340  *
2341  * It should be clear from the above that to compute the DTLs and outage maps
2342  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2343  * Therefore, that is all we keep on disk.  When loading the pool, or after
2344  * a configuration change, we generate all other DTLs from first principles.
2345  */
2346 void
2347 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2348 {
2349         range_tree_t *rt = vd->vdev_dtl[t];
2350
2351         ASSERT(t < DTL_TYPES);
2352         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2353         ASSERT(spa_writeable(vd->vdev_spa));
2354
2355         mutex_enter(&vd->vdev_dtl_lock);
2356         if (!range_tree_contains(rt, txg, size))
2357                 range_tree_add(rt, txg, size);
2358         mutex_exit(&vd->vdev_dtl_lock);
2359 }
2360
2361 boolean_t
2362 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2363 {
2364         range_tree_t *rt = vd->vdev_dtl[t];
2365         boolean_t dirty = B_FALSE;
2366
2367         ASSERT(t < DTL_TYPES);
2368         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2369
2370         /*
2371          * While we are loading the pool, the DTLs have not been loaded yet.
2372          * Ignore the DTLs and try all devices.  This avoids a recursive
2373          * mutex enter on the vdev_dtl_lock, and also makes us try hard
2374          * when loading the pool (relying on the checksum to ensure that
2375          * we get the right data -- note that we while loading, we are
2376          * only reading the MOS, which is always checksummed).
2377          */
2378         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2379                 return (B_FALSE);
2380
2381         mutex_enter(&vd->vdev_dtl_lock);
2382         if (!range_tree_is_empty(rt))
2383                 dirty = range_tree_contains(rt, txg, size);
2384         mutex_exit(&vd->vdev_dtl_lock);
2385
2386         return (dirty);
2387 }
2388
2389 boolean_t
2390 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2391 {
2392         range_tree_t *rt = vd->vdev_dtl[t];
2393         boolean_t empty;
2394
2395         mutex_enter(&vd->vdev_dtl_lock);
2396         empty = range_tree_is_empty(rt);
2397         mutex_exit(&vd->vdev_dtl_lock);
2398
2399         return (empty);
2400 }
2401
2402 /*
2403  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2404  */
2405 boolean_t
2406 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2407 {
2408         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2409
2410         if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2411             vd->vdev_ops->vdev_op_leaf)
2412                 return (B_TRUE);
2413
2414         return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2415 }
2416
2417 /*
2418  * Returns the lowest txg in the DTL range.
2419  */
2420 static uint64_t
2421 vdev_dtl_min(vdev_t *vd)
2422 {
2423         range_seg_t *rs;
2424
2425         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2426         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2427         ASSERT0(vd->vdev_children);
2428
2429         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2430         return (rs->rs_start - 1);
2431 }
2432
2433 /*
2434  * Returns the highest txg in the DTL.
2435  */
2436 static uint64_t
2437 vdev_dtl_max(vdev_t *vd)
2438 {
2439         range_seg_t *rs;
2440
2441         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2442         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2443         ASSERT0(vd->vdev_children);
2444
2445         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2446         return (rs->rs_end);
2447 }
2448
2449 /*
2450  * Determine if a resilvering vdev should remove any DTL entries from
2451  * its range. If the vdev was resilvering for the entire duration of the
2452  * scan then it should excise that range from its DTLs. Otherwise, this
2453  * vdev is considered partially resilvered and should leave its DTL
2454  * entries intact. The comment in vdev_dtl_reassess() describes how we
2455  * excise the DTLs.
2456  */
2457 static boolean_t
2458 vdev_dtl_should_excise(vdev_t *vd)
2459 {
2460         spa_t *spa = vd->vdev_spa;
2461         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2462
2463         ASSERT0(scn->scn_phys.scn_errors);
2464         ASSERT0(vd->vdev_children);
2465
2466         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2467                 return (B_FALSE);
2468
2469         if (vd->vdev_resilver_txg == 0 ||
2470             range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2471                 return (B_TRUE);
2472
2473         /*
2474          * When a resilver is initiated the scan will assign the scn_max_txg
2475          * value to the highest txg value that exists in all DTLs. If this
2476          * device's max DTL is not part of this scan (i.e. it is not in
2477          * the range (scn_min_txg, scn_max_txg] then it is not eligible
2478          * for excision.
2479          */
2480         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2481                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2482                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2483                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2484                 return (B_TRUE);
2485         }
2486         return (B_FALSE);
2487 }
2488
2489 /*
2490  * Reassess DTLs after a config change or scrub completion.
2491  */
2492 void
2493 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2494 {
2495         spa_t *spa = vd->vdev_spa;
2496         avl_tree_t reftree;
2497         int minref;
2498
2499         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2500
2501         for (int c = 0; c < vd->vdev_children; c++)
2502                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2503                     scrub_txg, scrub_done);
2504
2505         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2506                 return;
2507
2508         if (vd->vdev_ops->vdev_op_leaf) {
2509                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2510
2511                 mutex_enter(&vd->vdev_dtl_lock);
2512
2513                 /*
2514                  * If we've completed a scan cleanly then determine
2515                  * if this vdev should remove any DTLs. We only want to
2516                  * excise regions on vdevs that were available during
2517                  * the entire duration of this scan.
2518                  */
2519                 if (scrub_txg != 0 &&
2520                     (spa->spa_scrub_started ||
2521                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2522                     vdev_dtl_should_excise(vd)) {
2523                         /*
2524                          * We completed a scrub up to scrub_txg.  If we
2525                          * did it without rebooting, then the scrub dtl
2526                          * will be valid, so excise the old region and
2527                          * fold in the scrub dtl.  Otherwise, leave the
2528                          * dtl as-is if there was an error.
2529                          *
2530                          * There's little trick here: to excise the beginning
2531                          * of the DTL_MISSING map, we put it into a reference
2532                          * tree and then add a segment with refcnt -1 that
2533                          * covers the range [0, scrub_txg).  This means
2534                          * that each txg in that range has refcnt -1 or 0.
2535                          * We then add DTL_SCRUB with a refcnt of 2, so that
2536                          * entries in the range [0, scrub_txg) will have a
2537                          * positive refcnt -- either 1 or 2.  We then convert
2538                          * the reference tree into the new DTL_MISSING map.
2539                          */
2540                         space_reftree_create(&reftree);
2541                         space_reftree_add_map(&reftree,
2542                             vd->vdev_dtl[DTL_MISSING], 1);
2543                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2544                         space_reftree_add_map(&reftree,
2545                             vd->vdev_dtl[DTL_SCRUB], 2);
2546                         space_reftree_generate_map(&reftree,
2547                             vd->vdev_dtl[DTL_MISSING], 1);
2548                         space_reftree_destroy(&reftree);
2549                 }
2550                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2551                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2552                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2553                 if (scrub_done)
2554                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2555                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2556                 if (!vdev_readable(vd))
2557                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2558                 else
2559                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2560                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2561
2562                 /*
2563                  * If the vdev was resilvering and no longer has any
2564                  * DTLs then reset its resilvering flag and dirty
2565                  * the top level so that we persist the change.
