]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
MFV r329770: 9035 zfs: this statement may fall through
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  */
31
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/trim_map.h>
54
55 SYSCTL_DECL(_vfs_zfs);
56 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
57
58 /*
59  * Virtual device management.
60  */
61
62 /*
63  * The limit for ZFS to automatically increase a top-level vdev's ashift
64  * from logical ashift to physical ashift.
65  *
66  * Example: one or more 512B emulation child vdevs
67  *          child->vdev_ashift = 9 (512 bytes)
68  *          child->vdev_physical_ashift = 12 (4096 bytes)
69  *          zfs_max_auto_ashift = 11 (2048 bytes)
70  *          zfs_min_auto_ashift = 9 (512 bytes)
71  *
72  * On pool creation or the addition of a new top-level vdev, ZFS will
73  * increase the ashift of the top-level vdev to 2048 as limited by
74  * zfs_max_auto_ashift.
75  *
76  * Example: one or more 512B emulation child vdevs
77  *          child->vdev_ashift = 9 (512 bytes)
78  *          child->vdev_physical_ashift = 12 (4096 bytes)
79  *          zfs_max_auto_ashift = 13 (8192 bytes)
80  *          zfs_min_auto_ashift = 9 (512 bytes)
81  *
82  * On pool creation or the addition of a new top-level vdev, ZFS will
83  * increase the ashift of the top-level vdev to 4096 to match the
84  * max vdev_physical_ashift.
85  *
86  * Example: one or more 512B emulation child vdevs
87  *          child->vdev_ashift = 9 (512 bytes)
88  *          child->vdev_physical_ashift = 9 (512 bytes)
89  *          zfs_max_auto_ashift = 13 (8192 bytes)
90  *          zfs_min_auto_ashift = 12 (4096 bytes)
91  *
92  * On pool creation or the addition of a new top-level vdev, ZFS will
93  * increase the ashift of the top-level vdev to 4096 to match the
94  * zfs_min_auto_ashift.
95  */
96 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
97 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
98
99 static int
100 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
101 {
102         uint64_t val;
103         int err;
104
105         val = zfs_max_auto_ashift;
106         err = sysctl_handle_64(oidp, &val, 0, req);
107         if (err != 0 || req->newptr == NULL)
108                 return (err);
109
110         if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
111                 return (EINVAL);
112
113         zfs_max_auto_ashift = val;
114
115         return (0);
116 }
117 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
118     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
119     sysctl_vfs_zfs_max_auto_ashift, "QU",
120     "Max ashift used when optimising for logical -> physical sectors size on "
121     "new top-level vdevs.");
122
123 static int
124 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
125 {
126         uint64_t val;
127         int err;
128
129         val = zfs_min_auto_ashift;
130         err = sysctl_handle_64(oidp, &val, 0, req);
131         if (err != 0 || req->newptr == NULL)
132                 return (err);
133
134         if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
135                 return (EINVAL);
136
137         zfs_min_auto_ashift = val;
138
139         return (0);
140 }
141 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
142     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
143     sysctl_vfs_zfs_min_auto_ashift, "QU",
144     "Min ashift used when creating new top-level vdevs.");
145
146 static vdev_ops_t *vdev_ops_table[] = {
147         &vdev_root_ops,
148         &vdev_raidz_ops,
149         &vdev_mirror_ops,
150         &vdev_replacing_ops,
151         &vdev_spare_ops,
152 #ifdef _KERNEL
153         &vdev_geom_ops,
154 #else
155         &vdev_disk_ops,
156 #endif
157         &vdev_file_ops,
158         &vdev_missing_ops,
159         &vdev_hole_ops,
160         &vdev_indirect_ops,
161         NULL
162 };
163
164
165 /*
166  * When a vdev is added, it will be divided into approximately (but no
167  * more than) this number of metaslabs.
168  */
169 int metaslabs_per_vdev = 200;
170 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
171     &metaslabs_per_vdev, 0,
172     "When a vdev is added, how many metaslabs the vdev should be divided into");
173
174 /*PRINTFLIKE2*/
175 void
176 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
177 {
178         va_list adx;
179         char buf[256];
180
181         va_start(adx, fmt);
182         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
183         va_end(adx);
184
185         if (vd->vdev_path != NULL) {
186                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
187                     vd->vdev_path, buf);
188         } else {
189                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
190                     vd->vdev_ops->vdev_op_type,
191                     (u_longlong_t)vd->vdev_id,
192                     (u_longlong_t)vd->vdev_guid, buf);
193         }
194 }
195
196 /*
197  * Given a vdev type, return the appropriate ops vector.
198  */
199 static vdev_ops_t *
200 vdev_getops(const char *type)
201 {
202         vdev_ops_t *ops, **opspp;
203
204         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
205                 if (strcmp(ops->vdev_op_type, type) == 0)
206                         break;
207
208         return (ops);
209 }
210
211 /*
212  * Default asize function: return the MAX of psize with the asize of
213  * all children.  This is what's used by anything other than RAID-Z.
