]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r304149, and update
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  */
30
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/metaslab.h>
40 #include <sys/metaslab_impl.h>
41 #include <sys/space_map.h>
42 #include <sys/space_reftree.h>
43 #include <sys/zio.h>
44 #include <sys/zap.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/arc.h>
47 #include <sys/zil.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/trim_map.h>
50
51 SYSCTL_DECL(_vfs_zfs);
52 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
53
54 /*
55  * Virtual device management.
56  */
57
58 /*
59  * The limit for ZFS to automatically increase a top-level vdev's ashift
60  * from logical ashift to physical ashift.
61  *
62  * Example: one or more 512B emulation child vdevs
63  *          child->vdev_ashift = 9 (512 bytes)
64  *          child->vdev_physical_ashift = 12 (4096 bytes)
65  *          zfs_max_auto_ashift = 11 (2048 bytes)
66  *          zfs_min_auto_ashift = 9 (512 bytes)
67  *
68  * On pool creation or the addition of a new top-level vdev, ZFS will
69  * increase the ashift of the top-level vdev to 2048 as limited by
70  * zfs_max_auto_ashift.
71  *
72  * Example: one or more 512B emulation child vdevs
73  *          child->vdev_ashift = 9 (512 bytes)
74  *          child->vdev_physical_ashift = 12 (4096 bytes)
75  *          zfs_max_auto_ashift = 13 (8192 bytes)
76  *          zfs_min_auto_ashift = 9 (512 bytes)
77  *
78  * On pool creation or the addition of a new top-level vdev, ZFS will
79  * increase the ashift of the top-level vdev to 4096 to match the
80  * max vdev_physical_ashift.
81  *
82  * Example: one or more 512B emulation child vdevs
83  *          child->vdev_ashift = 9 (512 bytes)
84  *          child->vdev_physical_ashift = 9 (512 bytes)
85  *          zfs_max_auto_ashift = 13 (8192 bytes)
86  *          zfs_min_auto_ashift = 12 (4096 bytes)
87  *
88  * On pool creation or the addition of a new top-level vdev, ZFS will
89  * increase the ashift of the top-level vdev to 4096 to match the
90  * zfs_min_auto_ashift.
91  */
92 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
93 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
94
95 static int
96 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
97 {
98         uint64_t val;
99         int err;
100
101         val = zfs_max_auto_ashift;
102         err = sysctl_handle_64(oidp, &val, 0, req);
103         if (err != 0 || req->newptr == NULL)
104                 return (err);
105
106         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
107                 return (EINVAL);
108
109         zfs_max_auto_ashift = val;
110
111         return (0);
112 }
113 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
114     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
115     sysctl_vfs_zfs_max_auto_ashift, "QU",
116     "Max ashift used when optimising for logical -> physical sectors size on "
117     "new top-level vdevs.");
118
119 static int
120 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
121 {
122         uint64_t val;
123         int err;
124
125         val = zfs_min_auto_ashift;
126         err = sysctl_handle_64(oidp, &val, 0, req);
127         if (err != 0 || req->newptr == NULL)
128                 return (err);
129
130         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
131                 return (EINVAL);
132
133         zfs_min_auto_ashift = val;
134
135         return (0);
136 }
137 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
138     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
139     sysctl_vfs_zfs_min_auto_ashift, "QU",
140     "Min ashift used when creating new top-level vdevs.");
141
142 static vdev_ops_t *vdev_ops_table[] = {
143         &vdev_root_ops,
144         &vdev_raidz_ops,
145         &vdev_mirror_ops,
146         &vdev_replacing_ops,
147         &vdev_spare_ops,
148 #ifdef _KERNEL
149         &vdev_geom_ops,
150 #else
151         &vdev_disk_ops,
152 #endif
153         &vdev_file_ops,
154         &vdev_missing_ops,
155         &vdev_hole_ops,
156         NULL
157 };
158
159
160 /*
161  * When a vdev is added, it will be divided into approximately (but no
162  * more than) this number of metaslabs.
163  */
164 int metaslabs_per_vdev = 200;
165 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
166     &metaslabs_per_vdev, 0,
167     "When a vdev is added, how many metaslabs the vdev should be divided into");
168
169 /*
170  * Given a vdev type, return the appropriate ops vector.
171  */
172 static vdev_ops_t *
173 vdev_getops(const char *type)
174 {
175         vdev_ops_t *ops, **opspp;
176
177         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
178                 if (strcmp(ops->vdev_op_type, type) == 0)
179                         break;
180
181         return (ops);
182 }
183
184 /*
185  * Default asize function: return the MAX of psize with the asize of
186  * all children.  This is what's used by anything other than RAID-Z.
187  */
188 uint64_t
189 vdev_default_asize(vdev_t *vd, uint64_t psize)
190 {
191         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
192         uint64_t csize;
193
194         for (int c = 0; c < vd->vdev_children; c++) {
195                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
196                 asize = MAX(asize, csize);
197         }
198
199         return (asize);
200 }
201
202 /*
203  * Get the minimum allocatable size. We define the allocatable size as
204  * the vdev's asize rounded to the nearest metaslab. This allows us to
205  * replace or attach devices which don't have the same physical size but
206  * can still satisfy the same number of allocations.
207  */
208 uint64_t
209 vdev_get_min_asize(vdev_t *vd)
210 {
211         vdev_t *pvd = vd->vdev_parent;
212
213         /*
214          * If our parent is NULL (inactive spare or cache) or is the root,
215          * just return our own asize.
216          */
217         if (pvd == NULL)
218                 return (vd->vdev_asize);
219
220         /*
221          * The top-level vdev just returns the allocatable size rounded
222          * to the nearest metaslab.
223          */
224         if (vd == vd->vdev_top)
225                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
226
227         /*
228          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
229          * so each child must provide at least 1/Nth of its asize.
230          */
231         if (pvd->vdev_ops == &vdev_raidz_ops)
232                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
233                     pvd->vdev_children);
234
235         return (pvd->vdev_min_asize);
236 }
237
238 void
239 vdev_set_min_asize(vdev_t *vd)
240 {
241         vd->vdev_min_asize = vdev_get_min_asize(vd);
242
243         for (int c = 0; c < vd->vdev_children; c++)
244                 vdev_set_min_asize(vd->vdev_child[c]);
245 }
246
247 vdev_t *
248 vdev_lookup_top(spa_t *spa, uint64_t vdev)
249 {
250         vdev_t *rvd = spa->spa_root_vdev;
251
252         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
253
254         if (vdev < rvd->vdev_children) {
255                 ASSERT(rvd->vdev_child[vdev] != NULL);
256                 return (rvd->vdev_child[vdev]);
257         }
258
259         return (NULL);
260 }
261
262 vdev_t *
263 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
264 {
265         vdev_t *mvd;
266
267         if (vd->vdev_guid == guid)
268                 return (vd);
269
270         for (int c = 0; c < vd->vdev_children; c++)
271                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
272                     NULL)
273                         return (mvd);
274
275         return (NULL);
276 }
277
278 static int
279 vdev_count_leaves_impl(vdev_t *vd)
280 {
281         int n = 0;
282
283         if (vd->vdev_ops->vdev_op_leaf)
284                 return (1);
285
286         for (int c = 0; c < vd->vdev_children; c++)
287                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
288
289         return (n);
290 }
291
292 int
293 vdev_count_leaves(spa_t *spa)
294 {
295         return (vdev_count_leaves_impl(spa->spa_root_vdev));
296 }
297
298 void
299 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
300 {
301         size_t oldsize, newsize;
302         uint64_t id = cvd->vdev_id;
303         vdev_t **newchild;
304         spa_t *spa = cvd->vdev_spa;
305
306         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
307         ASSERT(cvd->vdev_parent == NULL);
308
309         cvd->vdev_parent = pvd;
310
311         if (pvd == NULL)
312                 return;
313
314         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
315
316         oldsize = pvd->vdev_children * sizeof (vdev_t *);
317         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
318         newsize = pvd->vdev_children * sizeof (vdev_t *);
319
320         newchild = kmem_zalloc(newsize, KM_SLEEP);
321         if (pvd->vdev_child != NULL) {
322                 bcopy(pvd->vdev_child, newchild, oldsize);
323                 kmem_free(pvd->vdev_child, oldsize);
324         }
325
326         pvd->vdev_child = newchild;
327         pvd->vdev_child[id] = cvd;
328
329         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
330         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
331
332         /*
333          * Walk up all ancestors to update guid sum.
334          */
335         for (; pvd != NULL; pvd = pvd->vdev_parent)
336                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
337 }
338
339 void
340 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
341 {
342         int c;
343         uint_t id = cvd->vdev_id;
344
345         ASSERT(cvd->vdev_parent == pvd);
346
347         if (pvd == NULL)
348                 return;
349
350         ASSERT(id < pvd->vdev_children);
351         ASSERT(pvd->vdev_child[id] == cvd);
352
353         pvd->vdev_child[id] = NULL;
354         cvd->vdev_parent = NULL;
355
356         for (c = 0; c < pvd->vdev_children; c++)
357                 if (pvd->vdev_child[c])
358                         break;
359
360         if (c == pvd->vdev_children) {
361                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
362                 pvd->vdev_child = NULL;
363                 pvd->vdev_children = 0;
364         }
365
366         /*
367          * Walk up all ancestors to update guid sum.
368          */
369         for (; pvd != NULL; pvd = pvd->vdev_parent)
370                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
371 }
372
373 /*
374  * Remove any holes in the child array.
375  */
376 void
377 vdev_compact_children(vdev_t *pvd)
378 {
379         vdev_t **newchild, *cvd;
380         int oldc = pvd->vdev_children;
381         int newc;
382
383         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
384
385         for (int c = newc = 0; c < oldc; c++)
386                 if (pvd->vdev_child[c])
387                         newc++;
388
389         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
390
391         for (int c = newc = 0; c < oldc; c++) {
392                 if ((cvd = pvd->vdev_child[c]) != NULL) {
393                         newchild[newc] = cvd;
394                         cvd->vdev_id = newc++;
395                 }
396         }
397
398         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
399         pvd->vdev_child = newchild;
400         pvd->vdev_children = newc;
401 }
402
403 /*
404  * Allocate and minimally initialize a vdev_t.
405  */
406 vdev_t *
407 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
408 {
409         vdev_t *vd;
410
411         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
412
413         if (spa->spa_root_vdev == NULL) {
414                 ASSERT(ops == &vdev_root_ops);
415                 spa->spa_root_vdev = vd;
416                 spa->spa_load_guid = spa_generate_guid(NULL);
417         }
418
419         if (guid == 0 && ops != &vdev_hole_ops) {
420                 if (spa->spa_root_vdev == vd) {
421                         /*
422                          * The root vdev's guid will also be the pool guid,
423                          * which must be unique among all pools.
424                          */
425                         guid = spa_generate_guid(NULL);
426                 } else {
427                         /*
428                          * Any other vdev's guid must be unique within the pool.
429                          */
430                         guid = spa_generate_guid(spa);
431                 }
432                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
433         }
434
435         vd->vdev_spa = spa;
436         vd->vdev_id = id;
437         vd->vdev_guid = guid;
438         vd->vdev_guid_sum = guid;
439         vd->vdev_ops = ops;
440         vd->vdev_state = VDEV_STATE_CLOSED;
441         vd->vdev_ishole = (ops == &vdev_hole_ops);
442
443         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
444         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
445         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
446         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
447         for (int t = 0; t < DTL_TYPES; t++) {
448                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
449                     &vd->vdev_dtl_lock);
450         }
451         txg_list_create(&vd->vdev_ms_list, spa,
452             offsetof(struct metaslab, ms_txg_node));
453         txg_list_create(&vd->vdev_dtl_list, spa,
454             offsetof(struct vdev, vdev_dtl_node));
455         vd->vdev_stat.vs_timestamp = gethrtime();
456         vdev_queue_init(vd);
457         vdev_cache_init(vd);
458
459         return (vd);
460 }
461
462 /*
463  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
464  * creating a new vdev or loading an existing one - the behavior is slightly
465  * different for each case.
466  */
467 int
468 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
469     int alloctype)
470 {
471         vdev_ops_t *ops;
472         char *type;
473         uint64_t guid = 0, islog, nparity;
474         vdev_t *vd;
475
476         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
477
478         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
479                 return (SET_ERROR(EINVAL));
480
481         if ((ops = vdev_getops(type)) == NULL)
482                 return (SET_ERROR(EINVAL));
483
484         /*
485          * If this is a load, get the vdev guid from the nvlist.
486          * Otherwise, vdev_alloc_common() will generate one for us.
487          */
488         if (alloctype == VDEV_ALLOC_LOAD) {
489                 uint64_t label_id;
490
491                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
492                     label_id != id)
493                         return (SET_ERROR(EINVAL));
494
495                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
496                         return (SET_ERROR(EINVAL));
497         } else if (alloctype == VDEV_ALLOC_SPARE) {
498                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
499                         return (SET_ERROR(EINVAL));
500         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
501                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
502                         return (SET_ERROR(EINVAL));
503         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
504                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
505                         return (SET_ERROR(EINVAL));
506         }
507
508         /*
509          * The first allocated vdev must be of type 'root'.
510          */
511         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
512                 return (SET_ERROR(EINVAL));
513
514         /*
515          * Determine whether we're a log vdev.
516          */
517         islog = 0;
518         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
519         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
520                 return (SET_ERROR(ENOTSUP));
521
522         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
523                 return (SET_ERROR(ENOTSUP));
524
525         /*
526          * Set the nparity property for RAID-Z vdevs.