2566                  */
2567                 if (vd->vdev_resilver_txg != 0 &&
2568                     range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2569                     range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2570                         vd->vdev_resilver_txg = 0;
2571                         vdev_config_dirty(vd->vdev_top);
2572                 }
2573
2574                 mutex_exit(&vd->vdev_dtl_lock);
2575
2576                 if (txg != 0)
2577                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2578                 return;
2579         }
2580
2581         mutex_enter(&vd->vdev_dtl_lock);
2582         for (int t = 0; t < DTL_TYPES; t++) {
2583                 /* account for child's outage in parent's missing map */
2584                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2585                 if (t == DTL_SCRUB)
2586                         continue;                       /* leaf vdevs only */
2587                 if (t == DTL_PARTIAL)
2588                         minref = 1;                     /* i.e. non-zero */
2589                 else if (vd->vdev_nparity != 0)
2590                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2591                 else
2592                         minref = vd->vdev_children;     /* any kind of mirror */
2593                 space_reftree_create(&reftree);
2594                 for (int c = 0; c < vd->vdev_children; c++) {
2595                         vdev_t *cvd = vd->vdev_child[c];
2596                         mutex_enter(&cvd->vdev_dtl_lock);
2597                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2598                         mutex_exit(&cvd->vdev_dtl_lock);
2599                 }
2600                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2601                 space_reftree_destroy(&reftree);
2602         }
2603         mutex_exit(&vd->vdev_dtl_lock);
2604 }
2605
2606 int
2607 vdev_dtl_load(vdev_t *vd)
2608 {
2609         spa_t *spa = vd->vdev_spa;
2610         objset_t *mos = spa->spa_meta_objset;
2611         int error = 0;
2612
2613         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2614                 ASSERT(vdev_is_concrete(vd));
2615
2616                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2617                     vd->vdev_dtl_object, 0, -1ULL, 0);
2618                 if (error)
2619                         return (error);
2620                 ASSERT(vd->vdev_dtl_sm != NULL);
2621
2622                 mutex_enter(&vd->vdev_dtl_lock);
2623
2624                 /*
2625                  * Now that we've opened the space_map we need to update
2626                  * the in-core DTL.
2627                  */
2628                 space_map_update(vd->vdev_dtl_sm);
2629
2630                 error = space_map_load(vd->vdev_dtl_sm,
2631                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2632                 mutex_exit(&vd->vdev_dtl_lock);
2633
2634                 return (error);
2635         }
2636
2637         for (int c = 0; c < vd->vdev_children; c++) {
2638                 error = vdev_dtl_load(vd->vdev_child[c]);
2639                 if (error != 0)
2640                         break;
2641         }
2642
2643         return (error);
2644 }
2645
2646 void
2647 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2648 {
2649         spa_t *spa = vd->vdev_spa;
2650
2651         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2652         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2653             zapobj, tx));
2654 }
2655
2656 uint64_t
2657 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2658 {
2659         spa_t *spa = vd->vdev_spa;
2660         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2661             DMU_OT_NONE, 0, tx);
2662
2663         ASSERT(zap != 0);
2664         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2665             zap, tx));
2666
2667         return (zap);
2668 }
2669
2670 void
2671 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2672 {
2673         if (vd->vdev_ops != &vdev_hole_ops &&
2674             vd->vdev_ops != &vdev_missing_ops &&
2675             vd->vdev_ops != &vdev_root_ops &&
2676             !vd->vdev_top->vdev_removing) {
2677                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2678                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2679                 }
2680                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2681                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2682                 }
2683         }
2684         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2685                 vdev_construct_zaps(vd->vdev_child[i], tx);
2686         }
2687 }
2688
2689 void
2690 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2691 {
2692         spa_t *spa = vd->vdev_spa;
2693         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2694         objset_t *mos = spa->spa_meta_objset;
2695         range_tree_t *rtsync;
2696         dmu_tx_t *tx;
2697         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2698
2699         ASSERT(vdev_is_concrete(vd));
2700         ASSERT(vd->vdev_ops->vdev_op_leaf);
2701
2702         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2703
2704         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2705                 mutex_enter(&vd->vdev_dtl_lock);
2706                 space_map_free(vd->vdev_dtl_sm, tx);
2707                 space_map_close(vd->vdev_dtl_sm);
2708                 vd->vdev_dtl_sm = NULL;
2709                 mutex_exit(&vd->vdev_dtl_lock);
2710
2711                 /*
2712                  * We only destroy the leaf ZAP for detached leaves or for
2713                  * removed log devices. Removed data devices handle leaf ZAP
2714                  * cleanup later, once cancellation is no longer possible.
2715                  */
2716                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2717                     vd->vdev_top->vdev_islog)) {
2718                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2719                         vd->vdev_leaf_zap = 0;
2720                 }
2721
2722                 dmu_tx_commit(tx);
2723                 return;
2724         }
2725
2726         if (vd->vdev_dtl_sm == NULL) {
2727                 uint64_t new_object;
2728
2729                 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2730                 VERIFY3U(new_object, !=, 0);
2731
2732                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2733                     0, -1ULL, 0));
2734                 ASSERT(vd->vdev_dtl_sm != NULL);
2735         }
2736
2737         rtsync = range_tree_create(NULL, NULL);
2738
2739         mutex_enter(&vd->vdev_dtl_lock);
2740         range_tree_walk(rt, range_tree_add, rtsync);
2741         mutex_exit(&vd->vdev_dtl_lock);
2742
2743         space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2744         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2745         range_tree_vacate(rtsync, NULL, NULL);
2746
2747         range_tree_destroy(rtsync);
2748
2749         /*
2750          * If the object for the space map has changed then dirty
2751          * the top level so that we update the config.
2752          */
2753         if (object != space_map_object(vd->vdev_dtl_sm)) {
2754                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2755                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
2756                     (u_longlong_t)object,
2757                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2758                 vdev_config_dirty(vd->vdev_top);
2759         }
2760
2761         dmu_tx_commit(tx);
2762
2763         mutex_enter(&vd->vdev_dtl_lock);
2764         space_map_update(vd->vdev_dtl_sm);
2765         mutex_exit(&vd->vdev_dtl_lock);
2766 }
2767
2768 /*
2769  * Determine whether the specified vdev can be offlined/detached/removed
2770  * without losing data.
2771  */
2772 boolean_t
2773 vdev_dtl_required(vdev_t *vd)
2774 {
2775         spa_t *spa = vd->vdev_spa;
2776         vdev_t *tvd = vd->vdev_top;
2777         uint8_t cant_read = vd->vdev_cant_read;
2778         boolean_t required;
2779
2780         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2781
2782         if (vd == spa->spa_root_vdev || vd == tvd)
2783                 return (B_TRUE);
2784
2785         /*
2786          * Temporarily mark the device as unreadable, and then determine
2787          * whether this results in any DTL outages in the top-level vdev.
2788          * If not, we can safely offline/detach/remove the device.
2789          */
2790         vd->vdev_cant_read = B_TRUE;
2791         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2792         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2793         vd->vdev_cant_read = cant_read;
2794         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2795
2796         if (!required && zio_injection_enabled)
2797                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2798
2799         return (required);
2800 }
2801
2802 /*
2803  * Determine if resilver is needed, and if so the txg range.
2804  */
2805 boolean_t
2806 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2807 {
2808         boolean_t needed = B_FALSE;
2809         uint64_t thismin = UINT64_MAX;
2810         uint64_t thismax = 0;
2811
2812         if (vd->vdev_children == 0) {
2813                 mutex_enter(&vd->vdev_dtl_lock);
2814                 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2815                     vdev_writeable(vd)) {
2816
2817                         thismin = vdev_dtl_min(vd);
2818                         thismax = vdev_dtl_max(vd);
2819                         needed = B_TRUE;
2820                 }
2821                 mutex_exit(&vd->vdev_dtl_lock);
2822         } else {
2823                 for (int c = 0; c < vd->vdev_children; c++) {
2824                         vdev_t *cvd = vd->vdev_child[c];
2825                         uint64_t cmin, cmax;
2826
2827                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2828                                 thismin = MIN(thismin, cmin);
2829                                 thismax = MAX(thismax, cmax);
2830                                 needed = B_TRUE;
2831                         }
2832                 }
2833         }
2834
2835         if (needed && minp) {
2836                 *minp = thismin;
2837                 *maxp = thismax;
2838         }
2839         return (needed);
2840 }
2841
2842 /*
2843  * Gets the checkpoint space map object from the vdev's ZAP.
2844  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2845  * or the ZAP doesn't exist yet.
2846  */
2847 int
2848 vdev_checkpoint_sm_object(vdev_t *vd)
2849 {
2850         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2851         if (vd->vdev_top_zap == 0) {
2852                 return (0);
2853         }
2854
2855         uint64_t sm_obj = 0;
2856         int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2857             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2858
2859         ASSERT(err == 0 || err == ENOENT);
2860
2861         return (sm_obj);
2862 }
2863
2864 int
2865 vdev_load(vdev_t *vd)
2866 {
2867         int error = 0;
2868         /*
2869          * Recursively load all children.
