]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFV r329502: 7614 zfs device evacuation/removal
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  */
31
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/trim_map.h>
54
55 SYSCTL_DECL(_vfs_zfs);
56 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
57
58 /*
59  * Virtual device management.
60  */
61
62 /*
63  * The limit for ZFS to automatically increase a top-level vdev's ashift
64  * from logical ashift to physical ashift.
65  *
66  * Example: one or more 512B emulation child vdevs
67  *          child->vdev_ashift = 9 (512 bytes)
68  *          child->vdev_physical_ashift = 12 (4096 bytes)
69  *          zfs_max_auto_ashift = 11 (2048 bytes)
70  *          zfs_min_auto_ashift = 9 (512 bytes)
71  *
72  * On pool creation or the addition of a new top-level vdev, ZFS will
73  * increase the ashift of the top-level vdev to 2048 as limited by
74  * zfs_max_auto_ashift.
75  *
76  * Example: one or more 512B emulation child vdevs
77  *          child->vdev_ashift = 9 (512 bytes)
78  *          child->vdev_physical_ashift = 12 (4096 bytes)
79  *          zfs_max_auto_ashift = 13 (8192 bytes)
80  *          zfs_min_auto_ashift = 9 (512 bytes)
81  *
82  * On pool creation or the addition of a new top-level vdev, ZFS will
83  * increase the ashift of the top-level vdev to 4096 to match the
84  * max vdev_physical_ashift.
85  *
86  * Example: one or more 512B emulation child vdevs
87  *          child->vdev_ashift = 9 (512 bytes)
88  *          child->vdev_physical_ashift = 9 (512 bytes)
89  *          zfs_max_auto_ashift = 13 (8192 bytes)
90  *          zfs_min_auto_ashift = 12 (4096 bytes)
91  *
92  * On pool creation or the addition of a new top-level vdev, ZFS will
93  * increase the ashift of the top-level vdev to 4096 to match the
94  * zfs_min_auto_ashift.
95  */
96 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
97 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
98
99 static int
100 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
101 {
102         uint64_t val;
103         int err;
104
105         val = zfs_max_auto_ashift;
106         err = sysctl_handle_64(oidp, &val, 0, req);
107         if (err != 0 || req->newptr == NULL)
108                 return (err);
109
110         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
111                 return (EINVAL);
112
113         zfs_max_auto_ashift = val;
114
115         return (0);
116 }
117 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
118     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
119     sysctl_vfs_zfs_max_auto_ashift, "QU",
120     "Max ashift used when optimising for logical -> physical sectors size on "
121     "new top-level vdevs.");
122
123 static int
124 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
125 {
126         uint64_t val;
127         int err;
128
129         val = zfs_min_auto_ashift;
130         err = sysctl_handle_64(oidp, &val, 0, req);
131         if (err != 0 || req->newptr == NULL)
132                 return (err);
133
134         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
135                 return (EINVAL);
136
137         zfs_min_auto_ashift = val;
138
139         return (0);
140 }
141 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
142     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
143     sysctl_vfs_zfs_min_auto_ashift, "QU",
144     "Min ashift used when creating new top-level vdevs.");
145
146 static vdev_ops_t *vdev_ops_table[] = {
147         &vdev_root_ops,
148         &vdev_raidz_ops,
149         &vdev_mirror_ops,
150         &vdev_replacing_ops,
151         &vdev_spare_ops,
152 #ifdef _KERNEL
153         &vdev_geom_ops,
154 #else
155         &vdev_disk_ops,
156 #endif
157         &vdev_file_ops,
158         &vdev_missing_ops,
159         &vdev_hole_ops,
160         &vdev_indirect_ops,
161         NULL
162 };
163
164
165 /*
166  * When a vdev is added, it will be divided into approximately (but no
167  * more than) this number of metaslabs.
168  */
169 int metaslabs_per_vdev = 200;
170 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
171     &metaslabs_per_vdev, 0,
172     "When a vdev is added, how many metaslabs the vdev should be divided into");
173
174 /*
175  * Given a vdev type, return the appropriate ops vector.
176  */
177 static vdev_ops_t *
178 vdev_getops(const char *type)
179 {
180         vdev_ops_t *ops, **opspp;
181
182         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
183                 if (strcmp(ops->vdev_op_type, type) == 0)
184                         break;
185
186         return (ops);
187 }
188
189 /*
190  * Default asize function: return the MAX of psize with the asize of
191  * all children.  This is what's used by anything other than RAID-Z.
192  */
193 uint64_t
194 vdev_default_asize(vdev_t *vd, uint64_t psize)
195 {
196         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
197         uint64_t csize;
198
199         for (int c = 0; c < vd->vdev_children; c++) {
200                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
201                 asize = MAX(asize, csize);
202         }
203
204         return (asize);
205 }
206
207 /*
208  * Get the minimum allocatable size. We define the allocatable size as
209  * the vdev's asize rounded to the nearest metaslab. This allows us to
210  * replace or attach devices which don't have the same physical size but
211  * can still satisfy the same number of allocations.
212  */
213 uint64_t
214 vdev_get_min_asize(vdev_t *vd)
215 {
216         vdev_t *pvd = vd->vdev_parent;
217
218         /*
219          * If our parent is NULL (inactive spare or cache) or is the root,
220          * just return our own asize.
221          */
222         if (pvd == NULL)
223                 return (vd->vdev_asize);
224
225         /*
226          * The top-level vdev just returns the allocatable size rounded
227          * to the nearest metaslab.
228          */
229         if (vd == vd->vdev_top)
230                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
231
232         /*
233          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
234          * so each child must provide at least 1/Nth of its asize.
235          */
236         if (pvd->vdev_ops == &vdev_raidz_ops)
237                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
238                     pvd->vdev_children);
239
240         return (pvd->vdev_min_asize);
241 }
242
243 void
244 vdev_set_min_asize(vdev_t *vd)
245 {
246         vd->vdev_min_asize = vdev_get_min_asize(vd);
247
248         for (int c = 0; c < vd->vdev_children; c++)
249                 vdev_set_min_asize(vd->vdev_child[c]);
250 }
251
252 vdev_t *
253 vdev_lookup_top(spa_t *spa, uint64_t vdev)
254 {
255         vdev_t *rvd = spa->spa_root_vdev;
256
257         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
258
259         if (vdev < rvd->vdev_children) {
260                 ASSERT(rvd->vdev_child[vdev] != NULL);
261                 return (rvd->vdev_child[vdev]);
262         }
263
264         return (NULL);
265 }
266
267 vdev_t *
268 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
269 {
270         vdev_t *mvd;
271
272         if (vd->vdev_guid == guid)
273                 return (vd);
274
275         for (int c = 0; c < vd->vdev_children; c++)
276                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
277                     NULL)
278                         return (mvd);
279
280         return (NULL);
281 }
282
283 static int
284 vdev_count_leaves_impl(vdev_t *vd)
285 {
286         int n = 0;
287
288         if (vd->vdev_ops->vdev_op_leaf)
289                 return (1);
290
291         for (int c = 0; c < vd->vdev_children; c++)
292                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
293
294         return (n);
295 }
296
297 int
298 vdev_count_leaves(spa_t *spa)
299 {
300         return (vdev_count_leaves_impl(spa->spa_root_vdev));
301 }
302
303 void
304 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
305 {
306         size_t oldsize, newsize;
307         uint64_t id = cvd->vdev_id;
308         vdev_t **newchild;
309         spa_t *spa = cvd->vdev_spa;
310
311         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
312         ASSERT(cvd->vdev_parent == NULL);
313
314         cvd->vdev_parent = pvd;
315
316         if (pvd == NULL)
317                 return;
318
319         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
320
321         oldsize = pvd->vdev_children * sizeof (vdev_t *);
322         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
323         newsize = pvd->vdev_children * sizeof (vdev_t *);
324
325         newchild = kmem_zalloc(newsize, KM_SLEEP);
326         if (pvd->vdev_child != NULL) {
327                 bcopy(pvd->vdev_child, newchild, oldsize);
328                 kmem_free(pvd->vdev_child, oldsize);
329         }
330
331         pvd->vdev_child = newchild;
332         pvd->vdev_child[id] = cvd;
333
334         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
335         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
336
337         /*
338          * Walk up all ancestors to update guid sum.
339          */
340         for (; pvd != NULL; pvd = pvd->vdev_parent)
341                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
342 }
343
344 void
345 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
346 {
347         int c;
348         uint_t id = cvd->vdev_id;
349
350         ASSERT(cvd->vdev_parent == pvd);
351
352         if (pvd == NULL)
353                 return;
354
355         ASSERT(id < pvd->vdev_children);
356         ASSERT(pvd->vdev_child[id] == cvd);
357
358         pvd->vdev_child[id] = NULL;
359         cvd->vdev_parent = NULL;
360
361         for (c = 0; c < pvd->vdev_children; c++)
362                 if (pvd->vdev_child[c])
363                         break;
364
365         if (c == pvd->vdev_children) {
366                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
367                 pvd->vdev_child = NULL;
368                 pvd->vdev_children = 0;
369         }
370
371         /*
372          * Walk up all ancestors to update guid sum.
373          */
374         for (; pvd != NULL; pvd = pvd->vdev_parent)
375                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
376 }
377
378 /*
379  * Remove any holes in the child array.
380  */
381 void
382 vdev_compact_children(vdev_t *pvd)
383 {
384         vdev_t **newchild, *cvd;
385         int oldc = pvd->vdev_children;
386         int newc;
387
388         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
389
390         for (int c = newc = 0; c < oldc; c++)
391                 if (pvd->vdev_child[c])
392                         newc++;
393
394         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
395
396         for (int c = newc = 0; c < oldc; c++) {
397                 if ((cvd = pvd->vdev_child[c]) != NULL) {
398                         newchild[newc] = cvd;
399                         cvd->vdev_id = newc++;
400                 }
401         }
402
403         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
404         pvd->vdev_child = newchild;
405         pvd->vdev_children = newc;
406 }
407
408 /*
409  * Allocate and minimally initialize a vdev_t.
410  */
411 vdev_t *
412 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
413 {
414         vdev_t *vd;
415         vdev_indirect_config_t *vic;
416
417         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
418         vic = &vd->vdev_indirect_config;
419
420         if (spa->spa_root_vdev == NULL) {
421                 ASSERT(ops == &vdev_root_ops);
422                 spa->spa_root_vdev = vd;
423                 spa->spa_load_guid = spa_generate_guid(NULL);
424         }
425
426         if (guid == 0 && ops != &vdev_hole_ops) {
427                 if (spa->spa_root_vdev == vd) {
428                         /*
429                          * The root vdev's guid will also be the pool guid,
430                          * which must be unique among all pools.
431                          */
432                         guid = spa_generate_guid(NULL);
433                 } else {
434                         /*
435                          * Any other vdev's guid must be unique within the pool.
436                          */
437                         guid = spa_generate_guid(spa);
438                 }
439                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
440         }
441
442         vd->vdev_spa = spa;
443         vd->vdev_id = id;
444         vd->vdev_guid = guid;
445         vd->vdev_guid_sum = guid;
446         vd->vdev_ops = ops;
447         vd->vdev_state = VDEV_STATE_CLOSED;
448         vd->vdev_ishole = (ops == &vdev_hole_ops);
449         vic->vic_prev_indirect_vdev = UINT64_MAX;
450
451         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
452         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
453         vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
454
455         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
456         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
457         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
458         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
459         for (int t = 0; t < DTL_TYPES; t++) {
460                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
461         }
462         txg_list_create(&vd->vdev_ms_list, spa,
463             offsetof(struct metaslab, ms_txg_node));
464         txg_list_create(&vd->vdev_dtl_list, spa,
465             offsetof(struct vdev, vdev_dtl_node));
466         vd->vdev_stat.vs_timestamp = gethrtime();
467         vdev_queue_init(vd);
468         vdev_cache_init(vd);
469
470         return (vd);
471 }
472
473 /*
474  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
475  * creating a new vdev or loading an existing one - the behavior is slightly
476  * different for each case.
477  */
478 int
479 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
480     int alloctype)
481 {
482         vdev_ops_t *ops;
483         char *type;
484         uint64_t guid = 0, islog, nparity;
485         vdev_t *vd;
486         vdev_indirect_config_t *vic;
487
488         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
489
490         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
491                 return (SET_ERROR(EINVAL));
492
493         if ((ops = vdev_getops(type)) == NULL)
494                 return (SET_ERROR(EINVAL));
495
496         /*
497          * If this is a load, get the vdev guid from the nvlist.
498          * Otherwise, vdev_alloc_common() will generate one for us.
499          */
500         if (alloctype == VDEV_ALLOC_LOAD) {
501                 uint64_t label_id;
502
503                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
504                     label_id != id)
505                         return (SET_ERROR(EINVAL));
506
507                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
508                         return (SET_ERROR(EINVAL));
509         } else if (alloctype == VDEV_ALLOC_SPARE) {
510                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
511                         return (SET_ERROR(EINVAL));
512         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
513                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
514                         return (SET_ERROR(EINVAL));
515         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
516                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
517                         return (SET_ERROR(EINVAL));
518         }
519
520         /*
521          * The first allocated vdev must be of type 'root'.
522          */
523         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
524                 return (SET_ERROR(EINVAL));
525
526         /*
527          * Determine whether we're a log vdev.
528          */
529         islog = 0;
530         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
531         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
532                 return (SET_ERROR(ENOTSUP));
533
534         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
535                 return (SET_ERROR(ENOTSUP));
536
537         /*
538          * Set the nparity property for RAID-Z vdevs.
539          */
540         nparity = -1ULL;
541         if (ops == &vdev_raidz_ops) {
542                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
543                     &nparity) == 0) {
544                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
545                                 return (SET_ERROR(EINVAL));
546                         /*
547                          * Previous versions could only support 1 or 2 parity
548                          * device.
549                          */
550                         if (nparity > 1 &&
551                             spa_version(spa) < SPA_VERSION_RAIDZ2)
552                                 return (SET_ERROR(ENOTSUP));
553                         if (nparity > 2 &&
554                             spa_version(spa) < SPA_VERSION_RAIDZ3)
555                                 return (SET_ERROR(ENOTSUP));
556                 } else {
557                         /*
558                          * We require the parity to be specified for SPAs that
559                          * support multiple parity levels.