527          */
528         nparity = -1ULL;
529         if (ops == &vdev_raidz_ops) {
530                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
531                     &nparity) == 0) {
532                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
533                                 return (SET_ERROR(EINVAL));
534                         /*
535                          * Previous versions could only support 1 or 2 parity
536                          * device.
537                          */
538                         if (nparity > 1 &&
539                             spa_version(spa) < SPA_VERSION_RAIDZ2)
540                                 return (SET_ERROR(ENOTSUP));
541                         if (nparity > 2 &&
542                             spa_version(spa) < SPA_VERSION_RAIDZ3)
543                                 return (SET_ERROR(ENOTSUP));
544                 } else {
545                         /*
546                          * We require the parity to be specified for SPAs that
547                          * support multiple parity levels.
548                          */
549                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
550                                 return (SET_ERROR(EINVAL));
551                         /*
552                          * Otherwise, we default to 1 parity device for RAID-Z.
553                          */
554                         nparity = 1;
555                 }
556         } else {
557                 nparity = 0;
558         }
559         ASSERT(nparity != -1ULL);
560
561         vd = vdev_alloc_common(spa, id, guid, ops);
562
563         vd->vdev_islog = islog;
564         vd->vdev_nparity = nparity;
565
566         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
567                 vd->vdev_path = spa_strdup(vd->vdev_path);
568         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
569                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
570         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
571             &vd->vdev_physpath) == 0)
572                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
573         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
574                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
575
576         /*
577          * Set the whole_disk property.  If it's not specified, leave the value
578          * as -1.
579          */
580         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
581             &vd->vdev_wholedisk) != 0)
582                 vd->vdev_wholedisk = -1ULL;
583
584         /*
585          * Look for the 'not present' flag.  This will only be set if the device
586          * was not present at the time of import.
587          */
588         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
589             &vd->vdev_not_present);
590
591         /*
592          * Get the alignment requirement.
593          */
594         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
595
596         /*
597          * Retrieve the vdev creation time.
598          */
599         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
600             &vd->vdev_crtxg);
601
602         /*
603          * If we're a top-level vdev, try to load the allocation parameters.
604          */
605         if (parent && !parent->vdev_parent &&
606             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
607                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
608                     &vd->vdev_ms_array);
609                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
610                     &vd->vdev_ms_shift);
611                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
612                     &vd->vdev_asize);
613                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
614                     &vd->vdev_removing);
615                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
616                     &vd->vdev_top_zap);
617         } else {
618                 ASSERT0(vd->vdev_top_zap);
619         }
620
621         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
622                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
623                     alloctype == VDEV_ALLOC_ADD ||
624                     alloctype == VDEV_ALLOC_SPLIT ||
625                     alloctype == VDEV_ALLOC_ROOTPOOL);
626                 vd->vdev_mg = metaslab_group_create(islog ?
627                     spa_log_class(spa) : spa_normal_class(spa), vd);
628         }
629
630         if (vd->vdev_ops->vdev_op_leaf &&
631             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
632                 (void) nvlist_lookup_uint64(nv,
633                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
634         } else {
635                 ASSERT0(vd->vdev_leaf_zap);
636         }
637
638         /*
639          * If we're a leaf vdev, try to load the DTL object and other state.
640          */
641
642         if (vd->vdev_ops->vdev_op_leaf &&
643             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
644             alloctype == VDEV_ALLOC_ROOTPOOL)) {
645                 if (alloctype == VDEV_ALLOC_LOAD) {
646                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
647                             &vd->vdev_dtl_object);
648                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
649                             &vd->vdev_unspare);
650                 }
651
652                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
653                         uint64_t spare = 0;
654
655                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
656                             &spare) == 0 && spare)
657                                 spa_spare_add(vd);
658                 }
659
660                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
661                     &vd->vdev_offline);
662
663                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
664                     &vd->vdev_resilver_txg);
665
666                 /*
667                  * When importing a pool, we want to ignore the persistent fault
668                  * state, as the diagnosis made on another system may not be
669                  * valid in the current context.  Local vdevs will
670                  * remain in the faulted state.
671                  */
672                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
673                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
674                             &vd->vdev_faulted);
675                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
676                             &vd->vdev_degraded);
677                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
678                             &vd->vdev_removed);
679
680                         if (vd->vdev_faulted || vd->vdev_degraded) {
681                                 char *aux;
682
683                                 vd->vdev_label_aux =
684                                     VDEV_AUX_ERR_EXCEEDED;
685                                 if (nvlist_lookup_string(nv,
686                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
687                                     strcmp(aux, "external") == 0)
688                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
689                         }
690                 }
691         }
692
693         /*
694          * Add ourselves to the parent's list of children.
695          */
696         vdev_add_child(parent, vd);
697
698         *vdp = vd;
699
700         return (0);
701 }
702
703 void
704 vdev_free(vdev_t *vd)
705 {
706         spa_t *spa = vd->vdev_spa;
707
708         /*
709          * vdev_free() implies closing the vdev first.  This is simpler than
710          * trying to ensure complicated semantics for all callers.
711          */
712         vdev_close(vd);
713
714         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
715         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
716
717         /*
718          * Free all children.
719          */
720         for (int c = 0; c < vd->vdev_children; c++)
721                 vdev_free(vd->vdev_child[c]);
722
723         ASSERT(vd->vdev_child == NULL);
724         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
725
726         /*
727          * Discard allocation state.
728          */
729         if (vd->vdev_mg != NULL) {
730                 vdev_metaslab_fini(vd);
731                 metaslab_group_destroy(vd->vdev_mg);
732         }
733
734         ASSERT0(vd->vdev_stat.vs_space);
735         ASSERT0(vd->vdev_stat.vs_dspace);
736         ASSERT0(vd->vdev_stat.vs_alloc);
737
738         /*
739          * Remove this vdev from its parent's child list.
740          */
741         vdev_remove_child(vd->vdev_parent, vd);
742
743         ASSERT(vd->vdev_parent == NULL);
744
745         /*
746          * Clean up vdev structure.
747          */
748         vdev_queue_fini(vd);
749         vdev_cache_fini(vd);
750
751         if (vd->vdev_path)
752                 spa_strfree(vd->vdev_path);
753         if (vd->vdev_devid)
754                 spa_strfree(vd->vdev_devid);
755         if (vd->vdev_physpath)
756                 spa_strfree(vd->vdev_physpath);
757         if (vd->vdev_fru)
758                 spa_strfree(vd->vdev_fru);
759
760         if (vd->vdev_isspare)
761                 spa_spare_remove(vd);
762         if (vd->vdev_isl2cache)
763                 spa_l2cache_remove(vd);
764
765         txg_list_destroy(&vd->vdev_ms_list);
766         txg_list_destroy(&vd->vdev_dtl_list);
767
768         mutex_enter(&vd->vdev_dtl_lock);
769         space_map_close(vd->vdev_dtl_sm);
770         for (int t = 0; t < DTL_TYPES; t++) {
771                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
772                 range_tree_destroy(vd->vdev_dtl[t]);
773         }
774         mutex_exit(&vd->vdev_dtl_lock);
775
776         mutex_destroy(&vd->vdev_queue_lock);
777         mutex_destroy(&vd->vdev_dtl_lock);
778         mutex_destroy(&vd->vdev_stat_lock);
779         mutex_destroy(&vd->vdev_probe_lock);
780
781         if (vd == spa->spa_root_vdev)
782                 spa->spa_root_vdev = NULL;
783
784         kmem_free(vd, sizeof (vdev_t));
785 }
786
787 /*
788  * Transfer top-level vdev state from svd to tvd.
789  */
790 static void
791 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
792 {
793         spa_t *spa = svd->vdev_spa;
794         metaslab_t *msp;
795         vdev_t *vd;
796         int t;
797
798         ASSERT(tvd == tvd->vdev_top);
799
800         tvd->vdev_ms_array = svd->vdev_ms_array;
801         tvd->vdev_ms_shift = svd->vdev_ms_shift;
802         tvd->vdev_ms_count = svd->vdev_ms_count;
803         tvd->vdev_top_zap = svd->vdev_top_zap;
804
805         svd->vdev_ms_array = 0;
806         svd->vdev_ms_shift = 0;
807         svd->vdev_ms_count = 0;
808         svd->vdev_top_zap = 0;
809
810         if (tvd->vdev_mg)
811                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
812         tvd->vdev_mg = svd->vdev_mg;
813         tvd->vdev_ms = svd->vdev_ms;
814
815         svd->vdev_mg = NULL;
816         svd->vdev_ms = NULL;
817
818         if (tvd->vdev_mg != NULL)
819                 tvd->vdev_mg->mg_vd = tvd;
820
821         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
822         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
823         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
824
825         svd->vdev_stat.vs_alloc = 0;
826         svd->vdev_stat.vs_space = 0;
827         svd->vdev_stat.vs_dspace = 0;
828
829         for (t = 0; t < TXG_SIZE; t++) {
830                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
831                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
832                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
833                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
834                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
835                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
836         }
837
838         if (list_link_active(&svd->vdev_config_dirty_node)) {
839                 vdev_config_clean(svd);
840                 vdev_config_dirty(tvd);
841         }
842
843         if (list_link_active(&svd->vdev_state_dirty_node)) {
844                 vdev_state_clean(svd);
845                 vdev_state_dirty(tvd);
846         }
847
848         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
849         svd->vdev_deflate_ratio = 0;
850
851         tvd->vdev_islog = svd->vdev_islog;
852         svd->vdev_islog = 0;
853 }
854
855 static void
856 vdev_top_update(vdev_t *tvd, vdev_t *vd)
857 {
858         if (vd == NULL)
859                 return;
860
861         vd->vdev_top = tvd;
862
863         for (int c = 0; c < vd->vdev_children; c++)
864                 vdev_top_update(tvd, vd->vdev_child[c]);
865 }
866
867 /*
868  * Add a mirror/replacing vdev above an existing vdev.
869  */
870 vdev_t *
871 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
872 {
873         spa_t *spa = cvd->vdev_spa;
874         vdev_t *pvd = cvd->vdev_parent;
875         vdev_t *mvd;
876
877         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
878
879         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
880
881         mvd->vdev_asize = cvd->vdev_asize;
882         mvd->vdev_min_asize = cvd->vdev_min_asize;
883         mvd->vdev_max_asize = cvd->vdev_max_asize;
884         mvd->vdev_ashift = cvd->vdev_ashift;
885         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
886         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
887         mvd->vdev_state = cvd->vdev_state;
888         mvd->vdev_crtxg = cvd->vdev_crtxg;
889
890         vdev_remove_child(pvd, cvd);
891         vdev_add_child(pvd, mvd);
892         cvd->vdev_id = mvd->vdev_children;
893         vdev_add_child(mvd, cvd);
894         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
895
896         if (mvd == mvd->vdev_top)
897                 vdev_top_transfer(cvd, mvd);
898
899         return (mvd);
900 }
901
902 /*
903  * Remove a 1-way mirror/replacing vdev from the tree.
904  */
905 void
906 vdev_remove_parent(vdev_t *cvd)
907 {
908         vdev_t *mvd = cvd->vdev_parent;
909         vdev_t *pvd = mvd->vdev_parent;
910
911         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
912
913         ASSERT(mvd->vdev_children == 1);
914         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
915             mvd->vdev_ops == &vdev_replacing_ops ||
916             mvd->vdev_ops == &vdev_spare_ops);
917         cvd->vdev_ashift = mvd->vdev_ashift;
918         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
919         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
920
921         vdev_remove_child(mvd, cvd);
922         vdev_remove_child(pvd, mvd);
923
924         /*
925          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
926          * Otherwise, we could have detached an offline device, and when we
927          * go to import the pool we'll think we have two top-level vdevs,
928          * instead of a different version of the same top-level vdev.
929          */
930         if (mvd->vdev_top == mvd) {
931                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
932                 cvd->vdev_orig_guid = cvd->vdev_guid;
933                 cvd->vdev_guid += guid_delta;
934                 cvd->vdev_guid_sum += guid_delta;
935         }
936         cvd->vdev_id = mvd->vdev_id;
937         vdev_add_child(pvd, cvd);
938         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
939
940         if (cvd == cvd->vdev_top)
941                 vdev_top_transfer(mvd, cvd);
942
943         ASSERT(mvd->vdev_children == 0);
944         vdev_free(mvd);
945 }
946
947 int
948 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
949 {
950         spa_t *spa = vd->vdev_spa;
951         objset_t *mos = spa->spa_meta_objset;
952         uint64_t m;
953         uint64_t oldc = vd->vdev_ms_count;
954         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
955         metaslab_t **mspp;
956         int error;
957
958         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
959
960         /*
961          * This vdev is not being allocated from yet or is a hole.
962          */
963         if (vd->vdev_ms_shift == 0)
964                 return (0);
965
966         ASSERT(!vd->vdev_ishole);
967
968         /*
969          * Compute the raidz-deflation ratio.  Note, we hard-code
970          * in 128k (1 << 17) because it is the "typical" blocksize.
971          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
972          * otherwise it would inconsistently account for existing bp's.
973          */
974         vd->vdev_deflate_ratio = (1 << 17) /
975             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
976
977         ASSERT(oldc <= newc);
978
979         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
980
981         if (oldc != 0) {
982                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
983                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
984         }
985
986         vd->vdev_ms = mspp;
987         vd->vdev_ms_count = newc;
988
989         for (m = oldc; m < newc; m++) {
990                 uint64_t object = 0;
991
992                 if (txg == 0) {
993                         error = dmu_read(mos, vd->vdev_ms_array,
994                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
995                             DMU_READ_PREFETCH);
996                         if (error)
997                                 return (error);
998                 }
999
1000                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1001                     &(vd->vdev_ms[m]));
1002                 if (error)
1003                         return (error);
1004         }
1005
1006         if (txg == 0)
1007                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1008
1009         /*
1010          * If the vdev is being removed we don't activate
1011          * the metaslabs since we want to ensure that no new
1012          * allocations are performed on this device.