2870          */
2871         for (int c = 0; c < vd->vdev_children; c++) {
2872                 error = vdev_load(vd->vdev_child[c]);
2873                 if (error != 0) {
2874                         return (error);
2875                 }
2876         }
2877
2878         vdev_set_deflate_ratio(vd);
2879
2880         /*
2881          * If this is a top-level vdev, initialize its metaslabs.
2882          */
2883         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2884                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2885                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2886                             VDEV_AUX_CORRUPT_DATA);
2887                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2888                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2889                             (u_longlong_t)vd->vdev_asize);
2890                         return (SET_ERROR(ENXIO));
2891                 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2892                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2893                             "[error=%d]", error);
2894                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2895                             VDEV_AUX_CORRUPT_DATA);
2896                         return (error);
2897                 }
2898
2899                 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2900                 if (checkpoint_sm_obj != 0) {
2901                         objset_t *mos = spa_meta_objset(vd->vdev_spa);
2902                         ASSERT(vd->vdev_asize != 0);
2903                         ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2904
2905                         if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2906                             mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2907                             vd->vdev_ashift))) {
2908                                 vdev_dbgmsg(vd, "vdev_load: space_map_open "
2909                                     "failed for checkpoint spacemap (obj %llu) "
2910                                     "[error=%d]",
2911                                     (u_longlong_t)checkpoint_sm_obj, error);
2912                                 return (error);
2913                         }
2914                         ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2915                         space_map_update(vd->vdev_checkpoint_sm);
2916
2917                         /*
2918                          * Since the checkpoint_sm contains free entries
2919                          * exclusively we can use sm_alloc to indicate the
2920                          * culmulative checkpointed space that has been freed.
2921                          */
2922                         vd->vdev_stat.vs_checkpoint_space =
2923                             -vd->vdev_checkpoint_sm->sm_alloc;
2924                         vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2925                             vd->vdev_stat.vs_checkpoint_space;
2926                 }
2927         }
2928
2929         /*
2930          * If this is a leaf vdev, load its DTL.
2931          */
2932         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2933                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2934                     VDEV_AUX_CORRUPT_DATA);
2935                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2936                     "[error=%d]", error);
2937                 return (error);
2938         }
2939
2940         uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2941         if (obsolete_sm_object != 0) {
2942                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2943                 ASSERT(vd->vdev_asize != 0);
2944                 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2945
2946                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2947                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2948                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2949                             VDEV_AUX_CORRUPT_DATA);
2950                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2951                             "obsolete spacemap (obj %llu) [error=%d]",
2952                             (u_longlong_t)obsolete_sm_object, error);
2953                         return (error);
2954                 }
2955                 space_map_update(vd->vdev_obsolete_sm);
2956         }
2957
2958         return (0);
2959 }
2960
2961 /*
2962  * The special vdev case is used for hot spares and l2cache devices.  Its
2963  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2964  * we make sure that we can open the underlying device, then try to read the
2965  * label, and make sure that the label is sane and that it hasn't been
2966  * repurposed to another pool.
2967  */
2968 int
2969 vdev_validate_aux(vdev_t *vd)
2970 {
2971         nvlist_t *label;
2972         uint64_t guid, version;
2973         uint64_t state;
2974
2975         if (!vdev_readable(vd))
2976                 return (0);
2977
2978         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2979                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2980                     VDEV_AUX_CORRUPT_DATA);
2981                 return (-1);
2982         }
2983
2984         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2985             !SPA_VERSION_IS_SUPPORTED(version) ||
2986             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2987             guid != vd->vdev_guid ||
2988             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2989                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2990                     VDEV_AUX_CORRUPT_DATA);
2991                 nvlist_free(label);
2992                 return (-1);
2993         }
2994
2995         /*
2996          * We don't actually check the pool state here.  If it's in fact in
2997          * use by another pool, we update this fact on the fly when requested.
2998          */
2999         nvlist_free(label);
3000         return (0);
3001 }
3002
3003 /*
3004  * Free the objects used to store this vdev's spacemaps, and the array
3005  * that points to them.
3006  */
3007 void
3008 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3009 {
3010         if (vd->vdev_ms_array == 0)
3011                 return;
3012
3013         objset_t *mos = vd->vdev_spa->spa_meta_objset;
3014         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3015         size_t array_bytes = array_count * sizeof (uint64_t);
3016         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3017         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3018             array_bytes, smobj_array, 0));
3019
3020         for (uint64_t i = 0; i < array_count; i++) {
3021                 uint64_t smobj = smobj_array[i];
3022                 if (smobj == 0)
3023                         continue;
3024
3025                 space_map_free_obj(mos, smobj, tx);
3026         }
3027
3028         kmem_free(smobj_array, array_bytes);
3029         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3030         vd->vdev_ms_array = 0;
3031 }
3032
3033 static void
3034 vdev_remove_empty(vdev_t *vd, uint64_t txg)
3035 {
3036         spa_t *spa = vd->vdev_spa;
3037         dmu_tx_t *tx;
3038
3039         ASSERT(vd == vd->vdev_top);
3040         ASSERT3U(txg, ==, spa_syncing_txg(spa));
3041
3042         if (vd->vdev_ms != NULL) {
3043                 metaslab_group_t *mg = vd->vdev_mg;
3044
3045                 metaslab_group_histogram_verify(mg);
3046                 metaslab_class_histogram_verify(mg->mg_class);
3047
3048                 for (int m = 0; m < vd->vdev_ms_count; m++) {
3049                         metaslab_t *msp = vd->vdev_ms[m];
3050
3051                         if (msp == NULL || msp->ms_sm == NULL)
3052                                 continue;
3053
3054                         mutex_enter(&msp->ms_lock);
3055                         /*
3056                          * If the metaslab was not loaded when the vdev
3057                          * was removed then the histogram accounting may
3058                          * not be accurate. Update the histogram information
3059                          * here so that we ensure that the metaslab group
3060                          * and metaslab class are up-to-date.
3061                          */
3062                         metaslab_group_histogram_remove(mg, msp);
3063
3064                         VERIFY0(space_map_allocated(msp->ms_sm));
3065                         space_map_close(msp->ms_sm);
3066                         msp->ms_sm = NULL;
3067                         mutex_exit(&msp->ms_lock);
3068                 }
3069
3070                 if (vd->vdev_checkpoint_sm != NULL) {
3071                         ASSERT(spa_has_checkpoint(spa));
3072                         space_map_close(vd->vdev_checkpoint_sm);
3073                         vd->vdev_checkpoint_sm = NULL;
3074                 }
3075
3076                 metaslab_group_histogram_verify(mg);
3077                 metaslab_class_histogram_verify(mg->mg_class);
3078                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
3079                         ASSERT0(mg->mg_histogram[i]);
3080         }
3081
3082         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3083         vdev_destroy_spacemaps(vd, tx);
3084
3085         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
3086                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3087                 vd->vdev_top_zap = 0;
3088         }
3089         dmu_tx_commit(tx);
3090 }
3091
3092 void
3093 vdev_sync_done(vdev_t *vd, uint64_t txg)
3094 {
3095         metaslab_t *msp;
3096         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3097
3098         ASSERT(vdev_is_concrete(vd));
3099
3100         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3101             != NULL)
3102                 metaslab_sync_done(msp, txg);
3103
3104         if (reassess)
3105                 metaslab_sync_reassess(vd->vdev_mg);
3106 }
3107
3108 void
3109 vdev_sync(vdev_t *vd, uint64_t txg)
3110 {
3111         spa_t *spa = vd->vdev_spa;
3112         vdev_t *lvd;
3113         metaslab_t *msp;
3114         dmu_tx_t *tx;
3115
3116         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3117                 dmu_tx_t *tx;
3118
3119                 ASSERT(vd->vdev_removing ||
3120                     vd->vdev_ops == &vdev_indirect_ops);
3121
3122                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3123                 vdev_indirect_sync_obsolete(vd, tx);
3124                 dmu_tx_commit(tx);
3125
3126                 /*
3127                  * If the vdev is indirect, it can't have dirty
3128                  * metaslabs or DTLs.