560                          */
561                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
562                                 return (SET_ERROR(EINVAL));
563                         /*
564                          * Otherwise, we default to 1 parity device for RAID-Z.
565                          */
566                         nparity = 1;
567                 }
568         } else {
569                 nparity = 0;
570         }
571         ASSERT(nparity != -1ULL);
572
573         vd = vdev_alloc_common(spa, id, guid, ops);
574         vic = &vd->vdev_indirect_config;
575
576         vd->vdev_islog = islog;
577         vd->vdev_nparity = nparity;
578
579         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
580                 vd->vdev_path = spa_strdup(vd->vdev_path);
581         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
582                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
583         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
584             &vd->vdev_physpath) == 0)
585                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
586         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
587                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
588
589         /*
590          * Set the whole_disk property.  If it's not specified, leave the value
591          * as -1.
592          */
593         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
594             &vd->vdev_wholedisk) != 0)
595                 vd->vdev_wholedisk = -1ULL;
596
597         ASSERT0(vic->vic_mapping_object);
598         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
599             &vic->vic_mapping_object);
600         ASSERT0(vic->vic_births_object);
601         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
602             &vic->vic_births_object);
603         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
604         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
605             &vic->vic_prev_indirect_vdev);
606
607         /*
608          * Look for the 'not present' flag.  This will only be set if the device
609          * was not present at the time of import.
610          */
611         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
612             &vd->vdev_not_present);
613
614         /*
615          * Get the alignment requirement.
616          */
617         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
618
619         /*
620          * Retrieve the vdev creation time.
621          */
622         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
623             &vd->vdev_crtxg);
624
625         /*
626          * If we're a top-level vdev, try to load the allocation parameters.
627          */
628         if (parent && !parent->vdev_parent &&
629             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
630                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
631                     &vd->vdev_ms_array);
632                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
633                     &vd->vdev_ms_shift);
634                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
635                     &vd->vdev_asize);
636                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
637                     &vd->vdev_removing);
638                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
639                     &vd->vdev_top_zap);
640         } else {
641                 ASSERT0(vd->vdev_top_zap);
642         }
643
644         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
645                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
646                     alloctype == VDEV_ALLOC_ADD ||
647                     alloctype == VDEV_ALLOC_SPLIT ||
648                     alloctype == VDEV_ALLOC_ROOTPOOL);
649                 vd->vdev_mg = metaslab_group_create(islog ?
650                     spa_log_class(spa) : spa_normal_class(spa), vd);
651         }
652
653         if (vd->vdev_ops->vdev_op_leaf &&
654             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
655                 (void) nvlist_lookup_uint64(nv,
656                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
657         } else {
658                 ASSERT0(vd->vdev_leaf_zap);
659         }
660
661         /*
662          * If we're a leaf vdev, try to load the DTL object and other state.
663          */
664
665         if (vd->vdev_ops->vdev_op_leaf &&
666             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
667             alloctype == VDEV_ALLOC_ROOTPOOL)) {
668                 if (alloctype == VDEV_ALLOC_LOAD) {
669                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
670                             &vd->vdev_dtl_object);
671                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
672                             &vd->vdev_unspare);
673                 }
674
675                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
676                         uint64_t spare = 0;
677
678                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
679                             &spare) == 0 && spare)
680                                 spa_spare_add(vd);
681                 }
682
683                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
684                     &vd->vdev_offline);
685
686                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
687                     &vd->vdev_resilver_txg);
688
689                 /*
690                  * When importing a pool, we want to ignore the persistent fault
691                  * state, as the diagnosis made on another system may not be
692                  * valid in the current context.  Local vdevs will
693                  * remain in the faulted state.
694                  */
695                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
696                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
697                             &vd->vdev_faulted);
698                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
699                             &vd->vdev_degraded);
700                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
701                             &vd->vdev_removed);
702
703                         if (vd->vdev_faulted || vd->vdev_degraded) {
704                                 char *aux;
705
706                                 vd->vdev_label_aux =
707                                     VDEV_AUX_ERR_EXCEEDED;
708                                 if (nvlist_lookup_string(nv,
709                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
710                                     strcmp(aux, "external") == 0)
711                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
712                         }
713                 }
714         }
715
716         /*
717          * Add ourselves to the parent's list of children.
718          */
719         vdev_add_child(parent, vd);
720
721         *vdp = vd;
722
723         return (0);
724 }
725
726 void
727 vdev_free(vdev_t *vd)
728 {
729         spa_t *spa = vd->vdev_spa;
730
731         /*
732          * vdev_free() implies closing the vdev first.  This is simpler than
733          * trying to ensure complicated semantics for all callers.
734          */
735         vdev_close(vd);
736
737         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
738         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
739
740         /*
741          * Free all children.
742          */
743         for (int c = 0; c < vd->vdev_children; c++)
744                 vdev_free(vd->vdev_child[c]);
745
746         ASSERT(vd->vdev_child == NULL);
747         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
748
749         /*
750          * Discard allocation state.
751          */
752         if (vd->vdev_mg != NULL) {
753                 vdev_metaslab_fini(vd);
754                 metaslab_group_destroy(vd->vdev_mg);
755         }
756
757         ASSERT0(vd->vdev_stat.vs_space);
758         ASSERT0(vd->vdev_stat.vs_dspace);
759         ASSERT0(vd->vdev_stat.vs_alloc);
760
761         /*
762          * Remove this vdev from its parent's child list.
763          */
764         vdev_remove_child(vd->vdev_parent, vd);
765
766         ASSERT(vd->vdev_parent == NULL);
767
768         /*
769          * Clean up vdev structure.
770          */
771         vdev_queue_fini(vd);
772         vdev_cache_fini(vd);
773
774         if (vd->vdev_path)
775                 spa_strfree(vd->vdev_path);
776         if (vd->vdev_devid)
777                 spa_strfree(vd->vdev_devid);
778         if (vd->vdev_physpath)
779                 spa_strfree(vd->vdev_physpath);
780         if (vd->vdev_fru)
781                 spa_strfree(vd->vdev_fru);
782
783         if (vd->vdev_isspare)
784                 spa_spare_remove(vd);
785         if (vd->vdev_isl2cache)
786                 spa_l2cache_remove(vd);
787
788         txg_list_destroy(&vd->vdev_ms_list);
789         txg_list_destroy(&vd->vdev_dtl_list);
790
791         mutex_enter(&vd->vdev_dtl_lock);
792         space_map_close(vd->vdev_dtl_sm);
793         for (int t = 0; t < DTL_TYPES; t++) {
794                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
795                 range_tree_destroy(vd->vdev_dtl[t]);
796         }
797         mutex_exit(&vd->vdev_dtl_lock);
798
799         EQUIV(vd->vdev_indirect_births != NULL,
800             vd->vdev_indirect_mapping != NULL);
801         if (vd->vdev_indirect_births != NULL) {
802                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
803                 vdev_indirect_births_close(vd->vdev_indirect_births);
804         }
805
806         if (vd->vdev_obsolete_sm != NULL) {
807                 ASSERT(vd->vdev_removing ||
808                     vd->vdev_ops == &vdev_indirect_ops);
809                 space_map_close(vd->vdev_obsolete_sm);
810                 vd->vdev_obsolete_sm = NULL;
811         }
812         range_tree_destroy(vd->vdev_obsolete_segments);
813         rw_destroy(&vd->vdev_indirect_rwlock);
814         mutex_destroy(&vd->vdev_obsolete_lock);
815
816         mutex_destroy(&vd->vdev_queue_lock);
817         mutex_destroy(&vd->vdev_dtl_lock);
818         mutex_destroy(&vd->vdev_stat_lock);
819         mutex_destroy(&vd->vdev_probe_lock);
820
821         if (vd == spa->spa_root_vdev)
822                 spa->spa_root_vdev = NULL;
823
824         kmem_free(vd, sizeof (vdev_t));
825 }
826
827 /*
828  * Transfer top-level vdev state from svd to tvd.
829  */
830 static void
831 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
832 {
833         spa_t *spa = svd->vdev_spa;
834         metaslab_t *msp;
835         vdev_t *vd;
836         int t;
837
838         ASSERT(tvd == tvd->vdev_top);
839
840         tvd->vdev_ms_array = svd->vdev_ms_array;
841         tvd->vdev_ms_shift = svd->vdev_ms_shift;
842         tvd->vdev_ms_count = svd->vdev_ms_count;
843         tvd->vdev_top_zap = svd->vdev_top_zap;
844
845         svd->vdev_ms_array = 0;
846         svd->vdev_ms_shift = 0;
847         svd->vdev_ms_count = 0;
848         svd->vdev_top_zap = 0;
849
850         if (tvd->vdev_mg)
851                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
852         tvd->vdev_mg = svd->vdev_mg;
853         tvd->vdev_ms = svd->vdev_ms;
854
855         svd->vdev_mg = NULL;
856         svd->vdev_ms = NULL;
857
858         if (tvd->vdev_mg != NULL)
859                 tvd->vdev_mg->mg_vd = tvd;
860
861         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
862         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
863         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
864
865         svd->vdev_stat.vs_alloc = 0;
866         svd->vdev_stat.vs_space = 0;
867         svd->vdev_stat.vs_dspace = 0;
868
869         for (t = 0; t < TXG_SIZE; t++) {
870                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
871                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
872                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
873                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
874                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
875                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
876         }
877
878         if (list_link_active(&svd->vdev_config_dirty_node)) {
879                 vdev_config_clean(svd);
880                 vdev_config_dirty(tvd);
881         }
882
883         if (list_link_active(&svd->vdev_state_dirty_node)) {
884                 vdev_state_clean(svd);
885                 vdev_state_dirty(tvd);
886         }
887
888         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
889         svd->vdev_deflate_ratio = 0;
890
891         tvd->vdev_islog = svd->vdev_islog;
892         svd->vdev_islog = 0;
893 }
894
895 static void
896 vdev_top_update(vdev_t *tvd, vdev_t *vd)
897 {
898         if (vd == NULL)
899                 return;
900
901         vd->vdev_top = tvd;
902
903         for (int c = 0; c < vd->vdev_children; c++)
904                 vdev_top_update(tvd, vd->vdev_child[c]);
905 }
906
907 /*
908  * Add a mirror/replacing vdev above an existing vdev.
909  */
910 vdev_t *
911 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
912 {
913         spa_t *spa = cvd->vdev_spa;
914         vdev_t *pvd = cvd->vdev_parent;
915         vdev_t *mvd;
916
917         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
918
919         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
920
921         mvd->vdev_asize = cvd->vdev_asize;
922         mvd->vdev_min_asize = cvd->vdev_min_asize;
923         mvd->vdev_max_asize = cvd->vdev_max_asize;
924         mvd->vdev_psize = cvd->vdev_psize;
925         mvd->vdev_ashift = cvd->vdev_ashift;
926         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
927         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
928         mvd->vdev_state = cvd->vdev_state;
929         mvd->vdev_crtxg = cvd->vdev_crtxg;
930
931         vdev_remove_child(pvd, cvd);
932         vdev_add_child(pvd, mvd);
933         cvd->vdev_id = mvd->vdev_children;
934         vdev_add_child(mvd, cvd);
935         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
936
937         if (mvd == mvd->vdev_top)
938                 vdev_top_transfer(cvd, mvd);
939
940         return (mvd);
941 }
942
943 /*
944  * Remove a 1-way mirror/replacing vdev from the tree.
945  */
946 void
947 vdev_remove_parent(vdev_t *cvd)
948 {
949         vdev_t *mvd = cvd->vdev_parent;
950         vdev_t *pvd = mvd->vdev_parent;
951
952         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
953
954         ASSERT(mvd->vdev_children == 1);
955         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
956             mvd->vdev_ops == &vdev_replacing_ops ||
957             mvd->vdev_ops == &vdev_spare_ops);
958         cvd->vdev_ashift = mvd->vdev_ashift;
959         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
960         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
961
962         vdev_remove_child(mvd, cvd);
963         vdev_remove_child(pvd, mvd);
964
965         /*
966          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
967          * Otherwise, we could have detached an offline device, and when we
968          * go to import the pool we'll think we have two top-level vdevs,
969          * instead of a different version of the same top-level vdev.
970          */
971         if (mvd->vdev_top == mvd) {
972                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
973                 cvd->vdev_orig_guid = cvd->vdev_guid;
974                 cvd->vdev_guid += guid_delta;
975                 cvd->vdev_guid_sum += guid_delta;
976         }
977         cvd->vdev_id = mvd->vdev_id;
978         vdev_add_child(pvd, cvd);
979         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
980
981         if (cvd == cvd->vdev_top)
982                 vdev_top_transfer(mvd, cvd);
983
984         ASSERT(mvd->vdev_children == 0);
985         vdev_free(mvd);
986 }
987
988 int
989 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
990 {
991         spa_t *spa = vd->vdev_spa;
992         objset_t *mos = spa->spa_meta_objset;
993         uint64_t m;
994         uint64_t oldc = vd->vdev_ms_count;
995         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
996         metaslab_t **mspp;
997         int error;
998
999         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1000
1001         /*
1002          * This vdev is not being allocated from yet or is a hole.
1003          */
1004         if (vd->vdev_ms_shift == 0)
1005                 return (0);
1006
1007         ASSERT(!vd->vdev_ishole);
1008
1009         ASSERT(oldc <= newc);
1010
1011         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1012
1013         if (oldc != 0) {
1014                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1015                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1016         }
1017
1018         vd->vdev_ms = mspp;
1019         vd->vdev_ms_count = newc;
1020
1021         for (m = oldc; m < newc; m++) {
1022                 uint64_t object = 0;
1023
1024                 /*
1025                  * vdev_ms_array may be 0 if we are creating the "fake"
1026                  * metaslabs for an indirect vdev for zdb's leak detection.
1027                  * See zdb_leak_init().
1028                  */
1029                 if (txg == 0 && vd->vdev_ms_array != 0) {
1030                         error = dmu_read(mos, vd->vdev_ms_array,
1031                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1032                             DMU_READ_PREFETCH);
1033                         if (error)
1034                                 return (error);
1035                 }
1036
1037                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1038                     &(vd->vdev_ms[m]));
1039                 if (error)
1040                         return (error);
1041         }
1042
1043         if (txg == 0)
1044                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1045
1046         /*
1047          * If the vdev is being removed we don't activate
1048          * the metaslabs since we want to ensure that no new
1049          * allocations are performed on this device.