1013          */
1014         if (oldc == 0 && !vd->vdev_removing)
1015                 metaslab_group_activate(vd->vdev_mg);
1016
1017         if (txg == 0)
1018                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1019
1020         return (0);
1021 }
1022
1023 void
1024 vdev_metaslab_fini(vdev_t *vd)
1025 {
1026         uint64_t m;
1027         uint64_t count = vd->vdev_ms_count;
1028
1029         if (vd->vdev_ms != NULL) {
1030                 metaslab_group_passivate(vd->vdev_mg);
1031                 for (m = 0; m < count; m++) {
1032                         metaslab_t *msp = vd->vdev_ms[m];
1033
1034                         if (msp != NULL)
1035                                 metaslab_fini(msp);
1036                 }
1037                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1038                 vd->vdev_ms = NULL;
1039         }
1040 }
1041
1042 typedef struct vdev_probe_stats {
1043         boolean_t       vps_readable;
1044         boolean_t       vps_writeable;
1045         int             vps_flags;
1046 } vdev_probe_stats_t;
1047
1048 static void
1049 vdev_probe_done(zio_t *zio)
1050 {
1051         spa_t *spa = zio->io_spa;
1052         vdev_t *vd = zio->io_vd;
1053         vdev_probe_stats_t *vps = zio->io_private;
1054
1055         ASSERT(vd->vdev_probe_zio != NULL);
1056
1057         if (zio->io_type == ZIO_TYPE_READ) {
1058                 if (zio->io_error == 0)
1059                         vps->vps_readable = 1;
1060                 if (zio->io_error == 0 && spa_writeable(spa)) {
1061                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1062                             zio->io_offset, zio->io_size, zio->io_data,
1063                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1064                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1065                 } else {
1066                         zio_buf_free(zio->io_data, zio->io_size);
1067                 }
1068         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1069                 if (zio->io_error == 0)
1070                         vps->vps_writeable = 1;
1071                 zio_buf_free(zio->io_data, zio->io_size);
1072         } else if (zio->io_type == ZIO_TYPE_NULL) {
1073                 zio_t *pio;
1074
1075                 vd->vdev_cant_read |= !vps->vps_readable;
1076                 vd->vdev_cant_write |= !vps->vps_writeable;
1077
1078                 if (vdev_readable(vd) &&
1079                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1080                         zio->io_error = 0;
1081                 } else {
1082                         ASSERT(zio->io_error != 0);
1083                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1084                             spa, vd, NULL, 0, 0);
1085                         zio->io_error = SET_ERROR(ENXIO);
1086                 }
1087
1088                 mutex_enter(&vd->vdev_probe_lock);
1089                 ASSERT(vd->vdev_probe_zio == zio);
1090                 vd->vdev_probe_zio = NULL;
1091                 mutex_exit(&vd->vdev_probe_lock);
1092
1093                 zio_link_t *zl = NULL;
1094                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1095                         if (!vdev_accessible(vd, pio))
1096                                 pio->io_error = SET_ERROR(ENXIO);
1097
1098                 kmem_free(vps, sizeof (*vps));
1099         }
1100 }
1101
1102 /*
1103  * Determine whether this device is accessible.
1104  *
1105  * Read and write to several known locations: the pad regions of each
1106  * vdev label but the first, which we leave alone in case it contains
1107  * a VTOC.
1108  */
1109 zio_t *
1110 vdev_probe(vdev_t *vd, zio_t *zio)
1111 {
1112         spa_t *spa = vd->vdev_spa;
1113         vdev_probe_stats_t *vps = NULL;
1114         zio_t *pio;
1115
1116         ASSERT(vd->vdev_ops->vdev_op_leaf);
1117
1118         /*
1119          * Don't probe the probe.
1120          */
1121         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1122                 return (NULL);
1123
1124         /*
1125          * To prevent 'probe storms' when a device fails, we create
1126          * just one probe i/o at a time.  All zios that want to probe
1127          * this vdev will become parents of the probe io.
1128          */
1129         mutex_enter(&vd->vdev_probe_lock);
1130
1131         if ((pio = vd->vdev_probe_zio) == NULL) {
1132                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1133
1134                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1135                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1136                     ZIO_FLAG_TRYHARD;
1137
1138                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1139                         /*
1140                          * vdev_cant_read and vdev_cant_write can only
1141                          * transition from TRUE to FALSE when we have the
1142                          * SCL_ZIO lock as writer; otherwise they can only
1143                          * transition from FALSE to TRUE.  This ensures that
1144                          * any zio looking at these values can assume that
1145                          * failures persist for the life of the I/O.  That's
1146                          * important because when a device has intermittent
1147                          * connectivity problems, we want to ensure that
1148                          * they're ascribed to the device (ENXIO) and not
1149                          * the zio (EIO).
1150                          *
1151                          * Since we hold SCL_ZIO as writer here, clear both
1152                          * values so the probe can reevaluate from first
1153                          * principles.
1154                          */
1155                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1156                         vd->vdev_cant_read = B_FALSE;
1157                         vd->vdev_cant_write = B_FALSE;
1158                 }
1159
1160                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1161                     vdev_probe_done, vps,
1162                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1163
1164                 /*
1165                  * We can't change the vdev state in this context, so we
1166                  * kick off an async task to do it on our behalf.
1167                  */
1168                 if (zio != NULL) {
1169                         vd->vdev_probe_wanted = B_TRUE;
1170                         spa_async_request(spa, SPA_ASYNC_PROBE);
1171                 }
1172         }
1173
1174         if (zio != NULL)
1175                 zio_add_child(zio, pio);
1176
1177         mutex_exit(&vd->vdev_probe_lock);
1178
1179         if (vps == NULL) {
1180                 ASSERT(zio != NULL);
1181                 return (NULL);
1182         }
1183
1184         for (int l = 1; l < VDEV_LABELS; l++) {
1185                 zio_nowait(zio_read_phys(pio, vd,
1186                     vdev_label_offset(vd->vdev_psize, l,
1187                     offsetof(vdev_label_t, vl_pad2)),
1188                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1189                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1190                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1191         }
1192
1193         if (zio == NULL)
1194                 return (pio);
1195
1196         zio_nowait(pio);
1197         return (NULL);
1198 }
1199
1200 static void
1201 vdev_open_child(void *arg)
1202 {
1203         vdev_t *vd = arg;
1204
1205         vd->vdev_open_thread = curthread;
1206         vd->vdev_open_error = vdev_open(vd);
1207         vd->vdev_open_thread = NULL;
1208 }
1209
1210 boolean_t
1211 vdev_uses_zvols(vdev_t *vd)
1212 {
1213         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1214             strlen(ZVOL_DIR)) == 0)
1215                 return (B_TRUE);
1216         for (int c = 0; c < vd->vdev_children; c++)
1217                 if (vdev_uses_zvols(vd->vdev_child[c]))
1218                         return (B_TRUE);
1219         return (B_FALSE);
1220 }
1221
1222 void
1223 vdev_open_children(vdev_t *vd)
1224 {
1225         taskq_t *tq;
1226         int children = vd->vdev_children;
1227
1228         /*
1229          * in order to handle pools on top of zvols, do the opens
1230          * in a single thread so that the same thread holds the
1231          * spa_namespace_lock
1232          */
1233         if (B_TRUE || vdev_uses_zvols(vd)) {
1234                 for (int c = 0; c < children; c++)
1235                         vd->vdev_child[c]->vdev_open_error =
1236                             vdev_open(vd->vdev_child[c]);
1237                 return;
1238         }
1239         tq = taskq_create("vdev_open", children, minclsyspri,
1240             children, children, TASKQ_PREPOPULATE);
1241
1242         for (int c = 0; c < children; c++)
1243                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1244                     TQ_SLEEP) != 0);
1245
1246         taskq_destroy(tq);
1247 }
1248
1249 /*
1250  * Prepare a virtual device for access.
1251  */
1252 int
1253 vdev_open(vdev_t *vd)
1254 {
1255         spa_t *spa = vd->vdev_spa;
1256         int error;
1257         uint64_t osize = 0;
1258         uint64_t max_osize = 0;
1259         uint64_t asize, max_asize, psize;
1260         uint64_t logical_ashift = 0;
1261         uint64_t physical_ashift = 0;
1262
1263         ASSERT(vd->vdev_open_thread == curthread ||
1264             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1265         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1266             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1267             vd->vdev_state == VDEV_STATE_OFFLINE);
1268
1269         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1270         vd->vdev_cant_read = B_FALSE;
1271         vd->vdev_cant_write = B_FALSE;
1272         vd->vdev_notrim = B_FALSE;
1273         vd->vdev_min_asize = vdev_get_min_asize(vd);
1274
1275         /*
1276          * If this vdev is not removed, check its fault status.  If it's
1277          * faulted, bail out of the open.
1278          */
1279         if (!vd->vdev_removed && vd->vdev_faulted) {
1280                 ASSERT(vd->vdev_children == 0);
1281                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1282                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1283                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1284                     vd->vdev_label_aux);
1285                 return (SET_ERROR(ENXIO));
1286         } else if (vd->vdev_offline) {
1287                 ASSERT(vd->vdev_children == 0);
1288                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1289                 return (SET_ERROR(ENXIO));
1290         }
1291
1292         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1293             &logical_ashift, &physical_ashift);
1294
1295         /*
1296          * Reset the vdev_reopening flag so that we actually close
1297          * the vdev on error.
1298          */
1299         vd->vdev_reopening = B_FALSE;
1300         if (zio_injection_enabled && error == 0)
1301                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1302
1303         if (error) {
1304                 if (vd->vdev_removed &&
1305                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1306                         vd->vdev_removed = B_FALSE;
1307
1308                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1309                     vd->vdev_stat.vs_aux);
1310                 return (error);
1311         }
1312
1313         vd->vdev_removed = B_FALSE;
1314
1315         /*
1316          * Recheck the faulted flag now that we have confirmed that
1317          * the vdev is accessible.  If we're faulted, bail.
1318          */
1319         if (vd->vdev_faulted) {
1320                 ASSERT(vd->vdev_children == 0);
1321                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1322                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1323                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1324                     vd->vdev_label_aux);
1325                 return (SET_ERROR(ENXIO));
1326         }
1327
1328         if (vd->vdev_degraded) {
1329                 ASSERT(vd->vdev_children == 0);
1330                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1331                     VDEV_AUX_ERR_EXCEEDED);
1332         } else {
1333                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1334         }
1335
1336         /*
1337          * For hole or missing vdevs we just return success.
1338          */
1339         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1340                 return (0);
1341
1342         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1343                 trim_map_create(vd);
1344
1345         for (int c = 0; c < vd->vdev_children; c++) {
1346                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1347                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1348                             VDEV_AUX_NONE);
1349                         break;
1350                 }
1351         }
1352
1353         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1354         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1355
1356         if (vd->vdev_children == 0) {
1357                 if (osize < SPA_MINDEVSIZE) {
1358                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1359                             VDEV_AUX_TOO_SMALL);
1360                         return (SET_ERROR(EOVERFLOW));
1361                 }
1362                 psize = osize;
1363                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1364                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1365                     VDEV_LABEL_END_SIZE);
1366         } else {
1367                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1368                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1369                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1370                             VDEV_AUX_TOO_SMALL);
1371                         return (SET_ERROR(EOVERFLOW));
1372                 }
1373                 psize = 0;
1374                 asize = osize;
1375                 max_asize = max_osize;
1376         }
1377
1378         vd->vdev_psize = psize;
1379
1380         /*
1381          * Make sure the allocatable size hasn't shrunk too much.
1382          */
1383         if (asize < vd->vdev_min_asize) {
1384                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1385                     VDEV_AUX_BAD_LABEL);
1386                 return (SET_ERROR(EINVAL));
1387         }
1388
1389         vd->vdev_physical_ashift =
1390             MAX(physical_ashift, vd->vdev_physical_ashift);
1391         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1392         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1393
1394         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1395                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1396                     VDEV_AUX_ASHIFT_TOO_BIG);
1397                 return (EINVAL);
1398         }
1399
1400         if (vd->vdev_asize == 0) {
1401                 /*
1402                  * This is the first-ever open, so use the computed values.
1403                  * For testing purposes, a higher ashift can be requested.
1404                  */
1405                 vd->vdev_asize = asize;
1406                 vd->vdev_max_asize = max_asize;
1407         } else {
1408                 /*
1409                  * Make sure the alignment requirement hasn't increased.
1410                  */
1411                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1412                     vd->vdev_ops->vdev_op_leaf) {
1413                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1414                             VDEV_AUX_BAD_LABEL);
1415                         return (EINVAL);
1416                 }
1417                 vd->vdev_max_asize = max_asize;
1418         }
1419
1420         /*
1421          * If all children are healthy we update asize if either:
1422          * The asize has increased, due to a device expansion caused by dynamic
1423          * LUN growth or vdev replacement, and automatic expansion is enabled;
1424          * making the additional space available.
1425          *
1426          * The asize has decreased, due to a device shrink usually caused by a
1427          * vdev replace with a smaller device. This ensures that calculations
1428          * based of max_asize and asize e.g. esize are always valid. It's safe
1429          * to do this as we've already validated that asize is greater than
1430          * vdev_min_asize.