3129                  */
3130                 if (vd->vdev_ops == &vdev_indirect_ops) {
3131                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3132                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3133                         return;
3134                 }
3135         }
3136
3137         ASSERT(vdev_is_concrete(vd));
3138
3139         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3140             !vd->vdev_removing) {
3141                 ASSERT(vd == vd->vdev_top);
3142                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3143                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3144                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3145                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3146                 ASSERT(vd->vdev_ms_array != 0);
3147                 vdev_config_dirty(vd);
3148                 dmu_tx_commit(tx);
3149         }
3150
3151         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3152                 metaslab_sync(msp, txg);
3153                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3154         }
3155
3156         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3157                 vdev_dtl_sync(lvd, txg);
3158
3159         /*
3160          * Remove the metadata associated with this vdev once it's empty.
3161          * Note that this is typically used for log/cache device removal;
3162          * we don't empty toplevel vdevs when removing them.  But if
3163          * a toplevel happens to be emptied, this is not harmful.
3164          */
3165         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
3166                 vdev_remove_empty(vd, txg);
3167         }
3168
3169         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3170 }
3171
3172 uint64_t
3173 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3174 {
3175         return (vd->vdev_ops->vdev_op_asize(vd, psize));
3176 }
3177
3178 /*
3179  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3180  * not be opened, and no I/O is attempted.
3181  */
3182 int
3183 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3184 {
3185         vdev_t *vd, *tvd;
3186
3187         spa_vdev_state_enter(spa, SCL_NONE);
3188
3189         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3190                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3191
3192         if (!vd->vdev_ops->vdev_op_leaf)
3193                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3194
3195         tvd = vd->vdev_top;
3196
3197         /*
3198          * We don't directly use the aux state here, but if we do a
3199          * vdev_reopen(), we need this value to be present to remember why we
3200          * were faulted.
3201          */
3202         vd->vdev_label_aux = aux;
3203
3204         /*
3205          * Faulted state takes precedence over degraded.
3206          */
3207         vd->vdev_delayed_close = B_FALSE;
3208         vd->vdev_faulted = 1ULL;
3209         vd->vdev_degraded = 0ULL;
3210         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3211
3212         /*
3213          * If this device has the only valid copy of the data, then
3214          * back off and simply mark the vdev as degraded instead.
3215          */
3216         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3217                 vd->vdev_degraded = 1ULL;
3218                 vd->vdev_faulted = 0ULL;
3219
3220                 /*
3221                  * If we reopen the device and it's not dead, only then do we
3222                  * mark it degraded.
3223                  */
3224                 vdev_reopen(tvd);
3225
3226                 if (vdev_readable(vd))
3227                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3228         }
3229
3230         return (spa_vdev_state_exit(spa, vd, 0));
3231 }
3232
3233 /*
3234  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3235  * user that something is wrong.  The vdev continues to operate as normal as far
3236  * as I/O is concerned.
3237  */
3238 int
3239 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3240 {
3241         vdev_t *vd;
3242
3243         spa_vdev_state_enter(spa, SCL_NONE);
3244
3245         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3246                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3247
3248         if (!vd->vdev_ops->vdev_op_leaf)
3249                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3250
3251         /*
3252          * If the vdev is already faulted, then don't do anything.
3253          */
3254         if (vd->vdev_faulted || vd->vdev_degraded)
3255                 return (spa_vdev_state_exit(spa, NULL, 0));
3256
3257         vd->vdev_degraded = 1ULL;
3258         if (!vdev_is_dead(vd))
3259                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3260                     aux);
3261
3262         return (spa_vdev_state_exit(spa, vd, 0));
3263 }
3264
3265 /*
3266  * Online the given vdev.
3267  *
3268  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3269  * spare device should be detached when the device finishes resilvering.
3270  * Second, the online should be treated like a 'test' online case, so no FMA
3271  * events are generated if the device fails to open.
3272  */
3273 int
3274 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3275 {
3276         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3277         boolean_t wasoffline;
3278         vdev_state_t oldstate;
3279
3280         spa_vdev_state_enter(spa, SCL_NONE);
3281
3282         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3283                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3284
3285         if (!vd->vdev_ops->vdev_op_leaf)
3286                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3287
3288         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3289         oldstate = vd->vdev_state;
3290
3291         tvd = vd->vdev_top;
3292         vd->vdev_offline = B_FALSE;
3293         vd->vdev_tmpoffline = B_FALSE;
3294         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3295         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3296
3297         /* XXX - L2ARC 1.0 does not support expansion */
3298         if (!vd->vdev_aux) {
3299                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3300                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3301         }
3302
3303         vdev_reopen(tvd);
3304         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3305
3306         if (!vd->vdev_aux) {
3307                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3308                         pvd->vdev_expanding = B_FALSE;
3309         }
3310
3311         if (newstate)
3312                 *newstate = vd->vdev_state;
3313         if ((flags & ZFS_ONLINE_UNSPARE) &&
3314             !vdev_is_dead(vd) && vd->vdev_parent &&
3315             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3316             vd->vdev_parent->vdev_child[0] == vd)
3317                 vd->vdev_unspare = B_TRUE;
3318
3319         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3320
3321                 /* XXX - L2ARC 1.0 does not support expansion */
3322                 if (vd->vdev_aux)
3323                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3324                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3325         }
3326
3327         /* Restart initializing if necessary */
3328         mutex_enter(&vd->vdev_initialize_lock);
3329         if (vdev_writeable(vd) &&
3330             vd->vdev_initialize_thread == NULL &&
3331             vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3332                 (void) vdev_initialize(vd);
3333         }
3334         mutex_exit(&vd->vdev_initialize_lock);
3335
3336         if (wasoffline ||
3337             (oldstate < VDEV_STATE_DEGRADED &&
3338             vd->vdev_state >= VDEV_STATE_DEGRADED))
3339                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3340
3341         return (spa_vdev_state_exit(spa, vd, 0));
3342 }
3343
3344 static int
3345 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3346 {
3347         vdev_t *vd, *tvd;
3348         int error = 0;
3349         uint64_t generation;
3350         metaslab_group_t *mg;
3351
3352 top:
3353         spa_vdev_state_enter(spa, SCL_ALLOC);
3354
3355         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3356                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3357
3358         if (!vd->vdev_ops->vdev_op_leaf)
3359                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3360
3361         tvd = vd->vdev_top;
3362         mg = tvd->vdev_mg;
3363         generation = spa->spa_config_generation + 1;
3364
3365         /*
3366          * If the device isn't already offline, try to offline it.
3367          */
3368         if (!vd->vdev_offline) {
3369                 /*
3370                  * If this device has the only valid copy of some data,
3371                  * don't allow it to be offlined. Log devices are always
3372                  * expendable.
3373                  */
3374                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3375                     vdev_dtl_required(vd))
3376                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
3377
3378                 /*
3379                  * If the top-level is a slog and it has had allocations
3380                  * then proceed.  We check that the vdev's metaslab group
3381                  * is not NULL since it's possible that we may have just
3382                  * added this vdev but not yet initialized its metaslabs.
3383                  */
3384                 if (tvd->vdev_islog && mg != NULL) {
3385                         /*
3386                          * Prevent any future allocations.
3387                          */
3388                         metaslab_group_passivate(mg);
3389                         (void) spa_vdev_state_exit(spa, vd, 0);
3390
3391                         error = spa_reset_logs(spa);
3392
3393                         /*
3394                          * If the log device was successfully reset but has
3395                          * checkpointed data, do not offline it.
3396                          */
3397                         if (error == 0 &&
3398                             tvd->vdev_checkpoint_sm != NULL) {
3399                                 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3400                                     !=, 0);
3401                                 error = ZFS_ERR_CHECKPOINT_EXISTS;
3402                         }
3403
3404                         spa_vdev_state_enter(spa, SCL_ALLOC);
3405
3406                         /*
3407                          * Check to see if the config has changed.