214  */
215 uint64_t
216 vdev_default_asize(vdev_t *vd, uint64_t psize)
217 {
218         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
219         uint64_t csize;
220
221         for (int c = 0; c < vd->vdev_children; c++) {
222                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
223                 asize = MAX(asize, csize);
224         }
225
226         return (asize);
227 }
228
229 /*
230  * Get the minimum allocatable size. We define the allocatable size as
231  * the vdev's asize rounded to the nearest metaslab. This allows us to
232  * replace or attach devices which don't have the same physical size but
233  * can still satisfy the same number of allocations.
234  */
235 uint64_t
236 vdev_get_min_asize(vdev_t *vd)
237 {
238         vdev_t *pvd = vd->vdev_parent;
239
240         /*
241          * If our parent is NULL (inactive spare or cache) or is the root,
242          * just return our own asize.
243          */
244         if (pvd == NULL)
245                 return (vd->vdev_asize);
246
247         /*
248          * The top-level vdev just returns the allocatable size rounded
249          * to the nearest metaslab.
250          */
251         if (vd == vd->vdev_top)
252                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
253
254         /*
255          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
256          * so each child must provide at least 1/Nth of its asize.
257          */
258         if (pvd->vdev_ops == &vdev_raidz_ops)
259                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
260                     pvd->vdev_children);
261
262         return (pvd->vdev_min_asize);
263 }
264
265 void
266 vdev_set_min_asize(vdev_t *vd)
267 {
268         vd->vdev_min_asize = vdev_get_min_asize(vd);
269
270         for (int c = 0; c < vd->vdev_children; c++)
271                 vdev_set_min_asize(vd->vdev_child[c]);
272 }
273
274 vdev_t *
275 vdev_lookup_top(spa_t *spa, uint64_t vdev)
276 {
277         vdev_t *rvd = spa->spa_root_vdev;
278
279         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
280
281         if (vdev < rvd->vdev_children) {
282                 ASSERT(rvd->vdev_child[vdev] != NULL);
283                 return (rvd->vdev_child[vdev]);
284         }
285
286         return (NULL);
287 }
288
289 vdev_t *
290 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
291 {
292         vdev_t *mvd;
293
294         if (vd->vdev_guid == guid)
295                 return (vd);
296
297         for (int c = 0; c < vd->vdev_children; c++)
298                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
299                     NULL)
300                         return (mvd);
301
302         return (NULL);
303 }
304
305 static int
306 vdev_count_leaves_impl(vdev_t *vd)
307 {
308         int n = 0;
309
310         if (vd->vdev_ops->vdev_op_leaf)
311                 return (1);
312
313         for (int c = 0; c < vd->vdev_children; c++)
314                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
315
316         return (n);
317 }
318
319 int
320 vdev_count_leaves(spa_t *spa)
321 {
322         return (vdev_count_leaves_impl(spa->spa_root_vdev));
323 }
324
325 void
326 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
327 {
328         size_t oldsize, newsize;
329         uint64_t id = cvd->vdev_id;
330         vdev_t **newchild;
331         spa_t *spa = cvd->vdev_spa;
332
333         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
334         ASSERT(cvd->vdev_parent == NULL);
335
336         cvd->vdev_parent = pvd;
337
338         if (pvd == NULL)
339                 return;
340
341         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
342
343         oldsize = pvd->vdev_children * sizeof (vdev_t *);
344         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
345         newsize = pvd->vdev_children * sizeof (vdev_t *);
346
347         newchild = kmem_zalloc(newsize, KM_SLEEP);
348         if (pvd->vdev_child != NULL) {
349                 bcopy(pvd->vdev_child, newchild, oldsize);
350                 kmem_free(pvd->vdev_child, oldsize);
351         }
352
353         pvd->vdev_child = newchild;
354         pvd->vdev_child[id] = cvd;
355
356         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
357         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
358
359         /*
360          * Walk up all ancestors to update guid sum.
361          */
362         for (; pvd != NULL; pvd = pvd->vdev_parent)
363                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
364 }
365
366 void
367 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
368 {
369         int c;
370         uint_t id = cvd->vdev_id;
371
372         ASSERT(cvd->vdev_parent == pvd);
373
374         if (pvd == NULL)
375                 return;
376
377         ASSERT(id < pvd->vdev_children);
378         ASSERT(pvd->vdev_child[id] == cvd);
379
380         pvd->vdev_child[id] = NULL;
381         cvd->vdev_parent = NULL;
382
383         for (c = 0; c < pvd->vdev_children; c++)
384                 if (pvd->vdev_child[c])
385                         break;
386
387         if (c == pvd->vdev_children) {
388                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
389                 pvd->vdev_child = NULL;
390                 pvd->vdev_children = 0;
391         }
392
393         /*
394          * Walk up all ancestors to update guid sum.