1431          */
1432         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1433             ((asize > vd->vdev_asize &&
1434             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1435             (asize < vd->vdev_asize)))
1436                 vd->vdev_asize = asize;
1437
1438         vdev_set_min_asize(vd);
1439
1440         /*
1441          * Ensure we can issue some IO before declaring the
1442          * vdev open for business.
1443          */
1444         if (vd->vdev_ops->vdev_op_leaf &&
1445             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1446                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1447                     VDEV_AUX_ERR_EXCEEDED);
1448                 return (error);
1449         }
1450
1451         /*
1452          * Track the min and max ashift values for normal data devices.
1453          */
1454         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1455             !vd->vdev_islog && vd->vdev_aux == NULL) {
1456                 if (vd->vdev_ashift > spa->spa_max_ashift)
1457                         spa->spa_max_ashift = vd->vdev_ashift;
1458                 if (vd->vdev_ashift < spa->spa_min_ashift)
1459                         spa->spa_min_ashift = vd->vdev_ashift;
1460         }
1461
1462         /*
1463          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1464          * resilver.  But don't do this if we are doing a reopen for a scrub,
1465          * since this would just restart the scrub we are already doing.
1466          */
1467         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1468             vdev_resilver_needed(vd, NULL, NULL))
1469                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1470
1471         return (0);
1472 }
1473
1474 /*
1475  * Called once the vdevs are all opened, this routine validates the label
1476  * contents.  This needs to be done before vdev_load() so that we don't
1477  * inadvertently do repair I/Os to the wrong device.
1478  *
1479  * If 'strict' is false ignore the spa guid check. This is necessary because
1480  * if the machine crashed during a re-guid the new guid might have been written
1481  * to all of the vdev labels, but not the cached config. The strict check
1482  * will be performed when the pool is opened again using the mos config.
1483  *
1484  * This function will only return failure if one of the vdevs indicates that it
1485  * has since been destroyed or exported.  This is only possible if
1486  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1487  * will be updated but the function will return 0.
1488  */
1489 int
1490 vdev_validate(vdev_t *vd, boolean_t strict)
1491 {
1492         spa_t *spa = vd->vdev_spa;
1493         nvlist_t *label;
1494         uint64_t guid = 0, top_guid;
1495         uint64_t state;
1496
1497         for (int c = 0; c < vd->vdev_children; c++)
1498                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1499                         return (SET_ERROR(EBADF));
1500
1501         /*
1502          * If the device has already failed, or was marked offline, don't do
1503          * any further validation.  Otherwise, label I/O will fail and we will
1504          * overwrite the previous state.
1505          */
1506         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1507                 uint64_t aux_guid = 0;
1508                 nvlist_t *nvl;
1509                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1510                     spa_last_synced_txg(spa) : -1ULL;
1511
1512                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1513                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1514                             VDEV_AUX_BAD_LABEL);
1515                         return (0);
1516                 }
1517
1518                 /*
1519                  * Determine if this vdev has been split off into another
1520                  * pool.  If so, then refuse to open it.
1521                  */
1522                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1523                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1524                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1525                             VDEV_AUX_SPLIT_POOL);
1526                         nvlist_free(label);
1527                         return (0);
1528                 }
1529
1530                 if (strict && (nvlist_lookup_uint64(label,
1531                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1532                     guid != spa_guid(spa))) {
1533                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1534                             VDEV_AUX_CORRUPT_DATA);
1535                         nvlist_free(label);
1536                         return (0);
1537                 }
1538
1539                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1540                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1541                     &aux_guid) != 0)
1542                         aux_guid = 0;
1543
1544                 /*
1545                  * If this vdev just became a top-level vdev because its
1546                  * sibling was detached, it will have adopted the parent's
1547                  * vdev guid -- but the label may or may not be on disk yet.
1548                  * Fortunately, either version of the label will have the
1549                  * same top guid, so if we're a top-level vdev, we can
1550                  * safely compare to that instead.
1551                  *
1552                  * If we split this vdev off instead, then we also check the
1553                  * original pool's guid.  We don't want to consider the vdev
1554                  * corrupt if it is partway through a split operation.
1555                  */
1556                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1557                     &guid) != 0 ||
1558                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1559                     &top_guid) != 0 ||
1560                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1561                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1562                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1563                             VDEV_AUX_CORRUPT_DATA);
1564                         nvlist_free(label);
1565                         return (0);
1566                 }
1567
1568                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1569                     &state) != 0) {
1570                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1571                             VDEV_AUX_CORRUPT_DATA);
1572                         nvlist_free(label);
1573                         return (0);
1574                 }
1575
1576                 nvlist_free(label);
1577
1578                 /*
1579                  * If this is a verbatim import, no need to check the
1580                  * state of the pool.
1581                  */
1582                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1583                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1584                     state != POOL_STATE_ACTIVE)
1585                         return (SET_ERROR(EBADF));
1586
1587                 /*
1588                  * If we were able to open and validate a vdev that was
1589                  * previously marked permanently unavailable, clear that state
1590                  * now.
1591                  */
1592                 if (vd->vdev_not_present)
1593                         vd->vdev_not_present = 0;
1594         }
1595
1596         return (0);
1597 }
1598
1599 /*
1600  * Close a virtual device.
1601  */
1602 void
1603 vdev_close(vdev_t *vd)
1604 {
1605         spa_t *spa = vd->vdev_spa;
1606         vdev_t *pvd = vd->vdev_parent;
1607
1608         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1609
1610         /*
1611          * If our parent is reopening, then we are as well, unless we are
1612          * going offline.
1613          */
1614         if (pvd != NULL && pvd->vdev_reopening)
1615                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1616
1617         vd->vdev_ops->vdev_op_close(vd);
1618
1619         vdev_cache_purge(vd);
1620
1621         if (vd->vdev_ops->vdev_op_leaf)
1622                 trim_map_destroy(vd);
1623
1624         /*
1625          * We record the previous state before we close it, so that if we are
1626          * doing a reopen(), we don't generate FMA ereports if we notice that
1627          * it's still faulted.
1628          */
1629         vd->vdev_prevstate = vd->vdev_state;
1630
1631         if (vd->vdev_offline)
1632                 vd->vdev_state = VDEV_STATE_OFFLINE;
1633         else
1634                 vd->vdev_state = VDEV_STATE_CLOSED;
1635         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1636 }
1637
1638 void
1639 vdev_hold(vdev_t *vd)
1640 {
1641         spa_t *spa = vd->vdev_spa;
1642
1643         ASSERT(spa_is_root(spa));
1644         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1645                 return;
1646
1647         for (int c = 0; c < vd->vdev_children; c++)
1648                 vdev_hold(vd->vdev_child[c]);
1649
1650         if (vd->vdev_ops->vdev_op_leaf)
1651                 vd->vdev_ops->vdev_op_hold(vd);
1652 }
1653
1654 void
1655 vdev_rele(vdev_t *vd)
1656 {
1657         spa_t *spa = vd->vdev_spa;
1658
1659         ASSERT(spa_is_root(spa));
1660         for (int c = 0; c < vd->vdev_children; c++)
1661                 vdev_rele(vd->vdev_child[c]);
1662
1663         if (vd->vdev_ops->vdev_op_leaf)
1664                 vd->vdev_ops->vdev_op_rele(vd);
1665 }
1666
1667 /*
1668  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1669  * reopen leaf vdevs which had previously been opened as they might deadlock
1670  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1671  * If the leaf has never been opened then open it, as usual.
1672  */
1673 void
1674 vdev_reopen(vdev_t *vd)
1675 {
1676         spa_t *spa = vd->vdev_spa;
1677
1678         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1679
1680         /* set the reopening flag unless we're taking the vdev offline */
1681         vd->vdev_reopening = !vd->vdev_offline;
1682         vdev_close(vd);
1683         (void) vdev_open(vd);
1684
1685         /*
1686          * Call vdev_validate() here to make sure we have the same device.
1687          * Otherwise, a device with an invalid label could be successfully
1688          * opened in response to vdev_reopen().
1689          */
1690         if (vd->vdev_aux) {
1691                 (void) vdev_validate_aux(vd);
1692                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1693                     vd->vdev_aux == &spa->spa_l2cache &&
1694                     !l2arc_vdev_present(vd))
1695                         l2arc_add_vdev(spa, vd);
1696         } else {
1697                 (void) vdev_validate(vd, B_TRUE);
1698         }
1699
1700         /*
1701          * Reassess parent vdev's health.
1702          */
1703         vdev_propagate_state(vd);
1704 }
1705
1706 int
1707 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1708 {
1709         int error;
1710
1711         /*
1712          * Normally, partial opens (e.g. of a mirror) are allowed.
1713          * For a create, however, we want to fail the request if
1714          * there are any components we can't open.
1715          */
1716         error = vdev_open(vd);
1717
1718         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1719                 vdev_close(vd);
1720                 return (error ? error : ENXIO);
1721         }
1722
1723         /*
1724          * Recursively load DTLs and initialize all labels.
1725          */
1726         if ((error = vdev_dtl_load(vd)) != 0 ||
1727             (error = vdev_label_init(vd, txg, isreplacing ?
1728             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1729                 vdev_close(vd);
1730                 return (error);
1731         }
1732
1733         return (0);
1734 }
1735
1736 void
1737 vdev_metaslab_set_size(vdev_t *vd)
1738 {
1739         /*
1740          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1741          */
1742         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1743         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1744 }
1745
1746 /*
1747  * Maximize performance by inflating the configured ashift for top level
1748  * vdevs to be as close to the physical ashift as possible while maintaining
1749  * administrator defined limits and ensuring it doesn't go below the
1750  * logical ashift.
1751  */
1752 void
1753 vdev_ashift_optimize(vdev_t *vd)
1754 {
1755         if (vd == vd->vdev_top) {
1756                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1757                         vd->vdev_ashift = MIN(
1758                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1759                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1760                 } else {
1761                         /*
1762                          * Unusual case where logical ashift > physical ashift
1763                          * so we can't cap the calculated ashift based on max
1764                          * ashift as that would cause failures.
1765                          * We still check if we need to increase it to match
1766                          * the min ashift.
1767                          */
1768                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1769                             vd->vdev_ashift);
1770                 }
1771         }
1772 }
1773
1774 void
1775 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1776 {
1777         ASSERT(vd == vd->vdev_top);
1778         ASSERT(!vd->vdev_ishole);
1779         ASSERT(ISP2(flags));
1780         ASSERT(spa_writeable(vd->vdev_spa));
1781
1782         if (flags & VDD_METASLAB)
1783                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1784
1785         if (flags & VDD_DTL)
1786                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1787
1788         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1789 }
1790
1791 void
1792 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1793 {
1794         for (int c = 0; c < vd->vdev_children; c++)
1795                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1796
1797         if (vd->vdev_ops->vdev_op_leaf)
1798                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1799 }
1800
1801 /*
1802  * DTLs.
1803  *
1804  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1805  * the vdev has less than perfect replication.  There are four kinds of DTL:
1806  *
1807  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1808  *
1809  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1810  *
1811  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1812  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1813  *      txgs that was scrubbed.
1814  *
1815  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1816  *      persistent errors or just some device being offline.
1817  *      Unlike the other three, the DTL_OUTAGE map is not generally
1818  *      maintained; it's only computed when needed, typically to
1819  *      determine whether a device can be detached.
1820  *
1821  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1822  * either has the data or it doesn't.
1823  *
1824  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1825  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1826  * if any child is less than fully replicated, then so is its parent.
1827  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1828  * comprising only those txgs which appear in 'maxfaults' or more children;
1829  * those are the txgs we don't have enough replication to read.  For example,
1830  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1831  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1832  * two child DTL_MISSING maps.
1833  *
1834  * It should be clear from the above that to compute the DTLs and outage maps
1835  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1836  * Therefore, that is all we keep on disk.  When loading the pool, or after
1837  * a configuration change, we generate all other DTLs from first principles.
1838  */
1839 void
1840 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1841 {
1842         range_tree_t *rt = vd->vdev_dtl[t];
1843
1844         ASSERT(t < DTL_TYPES);
1845         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1846         ASSERT(spa_writeable(vd->vdev_spa));
1847
1848         mutex_enter(rt->rt_lock);
1849         if (!range_tree_contains(rt, txg, size))
1850                 range_tree_add(rt, txg, size);
1851         mutex_exit(rt->rt_lock);
1852 }
1853
1854 boolean_t
1855 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1856 {
1857         range_tree_t *rt = vd->vdev_dtl[t];
1858         boolean_t dirty = B_FALSE;
1859
1860         ASSERT(t < DTL_TYPES);
1861         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1862
1863         mutex_enter(rt->rt_lock);
1864         if (range_tree_space(rt) != 0)
1865                 dirty = range_tree_contains(rt, txg, size);
1866         mutex_exit(rt->rt_lock);
1867
1868         return (dirty);
1869 }
1870
1871 boolean_t
1872 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1873 {
1874         range_tree_t *rt = vd->vdev_dtl[t];
1875         boolean_t empty;
1876
1877         mutex_enter(rt->rt_lock);
1878         empty = (range_tree_space(rt) == 0);
1879         mutex_exit(rt->rt_lock);
1880
1881         return (empty);
1882 }
1883
1884 /*
1885  * Returns the lowest txg in the DTL range.
1886  */
1887 static uint64_t
1888 vdev_dtl_min(vdev_t *vd)
1889 {
1890         range_seg_t *rs;
1891
1892         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1893         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1894         ASSERT0(vd->vdev_children);
1895
1896         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1897         return (rs->rs_start - 1);
1898 }
1899
1900 /*
1901  * Returns the highest txg in the DTL.