3408                          */
3409                         if (error || generation != spa->spa_config_generation) {
3410                                 metaslab_group_activate(mg);
3411                                 if (error)
3412                                         return (spa_vdev_state_exit(spa,
3413                                             vd, error));
3414                                 (void) spa_vdev_state_exit(spa, vd, 0);
3415                                 goto top;
3416                         }
3417                         ASSERT0(tvd->vdev_stat.vs_alloc);
3418                 }
3419
3420                 /*
3421                  * Offline this device and reopen its top-level vdev.
3422                  * If the top-level vdev is a log device then just offline
3423                  * it. Otherwise, if this action results in the top-level
3424                  * vdev becoming unusable, undo it and fail the request.
3425                  */
3426                 vd->vdev_offline = B_TRUE;
3427                 vdev_reopen(tvd);
3428
3429                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3430                     vdev_is_dead(tvd)) {
3431                         vd->vdev_offline = B_FALSE;
3432                         vdev_reopen(tvd);
3433                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
3434                 }
3435
3436                 /*
3437                  * Add the device back into the metaslab rotor so that
3438                  * once we online the device it's open for business.
3439                  */
3440                 if (tvd->vdev_islog && mg != NULL)
3441                         metaslab_group_activate(mg);
3442         }
3443
3444         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3445
3446         return (spa_vdev_state_exit(spa, vd, 0));
3447 }
3448
3449 int
3450 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3451 {
3452         int error;
3453
3454         mutex_enter(&spa->spa_vdev_top_lock);
3455         error = vdev_offline_locked(spa, guid, flags);
3456         mutex_exit(&spa->spa_vdev_top_lock);
3457
3458         return (error);
3459 }
3460
3461 /*
3462  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3463  * vdev_offline(), we assume the spa config is locked.  We also clear all
3464  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3465  */
3466 void
3467 vdev_clear(spa_t *spa, vdev_t *vd)
3468 {
3469         vdev_t *rvd = spa->spa_root_vdev;
3470
3471         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3472
3473         if (vd == NULL)
3474                 vd = rvd;
3475
3476         vd->vdev_stat.vs_read_errors = 0;
3477         vd->vdev_stat.vs_write_errors = 0;
3478         vd->vdev_stat.vs_checksum_errors = 0;
3479
3480         for (int c = 0; c < vd->vdev_children; c++)
3481                 vdev_clear(spa, vd->vdev_child[c]);
3482
3483         if (vd == rvd) {
3484                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
3485                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
3486
3487                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
3488                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
3489         }
3490
3491         /*
3492          * It makes no sense to "clear" an indirect vdev.
3493          */
3494         if (!vdev_is_concrete(vd))
3495                 return;
3496
3497         /*
3498          * If we're in the FAULTED state or have experienced failed I/O, then
3499          * clear the persistent state and attempt to reopen the device.  We
3500          * also mark the vdev config dirty, so that the new faulted state is
3501          * written out to disk.
3502          */
3503         if (vd->vdev_faulted || vd->vdev_degraded ||
3504             !vdev_readable(vd) || !vdev_writeable(vd)) {
3505
3506                 /*
3507                  * When reopening in reponse to a clear event, it may be due to
3508                  * a fmadm repair request.  In this case, if the device is
3509                  * still broken, we want to still post the ereport again.
3510                  */
3511                 vd->vdev_forcefault = B_TRUE;
3512
3513                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3514                 vd->vdev_cant_read = B_FALSE;
3515                 vd->vdev_cant_write = B_FALSE;
3516
3517                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3518
3519                 vd->vdev_forcefault = B_FALSE;
3520
3521                 if (vd != rvd && vdev_writeable(vd->vdev_top))
3522                         vdev_state_dirty(vd->vdev_top);
3523
3524                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3525                         spa_async_request(spa, SPA_ASYNC_RESILVER);
3526
3527                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3528         }
3529
3530         /*
3531          * When clearing a FMA-diagnosed fault, we always want to
3532          * unspare the device, as we assume that the original spare was
3533          * done in response to the FMA fault.
3534          */
3535         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3536             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3537             vd->vdev_parent->vdev_child[0] == vd)
3538                 vd->vdev_unspare = B_TRUE;
3539 }
3540
3541 boolean_t
3542 vdev_is_dead(vdev_t *vd)
3543 {
3544         /*
3545          * Holes and missing devices are always considered "dead".
3546          * This simplifies the code since we don't have to check for
3547          * these types of devices in the various code paths.
3548          * Instead we rely on the fact that we skip over dead devices
3549          * before issuing I/O to them.
3550          */
3551         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3552             vd->vdev_ops == &vdev_hole_ops ||
3553             vd->vdev_ops == &vdev_missing_ops);
3554 }
3555
3556 boolean_t
3557 vdev_readable(vdev_t *vd)
3558 {
3559         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3560 }
3561
3562 boolean_t
3563 vdev_writeable(vdev_t *vd)
3564 {
3565         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3566             vdev_is_concrete(vd));
3567 }
3568
3569 boolean_t
3570 vdev_allocatable(vdev_t *vd)
3571 {
3572         uint64_t state = vd->vdev_state;
3573
3574         /*
3575          * We currently allow allocations from vdevs which may be in the
3576          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3577          * fails to reopen then we'll catch it later when we're holding
3578          * the proper locks.  Note that we have to get the vdev state
3579          * in a local variable because although it changes atomically,
3580          * we're asking two separate questions about it.
3581          */
3582         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3583             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3584             vd->vdev_mg->mg_initialized);
3585 }
3586
3587 boolean_t
3588 vdev_accessible(vdev_t *vd, zio_t *zio)
3589 {
3590         ASSERT(zio->io_vd == vd);
3591
3592         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3593                 return (B_FALSE);
3594
3595         if (zio->io_type == ZIO_TYPE_READ)
3596                 return (!vd->vdev_cant_read);
3597
3598         if (zio->io_type == ZIO_TYPE_WRITE)
3599                 return (!vd->vdev_cant_write);
3600
3601         return (B_TRUE);
3602 }
3603
3604 boolean_t
3605 vdev_is_spacemap_addressable(vdev_t *vd)
3606 {
3607         /*
3608          * Assuming 47 bits of the space map entry dedicated for the entry's
3609          * offset (see description in space_map.h), we calculate the maximum
3610          * address that can be described by a space map entry for the given
3611          * device.
3612          */
3613         uint64_t shift = vd->vdev_ashift + 47;
3614
3615         if (shift >= 63) /* detect potential overflow */
3616                 return (B_TRUE);
3617
3618         return (vd->vdev_asize < (1ULL << shift));
3619 }
3620
3621 /*
3622  * Get statistics for the given vdev.
3623  */
3624 void
3625 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3626 {
3627         spa_t *spa = vd->vdev_spa;
3628         vdev_t *rvd = spa->spa_root_vdev;
3629         vdev_t *tvd = vd->vdev_top;
3630
3631         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3632
3633         mutex_enter(&vd->vdev_stat_lock);
3634         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3635         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3636         vs->vs_state = vd->vdev_state;
3637         vs->vs_rsize = vdev_get_min_asize(vd);
3638         if (vd->vdev_ops->vdev_op_leaf) {
3639                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3640                 /*
3641                  * Report intializing progress. Since we don't have the
3642                  * initializing locks held, this is only an estimate (although a
3643                  * fairly accurate one).
3644                  */
3645                 vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3646                 vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3647                 vs->vs_initialize_state = vd->vdev_initialize_state;
3648                 vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3649         }
3650         /*
3651          * Report expandable space on top-level, non-auxillary devices only.
3652          * The expandable space is reported in terms of metaslab sized units
3653          * since that determines how much space the pool can expand.
3654          */
3655         if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
3656                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3657                     spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3658         }
3659         vs->vs_configured_ashift = vd->vdev_top != NULL
3660             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
3661         vs->vs_logical_ashift = vd->vdev_logical_ashift;
3662         vs->vs_physical_ashift = vd->vdev_physical_ashift;
3663         if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3664             vdev_is_concrete(vd)) {
3665                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3666         }
3667
3668         /*
3669          * If we're getting stats on the root vdev, aggregate the I/O counts
3670          * over all top-level vdevs (i.e. the direct children of the root).