395          */
396         for (; pvd != NULL; pvd = pvd->vdev_parent)
397                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
398 }
399
400 /*
401  * Remove any holes in the child array.
402  */
403 void
404 vdev_compact_children(vdev_t *pvd)
405 {
406         vdev_t **newchild, *cvd;
407         int oldc = pvd->vdev_children;
408         int newc;
409
410         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
411
412         for (int c = newc = 0; c < oldc; c++)
413                 if (pvd->vdev_child[c])
414                         newc++;
415
416         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
417
418         for (int c = newc = 0; c < oldc; c++) {
419                 if ((cvd = pvd->vdev_child[c]) != NULL) {
420                         newchild[newc] = cvd;
421                         cvd->vdev_id = newc++;
422                 }
423         }
424
425         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
426         pvd->vdev_child = newchild;
427         pvd->vdev_children = newc;
428 }
429
430 /*
431  * Allocate and minimally initialize a vdev_t.
432  */
433 vdev_t *
434 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
435 {
436         vdev_t *vd;
437         vdev_indirect_config_t *vic;
438
439         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
440         vic = &vd->vdev_indirect_config;
441
442         if (spa->spa_root_vdev == NULL) {
443                 ASSERT(ops == &vdev_root_ops);
444                 spa->spa_root_vdev = vd;
445                 spa->spa_load_guid = spa_generate_guid(NULL);
446         }
447
448         if (guid == 0 && ops != &vdev_hole_ops) {
449                 if (spa->spa_root_vdev == vd) {
450                         /*
451                          * The root vdev's guid will also be the pool guid,
452                          * which must be unique among all pools.
453                          */
454                         guid = spa_generate_guid(NULL);
455                 } else {
456                         /*
457                          * Any other vdev's guid must be unique within the pool.
458                          */
459                         guid = spa_generate_guid(spa);
460                 }
461                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
462         }
463
464         vd->vdev_spa = spa;
465         vd->vdev_id = id;
466         vd->vdev_guid = guid;
467         vd->vdev_guid_sum = guid;
468         vd->vdev_ops = ops;
469         vd->vdev_state = VDEV_STATE_CLOSED;
470         vd->vdev_ishole = (ops == &vdev_hole_ops);
471         vic->vic_prev_indirect_vdev = UINT64_MAX;
472
473         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
474         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
475         vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
476
477         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
478         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
479         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
480         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
481         for (int t = 0; t < DTL_TYPES; t++) {
482                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
483         }
484         txg_list_create(&vd->vdev_ms_list, spa,
485             offsetof(struct metaslab, ms_txg_node));
486         txg_list_create(&vd->vdev_dtl_list, spa,
487             offsetof(struct vdev, vdev_dtl_node));
488         vd->vdev_stat.vs_timestamp = gethrtime();
489         vdev_queue_init(vd);
490         vdev_cache_init(vd);
491
492         return (vd);
493 }
494
495 /*
496  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
497  * creating a new vdev or loading an existing one - the behavior is slightly
498  * different for each case.
499  */
500 int
501 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
502     int alloctype)
503 {
504         vdev_ops_t *ops;
505         char *type;
506         uint64_t guid = 0, islog, nparity;
507         vdev_t *vd;
508         vdev_indirect_config_t *vic;
509
510         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
511
512         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
513                 return (SET_ERROR(EINVAL));
514
515         if ((ops = vdev_getops(type)) == NULL)
516                 return (SET_ERROR(EINVAL));
517
518         /*
519          * If this is a load, get the vdev guid from the nvlist.
520          * Otherwise, vdev_alloc_common() will generate one for us.
521          */
522         if (alloctype == VDEV_ALLOC_LOAD) {
523                 uint64_t label_id;
524
525                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
526                     label_id != id)
527                         return (SET_ERROR(EINVAL));
528
529                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
530                         return (SET_ERROR(EINVAL));
531         } else if (alloctype == VDEV_ALLOC_SPARE) {
532                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
533                         return (SET_ERROR(EINVAL));
534         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
535                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
536                         return (SET_ERROR(EINVAL));
537         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
538                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
539                         return (SET_ERROR(EINVAL));
540         }
541
542         /*
543          * The first allocated vdev must be of type 'root'.
544          */
545         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
546                 return (SET_ERROR(EINVAL));
547
548         /*
549          * Determine whether we're a log vdev.
550          */
551         islog = 0;
552         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
553         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
554                 return (SET_ERROR(ENOTSUP));
555
556         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
557                 return (SET_ERROR(ENOTSUP));
558
559         /*
560          * Set the nparity property for RAID-Z vdevs.
561          */
562         nparity = -1ULL;
563         if (ops == &vdev_raidz_ops) {
564                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
565                     &nparity) == 0) {
566                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
567                                 return (SET_ERROR(EINVAL));
568                         /*
569                          * Previous versions could only support 1 or 2 parity
570                          * device.