1902  */
1903 static uint64_t
1904 vdev_dtl_max(vdev_t *vd)
1905 {
1906         range_seg_t *rs;
1907
1908         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1909         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1910         ASSERT0(vd->vdev_children);
1911
1912         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1913         return (rs->rs_end);
1914 }
1915
1916 /*
1917  * Determine if a resilvering vdev should remove any DTL entries from
1918  * its range. If the vdev was resilvering for the entire duration of the
1919  * scan then it should excise that range from its DTLs. Otherwise, this
1920  * vdev is considered partially resilvered and should leave its DTL
1921  * entries intact. The comment in vdev_dtl_reassess() describes how we
1922  * excise the DTLs.
1923  */
1924 static boolean_t
1925 vdev_dtl_should_excise(vdev_t *vd)
1926 {
1927         spa_t *spa = vd->vdev_spa;
1928         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1929
1930         ASSERT0(scn->scn_phys.scn_errors);
1931         ASSERT0(vd->vdev_children);
1932
1933         if (vd->vdev_state < VDEV_STATE_DEGRADED)
1934                 return (B_FALSE);
1935
1936         if (vd->vdev_resilver_txg == 0 ||
1937             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1938                 return (B_TRUE);
1939
1940         /*
1941          * When a resilver is initiated the scan will assign the scn_max_txg
1942          * value to the highest txg value that exists in all DTLs. If this
1943          * device's max DTL is not part of this scan (i.e. it is not in
1944          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1945          * for excision.
1946          */
1947         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1948                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1949                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1950                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1951                 return (B_TRUE);
1952         }
1953         return (B_FALSE);
1954 }
1955
1956 /*
1957  * Reassess DTLs after a config change or scrub completion.
1958  */
1959 void
1960 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1961 {
1962         spa_t *spa = vd->vdev_spa;
1963         avl_tree_t reftree;
1964         int minref;
1965
1966         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1967
1968         for (int c = 0; c < vd->vdev_children; c++)
1969                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1970                     scrub_txg, scrub_done);
1971
1972         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1973                 return;
1974
1975         if (vd->vdev_ops->vdev_op_leaf) {
1976                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1977
1978                 mutex_enter(&vd->vdev_dtl_lock);
1979
1980                 /*
1981                  * If we've completed a scan cleanly then determine
1982                  * if this vdev should remove any DTLs. We only want to
1983                  * excise regions on vdevs that were available during
1984                  * the entire duration of this scan.
1985                  */
1986                 if (scrub_txg != 0 &&
1987                     (spa->spa_scrub_started ||
1988                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1989                     vdev_dtl_should_excise(vd)) {
1990                         /*
1991                          * We completed a scrub up to scrub_txg.  If we
1992                          * did it without rebooting, then the scrub dtl
1993                          * will be valid, so excise the old region and
1994                          * fold in the scrub dtl.  Otherwise, leave the
1995                          * dtl as-is if there was an error.
1996                          *
1997                          * There's little trick here: to excise the beginning
1998                          * of the DTL_MISSING map, we put it into a reference
1999                          * tree and then add a segment with refcnt -1 that
2000                          * covers the range [0, scrub_txg).  This means
2001                          * that each txg in that range has refcnt -1 or 0.
2002                          * We then add DTL_SCRUB with a refcnt of 2, so that
2003                          * entries in the range [0, scrub_txg) will have a
2004                          * positive refcnt -- either 1 or 2.  We then convert
2005                          * the reference tree into the new DTL_MISSING map.
2006                          */
2007                         space_reftree_create(&reftree);
2008                         space_reftree_add_map(&reftree,
2009                             vd->vdev_dtl[DTL_MISSING], 1);
2010                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2011                         space_reftree_add_map(&reftree,
2012                             vd->vdev_dtl[DTL_SCRUB], 2);
2013                         space_reftree_generate_map(&reftree,
2014                             vd->vdev_dtl[DTL_MISSING], 1);
2015                         space_reftree_destroy(&reftree);
2016                 }
2017                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2018                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2019                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2020                 if (scrub_done)
2021                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2022                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2023                 if (!vdev_readable(vd))
2024                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2025                 else
2026                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2027                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2028
2029                 /*
2030                  * If the vdev was resilvering and no longer has any
2031                  * DTLs then reset its resilvering flag and dirty
2032                  * the top level so that we persist the change.
2033                  */
2034                 if (vd->vdev_resilver_txg != 0 &&
2035                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2036                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2037                         vd->vdev_resilver_txg = 0;
2038                         vdev_config_dirty(vd->vdev_top);
2039                 }
2040
2041                 mutex_exit(&vd->vdev_dtl_lock);
2042
2043                 if (txg != 0)
2044                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2045                 return;
2046         }
2047
2048         mutex_enter(&vd->vdev_dtl_lock);
2049         for (int t = 0; t < DTL_TYPES; t++) {
2050                 /* account for child's outage in parent's missing map */
2051                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2052                 if (t == DTL_SCRUB)
2053                         continue;                       /* leaf vdevs only */
2054                 if (t == DTL_PARTIAL)
2055                         minref = 1;                     /* i.e. non-zero */
2056                 else if (vd->vdev_nparity != 0)
2057                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2058                 else
2059                         minref = vd->vdev_children;     /* any kind of mirror */
2060                 space_reftree_create(&reftree);
2061                 for (int c = 0; c < vd->vdev_children; c++) {
2062                         vdev_t *cvd = vd->vdev_child[c];
2063                         mutex_enter(&cvd->vdev_dtl_lock);
2064                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2065                         mutex_exit(&cvd->vdev_dtl_lock);
2066                 }
2067                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2068                 space_reftree_destroy(&reftree);
2069         }
2070         mutex_exit(&vd->vdev_dtl_lock);
2071 }
2072
2073 int
2074 vdev_dtl_load(vdev_t *vd)
2075 {
2076         spa_t *spa = vd->vdev_spa;
2077         objset_t *mos = spa->spa_meta_objset;
2078         int error = 0;
2079
2080         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2081                 ASSERT(!vd->vdev_ishole);
2082
2083                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2084                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2085                 if (error)
2086                         return (error);
2087                 ASSERT(vd->vdev_dtl_sm != NULL);
2088
2089                 mutex_enter(&vd->vdev_dtl_lock);
2090
2091                 /*
2092                  * Now that we've opened the space_map we need to update
2093                  * the in-core DTL.
2094                  */
2095                 space_map_update(vd->vdev_dtl_sm);
2096
2097                 error = space_map_load(vd->vdev_dtl_sm,
2098                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2099                 mutex_exit(&vd->vdev_dtl_lock);
2100
2101                 return (error);
2102         }
2103
2104         for (int c = 0; c < vd->vdev_children; c++) {
2105                 error = vdev_dtl_load(vd->vdev_child[c]);
2106                 if (error != 0)
2107                         break;
2108         }
2109
2110         return (error);
2111 }
2112
2113 void
2114 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2115 {
2116         spa_t *spa = vd->vdev_spa;
2117
2118         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2119         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2120             zapobj, tx));
2121 }
2122
2123 uint64_t
2124 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2125 {
2126         spa_t *spa = vd->vdev_spa;
2127         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2128             DMU_OT_NONE, 0, tx);
2129
2130         ASSERT(zap != 0);
2131         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2132             zap, tx));
2133
2134         return (zap);
2135 }
2136
2137 void
2138 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2139 {
2140         if (vd->vdev_ops != &vdev_hole_ops &&
2141             vd->vdev_ops != &vdev_missing_ops &&
2142             vd->vdev_ops != &vdev_root_ops &&
2143             !vd->vdev_top->vdev_removing) {
2144                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2145                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2146                 }
2147                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2148                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2149                 }
2150         }
2151         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2152                 vdev_construct_zaps(vd->vdev_child[i], tx);
2153         }
2154 }
2155
2156 void
2157 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2158 {
2159         spa_t *spa = vd->vdev_spa;
2160         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2161         objset_t *mos = spa->spa_meta_objset;
2162         range_tree_t *rtsync;
2163         kmutex_t rtlock;
2164         dmu_tx_t *tx;
2165         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2166
2167         ASSERT(!vd->vdev_ishole);
2168         ASSERT(vd->vdev_ops->vdev_op_leaf);
2169
2170         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2171
2172         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2173                 mutex_enter(&vd->vdev_dtl_lock);
2174                 space_map_free(vd->vdev_dtl_sm, tx);
2175                 space_map_close(vd->vdev_dtl_sm);
2176                 vd->vdev_dtl_sm = NULL;
2177                 mutex_exit(&vd->vdev_dtl_lock);
2178
2179                 /*
2180                  * We only destroy the leaf ZAP for detached leaves or for
2181                  * removed log devices. Removed data devices handle leaf ZAP
2182                  * cleanup later, once cancellation is no longer possible.
2183                  */
2184                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2185                     vd->vdev_top->vdev_islog)) {
2186                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2187                         vd->vdev_leaf_zap = 0;
2188                 }
2189
2190                 dmu_tx_commit(tx);
2191                 return;
2192         }
2193
2194         if (vd->vdev_dtl_sm == NULL) {
2195                 uint64_t new_object;
2196
2197                 new_object = space_map_alloc(mos, tx);
2198                 VERIFY3U(new_object, !=, 0);
2199
2200                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2201                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2202                 ASSERT(vd->vdev_dtl_sm != NULL);
2203         }
2204
2205         bzero(&rtlock, sizeof(rtlock));
2206         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2207
2208         rtsync = range_tree_create(NULL, NULL, &rtlock);
2209
2210         mutex_enter(&rtlock);
2211
2212         mutex_enter(&vd->vdev_dtl_lock);
2213         range_tree_walk(rt, range_tree_add, rtsync);
2214         mutex_exit(&vd->vdev_dtl_lock);
2215
2216         space_map_truncate(vd->vdev_dtl_sm, tx);
2217         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2218         range_tree_vacate(rtsync, NULL, NULL);
2219
2220         range_tree_destroy(rtsync);
2221
2222         mutex_exit(&rtlock);
2223         mutex_destroy(&rtlock);
2224
2225         /*
2226          * If the object for the space map has changed then dirty
2227          * the top level so that we update the config.
2228          */
2229         if (object != space_map_object(vd->vdev_dtl_sm)) {
2230                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2231                     "new object %llu", txg, spa_name(spa), object,
2232                     space_map_object(vd->vdev_dtl_sm));
2233                 vdev_config_dirty(vd->vdev_top);
2234         }
2235
2236         dmu_tx_commit(tx);
2237
2238         mutex_enter(&vd->vdev_dtl_lock);
2239         space_map_update(vd->vdev_dtl_sm);
2240         mutex_exit(&vd->vdev_dtl_lock);
2241 }
2242
2243 /*
2244  * Determine whether the specified vdev can be offlined/detached/removed
2245  * without losing data.
2246  */
2247 boolean_t
2248 vdev_dtl_required(vdev_t *vd)
2249 {
2250         spa_t *spa = vd->vdev_spa;
2251         vdev_t *tvd = vd->vdev_top;
2252         uint8_t cant_read = vd->vdev_cant_read;
2253         boolean_t required;
2254
2255         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2256
2257         if (vd == spa->spa_root_vdev || vd == tvd)
2258                 return (B_TRUE);
2259
2260         /*
2261          * Temporarily mark the device as unreadable, and then determine
2262          * whether this results in any DTL outages in the top-level vdev.
2263          * If not, we can safely offline/detach/remove the device.
2264          */
2265         vd->vdev_cant_read = B_TRUE;
2266         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2267         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2268         vd->vdev_cant_read = cant_read;
2269         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2270
2271         if (!required && zio_injection_enabled)
2272                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2273
2274         return (required);
2275 }
2276
2277 /*
2278  * Determine if resilver is needed, and if so the txg range.
2279  */
2280 boolean_t
2281 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2282 {
2283         boolean_t needed = B_FALSE;
2284         uint64_t thismin = UINT64_MAX;
2285         uint64_t thismax = 0;
2286
2287         if (vd->vdev_children == 0) {
2288                 mutex_enter(&vd->vdev_dtl_lock);
2289                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2290                     vdev_writeable(vd)) {
2291
2292                         thismin = vdev_dtl_min(vd);
2293                         thismax = vdev_dtl_max(vd);
2294                         needed = B_TRUE;
2295                 }
2296                 mutex_exit(&vd->vdev_dtl_lock);
2297         } else {
2298                 for (int c = 0; c < vd->vdev_children; c++) {
2299                         vdev_t *cvd = vd->vdev_child[c];
2300                         uint64_t cmin, cmax;
2301
2302                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2303                                 thismin = MIN(thismin, cmin);
2304                                 thismax = MAX(thismax, cmax);
2305                                 needed = B_TRUE;
2306                         }
2307                 }
2308         }
2309
2310         if (needed && minp) {
2311                 *minp = thismin;
2312                 *maxp = thismax;
2313         }
2314         return (needed);
2315 }
2316
2317 void
2318 vdev_load(vdev_t *vd)
2319 {
2320         /*
2321          * Recursively load all children.
2322          */
2323         for (int c = 0; c < vd->vdev_children; c++)
2324                 vdev_load(vd->vdev_child[c]);
2325
2326         /*
2327          * If this is a top-level vdev, initialize its metaslabs.
2328          */
2329         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2330             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2331             vdev_metaslab_init(vd, 0) != 0))
2332                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2333                     VDEV_AUX_CORRUPT_DATA);
2334
2335         /*
2336          * If this is a leaf vdev, load its DTL.