1050          */
1051         if (oldc == 0 && !vd->vdev_removing)
1052                 metaslab_group_activate(vd->vdev_mg);
1053
1054         if (txg == 0)
1055                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1056
1057         return (0);
1058 }
1059
1060 void
1061 vdev_metaslab_fini(vdev_t *vd)
1062 {
1063         if (vd->vdev_ms != NULL) {
1064                 uint64_t count = vd->vdev_ms_count;
1065
1066                 metaslab_group_passivate(vd->vdev_mg);
1067                 for (uint64_t m = 0; m < count; m++) {
1068                         metaslab_t *msp = vd->vdev_ms[m];
1069
1070                         if (msp != NULL)
1071                                 metaslab_fini(msp);
1072                 }
1073                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1074                 vd->vdev_ms = NULL;
1075
1076                 vd->vdev_ms_count = 0;
1077         }
1078         ASSERT0(vd->vdev_ms_count);
1079 }
1080
1081 typedef struct vdev_probe_stats {
1082         boolean_t       vps_readable;
1083         boolean_t       vps_writeable;
1084         int             vps_flags;
1085 } vdev_probe_stats_t;
1086
1087 static void
1088 vdev_probe_done(zio_t *zio)
1089 {
1090         spa_t *spa = zio->io_spa;
1091         vdev_t *vd = zio->io_vd;
1092         vdev_probe_stats_t *vps = zio->io_private;
1093
1094         ASSERT(vd->vdev_probe_zio != NULL);
1095
1096         if (zio->io_type == ZIO_TYPE_READ) {
1097                 if (zio->io_error == 0)
1098                         vps->vps_readable = 1;
1099                 if (zio->io_error == 0 && spa_writeable(spa)) {
1100                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1101                             zio->io_offset, zio->io_size, zio->io_abd,
1102                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1103                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1104                 } else {
1105                         abd_free(zio->io_abd);
1106                 }
1107         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1108                 if (zio->io_error == 0)
1109                         vps->vps_writeable = 1;
1110                 abd_free(zio->io_abd);
1111         } else if (zio->io_type == ZIO_TYPE_NULL) {
1112                 zio_t *pio;
1113
1114                 vd->vdev_cant_read |= !vps->vps_readable;
1115                 vd->vdev_cant_write |= !vps->vps_writeable;
1116
1117                 if (vdev_readable(vd) &&
1118                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1119                         zio->io_error = 0;
1120                 } else {
1121                         ASSERT(zio->io_error != 0);
1122                         zfs_dbgmsg("failed probe on vdev %llu",
1123                             (longlong_t)vd->vdev_id);
1124                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1125                             spa, vd, NULL, 0, 0);
1126                         zio->io_error = SET_ERROR(ENXIO);
1127                 }
1128
1129                 mutex_enter(&vd->vdev_probe_lock);
1130                 ASSERT(vd->vdev_probe_zio == zio);
1131                 vd->vdev_probe_zio = NULL;
1132                 mutex_exit(&vd->vdev_probe_lock);
1133
1134                 zio_link_t *zl = NULL;
1135                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1136                         if (!vdev_accessible(vd, pio))
1137                                 pio->io_error = SET_ERROR(ENXIO);
1138
1139                 kmem_free(vps, sizeof (*vps));
1140         }
1141 }
1142
1143 /*
1144  * Determine whether this device is accessible.
1145  *
1146  * Read and write to several known locations: the pad regions of each
1147  * vdev label but the first, which we leave alone in case it contains
1148  * a VTOC.
1149  */
1150 zio_t *
1151 vdev_probe(vdev_t *vd, zio_t *zio)
1152 {
1153         spa_t *spa = vd->vdev_spa;
1154         vdev_probe_stats_t *vps = NULL;
1155         zio_t *pio;
1156
1157         ASSERT(vd->vdev_ops->vdev_op_leaf);
1158
1159         /*
1160          * Don't probe the probe.
1161          */
1162         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1163                 return (NULL);
1164
1165         /*
1166          * To prevent 'probe storms' when a device fails, we create
1167          * just one probe i/o at a time.  All zios that want to probe
1168          * this vdev will become parents of the probe io.
1169          */
1170         mutex_enter(&vd->vdev_probe_lock);
1171
1172         if ((pio = vd->vdev_probe_zio) == NULL) {
1173                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1174
1175                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1176                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1177                     ZIO_FLAG_TRYHARD;
1178
1179                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1180                         /*
1181                          * vdev_cant_read and vdev_cant_write can only
1182                          * transition from TRUE to FALSE when we have the
1183                          * SCL_ZIO lock as writer; otherwise they can only
1184                          * transition from FALSE to TRUE.  This ensures that
1185                          * any zio looking at these values can assume that
1186                          * failures persist for the life of the I/O.  That's
1187                          * important because when a device has intermittent
1188                          * connectivity problems, we want to ensure that
1189                          * they're ascribed to the device (ENXIO) and not
1190                          * the zio (EIO).
1191                          *
1192                          * Since we hold SCL_ZIO as writer here, clear both
1193                          * values so the probe can reevaluate from first
1194                          * principles.
1195                          */
1196                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1197                         vd->vdev_cant_read = B_FALSE;
1198                         vd->vdev_cant_write = B_FALSE;
1199                 }
1200
1201                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1202                     vdev_probe_done, vps,
1203                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1204
1205                 /*
1206                  * We can't change the vdev state in this context, so we
1207                  * kick off an async task to do it on our behalf.
1208                  */
1209                 if (zio != NULL) {
1210                         vd->vdev_probe_wanted = B_TRUE;
1211                         spa_async_request(spa, SPA_ASYNC_PROBE);
1212                 }
1213         }
1214
1215         if (zio != NULL)
1216                 zio_add_child(zio, pio);
1217
1218         mutex_exit(&vd->vdev_probe_lock);
1219
1220         if (vps == NULL) {
1221                 ASSERT(zio != NULL);
1222                 return (NULL);
1223         }
1224
1225         for (int l = 1; l < VDEV_LABELS; l++) {
1226                 zio_nowait(zio_read_phys(pio, vd,
1227                     vdev_label_offset(vd->vdev_psize, l,
1228                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1229                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1230                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1231                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1232         }
1233
1234         if (zio == NULL)
1235                 return (pio);
1236
1237         zio_nowait(pio);
1238         return (NULL);
1239 }
1240
1241 static void
1242 vdev_open_child(void *arg)
1243 {
1244         vdev_t *vd = arg;
1245
1246         vd->vdev_open_thread = curthread;
1247         vd->vdev_open_error = vdev_open(vd);
1248         vd->vdev_open_thread = NULL;
1249 }
1250
1251 boolean_t
1252 vdev_uses_zvols(vdev_t *vd)
1253 {
1254         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1255             strlen(ZVOL_DIR)) == 0)
1256                 return (B_TRUE);
1257         for (int c = 0; c < vd->vdev_children; c++)
1258                 if (vdev_uses_zvols(vd->vdev_child[c]))
1259                         return (B_TRUE);
1260         return (B_FALSE);
1261 }
1262
1263 void
1264 vdev_open_children(vdev_t *vd)
1265 {
1266         taskq_t *tq;
1267         int children = vd->vdev_children;
1268
1269         /*
1270          * in order to handle pools on top of zvols, do the opens
1271          * in a single thread so that the same thread holds the
1272          * spa_namespace_lock
1273          */
1274         if (B_TRUE || vdev_uses_zvols(vd)) {
1275                 for (int c = 0; c < children; c++)
1276                         vd->vdev_child[c]->vdev_open_error =
1277                             vdev_open(vd->vdev_child[c]);
1278                 return;
1279         }
1280         tq = taskq_create("vdev_open", children, minclsyspri,
1281             children, children, TASKQ_PREPOPULATE);
1282
1283         for (int c = 0; c < children; c++)
1284                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1285                     TQ_SLEEP) != 0);
1286
1287         taskq_destroy(tq);
1288 }
1289
1290 /*
1291  * Compute the raidz-deflation ratio.  Note, we hard-code
1292  * in 128k (1 << 17) because it is the "typical" blocksize.
1293  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1294  * otherwise it would inconsistently account for existing bp's.
1295  */
1296 static void
1297 vdev_set_deflate_ratio(vdev_t *vd)
1298 {
1299         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1300                 vd->vdev_deflate_ratio = (1 << 17) /
1301                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1302         }
1303 }
1304
1305 /*
1306  * Prepare a virtual device for access.
1307  */
1308 int
1309 vdev_open(vdev_t *vd)
1310 {
1311         spa_t *spa = vd->vdev_spa;
1312         int error;
1313         uint64_t osize = 0;
1314         uint64_t max_osize = 0;
1315         uint64_t asize, max_asize, psize;
1316         uint64_t logical_ashift = 0;
1317         uint64_t physical_ashift = 0;
1318
1319         ASSERT(vd->vdev_open_thread == curthread ||
1320             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1321         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1322             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1323             vd->vdev_state == VDEV_STATE_OFFLINE);
1324
1325         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1326         vd->vdev_cant_read = B_FALSE;
1327         vd->vdev_cant_write = B_FALSE;
1328         vd->vdev_notrim = B_FALSE;
1329         vd->vdev_min_asize = vdev_get_min_asize(vd);
1330
1331         /*
1332          * If this vdev is not removed, check its fault status.  If it's
1333          * faulted, bail out of the open.
1334          */
1335         if (!vd->vdev_removed && vd->vdev_faulted) {
1336                 ASSERT(vd->vdev_children == 0);
1337                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1338                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1339                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1340                     vd->vdev_label_aux);
1341                 return (SET_ERROR(ENXIO));
1342         } else if (vd->vdev_offline) {
1343                 ASSERT(vd->vdev_children == 0);
1344                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1345                 return (SET_ERROR(ENXIO));
1346         }
1347
1348         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1349             &logical_ashift, &physical_ashift);
1350
1351         /*
1352          * Reset the vdev_reopening flag so that we actually close
1353          * the vdev on error.
1354          */
1355         vd->vdev_reopening = B_FALSE;
1356         if (zio_injection_enabled && error == 0)
1357                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1358
1359         if (error) {
1360                 if (vd->vdev_removed &&
1361                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1362                         vd->vdev_removed = B_FALSE;
1363
1364                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1365                     vd->vdev_stat.vs_aux);
1366                 return (error);
1367         }
1368
1369         vd->vdev_removed = B_FALSE;
1370
1371         /*
1372          * Recheck the faulted flag now that we have confirmed that
1373          * the vdev is accessible.  If we're faulted, bail.
1374          */
1375         if (vd->vdev_faulted) {
1376                 ASSERT(vd->vdev_children == 0);
1377                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1378                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1379                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1380                     vd->vdev_label_aux);
1381                 return (SET_ERROR(ENXIO));
1382         }
1383
1384         if (vd->vdev_degraded) {
1385                 ASSERT(vd->vdev_children == 0);
1386                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1387                     VDEV_AUX_ERR_EXCEEDED);
1388         } else {
1389                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1390         }
1391
1392         /*
1393          * For hole or missing vdevs we just return success.
1394          */
1395         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1396                 return (0);
1397
1398         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1399                 trim_map_create(vd);
1400
1401         for (int c = 0; c < vd->vdev_children; c++) {
1402                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1403                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1404                             VDEV_AUX_NONE);
1405                         break;
1406                 }
1407         }
1408
1409         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1410         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1411
1412         if (vd->vdev_children == 0) {
1413                 if (osize < SPA_MINDEVSIZE) {
1414                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1415                             VDEV_AUX_TOO_SMALL);
1416                         return (SET_ERROR(EOVERFLOW));
1417                 }
1418                 psize = osize;
1419                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1420                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1421                     VDEV_LABEL_END_SIZE);
1422         } else {
1423                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1424                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1425                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1426                             VDEV_AUX_TOO_SMALL);
1427                         return (SET_ERROR(EOVERFLOW));
1428                 }
1429                 psize = 0;
1430                 asize = osize;
1431                 max_asize = max_osize;
1432         }
1433
1434         vd->vdev_psize = psize;
1435
1436         /*
1437          * Make sure the allocatable size hasn't shrunk too much.
1438          */
1439         if (asize < vd->vdev_min_asize) {
1440                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1441                     VDEV_AUX_BAD_LABEL);
1442                 return (SET_ERROR(EINVAL));
1443         }
1444
1445         vd->vdev_physical_ashift =
1446             MAX(physical_ashift, vd->vdev_physical_ashift);
1447         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1448         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1449
1450         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1451                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1452                     VDEV_AUX_ASHIFT_TOO_BIG);
1453                 return (EINVAL);
1454         }
1455
1456         if (vd->vdev_asize == 0) {
1457                 /*
1458                  * This is the first-ever open, so use the computed values.
1459                  * For testing purposes, a higher ashift can be requested.
1460                  */
1461                 vd->vdev_asize = asize;
1462                 vd->vdev_max_asize = max_asize;
1463         } else {
1464                 /*
1465                  * Make sure the alignment requirement hasn't increased.
1466                  */
1467                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1468                     vd->vdev_ops->vdev_op_leaf) {
1469                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1470                             VDEV_AUX_BAD_LABEL);
1471                         return (EINVAL);
1472                 }
1473                 vd->vdev_max_asize = max_asize;
1474         }
1475
1476         /*
1477          * If all children are healthy we update asize if either:
1478          * The asize has increased, due to a device expansion caused by dynamic
1479          * LUN growth or vdev replacement, and automatic expansion is enabled;
1480          * making the additional space available.
1481          *
1482          * The asize has decreased, due to a device shrink usually caused by a
1483          * vdev replace with a smaller device. This ensures that calculations
1484          * based of max_asize and asize e.g. esize are always valid. It's safe
1485          * to do this as we've already validated that asize is greater than
1486          * vdev_min_asize.
1487          */
1488         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1489             ((asize > vd->vdev_asize &&
1490             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1491             (asize < vd->vdev_asize)))
1492                 vd->vdev_asize = asize;
1493
1494         vdev_set_min_asize(vd);
1495
1496         /*
1497          * Ensure we can issue some IO before declaring the
1498          * vdev open for business.