571                          */
572                         if (nparity > 1 &&
573                             spa_version(spa) < SPA_VERSION_RAIDZ2)
574                                 return (SET_ERROR(ENOTSUP));
575                         if (nparity > 2 &&
576                             spa_version(spa) < SPA_VERSION_RAIDZ3)
577                                 return (SET_ERROR(ENOTSUP));
578                 } else {
579                         /*
580                          * We require the parity to be specified for SPAs that
581                          * support multiple parity levels.
582                          */
583                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
584                                 return (SET_ERROR(EINVAL));
585                         /*
586                          * Otherwise, we default to 1 parity device for RAID-Z.
587                          */
588                         nparity = 1;
589                 }
590         } else {
591                 nparity = 0;
592         }
593         ASSERT(nparity != -1ULL);
594
595         vd = vdev_alloc_common(spa, id, guid, ops);
596         vic = &vd->vdev_indirect_config;
597
598         vd->vdev_islog = islog;
599         vd->vdev_nparity = nparity;
600
601         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
602                 vd->vdev_path = spa_strdup(vd->vdev_path);
603         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
604                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
605         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
606             &vd->vdev_physpath) == 0)
607                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
608         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
609                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
610
611         /*
612          * Set the whole_disk property.  If it's not specified, leave the value
613          * as -1.
614          */
615         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
616             &vd->vdev_wholedisk) != 0)
617                 vd->vdev_wholedisk = -1ULL;
618
619         ASSERT0(vic->vic_mapping_object);
620         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
621             &vic->vic_mapping_object);
622         ASSERT0(vic->vic_births_object);
623         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
624             &vic->vic_births_object);
625         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
626         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
627             &vic->vic_prev_indirect_vdev);
628
629         /*
630          * Look for the 'not present' flag.  This will only be set if the device
631          * was not present at the time of import.
632          */
633         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
634             &vd->vdev_not_present);
635
636         /*
637          * Get the alignment requirement.
638          */
639         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
640
641         /*
642          * Retrieve the vdev creation time.
643          */
644         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
645             &vd->vdev_crtxg);
646
647         /*
648          * If we're a top-level vdev, try to load the allocation parameters.
649          */
650         if (parent && !parent->vdev_parent &&
651             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
652                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
653                     &vd->vdev_ms_array);
654                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
655                     &vd->vdev_ms_shift);
656                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
657                     &vd->vdev_asize);
658                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
659                     &vd->vdev_removing);
660                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
661                     &vd->vdev_top_zap);
662         } else {
663                 ASSERT0(vd->vdev_top_zap);
664         }
665
666         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
667                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
668                     alloctype == VDEV_ALLOC_ADD ||
669                     alloctype == VDEV_ALLOC_SPLIT ||
670                     alloctype == VDEV_ALLOC_ROOTPOOL);
671                 vd->vdev_mg = metaslab_group_create(islog ?
672                     spa_log_class(spa) : spa_normal_class(spa), vd);
673         }
674
675         if (vd->vdev_ops->vdev_op_leaf &&
676             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
677                 (void) nvlist_lookup_uint64(nv,
678                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
679         } else {
680                 ASSERT0(vd->vdev_leaf_zap);
681         }
682
683         /*
684          * If we're a leaf vdev, try to load the DTL object and other state.
685          */
686
687         if (vd->vdev_ops->vdev_op_leaf &&
688             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
689             alloctype == VDEV_ALLOC_ROOTPOOL)) {
690                 if (alloctype == VDEV_ALLOC_LOAD) {
691                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
692                             &vd->vdev_dtl_object);
693                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
694                             &vd->vdev_unspare);
695                 }
696
697                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
698                         uint64_t spare = 0;
699
700                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
701                             &spare) == 0 && spare)
702                                 spa_spare_add(vd);
703                 }
704
705                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
706                     &vd->vdev_offline);
707
708                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
709                     &vd->vdev_resilver_txg);
710
711                 /*
712                  * When importing a pool, we want to ignore the persistent fault
713                  * state, as the diagnosis made on another system may not be
714                  * valid in the current context.  Local vdevs will
715                  * remain in the faulted state.
716                  */
717                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
718                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
719                             &vd->vdev_faulted);
720                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
721                             &vd->vdev_degraded);
722                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
723                             &vd->vdev_removed);
724
725                         if (vd->vdev_faulted || vd->vdev_degraded) {
726                                 char *aux;
727
728                                 vd->vdev_label_aux =
729                                     VDEV_AUX_ERR_EXCEEDED;
730                                 if (nvlist_lookup_string(nv,
731                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
732                                     strcmp(aux, "external") == 0)
733                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
734                         }
735                 }
736         }
737
738         /*
739          * Add ourselves to the parent's list of children.