2337          */
2338         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2339                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2340                     VDEV_AUX_CORRUPT_DATA);
2341 }
2342
2343 /*
2344  * The special vdev case is used for hot spares and l2cache devices.  Its
2345  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2346  * we make sure that we can open the underlying device, then try to read the
2347  * label, and make sure that the label is sane and that it hasn't been
2348  * repurposed to another pool.
2349  */
2350 int
2351 vdev_validate_aux(vdev_t *vd)
2352 {
2353         nvlist_t *label;
2354         uint64_t guid, version;
2355         uint64_t state;
2356
2357         if (!vdev_readable(vd))
2358                 return (0);
2359
2360         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2361                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2362                     VDEV_AUX_CORRUPT_DATA);
2363                 return (-1);
2364         }
2365
2366         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2367             !SPA_VERSION_IS_SUPPORTED(version) ||
2368             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2369             guid != vd->vdev_guid ||
2370             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2371                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2372                     VDEV_AUX_CORRUPT_DATA);
2373                 nvlist_free(label);
2374                 return (-1);
2375         }
2376
2377         /*
2378          * We don't actually check the pool state here.  If it's in fact in
2379          * use by another pool, we update this fact on the fly when requested.
2380          */
2381         nvlist_free(label);
2382         return (0);
2383 }
2384
2385 void
2386 vdev_remove(vdev_t *vd, uint64_t txg)
2387 {
2388         spa_t *spa = vd->vdev_spa;
2389         objset_t *mos = spa->spa_meta_objset;
2390         dmu_tx_t *tx;
2391
2392         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2393         ASSERT(vd == vd->vdev_top);
2394         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2395
2396         if (vd->vdev_ms != NULL) {
2397                 metaslab_group_t *mg = vd->vdev_mg;
2398
2399                 metaslab_group_histogram_verify(mg);
2400                 metaslab_class_histogram_verify(mg->mg_class);
2401
2402                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2403                         metaslab_t *msp = vd->vdev_ms[m];
2404
2405                         if (msp == NULL || msp->ms_sm == NULL)
2406                                 continue;
2407
2408                         mutex_enter(&msp->ms_lock);
2409                         /*
2410                          * If the metaslab was not loaded when the vdev
2411                          * was removed then the histogram accounting may
2412                          * not be accurate. Update the histogram information
2413                          * here so that we ensure that the metaslab group
2414                          * and metaslab class are up-to-date.
2415                          */
2416                         metaslab_group_histogram_remove(mg, msp);
2417
2418                         VERIFY0(space_map_allocated(msp->ms_sm));
2419                         space_map_free(msp->ms_sm, tx);
2420                         space_map_close(msp->ms_sm);
2421                         msp->ms_sm = NULL;
2422                         mutex_exit(&msp->ms_lock);
2423                 }
2424
2425                 metaslab_group_histogram_verify(mg);
2426                 metaslab_class_histogram_verify(mg->mg_class);
2427                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2428                         ASSERT0(mg->mg_histogram[i]);
2429
2430         }
2431
2432         if (vd->vdev_ms_array) {
2433                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2434                 vd->vdev_ms_array = 0;
2435         }
2436
2437         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2438                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2439                 vd->vdev_top_zap = 0;
2440         }
2441         dmu_tx_commit(tx);
2442 }
2443
2444 void
2445 vdev_sync_done(vdev_t *vd, uint64_t txg)
2446 {
2447         metaslab_t *msp;
2448         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2449
2450         ASSERT(!vd->vdev_ishole);
2451
2452         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2453                 metaslab_sync_done(msp, txg);
2454
2455         if (reassess)
2456                 metaslab_sync_reassess(vd->vdev_mg);
2457 }
2458
2459 void
2460 vdev_sync(vdev_t *vd, uint64_t txg)
2461 {
2462         spa_t *spa = vd->vdev_spa;
2463         vdev_t *lvd;
2464         metaslab_t *msp;
2465         dmu_tx_t *tx;
2466
2467         ASSERT(!vd->vdev_ishole);
2468
2469         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2470                 ASSERT(vd == vd->vdev_top);
2471                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2472                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2473                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2474                 ASSERT(vd->vdev_ms_array != 0);
2475                 vdev_config_dirty(vd);
2476                 dmu_tx_commit(tx);
2477         }
2478
2479         /*
2480          * Remove the metadata associated with this vdev once it's empty.
2481          */
2482         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2483                 vdev_remove(vd, txg);
2484
2485         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2486                 metaslab_sync(msp, txg);
2487                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2488         }
2489
2490         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2491                 vdev_dtl_sync(lvd, txg);
2492
2493         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2494 }
2495
2496 uint64_t
2497 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2498 {
2499         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2500 }
2501
2502 /*
2503  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2504  * not be opened, and no I/O is attempted.
2505  */
2506 int
2507 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2508 {
2509         vdev_t *vd, *tvd;
2510
2511         spa_vdev_state_enter(spa, SCL_NONE);
2512
2513         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2514                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2515
2516         if (!vd->vdev_ops->vdev_op_leaf)
2517                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2518
2519         tvd = vd->vdev_top;
2520
2521         /*
2522          * We don't directly use the aux state here, but if we do a
2523          * vdev_reopen(), we need this value to be present to remember why we
2524          * were faulted.
2525          */
2526         vd->vdev_label_aux = aux;
2527
2528         /*
2529          * Faulted state takes precedence over degraded.
2530          */
2531         vd->vdev_delayed_close = B_FALSE;
2532         vd->vdev_faulted = 1ULL;
2533         vd->vdev_degraded = 0ULL;
2534         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2535
2536         /*
2537          * If this device has the only valid copy of the data, then
2538          * back off and simply mark the vdev as degraded instead.
2539          */
2540         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2541                 vd->vdev_degraded = 1ULL;
2542                 vd->vdev_faulted = 0ULL;
2543
2544                 /*
2545                  * If we reopen the device and it's not dead, only then do we
2546                  * mark it degraded.
2547                  */
2548                 vdev_reopen(tvd);
2549
2550                 if (vdev_readable(vd))
2551                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2552         }
2553
2554         return (spa_vdev_state_exit(spa, vd, 0));
2555 }
2556
2557 /*
2558  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2559  * user that something is wrong.  The vdev continues to operate as normal as far
2560  * as I/O is concerned.
2561  */
2562 int
2563 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2564 {
2565         vdev_t *vd;
2566
2567         spa_vdev_state_enter(spa, SCL_NONE);
2568
2569         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2570                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2571
2572         if (!vd->vdev_ops->vdev_op_leaf)
2573                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2574
2575         /*
2576          * If the vdev is already faulted, then don't do anything.
2577          */
2578         if (vd->vdev_faulted || vd->vdev_degraded)
2579                 return (spa_vdev_state_exit(spa, NULL, 0));
2580
2581         vd->vdev_degraded = 1ULL;
2582         if (!vdev_is_dead(vd))
2583                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2584                     aux);
2585
2586         return (spa_vdev_state_exit(spa, vd, 0));
2587 }
2588
2589 /*
2590  * Online the given vdev.
2591  *
2592  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2593  * spare device should be detached when the device finishes resilvering.
2594  * Second, the online should be treated like a 'test' online case, so no FMA
2595  * events are generated if the device fails to open.
2596  */
2597 int
2598 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2599 {
2600         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2601         boolean_t wasoffline;
2602         vdev_state_t oldstate;
2603
2604         spa_vdev_state_enter(spa, SCL_NONE);
2605
2606         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2607                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2608
2609         if (!vd->vdev_ops->vdev_op_leaf)
2610                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2611
2612         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2613         oldstate = vd->vdev_state;
2614
2615         tvd = vd->vdev_top;
2616         vd->vdev_offline = B_FALSE;
2617         vd->vdev_tmpoffline = B_FALSE;
2618         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2619         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2620
2621         /* XXX - L2ARC 1.0 does not support expansion */
2622         if (!vd->vdev_aux) {
2623                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2624                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2625         }
2626
2627         vdev_reopen(tvd);
2628         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2629
2630         if (!vd->vdev_aux) {
2631                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2632                         pvd->vdev_expanding = B_FALSE;
2633         }
2634
2635         if (newstate)
2636                 *newstate = vd->vdev_state;
2637         if ((flags & ZFS_ONLINE_UNSPARE) &&
2638             !vdev_is_dead(vd) && vd->vdev_parent &&
2639             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2640             vd->vdev_parent->vdev_child[0] == vd)
2641                 vd->vdev_unspare = B_TRUE;
2642
2643         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2644
2645                 /* XXX - L2ARC 1.0 does not support expansion */
2646                 if (vd->vdev_aux)
2647                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2648                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2649         }
2650
2651         if (wasoffline ||
2652             (oldstate < VDEV_STATE_DEGRADED &&
2653             vd->vdev_state >= VDEV_STATE_DEGRADED))
2654                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2655
2656         return (spa_vdev_state_exit(spa, vd, 0));
2657 }
2658
2659 static int
2660 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2661 {
2662         vdev_t *vd, *tvd;
2663         int error = 0;
2664         uint64_t generation;
2665         metaslab_group_t *mg;
2666
2667 top:
2668         spa_vdev_state_enter(spa, SCL_ALLOC);
2669
2670         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2671                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2672
2673         if (!vd->vdev_ops->vdev_op_leaf)
2674                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2675
2676         tvd = vd->vdev_top;
2677         mg = tvd->vdev_mg;
2678         generation = spa->spa_config_generation + 1;
2679
2680         /*
2681          * If the device isn't already offline, try to offline it.
2682          */
2683         if (!vd->vdev_offline) {
2684                 /*
2685                  * If this device has the only valid copy of some data,
2686                  * don't allow it to be offlined. Log devices are always
2687                  * expendable.
2688                  */
2689                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2690                     vdev_dtl_required(vd))
2691                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2692
2693                 /*
2694                  * If the top-level is a slog and it has had allocations
2695                  * then proceed.  We check that the vdev's metaslab group
2696                  * is not NULL since it's possible that we may have just
2697                  * added this vdev but not yet initialized its metaslabs.
2698                  */
2699                 if (tvd->vdev_islog && mg != NULL) {
2700                         /*
2701                          * Prevent any future allocations.
2702                          */
2703                         metaslab_group_passivate(mg);
2704                         (void) spa_vdev_state_exit(spa, vd, 0);
2705
2706                         error = spa_offline_log(spa);
2707
2708                         spa_vdev_state_enter(spa, SCL_ALLOC);
2709
2710                         /*
2711                          * Check to see if the config has changed.
2712                          */
2713                         if (error || generation != spa->spa_config_generation) {
2714                                 metaslab_group_activate(mg);
2715                                 if (error)
2716                                         return (spa_vdev_state_exit(spa,
2717                                             vd, error));
2718                                 (void) spa_vdev_state_exit(spa, vd, 0);
2719                                 goto top;
2720                         }
2721                         ASSERT0(tvd->vdev_stat.vs_alloc);
2722                 }
2723
2724                 /*
2725                  * Offline this device and reopen its top-level vdev.
2726                  * If the top-level vdev is a log device then just offline
2727                  * it. Otherwise, if this action results in the top-level
2728                  * vdev becoming unusable, undo it and fail the request.
2729                  */
2730                 vd->vdev_offline = B_TRUE;
2731                 vdev_reopen(tvd);
2732
2733                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2734                     vdev_is_dead(tvd)) {
2735                         vd->vdev_offline = B_FALSE;
2736                         vdev_reopen(tvd);
2737                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2738                 }
2739
2740                 /*
2741                  * Add the device back into the metaslab rotor so that
2742                  * once we online the device it's open for business.
2743                  */
2744                 if (tvd->vdev_islog && mg != NULL)
2745                         metaslab_group_activate(mg);
2746         }
2747
2748         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2749
2750         return (spa_vdev_state_exit(spa, vd, 0));
2751 }
2752
2753 int
2754 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2755 {
2756         int error;
2757
2758         mutex_enter(&spa->spa_vdev_top_lock);
2759         error = vdev_offline_locked(spa, guid, flags);
2760         mutex_exit(&spa->spa_vdev_top_lock);
2761
2762         return (error);
2763 }
2764
2765 /*
2766  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2767  * vdev_offline(), we assume the spa config is locked.  We also clear all
2768  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2769  */
2770 void
2771 vdev_clear(spa_t *spa, vdev_t *vd)
2772 {
2773         vdev_t *rvd = spa->spa_root_vdev;
2774
2775         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2776
2777         if (vd == NULL)
2778                 vd = rvd;
2779
2780         vd->vdev_stat.vs_read_errors = 0;
2781         vd->vdev_stat.vs_write_errors = 0;
2782         vd->vdev_stat.vs_checksum_errors = 0;
2783
2784         for (int c = 0; c < vd->vdev_children; c++)
2785                 vdev_clear(spa, vd->vdev_child[c]);
2786
2787         if (vd == rvd) {
2788                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2789                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2790
2791                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2792                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2793         }
2794
2795         /*
2796          * If we're in the FAULTED state or have experienced failed I/O, then
2797          * clear the persistent state and attempt to reopen the device.  We
2798          * also mark the vdev config dirty, so that the new faulted state is
2799          * written out to disk.
2800          */
2801         if (vd->vdev_faulted || vd->vdev_degraded ||
2802             !vdev_readable(vd) || !vdev_writeable(vd)) {
2803
2804                 /*
2805                  * When reopening in reponse to a clear event, it may be due to
2806                  * a fmadm repair request.  In this case, if the device is
2807                  * still broken, we want to still post the ereport again.