1499          */
1500         if (vd->vdev_ops->vdev_op_leaf &&
1501             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1502                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1503                     VDEV_AUX_ERR_EXCEEDED);
1504                 return (error);
1505         }
1506
1507         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1508             !vd->vdev_isl2cache && !vd->vdev_islog) {
1509                 if (vd->vdev_ashift > spa->spa_max_ashift)
1510                         spa->spa_max_ashift = vd->vdev_ashift;
1511                 if (vd->vdev_ashift < spa->spa_min_ashift)
1512                         spa->spa_min_ashift = vd->vdev_ashift;
1513         }
1514
1515         /*
1516          * Track the min and max ashift values for normal data devices.
1517          */
1518         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1519             !vd->vdev_islog && vd->vdev_aux == NULL) {
1520                 if (vd->vdev_ashift > spa->spa_max_ashift)
1521                         spa->spa_max_ashift = vd->vdev_ashift;
1522                 if (vd->vdev_ashift < spa->spa_min_ashift)
1523                         spa->spa_min_ashift = vd->vdev_ashift;
1524         }
1525
1526         /*
1527          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1528          * resilver.  But don't do this if we are doing a reopen for a scrub,
1529          * since this would just restart the scrub we are already doing.
1530          */
1531         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1532             vdev_resilver_needed(vd, NULL, NULL))
1533                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1534
1535         return (0);
1536 }
1537
1538 /*
1539  * Called once the vdevs are all opened, this routine validates the label
1540  * contents.  This needs to be done before vdev_load() so that we don't
1541  * inadvertently do repair I/Os to the wrong device.
1542  *
1543  * If 'strict' is false ignore the spa guid check. This is necessary because
1544  * if the machine crashed during a re-guid the new guid might have been written
1545  * to all of the vdev labels, but not the cached config. The strict check
1546  * will be performed when the pool is opened again using the mos config.
1547  *
1548  * This function will only return failure if one of the vdevs indicates that it
1549  * has since been destroyed or exported.  This is only possible if
1550  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1551  * will be updated but the function will return 0.
1552  */
1553 int
1554 vdev_validate(vdev_t *vd, boolean_t strict)
1555 {
1556         spa_t *spa = vd->vdev_spa;
1557         nvlist_t *label;
1558         uint64_t guid = 0, top_guid;
1559         uint64_t state;
1560
1561         for (int c = 0; c < vd->vdev_children; c++)
1562                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1563                         return (SET_ERROR(EBADF));
1564
1565         /*
1566          * If the device has already failed, or was marked offline, don't do
1567          * any further validation.  Otherwise, label I/O will fail and we will
1568          * overwrite the previous state.
1569          */
1570         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1571                 uint64_t aux_guid = 0;
1572                 nvlist_t *nvl;
1573                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1574                     spa_last_synced_txg(spa) : -1ULL;
1575
1576                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1577                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1578                             VDEV_AUX_BAD_LABEL);
1579                         return (0);
1580                 }
1581
1582                 /*
1583                  * Determine if this vdev has been split off into another
1584                  * pool.  If so, then refuse to open it.
1585                  */
1586                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1587                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1588                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1589                             VDEV_AUX_SPLIT_POOL);
1590                         nvlist_free(label);
1591                         return (0);
1592                 }
1593
1594                 if (strict && (nvlist_lookup_uint64(label,
1595                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1596                     guid != spa_guid(spa))) {
1597                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1598                             VDEV_AUX_CORRUPT_DATA);
1599                         nvlist_free(label);
1600                         return (0);
1601                 }
1602
1603                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1604                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1605                     &aux_guid) != 0)
1606                         aux_guid = 0;
1607
1608                 /*
1609                  * If this vdev just became a top-level vdev because its
1610                  * sibling was detached, it will have adopted the parent's
1611                  * vdev guid -- but the label may or may not be on disk yet.
1612                  * Fortunately, either version of the label will have the
1613                  * same top guid, so if we're a top-level vdev, we can
1614                  * safely compare to that instead.
1615                  *
1616                  * If we split this vdev off instead, then we also check the
1617                  * original pool's guid.  We don't want to consider the vdev
1618                  * corrupt if it is partway through a split operation.
1619                  */
1620                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1621                     &guid) != 0 ||
1622                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1623                     &top_guid) != 0 ||
1624                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1625                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1626                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1627                             VDEV_AUX_CORRUPT_DATA);
1628                         nvlist_free(label);
1629                         return (0);
1630                 }
1631
1632                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1633                     &state) != 0) {
1634                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1635                             VDEV_AUX_CORRUPT_DATA);
1636                         nvlist_free(label);
1637                         return (0);
1638                 }
1639
1640                 nvlist_free(label);
1641
1642                 /*
1643                  * If this is a verbatim import, no need to check the
1644                  * state of the pool.
1645                  */
1646                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1647                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1648                     state != POOL_STATE_ACTIVE)
1649                         return (SET_ERROR(EBADF));
1650
1651                 /*
1652                  * If we were able to open and validate a vdev that was
1653                  * previously marked permanently unavailable, clear that state
1654                  * now.
1655                  */
1656                 if (vd->vdev_not_present)
1657                         vd->vdev_not_present = 0;
1658         }
1659
1660         return (0);
1661 }
1662
1663 /*
1664  * Close a virtual device.
1665  */
1666 void
1667 vdev_close(vdev_t *vd)
1668 {
1669         spa_t *spa = vd->vdev_spa;
1670         vdev_t *pvd = vd->vdev_parent;
1671
1672         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1673
1674         /*
1675          * If our parent is reopening, then we are as well, unless we are
1676          * going offline.
1677          */
1678         if (pvd != NULL && pvd->vdev_reopening)
1679                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1680
1681         vd->vdev_ops->vdev_op_close(vd);
1682
1683         vdev_cache_purge(vd);
1684
1685         if (vd->vdev_ops->vdev_op_leaf)
1686                 trim_map_destroy(vd);
1687
1688         /*
1689          * We record the previous state before we close it, so that if we are
1690          * doing a reopen(), we don't generate FMA ereports if we notice that
1691          * it's still faulted.
1692          */
1693         vd->vdev_prevstate = vd->vdev_state;
1694
1695         if (vd->vdev_offline)
1696                 vd->vdev_state = VDEV_STATE_OFFLINE;
1697         else
1698                 vd->vdev_state = VDEV_STATE_CLOSED;
1699         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1700 }
1701
1702 void
1703 vdev_hold(vdev_t *vd)
1704 {
1705         spa_t *spa = vd->vdev_spa;
1706
1707         ASSERT(spa_is_root(spa));
1708         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1709                 return;
1710
1711         for (int c = 0; c < vd->vdev_children; c++)
1712                 vdev_hold(vd->vdev_child[c]);
1713
1714         if (vd->vdev_ops->vdev_op_leaf)
1715                 vd->vdev_ops->vdev_op_hold(vd);
1716 }
1717
1718 void
1719 vdev_rele(vdev_t *vd)
1720 {
1721         spa_t *spa = vd->vdev_spa;
1722
1723         ASSERT(spa_is_root(spa));
1724         for (int c = 0; c < vd->vdev_children; c++)
1725                 vdev_rele(vd->vdev_child[c]);
1726
1727         if (vd->vdev_ops->vdev_op_leaf)
1728                 vd->vdev_ops->vdev_op_rele(vd);
1729 }
1730
1731 /*
1732  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1733  * reopen leaf vdevs which had previously been opened as they might deadlock
1734  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1735  * If the leaf has never been opened then open it, as usual.
1736  */
1737 void
1738 vdev_reopen(vdev_t *vd)
1739 {
1740         spa_t *spa = vd->vdev_spa;
1741
1742         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1743
1744         /* set the reopening flag unless we're taking the vdev offline */
1745         vd->vdev_reopening = !vd->vdev_offline;
1746         vdev_close(vd);
1747         (void) vdev_open(vd);
1748
1749         /*
1750          * Call vdev_validate() here to make sure we have the same device.
1751          * Otherwise, a device with an invalid label could be successfully
1752          * opened in response to vdev_reopen().
1753          */
1754         if (vd->vdev_aux) {
1755                 (void) vdev_validate_aux(vd);
1756                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1757                     vd->vdev_aux == &spa->spa_l2cache &&
1758                     !l2arc_vdev_present(vd))
1759                         l2arc_add_vdev(spa, vd);
1760         } else {
1761                 (void) vdev_validate(vd, B_TRUE);
1762         }
1763
1764         /*
1765          * Reassess parent vdev's health.
1766          */
1767         vdev_propagate_state(vd);
1768 }
1769
1770 int
1771 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1772 {
1773         int error;
1774
1775         /*
1776          * Normally, partial opens (e.g. of a mirror) are allowed.
1777          * For a create, however, we want to fail the request if
1778          * there are any components we can't open.
1779          */
1780         error = vdev_open(vd);
1781
1782         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1783                 vdev_close(vd);
1784                 return (error ? error : ENXIO);
1785         }
1786
1787         /*
1788          * Recursively load DTLs and initialize all labels.
1789          */
1790         if ((error = vdev_dtl_load(vd)) != 0 ||
1791             (error = vdev_label_init(vd, txg, isreplacing ?
1792             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1793                 vdev_close(vd);
1794                 return (error);
1795         }
1796
1797         return (0);
1798 }
1799
1800 void
1801 vdev_metaslab_set_size(vdev_t *vd)
1802 {
1803         /*
1804          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1805          */
1806         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1807         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1808 }
1809
1810 /*
1811  * Maximize performance by inflating the configured ashift for top level
1812  * vdevs to be as close to the physical ashift as possible while maintaining
1813  * administrator defined limits and ensuring it doesn't go below the
1814  * logical ashift.
1815  */
1816 void
1817 vdev_ashift_optimize(vdev_t *vd)
1818 {
1819         if (vd == vd->vdev_top) {
1820                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1821                         vd->vdev_ashift = MIN(
1822                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1823                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1824                 } else {
1825                         /*
1826                          * Unusual case where logical ashift > physical ashift
1827                          * so we can't cap the calculated ashift based on max
1828                          * ashift as that would cause failures.
1829                          * We still check if we need to increase it to match
1830                          * the min ashift.
1831                          */
1832                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1833                             vd->vdev_ashift);
1834                 }
1835         }
1836 }
1837
1838 void
1839 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1840 {
1841         ASSERT(vd == vd->vdev_top);
1842         /* indirect vdevs don't have metaslabs or dtls */
1843         ASSERT(vdev_is_concrete(vd) || flags == 0);
1844         ASSERT(ISP2(flags));
1845         ASSERT(spa_writeable(vd->vdev_spa));
1846
1847         if (flags & VDD_METASLAB)
1848                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1849
1850         if (flags & VDD_DTL)
1851                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1852
1853         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1854 }
1855
1856 void
1857 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1858 {
1859         for (int c = 0; c < vd->vdev_children; c++)
1860                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1861
1862         if (vd->vdev_ops->vdev_op_leaf)
1863                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1864 }
1865
1866 /*
1867  * DTLs.
1868  *
1869  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1870  * the vdev has less than perfect replication.  There are four kinds of DTL:
1871  *
1872  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1873  *
1874  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1875  *
1876  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1877  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1878  *      txgs that was scrubbed.
1879  *
1880  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1881  *      persistent errors or just some device being offline.
1882  *      Unlike the other three, the DTL_OUTAGE map is not generally
1883  *      maintained; it's only computed when needed, typically to
1884  *      determine whether a device can be detached.
1885  *
1886  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1887  * either has the data or it doesn't.
1888  *
1889  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1890  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1891  * if any child is less than fully replicated, then so is its parent.
1892  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1893  * comprising only those txgs which appear in 'maxfaults' or more children;
1894  * those are the txgs we don't have enough replication to read.  For example,
1895  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1896  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1897  * two child DTL_MISSING maps.
1898  *
1899  * It should be clear from the above that to compute the DTLs and outage maps
1900  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1901  * Therefore, that is all we keep on disk.  When loading the pool, or after
1902  * a configuration change, we generate all other DTLs from first principles.
1903  */
1904 void
1905 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1906 {
1907         range_tree_t *rt = vd->vdev_dtl[t];
1908
1909         ASSERT(t < DTL_TYPES);
1910         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1911         ASSERT(spa_writeable(vd->vdev_spa));
1912
1913         mutex_enter(&vd->vdev_dtl_lock);
1914         if (!range_tree_contains(rt, txg, size))
1915                 range_tree_add(rt, txg, size);
1916         mutex_exit(&vd->vdev_dtl_lock);
1917 }
1918
1919 boolean_t
1920 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1921 {
1922         range_tree_t *rt = vd->vdev_dtl[t];
1923         boolean_t dirty = B_FALSE;
1924
1925         ASSERT(t < DTL_TYPES);
1926         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1927
1928         /*
1929          * While we are loading the pool, the DTLs have not been loaded yet.
1930          * Ignore the DTLs and try all devices.  This avoids a recursive
1931          * mutex enter on the vdev_dtl_lock, and also makes us try hard
1932          * when loading the pool (relying on the checksum to ensure that
1933          * we get the right data -- note that we while loading, we are
1934          * only reading the MOS, which is always checksummed).
1935          */
1936         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
1937                 return (B_FALSE);
1938
1939         mutex_enter(&vd->vdev_dtl_lock);
1940         if (range_tree_space(rt) != 0)
1941                 dirty = range_tree_contains(rt, txg, size);
1942         mutex_exit(&vd->vdev_dtl_lock);
1943
1944         return (dirty);
1945 }
1946
1947 boolean_t
1948 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1949 {
1950         range_tree_t *rt = vd->vdev_dtl[t];
1951         boolean_t empty;
1952
1953         mutex_enter(&vd->vdev_dtl_lock);
1954         empty = (range_tree_space(rt) == 0);
1955         mutex_exit(&vd->vdev_dtl_lock);
1956
1957         return (empty);
1958 }
1959
1960 /*
1961  * Returns the lowest txg in the DTL range.
1962  */
1963 static uint64_t
1964 vdev_dtl_min(vdev_t *vd)
1965 {
1966         range_seg_t *rs;
1967
1968         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1969         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1970         ASSERT0(vd->vdev_children);
1971
1972         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1973         return (rs->rs_start - 1);
1974 }
1975
1976 /*
1977  * Returns the highest txg in the DTL.