740          */
741         vdev_add_child(parent, vd);
742
743         *vdp = vd;
744
745         return (0);
746 }
747
748 void
749 vdev_free(vdev_t *vd)
750 {
751         spa_t *spa = vd->vdev_spa;
752
753         /*
754          * vdev_free() implies closing the vdev first.  This is simpler than
755          * trying to ensure complicated semantics for all callers.
756          */
757         vdev_close(vd);
758
759         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
760         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
761
762         /*
763          * Free all children.
764          */
765         for (int c = 0; c < vd->vdev_children; c++)
766                 vdev_free(vd->vdev_child[c]);
767
768         ASSERT(vd->vdev_child == NULL);
769         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
770
771         /*
772          * Discard allocation state.
773          */
774         if (vd->vdev_mg != NULL) {
775                 vdev_metaslab_fini(vd);
776                 metaslab_group_destroy(vd->vdev_mg);
777         }
778
779         ASSERT0(vd->vdev_stat.vs_space);
780         ASSERT0(vd->vdev_stat.vs_dspace);
781         ASSERT0(vd->vdev_stat.vs_alloc);
782
783         /*
784          * Remove this vdev from its parent's child list.
785          */
786         vdev_remove_child(vd->vdev_parent, vd);
787
788         ASSERT(vd->vdev_parent == NULL);
789
790         /*
791          * Clean up vdev structure.
792          */
793         vdev_queue_fini(vd);
794         vdev_cache_fini(vd);
795
796         if (vd->vdev_path)
797                 spa_strfree(vd->vdev_path);
798         if (vd->vdev_devid)
799                 spa_strfree(vd->vdev_devid);
800         if (vd->vdev_physpath)
801                 spa_strfree(vd->vdev_physpath);
802         if (vd->vdev_fru)
803                 spa_strfree(vd->vdev_fru);
804
805         if (vd->vdev_isspare)
806                 spa_spare_remove(vd);
807         if (vd->vdev_isl2cache)
808                 spa_l2cache_remove(vd);
809
810         txg_list_destroy(&vd->vdev_ms_list);
811         txg_list_destroy(&vd->vdev_dtl_list);
812
813         mutex_enter(&vd->vdev_dtl_lock);
814         space_map_close(vd->vdev_dtl_sm);
815         for (int t = 0; t < DTL_TYPES; t++) {
816                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
817                 range_tree_destroy(vd->vdev_dtl[t]);
818         }
819         mutex_exit(&vd->vdev_dtl_lock);
820
821         EQUIV(vd->vdev_indirect_births != NULL,
822             vd->vdev_indirect_mapping != NULL);
823         if (vd->vdev_indirect_births != NULL) {
824                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
825                 vdev_indirect_births_close(vd->vdev_indirect_births);
826         }
827
828         if (vd->vdev_obsolete_sm != NULL) {
829                 ASSERT(vd->vdev_removing ||
830                     vd->vdev_ops == &vdev_indirect_ops);
831                 space_map_close(vd->vdev_obsolete_sm);
832                 vd->vdev_obsolete_sm = NULL;
833         }
834         range_tree_destroy(vd->vdev_obsolete_segments);
835         rw_destroy(&vd->vdev_indirect_rwlock);
836         mutex_destroy(&vd->vdev_obsolete_lock);
837
838         mutex_destroy(&vd->vdev_queue_lock);
839         mutex_destroy(&vd->vdev_dtl_lock);
840         mutex_destroy(&vd->vdev_stat_lock);
841         mutex_destroy(&vd->vdev_probe_lock);
842
843         if (vd == spa->spa_root_vdev)
844                 spa->spa_root_vdev = NULL;
845
846         kmem_free(vd, sizeof (vdev_t));
847 }
848
849 /*
850  * Transfer top-level vdev state from svd to tvd.