2808                  */
2809                 vd->vdev_forcefault = B_TRUE;
2810
2811                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2812                 vd->vdev_cant_read = B_FALSE;
2813                 vd->vdev_cant_write = B_FALSE;
2814
2815                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2816
2817                 vd->vdev_forcefault = B_FALSE;
2818
2819                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2820                         vdev_state_dirty(vd->vdev_top);
2821
2822                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2823                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2824
2825                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2826         }
2827
2828         /*
2829          * When clearing a FMA-diagnosed fault, we always want to
2830          * unspare the device, as we assume that the original spare was
2831          * done in response to the FMA fault.
2832          */
2833         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2834             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2835             vd->vdev_parent->vdev_child[0] == vd)
2836                 vd->vdev_unspare = B_TRUE;
2837 }
2838
2839 boolean_t
2840 vdev_is_dead(vdev_t *vd)
2841 {
2842         /*
2843          * Holes and missing devices are always considered "dead".
2844          * This simplifies the code since we don't have to check for
2845          * these types of devices in the various code paths.
2846          * Instead we rely on the fact that we skip over dead devices
2847          * before issuing I/O to them.
2848          */
2849         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2850             vd->vdev_ops == &vdev_missing_ops);
2851 }
2852
2853 boolean_t
2854 vdev_readable(vdev_t *vd)
2855 {
2856         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2857 }
2858
2859 boolean_t
2860 vdev_writeable(vdev_t *vd)
2861 {
2862         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2863 }
2864
2865 boolean_t
2866 vdev_allocatable(vdev_t *vd)
2867 {
2868         uint64_t state = vd->vdev_state;
2869
2870         /*
2871          * We currently allow allocations from vdevs which may be in the
2872          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2873          * fails to reopen then we'll catch it later when we're holding
2874          * the proper locks.  Note that we have to get the vdev state
2875          * in a local variable because although it changes atomically,
2876          * we're asking two separate questions about it.
2877          */
2878         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2879             !vd->vdev_cant_write && !vd->vdev_ishole &&
2880             vd->vdev_mg->mg_initialized);
2881 }
2882
2883 boolean_t
2884 vdev_accessible(vdev_t *vd, zio_t *zio)
2885 {
2886         ASSERT(zio->io_vd == vd);
2887
2888         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2889                 return (B_FALSE);
2890
2891         if (zio->io_type == ZIO_TYPE_READ)
2892                 return (!vd->vdev_cant_read);
2893
2894         if (zio->io_type == ZIO_TYPE_WRITE)
2895                 return (!vd->vdev_cant_write);
2896
2897         return (B_TRUE);
2898 }
2899
2900 /*
2901  * Get statistics for the given vdev.
2902  */
2903 void
2904 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2905 {
2906         spa_t *spa = vd->vdev_spa;
2907         vdev_t *rvd = spa->spa_root_vdev;
2908         vdev_t *tvd = vd->vdev_top;
2909
2910         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2911
2912         mutex_enter(&vd->vdev_stat_lock);
2913         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2914         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2915         vs->vs_state = vd->vdev_state;
2916         vs->vs_rsize = vdev_get_min_asize(vd);
2917         if (vd->vdev_ops->vdev_op_leaf)
2918                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2919         /*
2920          * Report expandable space on top-level, non-auxillary devices only.
2921          * The expandable space is reported in terms of metaslab sized units
2922          * since that determines how much space the pool can expand.
2923          */
2924         if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
2925                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize,
2926                     1ULL << tvd->vdev_ms_shift);
2927         }
2928         vs->vs_configured_ashift = vd->vdev_top != NULL
2929             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2930         vs->vs_logical_ashift = vd->vdev_logical_ashift;
2931         vs->vs_physical_ashift = vd->vdev_physical_ashift;
2932         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2933                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2934         }
2935
2936         /*
2937          * If we're getting stats on the root vdev, aggregate the I/O counts
2938          * over all top-level vdevs (i.e. the direct children of the root).
2939          */
2940         if (vd == rvd) {
2941                 for (int c = 0; c < rvd->vdev_children; c++) {
2942                         vdev_t *cvd = rvd->vdev_child[c];
2943                         vdev_stat_t *cvs = &cvd->vdev_stat;
2944
2945                         for (int t = 0; t < ZIO_TYPES; t++) {
2946                                 vs->vs_ops[t] += cvs->vs_ops[t];
2947                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2948                         }
2949                         cvs->vs_scan_removing = cvd->vdev_removing;
2950                 }
2951         }
2952         mutex_exit(&vd->vdev_stat_lock);
2953 }
2954
2955 void
2956 vdev_clear_stats(vdev_t *vd)
2957 {
2958         mutex_enter(&vd->vdev_stat_lock);
2959         vd->vdev_stat.vs_space = 0;
2960         vd->vdev_stat.vs_dspace = 0;
2961         vd->vdev_stat.vs_alloc = 0;
2962         mutex_exit(&vd->vdev_stat_lock);
2963 }
2964
2965 void
2966 vdev_scan_stat_init(vdev_t *vd)
2967 {
2968         vdev_stat_t *vs = &vd->vdev_stat;
2969
2970         for (int c = 0; c < vd->vdev_children; c++)
2971                 vdev_scan_stat_init(vd->vdev_child[c]);
2972
2973         mutex_enter(&vd->vdev_stat_lock);
2974         vs->vs_scan_processed = 0;
2975         mutex_exit(&vd->vdev_stat_lock);
2976 }
2977
2978 void
2979 vdev_stat_update(zio_t *zio, uint64_t psize)
2980 {
2981         spa_t *spa = zio->io_spa;
2982         vdev_t *rvd = spa->spa_root_vdev;
2983         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2984         vdev_t *pvd;
2985         uint64_t txg = zio->io_txg;
2986         vdev_stat_t *vs = &vd->vdev_stat;
2987         zio_type_t type = zio->io_type;
2988         int flags = zio->io_flags;
2989
2990         /*
2991          * If this i/o is a gang leader, it didn't do any actual work.
2992          */
2993         if (zio->io_gang_tree)
2994                 return;
2995
2996         if (zio->io_error == 0) {
2997                 /*
2998                  * If this is a root i/o, don't count it -- we've already
2999                  * counted the top-level vdevs, and vdev_get_stats() will
3000                  * aggregate them when asked.  This reduces contention on
3001                  * the root vdev_stat_lock and implicitly handles blocks
3002                  * that compress away to holes, for which there is no i/o.
3003                  * (Holes never create vdev children, so all the counters
3004                  * remain zero, which is what we want.)
3005                  *
3006                  * Note: this only applies to successful i/o (io_error == 0)
3007                  * because unlike i/o counts, errors are not additive.
3008                  * When reading a ditto block, for example, failure of
3009                  * one top-level vdev does not imply a root-level error.
3010                  */
3011                 if (vd == rvd)
3012                         return;
3013
3014                 ASSERT(vd == zio->io_vd);
3015
3016                 if (flags & ZIO_FLAG_IO_BYPASS)
3017                         return;
3018
3019                 mutex_enter(&vd->vdev_stat_lock);
3020
3021                 if (flags & ZIO_FLAG_IO_REPAIR) {
3022                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3023                                 dsl_scan_phys_t *scn_phys =
3024                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3025                                 uint64_t *processed = &scn_phys->scn_processed;
3026
3027                                 /* XXX cleanup? */
3028                                 if (vd->vdev_ops->vdev_op_leaf)
3029                                         atomic_add_64(processed, psize);
3030                                 vs->vs_scan_processed += psize;
3031                         }
3032
3033                         if (flags & ZIO_FLAG_SELF_HEAL)
3034                                 vs->vs_self_healed += psize;
3035                 }
3036
3037                 vs->vs_ops[type]++;
3038                 vs->vs_bytes[type] += psize;
3039
3040                 mutex_exit(&vd->vdev_stat_lock);
3041                 return;
3042         }
3043
3044         if (flags & ZIO_FLAG_SPECULATIVE)
3045                 return;
3046
3047         /*
3048          * If this is an I/O error that is going to be retried, then ignore the
3049          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3050          * hard errors, when in reality they can happen for any number of
3051          * innocuous reasons (bus resets, MPxIO link failure, etc).
3052          */
3053         if (zio->io_error == EIO &&
3054             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3055                 return;
3056
3057         /*
3058          * Intent logs writes won't propagate their error to the root
3059          * I/O so don't mark these types of failures as pool-level
3060          * errors.
3061          */
3062         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3063                 return;
3064
3065         mutex_enter(&vd->vdev_stat_lock);
3066         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3067                 if (zio->io_error == ECKSUM)
3068                         vs->vs_checksum_errors++;
3069                 else
3070                         vs->vs_read_errors++;
3071         }
3072         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3073                 vs->vs_write_errors++;
3074         mutex_exit(&vd->vdev_stat_lock);
3075
3076         if (type == ZIO_TYPE_WRITE && txg != 0 &&
3077             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3078             (flags & ZIO_FLAG_SCAN_THREAD) ||
3079             spa->spa_claiming)) {
3080                 /*
3081                  * This is either a normal write (not a repair), or it's
3082                  * a repair induced by the scrub thread, or it's a repair
3083                  * made by zil_claim() during spa_load() in the first txg.
3084                  * In the normal case, we commit the DTL change in the same
3085                  * txg as the block was born.  In the scrub-induced repair
3086                  * case, we know that scrubs run in first-pass syncing context,
3087                  * so we commit the DTL change in spa_syncing_txg(spa).
3088                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3089                  *
3090                  * We currently do not make DTL entries for failed spontaneous
3091                  * self-healing writes triggered by normal (non-scrubbing)
3092                  * reads, because we have no transactional context in which to
3093                  * do so -- and it's not clear that it'd be desirable anyway.
3094                  */
3095                 if (vd->vdev_ops->vdev_op_leaf) {
3096                         uint64_t commit_txg = txg;
3097                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3098                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3099                                 ASSERT(spa_sync_pass(spa) == 1);
3100                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3101                                 commit_txg = spa_syncing_txg(spa);
3102                         } else if (spa->spa_claiming) {
3103                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3104                                 commit_txg = spa_first_txg(spa);
3105                         }
3106                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3107                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3108                                 return;
3109                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3110                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3111                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3112                 }
3113                 if (vd != rvd)
3114                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3115         }
3116 }
3117
3118 /*
3119  * Update the in-core space usage stats for this vdev, its metaslab class,
3120  * and the root vdev.
3121  */
3122 void
3123 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3124     int64_t space_delta)
3125 {
3126         int64_t dspace_delta = space_delta;
3127         spa_t *spa = vd->vdev_spa;
3128         vdev_t *rvd = spa->spa_root_vdev;
3129         metaslab_group_t *mg = vd->vdev_mg;
3130         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3131
3132         ASSERT(vd == vd->vdev_top);
3133
3134         /*
3135          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3136          * factor.  We must calculate this here and not at the root vdev
3137          * because the root vdev's psize-to-asize is simply the max of its
3138          * childrens', thus not accurate enough for us.
3139          */
3140         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3141         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3142         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3143             vd->vdev_deflate_ratio;
3144
3145         mutex_enter(&vd->vdev_stat_lock);
3146         vd->vdev_stat.vs_alloc += alloc_delta;
3147         vd->vdev_stat.vs_space += space_delta;
3148         vd->vdev_stat.vs_dspace += dspace_delta;
3149         mutex_exit(&vd->vdev_stat_lock);
3150
3151         if (mc == spa_normal_class(spa)) {
3152                 mutex_enter(&rvd->vdev_stat_lock);
3153                 rvd->vdev_stat.vs_alloc += alloc_delta;
3154                 rvd->vdev_stat.vs_space += space_delta;
3155                 rvd->vdev_stat.vs_dspace += dspace_delta;
3156                 mutex_exit(&rvd->vdev_stat_lock);
3157         }
3158
3159         if (mc != NULL) {
3160                 ASSERT(rvd == vd->vdev_parent);
3161                 ASSERT(vd->vdev_ms_count != 0);
3162
3163                 metaslab_class_space_update(mc,
3164                     alloc_delta, defer_delta, space_delta, dspace_delta);
3165         }
3166 }
3167
3168 /*
3169  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3170  * so that it will be written out next time the vdev configuration is synced.
3171  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3172  */
3173 void
3174 vdev_config_dirty(vdev_t *vd)
3175 {
3176         spa_t *spa = vd->vdev_spa;
3177         vdev_t *rvd = spa->spa_root_vdev;
3178         int c;
3179
3180         ASSERT(spa_writeable(spa));
3181
3182         /*
3183          * If this is an aux vdev (as with l2cache and spare devices), then we
3184          * update the vdev config manually and set the sync flag.
3185          */
3186         if (vd->vdev_aux != NULL) {
3187                 spa_aux_vdev_t *sav = vd->vdev_aux;
3188                 nvlist_t **aux;
3189                 uint_t naux;
3190
3191                 for (c = 0; c < sav->sav_count; c++) {
3192                         if (sav->sav_vdevs[c] == vd)
3193                                 break;
3194                 }
3195
3196                 if (c == sav->sav_count) {
3197                         /*
3198                          * We're being removed.  There's nothing more to do.
3199                          */
3200                         ASSERT(sav->sav_sync == B_TRUE);
3201                         return;
3202                 }
3203
3204                 sav->sav_sync = B_TRUE;
3205
3206                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3207                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3208                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3209                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3210                 }
3211
3212                 ASSERT(c < naux);
3213
3214                 /*
3215                  * Setting the nvlist in the middle if the array is a little
3216                  * sketchy, but it will work.