1978  */
1979 static uint64_t
1980 vdev_dtl_max(vdev_t *vd)
1981 {
1982         range_seg_t *rs;
1983
1984         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1985         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1986         ASSERT0(vd->vdev_children);
1987
1988         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1989         return (rs->rs_end);
1990 }
1991
1992 /*
1993  * Determine if a resilvering vdev should remove any DTL entries from
1994  * its range. If the vdev was resilvering for the entire duration of the
1995  * scan then it should excise that range from its DTLs. Otherwise, this
1996  * vdev is considered partially resilvered and should leave its DTL
1997  * entries intact. The comment in vdev_dtl_reassess() describes how we
1998  * excise the DTLs.
1999  */
2000 static boolean_t
2001 vdev_dtl_should_excise(vdev_t *vd)
2002 {
2003         spa_t *spa = vd->vdev_spa;
2004         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2005
2006         ASSERT0(scn->scn_phys.scn_errors);
2007         ASSERT0(vd->vdev_children);
2008
2009         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2010                 return (B_FALSE);
2011
2012         if (vd->vdev_resilver_txg == 0 ||
2013             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
2014                 return (B_TRUE);
2015
2016         /*
2017          * When a resilver is initiated the scan will assign the scn_max_txg
2018          * value to the highest txg value that exists in all DTLs. If this
2019          * device's max DTL is not part of this scan (i.e. it is not in
2020          * the range (scn_min_txg, scn_max_txg] then it is not eligible
2021          * for excision.
2022          */
2023         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2024                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2025                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2026                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2027                 return (B_TRUE);
2028         }
2029         return (B_FALSE);
2030 }
2031
2032 /*
2033  * Reassess DTLs after a config change or scrub completion.
2034  */
2035 void
2036 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2037 {
2038         spa_t *spa = vd->vdev_spa;
2039         avl_tree_t reftree;
2040         int minref;
2041
2042         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2043
2044         for (int c = 0; c < vd->vdev_children; c++)
2045                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2046                     scrub_txg, scrub_done);
2047
2048         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2049                 return;
2050
2051         if (vd->vdev_ops->vdev_op_leaf) {
2052                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2053
2054                 mutex_enter(&vd->vdev_dtl_lock);
2055
2056                 /*
2057                  * If we've completed a scan cleanly then determine
2058                  * if this vdev should remove any DTLs. We only want to
2059                  * excise regions on vdevs that were available during
2060                  * the entire duration of this scan.
2061                  */
2062                 if (scrub_txg != 0 &&
2063                     (spa->spa_scrub_started ||
2064                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2065                     vdev_dtl_should_excise(vd)) {
2066                         /*
2067                          * We completed a scrub up to scrub_txg.  If we
2068                          * did it without rebooting, then the scrub dtl
2069                          * will be valid, so excise the old region and
2070                          * fold in the scrub dtl.  Otherwise, leave the
2071                          * dtl as-is if there was an error.
2072                          *
2073                          * There's little trick here: to excise the beginning
2074                          * of the DTL_MISSING map, we put it into a reference
2075                          * tree and then add a segment with refcnt -1 that
2076                          * covers the range [0, scrub_txg).  This means
2077                          * that each txg in that range has refcnt -1 or 0.
2078                          * We then add DTL_SCRUB with a refcnt of 2, so that
2079                          * entries in the range [0, scrub_txg) will have a
2080                          * positive refcnt -- either 1 or 2.  We then convert
2081                          * the reference tree into the new DTL_MISSING map.
2082                          */
2083                         space_reftree_create(&reftree);
2084                         space_reftree_add_map(&reftree,
2085                             vd->vdev_dtl[DTL_MISSING], 1);
2086                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2087                         space_reftree_add_map(&reftree,
2088                             vd->vdev_dtl[DTL_SCRUB], 2);
2089                         space_reftree_generate_map(&reftree,
2090                             vd->vdev_dtl[DTL_MISSING], 1);
2091                         space_reftree_destroy(&reftree);
2092                 }
2093                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2094                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2095                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2096                 if (scrub_done)
2097                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2098                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2099                 if (!vdev_readable(vd))
2100                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2101                 else
2102                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2103                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2104
2105                 /*
2106                  * If the vdev was resilvering and no longer has any
2107                  * DTLs then reset its resilvering flag and dirty
2108                  * the top level so that we persist the change.
2109                  */
2110                 if (vd->vdev_resilver_txg != 0 &&
2111                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2112                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2113                         vd->vdev_resilver_txg = 0;
2114                         vdev_config_dirty(vd->vdev_top);
2115                 }
2116
2117                 mutex_exit(&vd->vdev_dtl_lock);
2118
2119                 if (txg != 0)
2120                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2121                 return;
2122         }
2123
2124         mutex_enter(&vd->vdev_dtl_lock);
2125         for (int t = 0; t < DTL_TYPES; t++) {
2126                 /* account for child's outage in parent's missing map */
2127                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2128                 if (t == DTL_SCRUB)
2129                         continue;                       /* leaf vdevs only */
2130                 if (t == DTL_PARTIAL)
2131                         minref = 1;                     /* i.e. non-zero */
2132                 else if (vd->vdev_nparity != 0)
2133                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2134                 else
2135                         minref = vd->vdev_children;     /* any kind of mirror */
2136                 space_reftree_create(&reftree);
2137                 for (int c = 0; c < vd->vdev_children; c++) {
2138                         vdev_t *cvd = vd->vdev_child[c];
2139                         mutex_enter(&cvd->vdev_dtl_lock);
2140                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2141                         mutex_exit(&cvd->vdev_dtl_lock);
2142                 }
2143                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2144                 space_reftree_destroy(&reftree);
2145         }
2146         mutex_exit(&vd->vdev_dtl_lock);
2147 }
2148
2149 int
2150 vdev_dtl_load(vdev_t *vd)
2151 {
2152         spa_t *spa = vd->vdev_spa;
2153         objset_t *mos = spa->spa_meta_objset;
2154         int error = 0;
2155
2156         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2157                 ASSERT(vdev_is_concrete(vd));
2158
2159                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2160                     vd->vdev_dtl_object, 0, -1ULL, 0);
2161                 if (error)
2162                         return (error);
2163                 ASSERT(vd->vdev_dtl_sm != NULL);
2164
2165                 mutex_enter(&vd->vdev_dtl_lock);
2166
2167                 /*
2168                  * Now that we've opened the space_map we need to update
2169                  * the in-core DTL.
2170                  */
2171                 space_map_update(vd->vdev_dtl_sm);
2172
2173                 error = space_map_load(vd->vdev_dtl_sm,
2174                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2175                 mutex_exit(&vd->vdev_dtl_lock);
2176
2177                 return (error);
2178         }
2179
2180         for (int c = 0; c < vd->vdev_children; c++) {
2181                 error = vdev_dtl_load(vd->vdev_child[c]);
2182                 if (error != 0)
2183                         break;
2184         }
2185
2186         return (error);
2187 }
2188
2189 void
2190 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2191 {
2192         spa_t *spa = vd->vdev_spa;
2193
2194         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2195         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2196             zapobj, tx));
2197 }
2198
2199 uint64_t
2200 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2201 {
2202         spa_t *spa = vd->vdev_spa;
2203         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2204             DMU_OT_NONE, 0, tx);
2205
2206         ASSERT(zap != 0);
2207         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2208             zap, tx));
2209
2210         return (zap);
2211 }
2212
2213 void
2214 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2215 {
2216         if (vd->vdev_ops != &vdev_hole_ops &&
2217             vd->vdev_ops != &vdev_missing_ops &&
2218             vd->vdev_ops != &vdev_root_ops &&
2219             !vd->vdev_top->vdev_removing) {
2220                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2221                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2222                 }
2223                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2224                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2225                 }
2226         }
2227         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2228                 vdev_construct_zaps(vd->vdev_child[i], tx);
2229         }
2230 }
2231
2232 void
2233 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2234 {
2235         spa_t *spa = vd->vdev_spa;
2236         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2237         objset_t *mos = spa->spa_meta_objset;
2238         range_tree_t *rtsync;
2239         dmu_tx_t *tx;
2240         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2241
2242         ASSERT(vdev_is_concrete(vd));
2243         ASSERT(vd->vdev_ops->vdev_op_leaf);
2244
2245         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2246
2247         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2248                 mutex_enter(&vd->vdev_dtl_lock);
2249                 space_map_free(vd->vdev_dtl_sm, tx);
2250                 space_map_close(vd->vdev_dtl_sm);
2251                 vd->vdev_dtl_sm = NULL;
2252                 mutex_exit(&vd->vdev_dtl_lock);
2253
2254                 /*
2255                  * We only destroy the leaf ZAP for detached leaves or for
2256                  * removed log devices. Removed data devices handle leaf ZAP
2257                  * cleanup later, once cancellation is no longer possible.
2258                  */
2259                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2260                     vd->vdev_top->vdev_islog)) {
2261                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2262                         vd->vdev_leaf_zap = 0;
2263                 }
2264
2265                 dmu_tx_commit(tx);
2266                 return;
2267         }
2268
2269         if (vd->vdev_dtl_sm == NULL) {
2270                 uint64_t new_object;
2271
2272                 new_object = space_map_alloc(mos, tx);
2273                 VERIFY3U(new_object, !=, 0);
2274
2275                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2276                     0, -1ULL, 0));
2277                 ASSERT(vd->vdev_dtl_sm != NULL);
2278         }
2279
2280         rtsync = range_tree_create(NULL, NULL);
2281
2282         mutex_enter(&vd->vdev_dtl_lock);
2283         range_tree_walk(rt, range_tree_add, rtsync);
2284         mutex_exit(&vd->vdev_dtl_lock);
2285
2286         space_map_truncate(vd->vdev_dtl_sm, tx);
2287         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2288         range_tree_vacate(rtsync, NULL, NULL);
2289
2290         range_tree_destroy(rtsync);
2291
2292         /*
2293          * If the object for the space map has changed then dirty
2294          * the top level so that we update the config.
2295          */
2296         if (object != space_map_object(vd->vdev_dtl_sm)) {
2297                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2298                     "new object %llu", txg, spa_name(spa), object,
2299                     space_map_object(vd->vdev_dtl_sm));
2300                 vdev_config_dirty(vd->vdev_top);
2301         }
2302
2303         dmu_tx_commit(tx);
2304
2305         mutex_enter(&vd->vdev_dtl_lock);
2306         space_map_update(vd->vdev_dtl_sm);
2307         mutex_exit(&vd->vdev_dtl_lock);
2308 }
2309
2310 /*
2311  * Determine whether the specified vdev can be offlined/detached/removed
2312  * without losing data.
2313  */
2314 boolean_t
2315 vdev_dtl_required(vdev_t *vd)
2316 {
2317         spa_t *spa = vd->vdev_spa;
2318         vdev_t *tvd = vd->vdev_top;
2319         uint8_t cant_read = vd->vdev_cant_read;
2320         boolean_t required;
2321
2322         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2323
2324         if (vd == spa->spa_root_vdev || vd == tvd)
2325                 return (B_TRUE);
2326
2327         /*
2328          * Temporarily mark the device as unreadable, and then determine
2329          * whether this results in any DTL outages in the top-level vdev.
2330          * If not, we can safely offline/detach/remove the device.
2331          */
2332         vd->vdev_cant_read = B_TRUE;
2333         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2334         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2335         vd->vdev_cant_read = cant_read;
2336         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2337
2338         if (!required && zio_injection_enabled)
2339                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2340
2341         return (required);
2342 }
2343
2344 /*
2345  * Determine if resilver is needed, and if so the txg range.
2346  */
2347 boolean_t
2348 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2349 {
2350         boolean_t needed = B_FALSE;
2351         uint64_t thismin = UINT64_MAX;
2352         uint64_t thismax = 0;
2353
2354         if (vd->vdev_children == 0) {
2355                 mutex_enter(&vd->vdev_dtl_lock);
2356                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2357                     vdev_writeable(vd)) {
2358
2359                         thismin = vdev_dtl_min(vd);
2360                         thismax = vdev_dtl_max(vd);
2361                         needed = B_TRUE;
2362                 }
2363                 mutex_exit(&vd->vdev_dtl_lock);
2364         } else {
2365                 for (int c = 0; c < vd->vdev_children; c++) {
2366                         vdev_t *cvd = vd->vdev_child[c];
2367                         uint64_t cmin, cmax;
2368
2369                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2370                                 thismin = MIN(thismin, cmin);
2371                                 thismax = MAX(thismax, cmax);
2372                                 needed = B_TRUE;
2373                         }
2374                 }
2375         }
2376
2377         if (needed && minp) {
2378                 *minp = thismin;
2379                 *maxp = thismax;
2380         }
2381         return (needed);
2382 }
2383
2384 int
2385 vdev_load(vdev_t *vd)
2386 {
2387         int error = 0;
2388         /*
2389          * Recursively load all children.
2390          */
2391         for (int c = 0; c < vd->vdev_children; c++) {
2392                 error = vdev_load(vd->vdev_child[c]);
2393                 if (error != 0) {
2394                         return (error);
2395                 }
2396         }
2397
2398         vdev_set_deflate_ratio(vd);
2399
2400         /*
2401          * If this is a top-level vdev, initialize its metaslabs.
2402          */
2403         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2404                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2405                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2406                             VDEV_AUX_CORRUPT_DATA);
2407                         return (SET_ERROR(ENXIO));
2408                 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2409                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2410                             VDEV_AUX_CORRUPT_DATA);
2411                         return (error);
2412                 }
2413         }
2414
2415         /*
2416          * If this is a leaf vdev, load its DTL.
2417          */
2418         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2419                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2420                     VDEV_AUX_CORRUPT_DATA);
2421                 return (error);
2422         }
2423
2424         uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2425         if (obsolete_sm_object != 0) {
2426                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2427                 ASSERT(vd->vdev_asize != 0);
2428                 ASSERT(vd->vdev_obsolete_sm == NULL);
2429
2430                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2431                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2432                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2433                             VDEV_AUX_CORRUPT_DATA);
2434                         return (error);
2435                 }
2436                 space_map_update(vd->vdev_obsolete_sm);
2437         }
2438
2439         return (0);
2440 }
2441
2442 /*
2443  * The special vdev case is used for hot spares and l2cache devices.  Its
2444  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2445  * we make sure that we can open the underlying device, then try to read the
2446  * label, and make sure that the label is sane and that it hasn't been
2447  * repurposed to another pool.