851  */
852 static void
853 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
854 {
855         spa_t *spa = svd->vdev_spa;
856         metaslab_t *msp;
857         vdev_t *vd;
858         int t;
859
860         ASSERT(tvd == tvd->vdev_top);
861
862         tvd->vdev_ms_array = svd->vdev_ms_array;
863         tvd->vdev_ms_shift = svd->vdev_ms_shift;
864         tvd->vdev_ms_count = svd->vdev_ms_count;
865         tvd->vdev_top_zap = svd->vdev_top_zap;
866
867         svd->vdev_ms_array = 0;
868         svd->vdev_ms_shift = 0;
869         svd->vdev_ms_count = 0;
870         svd->vdev_top_zap = 0;
871
872         if (tvd->vdev_mg)
873                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
874         tvd->vdev_mg = svd->vdev_mg;
875         tvd->vdev_ms = svd->vdev_ms;
876
877         svd->vdev_mg = NULL;
878         svd->vdev_ms = NULL;
879
880         if (tvd->vdev_mg != NULL)
881                 tvd->vdev_mg->mg_vd = tvd;
882
883         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
884         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
885         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
886
887         svd->vdev_stat.vs_alloc = 0;
888         svd->vdev_stat.vs_space = 0;
889         svd->vdev_stat.vs_dspace = 0;
890
891         for (t = 0; t < TXG_SIZE; t++) {
892                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
893                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
894                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
895                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
896                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
897                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
898         }
899
900         if (list_link_active(&svd->vdev_config_dirty_node)) {
901                 vdev_config_clean(svd);
902                 vdev_config_dirty(tvd);
903         }
904
905         if (list_link_active(&svd->vdev_state_dirty_node)) {
906                 vdev_state_clean(svd);
907                 vdev_state_dirty(tvd);
908         }
909
910         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
911         svd->vdev_deflate_ratio = 0;
912
913         tvd->vdev_islog = svd->vdev_islog;
914         svd->vdev_islog = 0;
915 }
916
917 static void
918 vdev_top_update(vdev_t *tvd, vdev_t *vd)
919 {
920         if (vd == NULL)
921                 return;
922
923         vd->vdev_top = tvd;
924
925         for (int c = 0; c < vd->vdev_children; c++)
926                 vdev_top_update(tvd, vd->vdev_child[c]);
927 }
928
929 /*
930  * Add a mirror/replacing vdev above an existing vdev.
931  */
932 vdev_t *
933 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
934 {
935         spa_t *spa = cvd->vdev_spa;
936         vdev_t *pvd = cvd->vdev_parent;
937         vdev_t *mvd;
938
939         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
940
941         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
942
943         mvd->vdev_asize = cvd->vdev_asize;
944         mvd->vdev_min_asize = cvd->vdev_min_asize;
945         mvd->vdev_max_asize = cvd->vdev_max_asize;
946         mvd->vdev_psize = cvd->vdev_psize;
947         mvd->vdev_ashift = cvd->vdev_ashift;
948         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
949         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
950         mvd->vdev_state = cvd->vdev_state;
951         mvd->vdev_crtxg = cvd->vdev_crtxg;
952
953         vdev_remove_child(pvd, cvd);
954         vdev_add_child(pvd, mvd);
955         cvd->vdev_id = mvd->vdev_children;
956         vdev_add_child(mvd, cvd);
957         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
958
959         if (mvd == mvd->vdev_top)
960                 vdev_top_transfer(cvd, mvd);
961
962         return (mvd);
963 }
964
965 /*
966  * Remove a 1-way mirror/replacing vdev from the tree.
967  */
968 void
969 vdev_remove_parent(vdev_t *cvd)
970 {
971         vdev_t *mvd = cvd->vdev_parent;
972         vdev_t *pvd = mvd->vdev_parent;
973
974         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
975
976         ASSERT(mvd->vdev_children == 1);
977         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
978             mvd->vdev_ops == &vdev_replacing_ops ||
979             mvd->vdev_ops == &vdev_spare_ops);
980         cvd->vdev_ashift = mvd->vdev_ashift;
981         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
982         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
983
984         vdev_remove_child(mvd, cvd);
985         vdev_remove_child(pvd, mvd);
986
987         /*
988          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
989          * Otherwise, we could have detached an offline device, and when we
990          * go to import the pool we'll think we have two top-level vdevs,
991          * instead of a different version of the same top-level vdev.
992          */
993         if (mvd->vdev_top == mvd) {
994                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
995                 cvd->vdev_orig_guid = cvd->vdev_guid;
996                 cvd->vdev_guid += guid_delta;
997                 cvd->vdev_guid_sum += guid_delta;
998         }
999         cvd->vdev_id = mvd->vdev_id;
1000         vdev_add_child(pvd, cvd);
1001         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1002
1003         if (cvd == cvd->vdev_top)
1004                 vdev_top_transfer(mvd, cvd);
1005
1006         ASSERT(mvd->vdev_children == 0);
1007         vdev_free(mvd);
1008 }
1009
1010 int
1011 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1012 {
1013         spa_t *spa = vd->vdev_spa;
1014         objset_t *mos = spa->spa_meta_objset;
1015         uint64_t m;
1016         uint64_t oldc = vd->vdev_ms_count;
1017         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1018         metaslab_t **mspp;
1019         int error;
1020
1021         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1022
1023         /*
1024          * This vdev is not being allocated from yet or is a hole.
1025          */
1026         if (vd->vdev_ms_shift == 0)
1027                 return (0);
1028
1029         ASSERT(!vd->vdev_ishole);
1030
1031         ASSERT(oldc <= newc);
1032
1033         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1034
1035         if (oldc != 0) {
1036                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1037                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1038         }
1039
1040         vd->vdev_ms = mspp;
1041         vd->vdev_ms_count = newc;
1042
1043         for (m = oldc; m < newc; m++) {
1044                 uint64_t object = 0;
1045
1046                 /*
1047                  * vdev_ms_array may be 0 if we are creating the "fake"
1048                  * metaslabs for an indirect vdev for zdb's leak detection.