3671          */
3672         if (vd == rvd) {
3673                 for (int c = 0; c < rvd->vdev_children; c++) {
3674                         vdev_t *cvd = rvd->vdev_child[c];
3675                         vdev_stat_t *cvs = &cvd->vdev_stat;
3676
3677                         for (int t = 0; t < ZIO_TYPES; t++) {
3678                                 vs->vs_ops[t] += cvs->vs_ops[t];
3679                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3680                         }
3681                         cvs->vs_scan_removing = cvd->vdev_removing;
3682                 }
3683         }
3684         mutex_exit(&vd->vdev_stat_lock);
3685 }
3686
3687 void
3688 vdev_clear_stats(vdev_t *vd)
3689 {
3690         mutex_enter(&vd->vdev_stat_lock);
3691         vd->vdev_stat.vs_space = 0;
3692         vd->vdev_stat.vs_dspace = 0;
3693         vd->vdev_stat.vs_alloc = 0;
3694         mutex_exit(&vd->vdev_stat_lock);
3695 }
3696
3697 void
3698 vdev_scan_stat_init(vdev_t *vd)
3699 {
3700         vdev_stat_t *vs = &vd->vdev_stat;
3701
3702         for (int c = 0; c < vd->vdev_children; c++)
3703                 vdev_scan_stat_init(vd->vdev_child[c]);
3704
3705         mutex_enter(&vd->vdev_stat_lock);
3706         vs->vs_scan_processed = 0;
3707         mutex_exit(&vd->vdev_stat_lock);
3708 }
3709
3710 void
3711 vdev_stat_update(zio_t *zio, uint64_t psize)
3712 {
3713         spa_t *spa = zio->io_spa;
3714         vdev_t *rvd = spa->spa_root_vdev;
3715         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3716         vdev_t *pvd;
3717         uint64_t txg = zio->io_txg;
3718         vdev_stat_t *vs = &vd->vdev_stat;
3719         zio_type_t type = zio->io_type;
3720         int flags = zio->io_flags;
3721
3722         /*
3723          * If this i/o is a gang leader, it didn't do any actual work.
3724          */
3725         if (zio->io_gang_tree)
3726                 return;
3727
3728         if (zio->io_error == 0) {
3729                 /*
3730                  * If this is a root i/o, don't count it -- we've already
3731                  * counted the top-level vdevs, and vdev_get_stats() will
3732                  * aggregate them when asked.  This reduces contention on
3733                  * the root vdev_stat_lock and implicitly handles blocks
3734                  * that compress away to holes, for which there is no i/o.
3735                  * (Holes never create vdev children, so all the counters
3736                  * remain zero, which is what we want.)
3737                  *
3738                  * Note: this only applies to successful i/o (io_error == 0)
3739                  * because unlike i/o counts, errors are not additive.
3740                  * When reading a ditto block, for example, failure of
3741                  * one top-level vdev does not imply a root-level error.
3742                  */
3743                 if (vd == rvd)
3744                         return;
3745
3746                 ASSERT(vd == zio->io_vd);
3747
3748                 if (flags & ZIO_FLAG_IO_BYPASS)
3749                         return;
3750
3751                 mutex_enter(&vd->vdev_stat_lock);
3752
3753                 if (flags & ZIO_FLAG_IO_REPAIR) {
3754                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3755                                 dsl_scan_phys_t *scn_phys =
3756                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3757                                 uint64_t *processed = &scn_phys->scn_processed;
3758
3759                                 /* XXX cleanup? */
3760                                 if (vd->vdev_ops->vdev_op_leaf)
3761                                         atomic_add_64(processed, psize);
3762                                 vs->vs_scan_processed += psize;
3763                         }
3764
3765                         if (flags & ZIO_FLAG_SELF_HEAL)
3766                                 vs->vs_self_healed += psize;
3767                 }
3768
3769                 vs->vs_ops[type]++;
3770                 vs->vs_bytes[type] += psize;
3771
3772                 mutex_exit(&vd->vdev_stat_lock);
3773                 return;
3774         }
3775
3776         if (flags & ZIO_FLAG_SPECULATIVE)
3777                 return;
3778
3779         /*
3780          * If this is an I/O error that is going to be retried, then ignore the
3781          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3782          * hard errors, when in reality they can happen for any number of
3783          * innocuous reasons (bus resets, MPxIO link failure, etc).
3784          */
3785         if (zio->io_error == EIO &&
3786             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3787                 return;
3788
3789         /*
3790          * Intent logs writes won't propagate their error to the root
3791          * I/O so don't mark these types of failures as pool-level
3792          * errors.
3793          */
3794         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3795                 return;
3796
3797         mutex_enter(&vd->vdev_stat_lock);
3798         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3799                 if (zio->io_error == ECKSUM)
3800                         vs->vs_checksum_errors++;
3801                 else
3802                         vs->vs_read_errors++;
3803         }
3804         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3805                 vs->vs_write_errors++;
3806         mutex_exit(&vd->vdev_stat_lock);
3807
3808         if (spa->spa_load_state == SPA_LOAD_NONE &&
3809             type == ZIO_TYPE_WRITE && txg != 0 &&
3810             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3811             (flags & ZIO_FLAG_SCAN_THREAD) ||
3812             spa->spa_claiming)) {
3813                 /*
3814                  * This is either a normal write (not a repair), or it's
3815                  * a repair induced by the scrub thread, or it's a repair
3816                  * made by zil_claim() during spa_load() in the first txg.
3817                  * In the normal case, we commit the DTL change in the same
3818                  * txg as the block was born.  In the scrub-induced repair
3819                  * case, we know that scrubs run in first-pass syncing context,
3820                  * so we commit the DTL change in spa_syncing_txg(spa).
3821                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3822                  *
3823                  * We currently do not make DTL entries for failed spontaneous
3824                  * self-healing writes triggered by normal (non-scrubbing)
3825                  * reads, because we have no transactional context in which to
3826                  * do so -- and it's not clear that it'd be desirable anyway.
3827                  */
3828                 if (vd->vdev_ops->vdev_op_leaf) {
3829                         uint64_t commit_txg = txg;
3830                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3831                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3832                                 ASSERT(spa_sync_pass(spa) == 1);
3833                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3834                                 commit_txg = spa_syncing_txg(spa);
3835                         } else if (spa->spa_claiming) {
3836                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3837                                 commit_txg = spa_first_txg(spa);
3838                         }
3839                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3840                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3841                                 return;
3842                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3843                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3844                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3845                 }
3846                 if (vd != rvd)
3847                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3848         }
3849 }
3850
3851 /*
3852  * Update the in-core space usage stats for this vdev, its metaslab class,
3853  * and the root vdev.
3854  */
3855 void
3856 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3857     int64_t space_delta)
3858 {
3859         int64_t dspace_delta = space_delta;
3860         spa_t *spa = vd->vdev_spa;
3861         vdev_t *rvd = spa->spa_root_vdev;
3862         metaslab_group_t *mg = vd->vdev_mg;
3863         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3864
3865         ASSERT(vd == vd->vdev_top);
3866
3867         /*
3868          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3869          * factor.  We must calculate this here and not at the root vdev
3870          * because the root vdev's psize-to-asize is simply the max of its
3871          * childrens', thus not accurate enough for us.