2448  */
2449 int
2450 vdev_validate_aux(vdev_t *vd)
2451 {
2452         nvlist_t *label;
2453         uint64_t guid, version;
2454         uint64_t state;
2455
2456         if (!vdev_readable(vd))
2457                 return (0);
2458
2459         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2460                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2461                     VDEV_AUX_CORRUPT_DATA);
2462                 return (-1);
2463         }
2464
2465         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2466             !SPA_VERSION_IS_SUPPORTED(version) ||
2467             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2468             guid != vd->vdev_guid ||
2469             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2470                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2471                     VDEV_AUX_CORRUPT_DATA);
2472                 nvlist_free(label);
2473                 return (-1);
2474         }
2475
2476         /*
2477          * We don't actually check the pool state here.  If it's in fact in
2478          * use by another pool, we update this fact on the fly when requested.
2479          */
2480         nvlist_free(label);
2481         return (0);
2482 }
2483
2484 /*
2485  * Free the objects used to store this vdev's spacemaps, and the array
2486  * that points to them.
2487  */
2488 void
2489 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2490 {
2491         if (vd->vdev_ms_array == 0)
2492                 return;
2493
2494         objset_t *mos = vd->vdev_spa->spa_meta_objset;
2495         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2496         size_t array_bytes = array_count * sizeof (uint64_t);
2497         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2498         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2499             array_bytes, smobj_array, 0));
2500
2501         for (uint64_t i = 0; i < array_count; i++) {
2502                 uint64_t smobj = smobj_array[i];
2503                 if (smobj == 0)
2504                         continue;
2505
2506                 space_map_free_obj(mos, smobj, tx);
2507         }
2508
2509         kmem_free(smobj_array, array_bytes);
2510         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2511         vd->vdev_ms_array = 0;
2512 }
2513
2514 static void
2515 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2516 {
2517         spa_t *spa = vd->vdev_spa;
2518         dmu_tx_t *tx;
2519
2520         ASSERT(vd == vd->vdev_top);
2521         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2522
2523         if (vd->vdev_ms != NULL) {
2524                 metaslab_group_t *mg = vd->vdev_mg;
2525
2526                 metaslab_group_histogram_verify(mg);
2527                 metaslab_class_histogram_verify(mg->mg_class);
2528
2529                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2530                         metaslab_t *msp = vd->vdev_ms[m];
2531
2532                         if (msp == NULL || msp->ms_sm == NULL)
2533                                 continue;
2534
2535                         mutex_enter(&msp->ms_lock);
2536                         /*
2537                          * If the metaslab was not loaded when the vdev
2538                          * was removed then the histogram accounting may
2539                          * not be accurate. Update the histogram information
2540                          * here so that we ensure that the metaslab group
2541                          * and metaslab class are up-to-date.
2542                          */
2543                         metaslab_group_histogram_remove(mg, msp);
2544
2545                         VERIFY0(space_map_allocated(msp->ms_sm));
2546                         space_map_close(msp->ms_sm);
2547                         msp->ms_sm = NULL;
2548                         mutex_exit(&msp->ms_lock);
2549                 }
2550
2551                 metaslab_group_histogram_verify(mg);
2552                 metaslab_class_histogram_verify(mg->mg_class);
2553                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2554                         ASSERT0(mg->mg_histogram[i]);
2555         }
2556
2557         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2558         vdev_destroy_spacemaps(vd, tx);
2559
2560         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2561                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2562                 vd->vdev_top_zap = 0;
2563         }
2564         dmu_tx_commit(tx);
2565 }
2566
2567 void
2568 vdev_sync_done(vdev_t *vd, uint64_t txg)
2569 {
2570         metaslab_t *msp;
2571         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2572
2573         ASSERT(vdev_is_concrete(vd));
2574
2575         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2576                 metaslab_sync_done(msp, txg);
2577
2578         if (reassess)
2579                 metaslab_sync_reassess(vd->vdev_mg);
2580 }
2581
2582 void
2583 vdev_sync(vdev_t *vd, uint64_t txg)
2584 {
2585         spa_t *spa = vd->vdev_spa;
2586         vdev_t *lvd;
2587         metaslab_t *msp;
2588         dmu_tx_t *tx;
2589
2590         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2591                 dmu_tx_t *tx;
2592
2593                 ASSERT(vd->vdev_removing ||
2594                     vd->vdev_ops == &vdev_indirect_ops);
2595
2596                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2597                 vdev_indirect_sync_obsolete(vd, tx);
2598                 dmu_tx_commit(tx);
2599
2600                 /*
2601                  * If the vdev is indirect, it can't have dirty
2602                  * metaslabs or DTLs.
2603                  */
2604                 if (vd->vdev_ops == &vdev_indirect_ops) {
2605                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2606                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2607                         return;
2608                 }
2609         }
2610
2611         ASSERT(vdev_is_concrete(vd));
2612
2613         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2614             !vd->vdev_removing) {
2615                 ASSERT(vd == vd->vdev_top);
2616                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2617                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2618                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2619                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2620                 ASSERT(vd->vdev_ms_array != 0);
2621                 vdev_config_dirty(vd);
2622                 dmu_tx_commit(tx);
2623         }
2624
2625         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2626                 metaslab_sync(msp, txg);
2627                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2628         }
2629
2630         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2631                 vdev_dtl_sync(lvd, txg);
2632
2633         /*
2634          * Remove the metadata associated with this vdev once it's empty.
2635          * Note that this is typically used for log/cache device removal;
2636          * we don't empty toplevel vdevs when removing them.  But if
2637          * a toplevel happens to be emptied, this is not harmful.
2638          */
2639         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2640                 vdev_remove_empty(vd, txg);
2641         }
2642
2643         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2644 }
2645
2646 uint64_t
2647 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2648 {
2649         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2650 }
2651
2652 /*
2653  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2654  * not be opened, and no I/O is attempted.
2655  */
2656 int
2657 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2658 {
2659         vdev_t *vd, *tvd;
2660
2661         spa_vdev_state_enter(spa, SCL_NONE);
2662
2663         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2664                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2665
2666         if (!vd->vdev_ops->vdev_op_leaf)
2667                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2668
2669         tvd = vd->vdev_top;
2670
2671         /*
2672          * We don't directly use the aux state here, but if we do a
2673          * vdev_reopen(), we need this value to be present to remember why we
2674          * were faulted.
2675          */
2676         vd->vdev_label_aux = aux;
2677
2678         /*
2679          * Faulted state takes precedence over degraded.
2680          */
2681         vd->vdev_delayed_close = B_FALSE;
2682         vd->vdev_faulted = 1ULL;
2683         vd->vdev_degraded = 0ULL;
2684         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2685
2686         /*
2687          * If this device has the only valid copy of the data, then
2688          * back off and simply mark the vdev as degraded instead.
2689          */
2690         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2691                 vd->vdev_degraded = 1ULL;
2692                 vd->vdev_faulted = 0ULL;
2693
2694                 /*
2695                  * If we reopen the device and it's not dead, only then do we
2696                  * mark it degraded.
2697                  */
2698                 vdev_reopen(tvd);
2699
2700                 if (vdev_readable(vd))
2701                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2702         }
2703
2704         return (spa_vdev_state_exit(spa, vd, 0));
2705 }
2706
2707 /*
2708  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2709  * user that something is wrong.  The vdev continues to operate as normal as far
2710  * as I/O is concerned.
2711  */
2712 int
2713 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2714 {
2715         vdev_t *vd;
2716
2717         spa_vdev_state_enter(spa, SCL_NONE);
2718
2719         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2720                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2721
2722         if (!vd->vdev_ops->vdev_op_leaf)
2723                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2724
2725         /*
2726          * If the vdev is already faulted, then don't do anything.
2727          */
2728         if (vd->vdev_faulted || vd->vdev_degraded)
2729                 return (spa_vdev_state_exit(spa, NULL, 0));
2730
2731         vd->vdev_degraded = 1ULL;
2732         if (!vdev_is_dead(vd))
2733                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2734                     aux);
2735
2736         return (spa_vdev_state_exit(spa, vd, 0));
2737 }
2738
2739 /*
2740  * Online the given vdev.
2741  *
2742  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2743  * spare device should be detached when the device finishes resilvering.
2744  * Second, the online should be treated like a 'test' online case, so no FMA
2745  * events are generated if the device fails to open.
2746  */
2747 int
2748 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2749 {
2750         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2751         boolean_t wasoffline;
2752         vdev_state_t oldstate;
2753
2754         spa_vdev_state_enter(spa, SCL_NONE);
2755
2756         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2757                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2758
2759         if (!vd->vdev_ops->vdev_op_leaf)
2760                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2761
2762         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2763         oldstate = vd->vdev_state;
2764
2765         tvd = vd->vdev_top;
2766         vd->vdev_offline = B_FALSE;
2767         vd->vdev_tmpoffline = B_FALSE;
2768         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2769         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2770
2771         /* XXX - L2ARC 1.0 does not support expansion */
2772         if (!vd->vdev_aux) {
2773                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2774                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2775         }
2776
2777         vdev_reopen(tvd);
2778         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2779
2780         if (!vd->vdev_aux) {
2781                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2782                         pvd->vdev_expanding = B_FALSE;
2783         }
2784
2785         if (newstate)
2786                 *newstate = vd->vdev_state;
2787         if ((flags & ZFS_ONLINE_UNSPARE) &&
2788             !vdev_is_dead(vd) && vd->vdev_parent &&
2789             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2790             vd->vdev_parent->vdev_child[0] == vd)
2791                 vd->vdev_unspare = B_TRUE;
2792
2793         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2794
2795                 /* XXX - L2ARC 1.0 does not support expansion */
2796                 if (vd->vdev_aux)
2797                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2798                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2799         }
2800
2801         if (wasoffline ||
2802             (oldstate < VDEV_STATE_DEGRADED &&
2803             vd->vdev_state >= VDEV_STATE_DEGRADED))
2804                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2805
2806         return (spa_vdev_state_exit(spa, vd, 0));
2807 }
2808
2809 static int
2810 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2811 {
2812         vdev_t *vd, *tvd;
2813         int error = 0;
2814         uint64_t generation;
2815         metaslab_group_t *mg;
2816
2817 top:
2818         spa_vdev_state_enter(spa, SCL_ALLOC);
2819
2820         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2821                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2822
2823         if (!vd->vdev_ops->vdev_op_leaf)
2824                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2825
2826         tvd = vd->vdev_top;
2827         mg = tvd->vdev_mg;
2828         generation = spa->spa_config_generation + 1;
2829
2830         /*
2831          * If the device isn't already offline, try to offline it.
2832          */
2833         if (!vd->vdev_offline) {
2834                 /*
2835                  * If this device has the only valid copy of some data,
2836                  * don't allow it to be offlined. Log devices are always
2837                  * expendable.
2838                  */
2839                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2840                     vdev_dtl_required(vd))
2841                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2842
2843                 /*
2844                  * If the top-level is a slog and it has had allocations
2845                  * then proceed.  We check that the vdev's metaslab group
2846                  * is not NULL since it's possible that we may have just
2847                  * added this vdev but not yet initialized its metaslabs.
2848                  */
2849                 if (tvd->vdev_islog && mg != NULL) {
2850                         /*
2851                          * Prevent any future allocations.
2852                          */
2853                         metaslab_group_passivate(mg);
2854                         (void) spa_vdev_state_exit(spa, vd, 0);
2855
2856                         error = spa_reset_logs(spa);
2857
2858                         spa_vdev_state_enter(spa, SCL_ALLOC);
2859
2860                         /*
2861                          * Check to see if the config has changed.
2862                          */
2863                         if (error || generation != spa->spa_config_generation) {
2864                                 metaslab_group_activate(mg);
2865                                 if (error)
2866                                         return (spa_vdev_state_exit(spa,
2867                                             vd, error));
2868                                 (void) spa_vdev_state_exit(spa, vd, 0);
2869                                 goto top;
2870                         }
2871                         ASSERT0(tvd->vdev_stat.vs_alloc);
2872                 }
2873
2874                 /*
2875                  * Offline this device and reopen its top-level vdev.
2876                  * If the top-level vdev is a log device then just offline
2877                  * it. Otherwise, if this action results in the top-level
2878                  * vdev becoming unusable, undo it and fail the request.
2879                  */
2880                 vd->vdev_offline = B_TRUE;
2881                 vdev_reopen(tvd);
2882
2883                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2884                     vdev_is_dead(tvd)) {
2885                         vd->vdev_offline = B_FALSE;
2886                         vdev_reopen(tvd);
2887                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2888                 }
2889
2890                 /*
2891                  * Add the device back into the metaslab rotor so that
2892                  * once we online the device it's open for business.
2893                  */
2894                 if (tvd->vdev_islog && mg != NULL)
2895                         metaslab_group_activate(mg);
2896         }
2897
2898         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2899
2900         return (spa_vdev_state_exit(spa, vd, 0));
2901 }
2902
2903 int
2904 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2905 {
2906         int error;
2907
2908         mutex_enter(&spa->spa_vdev_top_lock);
2909         error = vdev_offline_locked(spa, guid, flags);
2910         mutex_exit(&spa->spa_vdev_top_lock);
2911
2912         return (error);
2913 }
2914
2915 /*
2916  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2917  * vdev_offline(), we assume the spa config is locked.  We also clear all
2918  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2919  */
2920 void
2921 vdev_clear(spa_t *spa, vdev_t *vd)
2922 {
2923         vdev_t *rvd = spa->spa_root_vdev;
2924
2925         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2926
2927         if (vd == NULL)
2928                 vd = rvd;
2929
2930         vd->vdev_stat.vs_read_errors = 0;
2931         vd->vdev_stat.vs_write_errors = 0;
2932         vd->vdev_stat.vs_checksum_errors = 0;
2933
2934         for (int c = 0; c < vd->vdev_children; c++)
2935                 vdev_clear(spa, vd->vdev_child[c]);
2936
2937         if (vd == rvd) {
2938                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2939                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2940
2941                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2942                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2943         }
2944
2945         /*
2946          * It makes no sense to "clear" an indirect vdev.