1049                  * See zdb_leak_init().
1050                  */
1051                 if (txg == 0 && vd->vdev_ms_array != 0) {
1052                         error = dmu_read(mos, vd->vdev_ms_array,
1053                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1054                             DMU_READ_PREFETCH);
1055                         if (error != 0) {
1056                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1057                                     "array [error=%d]", error);
1058                                 return (error);
1059                         }
1060                 }
1061
1062                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1063                     &(vd->vdev_ms[m]));
1064                 if (error != 0) {
1065                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1066                             error);
1067                         return (error);
1068                 }
1069         }
1070
1071         if (txg == 0)
1072                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1073
1074         /*
1075          * If the vdev is being removed we don't activate
1076          * the metaslabs since we want to ensure that no new
1077          * allocations are performed on this device.
1078          */
1079         if (oldc == 0 && !vd->vdev_removing)
1080                 metaslab_group_activate(vd->vdev_mg);
1081
1082         if (txg == 0)
1083                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1084
1085         return (0);
1086 }
1087
1088 void
1089 vdev_metaslab_fini(vdev_t *vd)
1090 {
1091         if (vd->vdev_ms != NULL) {
1092                 uint64_t count = vd->vdev_ms_count;
1093
1094                 metaslab_group_passivate(vd->vdev_mg);
1095                 for (uint64_t m = 0; m < count; m++) {
1096                         metaslab_t *msp = vd->vdev_ms[m];
1097
1098                         if (msp != NULL)
1099                                 metaslab_fini(msp);
1100                 }
1101                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1102                 vd->vdev_ms = NULL;
1103
1104                 vd->vdev_ms_count = 0;
1105         }
1106         ASSERT0(vd->vdev_ms_count);
1107 }
1108
1109 typedef struct vdev_probe_stats {
1110         boolean_t       vps_readable;
1111         boolean_t       vps_writeable;
1112         int             vps_flags;
1113 } vdev_probe_stats_t;
1114
1115 static void
1116 vdev_probe_done(zio_t *zio)
1117 {
1118         spa_t *spa = zio->io_spa;
1119         vdev_t *vd = zio->io_vd;
1120         vdev_probe_stats_t *vps = zio->io_private;
1121
1122         ASSERT(vd->vdev_probe_zio != NULL);
1123
1124         if (zio->io_type == ZIO_TYPE_READ) {
1125                 if (zio->io_error == 0)
1126                         vps->vps_readable = 1;
1127                 if (zio->io_error == 0 && spa_writeable(spa)) {
1128                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1129                             zio->io_offset, zio->io_size, zio->io_abd,
1130                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1131                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1132                 } else {
1133                         abd_free(zio->io_abd);
1134                 }
1135         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1136                 if (zio->io_error == 0)
1137                         vps->vps_writeable = 1;
1138                 abd_free(zio->io_abd);
1139         } else if (zio->io_type == ZIO_TYPE_NULL) {
1140                 zio_t *pio;
1141
1142                 vd->vdev_cant_read |= !vps->vps_readable;
1143                 vd->vdev_cant_write |= !vps->vps_writeable;
1144
1145                 if (vdev_readable(vd) &&
1146                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1147                         zio->io_error = 0;
1148                 } else {
1149                         ASSERT(zio->io_error != 0);
1150                         vdev_dbgmsg(vd, "failed probe");
1151                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1152                             spa, vd, NULL, 0, 0);
1153                         zio->io_error = SET_ERROR(ENXIO);
1154                 }
1155
1156                 mutex_enter(&vd->vdev_probe_lock);
1157                 ASSERT(vd->vdev_probe_zio == zio);
1158                 vd->vdev_probe_zio = NULL;
1159                 mutex_exit(&vd->vdev_probe_lock);
1160
1161                 zio_link_t *zl = NULL;
1162                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1163                         if (!vdev_accessible(vd, pio))
1164                                 pio->io_error = SET_ERROR(ENXIO);
1165
1166                 kmem_free(vps, sizeof (*vps));
1167         }
1168 }
1169
1170 /*
1171  * Determine whether this device is accessible.
1172  *
1173  * Read and write to several known locations: the pad regions of each
1174  * vdev label but the first, which we leave alone in case it contains
1175  * a VTOC.
1176  */
1177 zio_t *
1178 vdev_probe(vdev_t *vd, zio_t *zio)
1179 {
1180         spa_t *spa = vd->vdev_spa;
1181         vdev_probe_stats_t *vps = NULL;
1182         zio_t *pio;
1183
1184         ASSERT(vd->vdev_ops->vdev_op_leaf);
1185
1186         /*
1187          * Don't probe the probe.
1188          */
1189         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1190                 return (NULL);
1191
1192         /*
1193          * To prevent 'probe storms' when a device fails, we create
1194          * just one probe i/o at a time.  All zios that want to probe
1195          * this vdev will become parents of the probe io.