3217                  */
3218                 nvlist_free(aux[c]);
3219                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3220
3221                 return;
3222         }
3223
3224         /*
3225          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3226          * must either hold SCL_CONFIG as writer, or must be the sync thread
3227          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3228          * so this is sufficient to ensure mutual exclusion.
3229          */
3230         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3231             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3232             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3233
3234         if (vd == rvd) {
3235                 for (c = 0; c < rvd->vdev_children; c++)
3236                         vdev_config_dirty(rvd->vdev_child[c]);
3237         } else {
3238                 ASSERT(vd == vd->vdev_top);
3239
3240                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3241                     !vd->vdev_ishole)
3242                         list_insert_head(&spa->spa_config_dirty_list, vd);
3243         }
3244 }
3245
3246 void
3247 vdev_config_clean(vdev_t *vd)
3248 {
3249         spa_t *spa = vd->vdev_spa;
3250
3251         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3252             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3253             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3254
3255         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3256         list_remove(&spa->spa_config_dirty_list, vd);
3257 }
3258
3259 /*
3260  * Mark a top-level vdev's state as dirty, so that the next pass of
3261  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3262  * the state changes from larger config changes because they require
3263  * much less locking, and are often needed for administrative actions.
3264  */
3265 void
3266 vdev_state_dirty(vdev_t *vd)
3267 {
3268         spa_t *spa = vd->vdev_spa;
3269
3270         ASSERT(spa_writeable(spa));
3271         ASSERT(vd == vd->vdev_top);
3272
3273         /*
3274          * The state list is protected by the SCL_STATE lock.  The caller
3275          * must either hold SCL_STATE as writer, or must be the sync thread
3276          * (which holds SCL_STATE as reader).  There's only one sync thread,
3277          * so this is sufficient to ensure mutual exclusion.
3278          */
3279         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3280             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3281             spa_config_held(spa, SCL_STATE, RW_READER)));
3282
3283         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3284                 list_insert_head(&spa->spa_state_dirty_list, vd);
3285 }
3286
3287 void
3288 vdev_state_clean(vdev_t *vd)
3289 {
3290         spa_t *spa = vd->vdev_spa;
3291
3292         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3293             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3294             spa_config_held(spa, SCL_STATE, RW_READER)));
3295
3296         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3297         list_remove(&spa->spa_state_dirty_list, vd);
3298 }
3299
3300 /*
3301  * Propagate vdev state up from children to parent.
3302  */
3303 void
3304 vdev_propagate_state(vdev_t *vd)
3305 {
3306         spa_t *spa = vd->vdev_spa;
3307         vdev_t *rvd = spa->spa_root_vdev;
3308         int degraded = 0, faulted = 0;
3309         int corrupted = 0;
3310         vdev_t *child;
3311
3312         if (vd->vdev_children > 0) {
3313                 for (int c = 0; c < vd->vdev_children; c++) {
3314                         child = vd->vdev_child[c];
3315
3316                         /*
3317                          * Don't factor holes into the decision.
3318                          */
3319                         if (child->vdev_ishole)
3320                                 continue;
3321
3322                         if (!vdev_readable(child) ||
3323                             (!vdev_writeable(child) && spa_writeable(spa))) {
3324                                 /*
3325                                  * Root special: if there is a top-level log
3326                                  * device, treat the root vdev as if it were
3327                                  * degraded.
3328                                  */
3329                                 if (child->vdev_islog && vd == rvd)
3330                                         degraded++;
3331                                 else
3332                                         faulted++;
3333                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3334                                 degraded++;
3335                         }
3336
3337                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3338                                 corrupted++;
3339                 }
3340
3341                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3342
3343                 /*
3344                  * Root special: if there is a top-level vdev that cannot be
3345                  * opened due to corrupted metadata, then propagate the root
3346                  * vdev's aux state as 'corrupt' rather than 'insufficient
3347                  * replicas'.
3348                  */
3349                 if (corrupted && vd == rvd &&
3350                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3351                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3352                             VDEV_AUX_CORRUPT_DATA);
3353         }
3354
3355         if (vd->vdev_parent)
3356                 vdev_propagate_state(vd->vdev_parent);
3357 }
3358
3359 /*
3360  * Set a vdev's state.  If this is during an open, we don't update the parent
3361  * state, because we're in the process of opening children depth-first.
3362  * Otherwise, we propagate the change to the parent.
3363  *
3364  * If this routine places a device in a faulted state, an appropriate ereport is
3365  * generated.
3366  */
3367 void
3368 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3369 {
3370         uint64_t save_state;
3371         spa_t *spa = vd->vdev_spa;
3372
3373         if (state == vd->vdev_state) {
3374                 vd->vdev_stat.vs_aux = aux;
3375                 return;
3376         }
3377
3378         save_state = vd->vdev_state;
3379
3380         vd->vdev_state = state;
3381         vd->vdev_stat.vs_aux = aux;
3382
3383         /*
3384          * If we are setting the vdev state to anything but an open state, then
3385          * always close the underlying device unless the device has requested
3386          * a delayed close (i.e. we're about to remove or fault the device).
3387          * Otherwise, we keep accessible but invalid devices open forever.
3388          * We don't call vdev_close() itself, because that implies some extra
3389          * checks (offline, etc) that we don't want here.  This is limited to
3390          * leaf devices, because otherwise closing the device will affect other
3391          * children.
3392          */
3393         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3394             vd->vdev_ops->vdev_op_leaf)
3395                 vd->vdev_ops->vdev_op_close(vd);
3396
3397         if (vd->vdev_removed &&
3398             state == VDEV_STATE_CANT_OPEN &&
3399             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3400                 /*
3401                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3402                  * device was previously marked removed and someone attempted to
3403                  * reopen it.  If this failed due to a nonexistent device, then
3404                  * keep the device in the REMOVED state.  We also let this be if
3405                  * it is one of our special test online cases, which is only
3406                  * attempting to online the device and shouldn't generate an FMA
3407                  * fault.
3408                  */
3409                 vd->vdev_state = VDEV_STATE_REMOVED;
3410                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3411         } else if (state == VDEV_STATE_REMOVED) {
3412                 vd->vdev_removed = B_TRUE;
3413         } else if (state == VDEV_STATE_CANT_OPEN) {
3414                 /*
3415                  * If we fail to open a vdev during an import or recovery, we
3416                  * mark it as "not available", which signifies that it was
3417                  * never there to begin with.  Failure to open such a device
3418                  * is not considered an error.
3419                  */
3420                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3421                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3422                     vd->vdev_ops->vdev_op_leaf)
3423                         vd->vdev_not_present = 1;
3424
3425                 /*
3426                  * Post the appropriate ereport.  If the 'prevstate' field is
3427                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3428                  * that this is part of a vdev_reopen().  In this case, we don't
3429                  * want to post the ereport if the device was already in the
3430                  * CANT_OPEN state beforehand.
3431                  *
3432                  * If the 'checkremove' flag is set, then this is an attempt to
3433                  * online the device in response to an insertion event.  If we
3434                  * hit this case, then we have detected an insertion event for a
3435                  * faulted or offline device that wasn't in the removed state.
3436                  * In this scenario, we don't post an ereport because we are
3437                  * about to replace the device, or attempt an online with
3438                  * vdev_forcefault, which will generate the fault for us.
3439                  */
3440                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3441                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3442                     vd != spa->spa_root_vdev) {
3443                         const char *class;
3444
3445                         switch (aux) {
3446                         case VDEV_AUX_OPEN_FAILED:
3447                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3448                                 break;
3449                         case VDEV_AUX_CORRUPT_DATA:
3450                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3451                                 break;
3452                         case VDEV_AUX_NO_REPLICAS:
3453                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3454                                 break;
3455                         case VDEV_AUX_BAD_GUID_SUM:
3456                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3457                                 break;
3458                         case VDEV_AUX_TOO_SMALL:
3459                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3460                                 break;
3461                         case VDEV_AUX_BAD_LABEL:
3462                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3463                                 break;
3464                         default:
3465                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3466                         }
3467
3468                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3469                 }
3470
3471                 /* Erase any notion of persistent removed state */
3472                 vd->vdev_removed = B_FALSE;
3473         } else {
3474                 vd->vdev_removed = B_FALSE;
3475         }
3476
3477         /*
3478         * Notify the fmd of the state change.  Be verbose and post
3479         * notifications even for stuff that's not important; the fmd agent can
3480         * sort it out.  Don't emit state change events for non-leaf vdevs since
3481         * they can't change state on their own.  The FMD can check their state
3482         * if it wants to when it sees that a leaf vdev had a state change.
3483         */
3484         if (vd->vdev_ops->vdev_op_leaf)
3485                 zfs_post_state_change(spa, vd);
3486
3487         if (!isopen && vd->vdev_parent)
3488                 vdev_propagate_state(vd->vdev_parent);
3489 }
3490
3491 /*
3492  * Check the vdev configuration to ensure that it's capable of supporting
3493  * a root pool. We do not support partial configuration.
3494  * In addition, only a single top-level vdev is allowed.
3495  *
3496  * FreeBSD does not have above limitations.
3497  */
3498 boolean_t
3499 vdev_is_bootable(vdev_t *vd)
3500 {
3501 #ifdef illumos
3502         if (!vd->vdev_ops->vdev_op_leaf) {
3503                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3504
3505                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3506                     vd->vdev_children > 1) {
3507                         return (B_FALSE);
3508                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3509                         return (B_FALSE);
3510                 }
3511         }
3512
3513         for (int c = 0; c < vd->vdev_children; c++) {
3514                 if (!vdev_is_bootable(vd->vdev_child[c]))
3515                         return (B_FALSE);
3516         }
3517 #endif  /* illumos */
3518         return (B_TRUE);
3519 }
3520
3521 /*
3522  * Load the state from the original vdev tree (ovd) which
3523  * we've retrieved from the MOS config object. If the original
3524  * vdev was offline or faulted then we transfer that state to the
3525  * device in the current vdev tree (nvd).
3526  */
3527 void
3528 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3529 {
3530         spa_t *spa = nvd->vdev_spa;
3531
3532         ASSERT(nvd->vdev_top->vdev_islog);
3533         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3534         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3535
3536         for (int c = 0; c < nvd->vdev_children; c++)
3537                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3538
3539         if (nvd->vdev_ops->vdev_op_leaf) {
3540                 /*
3541                  * Restore the persistent vdev state
3542                  */
3543                 nvd->vdev_offline = ovd->vdev_offline;
3544                 nvd->vdev_faulted = ovd->vdev_faulted;
3545                 nvd->vdev_degraded = ovd->vdev_degraded;
3546                 nvd->vdev_removed = ovd->vdev_removed;
3547         }
3548 }
3549
3550 /*
3551  * Determine if a log device has valid content.  If the vdev was
3552  * removed or faulted in the MOS config then we know that
3553  * the content on the log device has already been written to the pool.
3554  */
3555 boolean_t
3556 vdev_log_state_valid(vdev_t *vd)
3557 {
3558         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3559             !vd->vdev_removed)
3560                 return (B_TRUE);
3561
3562         for (int c = 0; c < vd->vdev_children; c++)
3563                 if (vdev_log_state_valid(vd->vdev_child[c]))
3564                         return (B_TRUE);
3565
3566         return (B_FALSE);
3567 }
3568
3569 /*
3570  * Expand a vdev if possible.
3571  */
3572 void
3573 vdev_expand(vdev_t *vd, uint64_t txg)
3574 {
3575         ASSERT(vd->vdev_top == vd);
3576         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3577
3578         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3579                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3580                 vdev_config_dirty(vd);
3581         }
3582 }
3583
3584 /*
3585  * Split a vdev.
3586  */
3587 void
3588 vdev_split(vdev_t *vd)
3589 {
3590         vdev_t *cvd, *pvd = vd->vdev_parent;
3591
3592         vdev_remove_child(pvd, vd);
3593         vdev_compact_children(pvd);
3594
3595         cvd = pvd->vdev_child[0];
3596         if (pvd->vdev_children == 1) {
3597                 vdev_remove_parent(cvd);
3598                 cvd->vdev_splitting = B_TRUE;
3599         }
3600         vdev_propagate_state(cvd);
3601 }
3602
3603 void
3604 vdev_deadman(vdev_t *vd)
3605 {
3606         for (int c = 0; c < vd->vdev_children; c++) {
3607                 vdev_t *cvd = vd->vdev_child[c];
3608
3609                 vdev_deadman(cvd);
3610         }
3611
3612         if (vd->vdev_ops->vdev_op_leaf) {
3613                 vdev_queue_t *vq = &vd->vdev_queue;
3614
3615                 mutex_enter(&vq->vq_lock);
3616                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3617                         spa_t *spa = vd->vdev_spa;
3618                         zio_t *fio;
3619                         uint64_t delta;
3620
3621                         /*
3622                          * Look at the head of all the pending queues,
3623                          * if any I/O has been outstanding for longer than
3624                          * the spa_deadman_synctime we panic the system.
3625                          */
3626                         fio = avl_first(&vq->vq_active_tree);
3627                         delta = gethrtime() - fio->io_timestamp;
3628                         if (delta > spa_deadman_synctime(spa)) {
3629                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3630                                     "delta %lluns, last io %lluns",
3631                                     fio->io_timestamp, delta,
3632                                     vq->vq_io_complete_ts);
3633                                 fm_panic("I/O to pool '%s' appears to be "
3634                                     "hung on vdev guid %llu at '%s'.",
3635                                     spa_name(spa),
3636                                     (long long unsigned int) vd->vdev_guid,
3637                                     vd->vdev_path);
3638                         }
3639                 }
3640                 mutex_exit(&vq->vq_lock);
3641         }
3642 }