2947          */
2948         if (!vdev_is_concrete(vd))
2949                 return;
2950
2951         /*
2952          * If we're in the FAULTED state or have experienced failed I/O, then
2953          * clear the persistent state and attempt to reopen the device.  We
2954          * also mark the vdev config dirty, so that the new faulted state is
2955          * written out to disk.
2956          */
2957         if (vd->vdev_faulted || vd->vdev_degraded ||
2958             !vdev_readable(vd) || !vdev_writeable(vd)) {
2959
2960                 /*
2961                  * When reopening in reponse to a clear event, it may be due to
2962                  * a fmadm repair request.  In this case, if the device is
2963                  * still broken, we want to still post the ereport again.
2964                  */
2965                 vd->vdev_forcefault = B_TRUE;
2966
2967                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2968                 vd->vdev_cant_read = B_FALSE;
2969                 vd->vdev_cant_write = B_FALSE;
2970
2971                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2972
2973                 vd->vdev_forcefault = B_FALSE;
2974
2975                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2976                         vdev_state_dirty(vd->vdev_top);
2977
2978                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2979                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2980
2981                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
2982         }
2983
2984         /*
2985          * When clearing a FMA-diagnosed fault, we always want to
2986          * unspare the device, as we assume that the original spare was
2987          * done in response to the FMA fault.
2988          */
2989         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2990             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2991             vd->vdev_parent->vdev_child[0] == vd)
2992                 vd->vdev_unspare = B_TRUE;
2993 }
2994
2995 boolean_t
2996 vdev_is_dead(vdev_t *vd)
2997 {
2998         /*
2999          * Holes and missing devices are always considered "dead".
3000          * This simplifies the code since we don't have to check for
3001          * these types of devices in the various code paths.
3002          * Instead we rely on the fact that we skip over dead devices
3003          * before issuing I/O to them.
3004          */
3005         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3006             vd->vdev_ops == &vdev_hole_ops ||
3007             vd->vdev_ops == &vdev_missing_ops);
3008 }
3009
3010 boolean_t
3011 vdev_readable(vdev_t *vd)
3012 {
3013         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3014 }
3015
3016 boolean_t
3017 vdev_writeable(vdev_t *vd)
3018 {
3019         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3020             vdev_is_concrete(vd));
3021 }
3022
3023 boolean_t
3024 vdev_allocatable(vdev_t *vd)
3025 {
3026         uint64_t state = vd->vdev_state;
3027
3028         /*
3029          * We currently allow allocations from vdevs which may be in the
3030          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3031          * fails to reopen then we'll catch it later when we're holding
3032          * the proper locks.  Note that we have to get the vdev state
3033          * in a local variable because although it changes atomically,
3034          * we're asking two separate questions about it.
3035          */
3036         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3037             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3038             vd->vdev_mg->mg_initialized);
3039 }
3040
3041 boolean_t
3042 vdev_accessible(vdev_t *vd, zio_t *zio)
3043 {
3044         ASSERT(zio->io_vd == vd);
3045
3046         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3047                 return (B_FALSE);
3048
3049         if (zio->io_type == ZIO_TYPE_READ)
3050                 return (!vd->vdev_cant_read);
3051
3052         if (zio->io_type == ZIO_TYPE_WRITE)
3053                 return (!vd->vdev_cant_write);
3054
3055         return (B_TRUE);
3056 }
3057
3058 /*
3059  * Get statistics for the given vdev.
3060  */
3061 void
3062 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3063 {
3064         spa_t *spa = vd->vdev_spa;
3065         vdev_t *rvd = spa->spa_root_vdev;
3066         vdev_t *tvd = vd->vdev_top;
3067
3068         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3069
3070         mutex_enter(&vd->vdev_stat_lock);
3071         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3072         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3073         vs->vs_state = vd->vdev_state;
3074         vs->vs_rsize = vdev_get_min_asize(vd);
3075         if (vd->vdev_ops->vdev_op_leaf)
3076                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3077         /*
3078          * Report expandable space on top-level, non-auxillary devices only.
3079          * The expandable space is reported in terms of metaslab sized units
3080          * since that determines how much space the pool can expand.
3081          */
3082         if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
3083                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3084                     spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3085         }
3086         vs->vs_configured_ashift = vd->vdev_top != NULL
3087             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
3088         vs->vs_logical_ashift = vd->vdev_logical_ashift;
3089         vs->vs_physical_ashift = vd->vdev_physical_ashift;
3090         if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3091             vdev_is_concrete(vd)) {
3092                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3093         }
3094
3095         /*
3096          * If we're getting stats on the root vdev, aggregate the I/O counts
3097          * over all top-level vdevs (i.e. the direct children of the root).
3098          */
3099         if (vd == rvd) {
3100                 for (int c = 0; c < rvd->vdev_children; c++) {
3101                         vdev_t *cvd = rvd->vdev_child[c];
3102                         vdev_stat_t *cvs = &cvd->vdev_stat;
3103
3104                         for (int t = 0; t < ZIO_TYPES; t++) {
3105                                 vs->vs_ops[t] += cvs->vs_ops[t];
3106                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3107                         }
3108                         cvs->vs_scan_removing = cvd->vdev_removing;
3109                 }
3110         }
3111         mutex_exit(&vd->vdev_stat_lock);
3112 }
3113
3114 void
3115 vdev_clear_stats(vdev_t *vd)
3116 {
3117         mutex_enter(&vd->vdev_stat_lock);
3118         vd->vdev_stat.vs_space = 0;
3119         vd->vdev_stat.vs_dspace = 0;
3120         vd->vdev_stat.vs_alloc = 0;
3121         mutex_exit(&vd->vdev_stat_lock);
3122 }
3123
3124 void
3125 vdev_scan_stat_init(vdev_t *vd)
3126 {
3127         vdev_stat_t *vs = &vd->vdev_stat;
3128
3129         for (int c = 0; c < vd->vdev_children; c++)
3130                 vdev_scan_stat_init(vd->vdev_child[c]);
3131
3132         mutex_enter(&vd->vdev_stat_lock);
3133         vs->vs_scan_processed = 0;
3134         mutex_exit(&vd->vdev_stat_lock);
3135 }
3136
3137 void
3138 vdev_stat_update(zio_t *zio, uint64_t psize)
3139 {
3140         spa_t *spa = zio->io_spa;
3141         vdev_t *rvd = spa->spa_root_vdev;
3142         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3143         vdev_t *pvd;
3144         uint64_t txg = zio->io_txg;
3145         vdev_stat_t *vs = &vd->vdev_stat;
3146         zio_type_t type = zio->io_type;
3147         int flags = zio->io_flags;
3148
3149         /*
3150          * If this i/o is a gang leader, it didn't do any actual work.
3151          */
3152         if (zio->io_gang_tree)
3153                 return;
3154
3155         if (zio->io_error == 0) {
3156                 /*
3157                  * If this is a root i/o, don't count it -- we've already
3158                  * counted the top-level vdevs, and vdev_get_stats() will
3159                  * aggregate them when asked.  This reduces contention on
3160                  * the root vdev_stat_lock and implicitly handles blocks
3161                  * that compress away to holes, for which there is no i/o.
3162                  * (Holes never create vdev children, so all the counters
3163                  * remain zero, which is what we want.)
3164                  *
3165                  * Note: this only applies to successful i/o (io_error == 0)
3166                  * because unlike i/o counts, errors are not additive.
3167                  * When reading a ditto block, for example, failure of
3168                  * one top-level vdev does not imply a root-level error.
3169                  */
3170                 if (vd == rvd)
3171                         return;
3172
3173                 ASSERT(vd == zio->io_vd);
3174
3175                 if (flags & ZIO_FLAG_IO_BYPASS)
3176                         return;
3177
3178                 mutex_enter(&vd->vdev_stat_lock);
3179
3180                 if (flags & ZIO_FLAG_IO_REPAIR) {
3181                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3182                                 dsl_scan_phys_t *scn_phys =
3183                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3184                                 uint64_t *processed = &scn_phys->scn_processed;
3185
3186                                 /* XXX cleanup? */
3187                                 if (vd->vdev_ops->vdev_op_leaf)
3188                                         atomic_add_64(processed, psize);
3189                                 vs->vs_scan_processed += psize;
3190                         }
3191
3192                         if (flags & ZIO_FLAG_SELF_HEAL)
3193                                 vs->vs_self_healed += psize;
3194                 }
3195
3196                 vs->vs_ops[type]++;
3197                 vs->vs_bytes[type] += psize;
3198
3199                 mutex_exit(&vd->vdev_stat_lock);
3200                 return;
3201         }
3202
3203         if (flags & ZIO_FLAG_SPECULATIVE)
3204                 return;
3205
3206         /*
3207          * If this is an I/O error that is going to be retried, then ignore the
3208          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3209          * hard errors, when in reality they can happen for any number of
3210          * innocuous reasons (bus resets, MPxIO link failure, etc).
3211          */
3212         if (zio->io_error == EIO &&
3213             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3214                 return;
3215
3216         /*
3217          * Intent logs writes won't propagate their error to the root
3218          * I/O so don't mark these types of failures as pool-level
3219          * errors.
3220          */
3221         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3222                 return;
3223
3224         mutex_enter(&vd->vdev_stat_lock);
3225         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3226                 if (zio->io_error == ECKSUM)
3227                         vs->vs_checksum_errors++;
3228                 else
3229                         vs->vs_read_errors++;
3230         }
3231         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3232                 vs->vs_write_errors++;
3233         mutex_exit(&vd->vdev_stat_lock);
3234
3235         if (spa->spa_load_state == SPA_LOAD_NONE &&
3236             type == ZIO_TYPE_WRITE && txg != 0 &&
3237             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3238             (flags & ZIO_FLAG_SCAN_THREAD) ||
3239             spa->spa_claiming)) {
3240                 /*
3241                  * This is either a normal write (not a repair), or it's
3242                  * a repair induced by the scrub thread, or it's a repair
3243                  * made by zil_claim() during spa_load() in the first txg.
3244                  * In the normal case, we commit the DTL change in the same
3245                  * txg as the block was born.  In the scrub-induced repair
3246                  * case, we know that scrubs run in first-pass syncing context,
3247                  * so we commit the DTL change in spa_syncing_txg(spa).
3248                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3249                  *
3250                  * We currently do not make DTL entries for failed spontaneous
3251                  * self-healing writes triggered by normal (non-scrubbing)
3252                  * reads, because we have no transactional context in which to
3253                  * do so -- and it's not clear that it'd be desirable anyway.
3254                  */
3255                 if (vd->vdev_ops->vdev_op_leaf) {
3256                         uint64_t commit_txg = txg;
3257                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3258                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3259                                 ASSERT(spa_sync_pass(spa) == 1);
3260                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3261                                 commit_txg = spa_syncing_txg(spa);
3262                         } else if (spa->spa_claiming) {
3263                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3264                                 commit_txg = spa_first_txg(spa);
3265                         }
3266                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3267                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3268                                 return;
3269                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3270                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3271                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3272                 }
3273                 if (vd != rvd)
3274                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3275         }
3276 }
3277
3278 /*
3279  * Update the in-core space usage stats for this vdev, its metaslab class,
3280  * and the root vdev.
3281  */
3282 void
3283 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3284     int64_t space_delta)
3285 {
3286         int64_t dspace_delta = space_delta;
3287         spa_t *spa = vd->vdev_spa;
3288         vdev_t *rvd = spa->spa_root_vdev;
3289         metaslab_group_t *mg = vd->vdev_mg;
3290         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3291
3292         ASSERT(vd == vd->vdev_top);
3293
3294         /*
3295          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3296          * factor.  We must calculate this here and not at the root vdev
3297          * because the root vdev's psize-to-asize is simply the max of its
3298          * childrens', thus not accurate enough for us.
3299          */
3300         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3301         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3302         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3303             vd->vdev_deflate_ratio;
3304
3305         mutex_enter(&vd->vdev_stat_lock);
3306         vd->vdev_stat.vs_alloc += alloc_delta;
3307         vd->vdev_stat.vs_space += space_delta;
3308         vd->vdev_stat.vs_dspace += dspace_delta;
3309         mutex_exit(&vd->vdev_stat_lock);
3310
3311         if (mc == spa_normal_class(spa)) {
3312                 mutex_enter(&rvd->vdev_stat_lock);
3313                 rvd->vdev_stat.vs_alloc += alloc_delta;
3314                 rvd->vdev_stat.vs_space += space_delta;
3315                 rvd->vdev_stat.vs_dspace += dspace_delta;
3316                 mutex_exit(&rvd->vdev_stat_lock);
3317         }
3318
3319         if (mc != NULL) {
3320                 ASSERT(rvd == vd->vdev_parent);
3321                 ASSERT(vd->vdev_ms_count != 0);
3322
3323                 metaslab_class_space_update(mc,
3324                     alloc_delta, defer_delta, space_delta, dspace_delta);
3325         }
3326 }
3327
3328 /*
3329  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3330  * so that it will be written out next time the vdev configuration is synced.
3331  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3332  */
3333 void
3334 vdev_config_dirty(vdev_t *vd)
3335 {
3336         spa_t *spa = vd->vdev_spa;
3337         vdev_t *rvd = spa->spa_root_vdev;
3338         int c;
3339
3340         ASSERT(spa_writeable(spa));
3341
3342         /*
3343          * If this is an aux vdev (as with l2cache and spare devices), then we
3344          * update the vdev config manually and set the sync flag.
3345          */
3346         if (vd->vdev_aux != NULL) {
3347                 spa_aux_vdev_t *sav = vd->vdev_aux;
3348                 nvlist_t **aux;
3349                 uint_t naux;
3350
3351                 for (c = 0; c < sav->sav_count; c++) {
3352                         if (sav->sav_vdevs[c] == vd)
3353                                 break;
3354                 }
3355
3356                 if (c == sav->sav_count) {
3357                         /*
3358                          * We're being removed.  There's nothing more to do.
3359                          */
3360                         ASSERT(sav->sav_sync == B_TRUE);
3361                         return;
3362                 }
3363
3364                 sav->sav_sync = B_TRUE;
3365
3366                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3367                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3368                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3369                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3370                 }
3371
3372                 ASSERT(c < naux);
3373
3374                 /*
3375                  * Setting the nvlist in the middle if the array is a little
3376                  * sketchy, but it will work.