3872          */
3873         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3874         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3875         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3876             vd->vdev_deflate_ratio;
3877
3878         mutex_enter(&vd->vdev_stat_lock);
3879         vd->vdev_stat.vs_alloc += alloc_delta;
3880         vd->vdev_stat.vs_space += space_delta;
3881         vd->vdev_stat.vs_dspace += dspace_delta;
3882         mutex_exit(&vd->vdev_stat_lock);
3883
3884         if (mc == spa_normal_class(spa)) {
3885                 mutex_enter(&rvd->vdev_stat_lock);
3886                 rvd->vdev_stat.vs_alloc += alloc_delta;
3887                 rvd->vdev_stat.vs_space += space_delta;
3888                 rvd->vdev_stat.vs_dspace += dspace_delta;
3889                 mutex_exit(&rvd->vdev_stat_lock);
3890         }
3891
3892         if (mc != NULL) {
3893                 ASSERT(rvd == vd->vdev_parent);
3894                 ASSERT(vd->vdev_ms_count != 0);
3895
3896                 metaslab_class_space_update(mc,
3897                     alloc_delta, defer_delta, space_delta, dspace_delta);
3898         }
3899 }
3900
3901 /*
3902  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3903  * so that it will be written out next time the vdev configuration is synced.
3904  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3905  */
3906 void
3907 vdev_config_dirty(vdev_t *vd)
3908 {
3909         spa_t *spa = vd->vdev_spa;
3910         vdev_t *rvd = spa->spa_root_vdev;
3911         int c;
3912
3913         ASSERT(spa_writeable(spa));
3914
3915         /*
3916          * If this is an aux vdev (as with l2cache and spare devices), then we
3917          * update the vdev config manually and set the sync flag.
3918          */
3919         if (vd->vdev_aux != NULL) {
3920                 spa_aux_vdev_t *sav = vd->vdev_aux;
3921                 nvlist_t **aux;
3922                 uint_t naux;
3923
3924                 for (c = 0; c < sav->sav_count; c++) {
3925                         if (sav->sav_vdevs[c] == vd)
3926                                 break;
3927                 }
3928
3929                 if (c == sav->sav_count) {
3930                         /*
3931                          * We're being removed.  There's nothing more to do.
3932                          */
3933                         ASSERT(sav->sav_sync == B_TRUE);
3934                         return;
3935                 }
3936
3937                 sav->sav_sync = B_TRUE;
3938
3939                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3940                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3941                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3942                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3943                 }
3944
3945                 ASSERT(c < naux);
3946
3947                 /*
3948                  * Setting the nvlist in the middle if the array is a little
3949                  * sketchy, but it will work.
3950                  */
3951                 nvlist_free(aux[c]);
3952                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3953
3954                 return;
3955         }
3956
3957         /*
3958          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3959          * must either hold SCL_CONFIG as writer, or must be the sync thread
3960          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3961          * so this is sufficient to ensure mutual exclusion.
3962          */
3963         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3964             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3965             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3966
3967         if (vd == rvd) {
3968                 for (c = 0; c < rvd->vdev_children; c++)
3969                         vdev_config_dirty(rvd->vdev_child[c]);
3970         } else {
3971                 ASSERT(vd == vd->vdev_top);
3972
3973                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3974                     vdev_is_concrete(vd)) {
3975                         list_insert_head(&spa->spa_config_dirty_list, vd);
3976                 }
3977         }
3978 }
3979
3980 void
3981 vdev_config_clean(vdev_t *vd)
3982 {
3983         spa_t *spa = vd->vdev_spa;
3984
3985         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3986             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3987             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3988
3989         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3990         list_remove(&spa->spa_config_dirty_list, vd);
3991 }
3992
3993 /*
3994  * Mark a top-level vdev's state as dirty, so that the next pass of
3995  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3996  * the state changes from larger config changes because they require
3997  * much less locking, and are often needed for administrative actions.
3998  */
3999 void
4000 vdev_state_dirty(vdev_t *vd)
4001 {
4002         spa_t *spa = vd->vdev_spa;
4003
4004         ASSERT(spa_writeable(spa));
4005         ASSERT(vd == vd->vdev_top);
4006
4007         /*
4008          * The state list is protected by the SCL_STATE lock.  The caller
4009          * must either hold SCL_STATE as writer, or must be the sync thread
4010          * (which holds SCL_STATE as reader).  There's only one sync thread,
4011          * so this is sufficient to ensure mutual exclusion.
4012          */
4013         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4014             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4015             spa_config_held(spa, SCL_STATE, RW_READER)));
4016
4017         if (!list_link_active(&vd->vdev_state_dirty_node) &&
4018             vdev_is_concrete(vd))
4019                 list_insert_head(&spa->spa_state_dirty_list, vd);
4020 }
4021
4022 void
4023 vdev_state_clean(vdev_t *vd)
4024 {
4025         spa_t *spa = vd->vdev_spa;
4026
4027         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4028             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4029             spa_config_held(spa, SCL_STATE, RW_READER)));
4030
4031         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4032         list_remove(&spa->spa_state_dirty_list, vd);
4033 }
4034
4035 /*
4036  * Propagate vdev state up from children to parent.
4037  */
4038 void
4039 vdev_propagate_state(vdev_t *vd)
4040 {
4041         spa_t *spa = vd->vdev_spa;
4042         vdev_t *rvd = spa->spa_root_vdev;
4043         int degraded = 0, faulted = 0;
4044         int corrupted = 0;
4045         vdev_t *child;
4046
4047         if (vd->vdev_children > 0) {
4048                 for (int c = 0; c < vd->vdev_children; c++) {
4049                         child = vd->vdev_child[c];
4050
4051                         /*
4052                          * Don't factor holes or indirect vdevs into the
4053                          * decision.
4054                          */
4055                         if (!vdev_is_concrete(child))
4056                                 continue;
4057
4058                         if (!vdev_readable(child) ||
4059                             (!vdev_writeable(child) && spa_writeable(spa))) {
4060                                 /*
4061                                  * Root special: if there is a top-level log
4062                                  * device, treat the root vdev as if it were
4063                                  * degraded.
4064                                  */
4065                                 if (child->vdev_islog && vd == rvd)
4066                                         degraded++;
4067                                 else
4068                                         faulted++;
4069                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4070                                 degraded++;
4071                         }
4072
4073                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4074                                 corrupted++;
4075                 }
4076
4077                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4078
4079                 /*
4080                  * Root special: if there is a top-level vdev that cannot be
4081                  * opened due to corrupted metadata, then propagate the root
4082                  * vdev's aux state as 'corrupt' rather than 'insufficient
4083                  * replicas'.
4084                  */
4085                 if (corrupted && vd == rvd &&
4086                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4087                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4088                             VDEV_AUX_CORRUPT_DATA);
4089         }
4090
4091         if (vd->vdev_parent)
4092                 vdev_propagate_state(vd->vdev_parent);
4093 }
4094
4095 /*
4096  * Set a vdev's state.  If this is during an open, we don't update the parent
4097  * state, because we're in the process of opening children depth-first.
4098  * Otherwise, we propagate the change to the parent.
4099  *
4100  * If this routine places a device in a faulted state, an appropriate ereport is
4101  * generated.
4102  */
4103 void
4104 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4105 {
4106         uint64_t save_state;
4107         spa_t *spa = vd->vdev_spa;
4108
4109         if (state == vd->vdev_state) {
4110                 vd->vdev_stat.vs_aux = aux;
4111                 return;
4112         }
4113
4114         save_state = vd->vdev_state;
4115
4116         vd->vdev_state = state;
4117         vd->vdev_stat.vs_aux = aux;
4118
4119         /*
4120          * If we are setting the vdev state to anything but an open state, then
4121          * always close the underlying device unless the device has requested
4122          * a delayed close (i.e. we're about to remove or fault the device).
4123          * Otherwise, we keep accessible but invalid devices open forever.
4124          * We don't call vdev_close() itself, because that implies some extra
4125          * checks (offline, etc) that we don't want here.  This is limited to
4126          * leaf devices, because otherwise closing the device will affect other
4127          * children.
4128          */
4129         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4130             vd->vdev_ops->vdev_op_leaf)
4131                 vd->vdev_ops->vdev_op_close(vd);
4132
4133         if (vd->vdev_removed &&
4134             state == VDEV_STATE_CANT_OPEN &&
4135             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4136                 /*
4137                  * If the previous state is set to VDEV_STATE_REMOVED, then this
4138                  * device was previously marked removed and someone attempted to
4139                  * reopen it.  If this failed due to a nonexistent device, then
4140                  * keep the device in the REMOVED state.  We also let this be if
4141                  * it is one of our special test online cases, which is only
4142                  * attempting to online the device and shouldn't generate an FMA
4143                  * fault.
4144                  */
4145                 vd->vdev_state = VDEV_STATE_REMOVED;
4146                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4147         } else if (state == VDEV_STATE_REMOVED) {
4148                 vd->vdev_removed = B_TRUE;
4149         } else if (state == VDEV_STATE_CANT_OPEN) {
4150                 /*
4151                  * If we fail to open a vdev during an import or recovery, we
4152                  * mark it as "not available", which signifies that it was
4153                  * never there to begin with.  Failure to open such a device
4154                  * is not considered an error.
4155                  */
4156                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4157                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4158                     vd->vdev_ops->vdev_op_leaf)
4159                         vd->vdev_not_present = 1;
4160
4161                 /*
4162                  * Post the appropriate ereport.  If the 'prevstate' field is
4163                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
4164                  * that this is part of a vdev_reopen().  In this case, we don't
4165                  * want to post the ereport if the device was already in the
4166                  * CANT_OPEN state beforehand.
4167                  *
4168                  * If the 'checkremove' flag is set, then this is an attempt to
4169                  * online the device in response to an insertion event.  If we
4170                  * hit this case, then we have detected an insertion event for a
4171                  * faulted or offline device that wasn't in the removed state.
4172                  * In this scenario, we don't post an ereport because we are
4173                  * about to replace the device, or attempt an online with
4174                  * vdev_forcefault, which will generate the fault for us.
4175                  */
4176                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4177                     !vd->vdev_not_present && !vd->vdev_checkremove &&
4178                     vd != spa->spa_root_vdev) {
4179                         const char *class;
4180
4181                         switch (aux) {
4182                         case VDEV_AUX_OPEN_FAILED:
4183                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4184                                 break;
4185                         case VDEV_AUX_CORRUPT_DATA:
4186                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4187                                 break;
4188                         case VDEV_AUX_NO_REPLICAS:
4189                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4190                                 break;
4191                         case VDEV_AUX_BAD_GUID_SUM:
4192                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4193                                 break;
4194                         case VDEV_AUX_TOO_SMALL:
4195                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4196                                 break;
4197                         case VDEV_AUX_BAD_LABEL:
4198                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4199                                 break;
4200                         default:
4201                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4202                         }
4203
4204                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
4205                 }
4206
4207                 /* Erase any notion of persistent removed state */
4208                 vd->vdev_removed = B_FALSE;
4209         } else {
4210                 vd->vdev_removed = B_FALSE;
4211         }
4212
4213         /*
4214         * Notify the fmd of the state change.  Be verbose and post
4215         * notifications even for stuff that's not important; the fmd agent can
4216         * sort it out.  Don't emit state change events for non-leaf vdevs since
4217         * they can't change state on their own.  The FMD can check their state
4218         * if it wants to when it sees that a leaf vdev had a state change.
4219         */
4220         if (vd->vdev_ops->vdev_op_leaf)
4221                 zfs_post_state_change(spa, vd);
4222
4223         if (!isopen && vd->vdev_parent)
4224                 vdev_propagate_state(vd->vdev_parent);
4225 }
4226
4227 boolean_t
4228 vdev_children_are_offline(vdev_t *vd)
4229 {
4230         ASSERT(!vd->vdev_ops->vdev_op_leaf);
4231
4232         for (uint64_t i = 0; i < vd->vdev_children; i++) {
4233                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4234                         return (B_FALSE);
4235         }
4236
4237         return (B_TRUE);
4238 }
4239
4240 /*
4241  * Check the vdev configuration to ensure that it's capable of supporting
4242  * a root pool. We do not support partial configuration.
4243  * In addition, only a single top-level vdev is allowed.
4244  *
4245  * FreeBSD does not have above limitations.
4246  */
4247 boolean_t
4248 vdev_is_bootable(vdev_t *vd)
4249 {
4250 #ifdef illumos
4251         if (!vd->vdev_ops->vdev_op_leaf) {
4252                 char *vdev_type = vd->vdev_ops->vdev_op_type;
4253
4254                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4255                     vd->vdev_children > 1) {
4256                         return (B_FALSE);
4257                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4258                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4259                         return (B_FALSE);
4260                 }
4261         }
4262
4263         for (int c = 0; c < vd->vdev_children; c++) {
4264                 if (!vdev_is_bootable(vd->vdev_child[c]))
4265                         return (B_FALSE);
4266         }
4267 #endif  /* illumos */
4268         return (B_TRUE);
4269 }
4270
4271 boolean_t
4272 vdev_is_concrete(vdev_t *vd)
4273 {
4274         vdev_ops_t *ops = vd->vdev_ops;
4275         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4276             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4277                 return (B_FALSE);
4278         } else {
4279                 return (B_TRUE);
4280         }
4281 }
4282
4283 /*
4284  * Determine if a log device has valid content.  If the vdev was
4285  * removed or faulted in the MOS config then we know that
4286  * the content on the log device has already been written to the pool.
4287  */
4288 boolean_t
4289 vdev_log_state_valid(vdev_t *vd)
4290 {
4291         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4292             !vd->vdev_removed)
4293                 return (B_TRUE);
4294
4295         for (int c = 0; c < vd->vdev_children; c++)
4296                 if (vdev_log_state_valid(vd->vdev_child[c]))
4297                         return (B_TRUE);
4298
4299         return (B_FALSE);
4300 }
4301
4302 /*
4303  * Expand a vdev if possible.
4304  */
4305 void
4306 vdev_expand(vdev_t *vd, uint64_t txg)
4307 {
4308         ASSERT(vd->vdev_top == vd);
4309         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4310         ASSERT(vdev_is_concrete(vd));
4311
4312         vdev_set_deflate_ratio(vd);
4313
4314         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
4315                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4316                 vdev_config_dirty(vd);
4317         }
4318 }
4319
4320 /*
4321  * Split a vdev.
4322  */
4323 void
4324 vdev_split(vdev_t *vd)
4325 {
4326         vdev_t *cvd, *pvd = vd->vdev_parent;
4327
4328         vdev_remove_child(pvd, vd);
4329         vdev_compact_children(pvd);
4330
4331         cvd = pvd->vdev_child[0];
4332         if (pvd->vdev_children == 1) {
4333                 vdev_remove_parent(cvd);
4334                 cvd->vdev_splitting = B_TRUE;
4335         }
4336         vdev_propagate_state(cvd);
4337 }
4338
4339 void
4340 vdev_deadman(vdev_t *vd)
4341 {
4342         for (int c = 0; c < vd->vdev_children; c++) {
4343                 vdev_t *cvd = vd->vdev_child[c];
4344
4345                 vdev_deadman(cvd);
4346         }
4347
4348         if (vd->vdev_ops->vdev_op_leaf) {
4349                 vdev_queue_t *vq = &vd->vdev_queue;
4350
4351                 mutex_enter(&vq->vq_lock);
4352                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4353                         spa_t *spa = vd->vdev_spa;
4354                         zio_t *fio;
4355                         uint64_t delta;
4356
4357                         /*
4358                          * Look at the head of all the pending queues,
4359                          * if any I/O has been outstanding for longer than
4360                          * the spa_deadman_synctime we panic the system.
4361                          */
4362                         fio = avl_first(&vq->vq_active_tree);
4363                         delta = gethrtime() - fio->io_timestamp;
4364                         if (delta > spa_deadman_synctime(spa)) {
4365                                 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4366                                     "%lluns, delta %lluns, last io %lluns",
4367                                     fio->io_timestamp, (u_longlong_t)delta,
4368                                     vq->vq_io_complete_ts);
4369                                 fm_panic("I/O to pool '%s' appears to be "
4370                                     "hung on vdev guid %llu at '%s'.",
4371                                     spa_name(spa),
4372                                     (long long unsigned int) vd->vdev_guid,
4373                                     vd->vdev_path);
4374                         }
4375                 }
4376                 mutex_exit(&vq->vq_lock);
4377         }
4378 }