3377                  */
3378                 nvlist_free(aux[c]);
3379                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3380
3381                 return;
3382         }
3383
3384         /*
3385          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3386          * must either hold SCL_CONFIG as writer, or must be the sync thread
3387          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3388          * so this is sufficient to ensure mutual exclusion.
3389          */
3390         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3391             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3392             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3393
3394         if (vd == rvd) {
3395                 for (c = 0; c < rvd->vdev_children; c++)
3396                         vdev_config_dirty(rvd->vdev_child[c]);
3397         } else {
3398                 ASSERT(vd == vd->vdev_top);
3399
3400                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3401                     vdev_is_concrete(vd)) {
3402                         list_insert_head(&spa->spa_config_dirty_list, vd);
3403                 }
3404         }
3405 }
3406
3407 void
3408 vdev_config_clean(vdev_t *vd)
3409 {
3410         spa_t *spa = vd->vdev_spa;
3411
3412         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3413             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3414             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3415
3416         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3417         list_remove(&spa->spa_config_dirty_list, vd);
3418 }
3419
3420 /*
3421  * Mark a top-level vdev's state as dirty, so that the next pass of
3422  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3423  * the state changes from larger config changes because they require
3424  * much less locking, and are often needed for administrative actions.
3425  */
3426 void
3427 vdev_state_dirty(vdev_t *vd)
3428 {
3429         spa_t *spa = vd->vdev_spa;
3430
3431         ASSERT(spa_writeable(spa));
3432         ASSERT(vd == vd->vdev_top);
3433
3434         /*
3435          * The state list is protected by the SCL_STATE lock.  The caller
3436          * must either hold SCL_STATE as writer, or must be the sync thread
3437          * (which holds SCL_STATE as reader).  There's only one sync thread,
3438          * so this is sufficient to ensure mutual exclusion.
3439          */
3440         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3441             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3442             spa_config_held(spa, SCL_STATE, RW_READER)));
3443
3444         if (!list_link_active(&vd->vdev_state_dirty_node) &&
3445             vdev_is_concrete(vd))
3446                 list_insert_head(&spa->spa_state_dirty_list, vd);
3447 }
3448
3449 void
3450 vdev_state_clean(vdev_t *vd)
3451 {
3452         spa_t *spa = vd->vdev_spa;
3453
3454         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3455             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3456             spa_config_held(spa, SCL_STATE, RW_READER)));
3457
3458         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3459         list_remove(&spa->spa_state_dirty_list, vd);
3460 }
3461
3462 /*
3463  * Propagate vdev state up from children to parent.
3464  */
3465 void
3466 vdev_propagate_state(vdev_t *vd)
3467 {
3468         spa_t *spa = vd->vdev_spa;
3469         vdev_t *rvd = spa->spa_root_vdev;
3470         int degraded = 0, faulted = 0;
3471         int corrupted = 0;
3472         vdev_t *child;
3473
3474         if (vd->vdev_children > 0) {
3475                 for (int c = 0; c < vd->vdev_children; c++) {
3476                         child = vd->vdev_child[c];
3477
3478                         /*
3479                          * Don't factor holes or indirect vdevs into the
3480                          * decision.
3481                          */
3482                         if (!vdev_is_concrete(child))
3483                                 continue;
3484
3485                         if (!vdev_readable(child) ||
3486                             (!vdev_writeable(child) && spa_writeable(spa))) {
3487                                 /*
3488                                  * Root special: if there is a top-level log
3489                                  * device, treat the root vdev as if it were
3490                                  * degraded.
3491                                  */
3492                                 if (child->vdev_islog && vd == rvd)
3493                                         degraded++;
3494                                 else
3495                                         faulted++;
3496                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3497                                 degraded++;
3498                         }
3499
3500                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3501                                 corrupted++;
3502                 }
3503
3504                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3505
3506                 /*
3507                  * Root special: if there is a top-level vdev that cannot be
3508                  * opened due to corrupted metadata, then propagate the root
3509                  * vdev's aux state as 'corrupt' rather than 'insufficient
3510                  * replicas'.
3511                  */
3512                 if (corrupted && vd == rvd &&
3513                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3514                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3515                             VDEV_AUX_CORRUPT_DATA);
3516         }
3517
3518         if (vd->vdev_parent)
3519                 vdev_propagate_state(vd->vdev_parent);
3520 }
3521
3522 /*
3523  * Set a vdev's state.  If this is during an open, we don't update the parent
3524  * state, because we're in the process of opening children depth-first.
3525  * Otherwise, we propagate the change to the parent.
3526  *
3527  * If this routine places a device in a faulted state, an appropriate ereport is
3528  * generated.
3529  */
3530 void
3531 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3532 {
3533         uint64_t save_state;
3534         spa_t *spa = vd->vdev_spa;
3535
3536         if (state == vd->vdev_state) {
3537                 vd->vdev_stat.vs_aux = aux;
3538                 return;
3539         }
3540
3541         save_state = vd->vdev_state;
3542
3543         vd->vdev_state = state;
3544         vd->vdev_stat.vs_aux = aux;
3545
3546         /*
3547          * If we are setting the vdev state to anything but an open state, then
3548          * always close the underlying device unless the device has requested
3549          * a delayed close (i.e. we're about to remove or fault the device).
3550          * Otherwise, we keep accessible but invalid devices open forever.
3551          * We don't call vdev_close() itself, because that implies some extra
3552          * checks (offline, etc) that we don't want here.  This is limited to
3553          * leaf devices, because otherwise closing the device will affect other
3554          * children.
3555          */
3556         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3557             vd->vdev_ops->vdev_op_leaf)
3558                 vd->vdev_ops->vdev_op_close(vd);
3559
3560         if (vd->vdev_removed &&
3561             state == VDEV_STATE_CANT_OPEN &&
3562             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3563                 /*
3564                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3565                  * device was previously marked removed and someone attempted to
3566                  * reopen it.  If this failed due to a nonexistent device, then
3567                  * keep the device in the REMOVED state.  We also let this be if
3568                  * it is one of our special test online cases, which is only
3569                  * attempting to online the device and shouldn't generate an FMA
3570                  * fault.
3571                  */
3572                 vd->vdev_state = VDEV_STATE_REMOVED;
3573                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3574         } else if (state == VDEV_STATE_REMOVED) {
3575                 vd->vdev_removed = B_TRUE;
3576         } else if (state == VDEV_STATE_CANT_OPEN) {
3577                 /*
3578                  * If we fail to open a vdev during an import or recovery, we
3579                  * mark it as "not available", which signifies that it was
3580                  * never there to begin with.  Failure to open such a device
3581                  * is not considered an error.
3582                  */
3583                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3584                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3585                     vd->vdev_ops->vdev_op_leaf)
3586                         vd->vdev_not_present = 1;
3587
3588                 /*
3589                  * Post the appropriate ereport.  If the 'prevstate' field is
3590                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3591                  * that this is part of a vdev_reopen().  In this case, we don't
3592                  * want to post the ereport if the device was already in the
3593                  * CANT_OPEN state beforehand.
3594                  *
3595                  * If the 'checkremove' flag is set, then this is an attempt to
3596                  * online the device in response to an insertion event.  If we
3597                  * hit this case, then we have detected an insertion event for a
3598                  * faulted or offline device that wasn't in the removed state.
3599                  * In this scenario, we don't post an ereport because we are
3600                  * about to replace the device, or attempt an online with
3601                  * vdev_forcefault, which will generate the fault for us.
3602                  */
3603                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3604                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3605                     vd != spa->spa_root_vdev) {
3606                         const char *class;
3607
3608                         switch (aux) {
3609                         case VDEV_AUX_OPEN_FAILED:
3610                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3611                                 break;
3612                         case VDEV_AUX_CORRUPT_DATA:
3613                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3614                                 break;
3615                         case VDEV_AUX_NO_REPLICAS:
3616                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3617                                 break;
3618                         case VDEV_AUX_BAD_GUID_SUM:
3619                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3620                                 break;
3621                         case VDEV_AUX_TOO_SMALL:
3622                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3623                                 break;
3624                         case VDEV_AUX_BAD_LABEL:
3625                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3626                                 break;
3627                         default:
3628                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3629                         }
3630
3631                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3632                 }
3633
3634                 /* Erase any notion of persistent removed state */
3635                 vd->vdev_removed = B_FALSE;
3636         } else {
3637                 vd->vdev_removed = B_FALSE;
3638         }
3639
3640         /*
3641         * Notify the fmd of the state change.  Be verbose and post
3642         * notifications even for stuff that's not important; the fmd agent can
3643         * sort it out.  Don't emit state change events for non-leaf vdevs since
3644         * they can't change state on their own.  The FMD can check their state
3645         * if it wants to when it sees that a leaf vdev had a state change.
3646         */
3647         if (vd->vdev_ops->vdev_op_leaf)
3648                 zfs_post_state_change(spa, vd);
3649
3650         if (!isopen && vd->vdev_parent)
3651                 vdev_propagate_state(vd->vdev_parent);
3652 }
3653
3654 /*
3655  * Check the vdev configuration to ensure that it's capable of supporting
3656  * a root pool. We do not support partial configuration.
3657  * In addition, only a single top-level vdev is allowed.
3658  *
3659  * FreeBSD does not have above limitations.
3660  */
3661 boolean_t
3662 vdev_is_bootable(vdev_t *vd)
3663 {
3664 #ifdef illumos
3665         if (!vd->vdev_ops->vdev_op_leaf) {
3666                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3667
3668                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3669                     vd->vdev_children > 1) {
3670                         return (B_FALSE);
3671                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3672                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3673                         return (B_FALSE);
3674                 }
3675         }
3676
3677         for (int c = 0; c < vd->vdev_children; c++) {
3678                 if (!vdev_is_bootable(vd->vdev_child[c]))
3679                         return (B_FALSE);
3680         }
3681 #endif  /* illumos */
3682         return (B_TRUE);
3683 }
3684
3685 boolean_t
3686 vdev_is_concrete(vdev_t *vd)
3687 {
3688         vdev_ops_t *ops = vd->vdev_ops;
3689         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3690             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3691                 return (B_FALSE);
3692         } else {
3693                 return (B_TRUE);
3694         }
3695 }
3696
3697 /*
3698  * Load the state from the original vdev tree (ovd) which
3699  * we've retrieved from the MOS config object. If the original
3700  * vdev was offline or faulted then we transfer that state to the
3701  * device in the current vdev tree (nvd).
3702  */
3703 void
3704 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3705 {
3706         spa_t *spa = nvd->vdev_spa;
3707
3708         ASSERT(nvd->vdev_top->vdev_islog);
3709         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3710         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3711
3712         for (int c = 0; c < nvd->vdev_children; c++)
3713                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3714
3715         if (nvd->vdev_ops->vdev_op_leaf) {
3716                 /*
3717                  * Restore the persistent vdev state
3718                  */
3719                 nvd->vdev_offline = ovd->vdev_offline;
3720                 nvd->vdev_faulted = ovd->vdev_faulted;
3721                 nvd->vdev_degraded = ovd->vdev_degraded;
3722                 nvd->vdev_removed = ovd->vdev_removed;
3723         }
3724 }
3725
3726 /*
3727  * Determine if a log device has valid content.  If the vdev was
3728  * removed or faulted in the MOS config then we know that
3729  * the content on the log device has already been written to the pool.
3730  */
3731 boolean_t
3732 vdev_log_state_valid(vdev_t *vd)
3733 {
3734         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3735             !vd->vdev_removed)
3736                 return (B_TRUE);
3737
3738         for (int c = 0; c < vd->vdev_children; c++)
3739                 if (vdev_log_state_valid(vd->vdev_child[c]))
3740                         return (B_TRUE);
3741
3742         return (B_FALSE);
3743 }
3744
3745 /*
3746  * Expand a vdev if possible.
3747  */
3748 void
3749 vdev_expand(vdev_t *vd, uint64_t txg)
3750 {
3751         ASSERT(vd->vdev_top == vd);
3752         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3753
3754         vdev_set_deflate_ratio(vd);
3755
3756         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3757             vdev_is_concrete(vd)) {
3758                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3759                 vdev_config_dirty(vd);
3760         }
3761 }
3762
3763 /*
3764  * Split a vdev.
3765  */
3766 void
3767 vdev_split(vdev_t *vd)
3768 {
3769         vdev_t *cvd, *pvd = vd->vdev_parent;
3770
3771         vdev_remove_child(pvd, vd);
3772         vdev_compact_children(pvd);
3773
3774         cvd = pvd->vdev_child[0];
3775         if (pvd->vdev_children == 1) {
3776                 vdev_remove_parent(cvd);
3777                 cvd->vdev_splitting = B_TRUE;
3778         }
3779         vdev_propagate_state(cvd);
3780 }
3781
3782 void
3783 vdev_deadman(vdev_t *vd)
3784 {
3785         for (int c = 0; c < vd->vdev_children; c++) {
3786                 vdev_t *cvd = vd->vdev_child[c];
3787
3788                 vdev_deadman(cvd);
3789         }
3790
3791         if (vd->vdev_ops->vdev_op_leaf) {
3792                 vdev_queue_t *vq = &vd->vdev_queue;
3793
3794                 mutex_enter(&vq->vq_lock);
3795                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3796                         spa_t *spa = vd->vdev_spa;
3797                         zio_t *fio;
3798                         uint64_t delta;
3799
3800                         /*
3801                          * Look at the head of all the pending queues,
3802                          * if any I/O has been outstanding for longer than
3803                          * the spa_deadman_synctime we panic the system.
3804                          */
3805                         fio = avl_first(&vq->vq_active_tree);
3806                         delta = gethrtime() - fio->io_timestamp;
3807                         if (delta > spa_deadman_synctime(spa)) {
3808                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3809                                     "delta %lluns, last io %lluns",
3810                                     fio->io_timestamp, delta,
3811                                     vq->vq_io_complete_ts);
3812                                 fm_panic("I/O to pool '%s' appears to be "
3813                                     "hung on vdev guid %llu at '%s'.",
3814                                     spa_name(spa),
3815                                     (long long unsigned int) vd->vdev_guid,
3816                                     vd->vdev_path);
3817                         }
3818                 }
3819                 mutex_exit(&vq->vq_lock);
3820         }
3821 }