1196          */
1197         mutex_enter(&vd->vdev_probe_lock);
1198
1199         if ((pio = vd->vdev_probe_zio) == NULL) {
1200                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1201
1202                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1203                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1204                     ZIO_FLAG_TRYHARD;
1205
1206                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1207                         /*
1208                          * vdev_cant_read and vdev_cant_write can only
1209                          * transition from TRUE to FALSE when we have the
1210                          * SCL_ZIO lock as writer; otherwise they can only
1211                          * transition from FALSE to TRUE.  This ensures that
1212                          * any zio looking at these values can assume that
1213                          * failures persist for the life of the I/O.  That's
1214                          * important because when a device has intermittent
1215                          * connectivity problems, we want to ensure that
1216                          * they're ascribed to the device (ENXIO) and not
1217                          * the zio (EIO).
1218                          *
1219                          * Since we hold SCL_ZIO as writer here, clear both
1220                          * values so the probe can reevaluate from first
1221                          * principles.
1222                          */
1223                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1224                         vd->vdev_cant_read = B_FALSE;
1225                         vd->vdev_cant_write = B_FALSE;
1226                 }
1227
1228                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1229                     vdev_probe_done, vps,
1230                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1231
1232                 /*
1233                  * We can't change the vdev state in this context, so we
1234                  * kick off an async task to do it on our behalf.
1235                  */
1236                 if (zio != NULL) {
1237                         vd->vdev_probe_wanted = B_TRUE;
1238                         spa_async_request(spa, SPA_ASYNC_PROBE);
1239                 }
1240         }
1241
1242         if (zio != NULL)
1243                 zio_add_child(zio, pio);
1244
1245         mutex_exit(&vd->vdev_probe_lock);
1246
1247         if (vps == NULL) {
1248                 ASSERT(zio != NULL);
1249                 return (NULL);
1250         }
1251
1252         for (int l = 1; l < VDEV_LABELS; l++) {
1253                 zio_nowait(zio_read_phys(pio, vd,
1254                     vdev_label_offset(vd->vdev_psize, l,
1255                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1256                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1257                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1258                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1259         }
1260
1261         if (zio == NULL)
1262                 return (pio);
1263
1264         zio_nowait(pio);
1265         return (NULL);
1266 }
1267
1268 static void
1269 vdev_open_child(void *arg)
1270 {
1271         vdev_t *vd = arg;
1272
1273         vd->vdev_open_thread = curthread;
1274         vd->vdev_open_error = vdev_open(vd);
1275         vd->vdev_open_thread = NULL;
1276 }
1277
1278 boolean_t
1279 vdev_uses_zvols(vdev_t *vd)
1280 {
1281         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1282             strlen(ZVOL_DIR)) == 0)
1283                 return (B_TRUE);
1284         for (int c = 0; c < vd->vdev_children; c++)
1285                 if (vdev_uses_zvols(vd->vdev_child[c]))
1286                         return (B_TRUE);
1287         return (B_FALSE);
1288 }
1289
1290 void
1291 vdev_open_children(vdev_t *vd)
1292 {
1293         taskq_t *tq;
1294         int children = vd->vdev_children;
1295
1296         /*
1297          * in order to handle pools on top of zvols, do the opens
1298          * in a single thread so that the same thread holds the
1299          * spa_namespace_lock
1300          */
1301         if (B_TRUE || vdev_uses_zvols(vd)) {
1302                 for (int c = 0; c < children; c++)
1303                         vd->vdev_child[c]->vdev_open_error =
1304                             vdev_open(vd->vdev_child[c]);
1305                 return;
1306         }
1307         tq = taskq_create("vdev_open", children, minclsyspri,
1308             children, children, TASKQ_PREPOPULATE);
1309
1310         for (int c = 0; c < children; c++)
1311                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1312                     TQ_SLEEP) != 0);
1313
1314         taskq_destroy(tq);
1315 }
1316
1317 /*
1318  * Compute the raidz-deflation ratio.  Note, we hard-code
1319  * in 128k (1 << 17) because it is the "typical" blocksize.
1320  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1321  * otherwise it would inconsistently account for existing bp's.
1322  */
1323 static void
1324 vdev_set_deflate_ratio(vdev_t *vd)
1325 {
1326         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1327                 vd->vdev_deflate_ratio = (1 << 17) /
1328                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1329         }
1330 }
1331
1332 /*
1333  * Prepare a virtual device for access.
1334  */
1335 int
1336 vdev_open(vdev_t *vd)
1337 {
1338         spa_t *spa = vd->vdev_spa;
1339         int error;
1340         uint64_t osize = 0;
1341         uint64_t max_osize = 0;
1342         uint64_t asize, max_asize, psize;
1343         uint64_t logical_ashift = 0;
1344         uint64_t physical_ashift = 0;
1345
1346         ASSERT(vd->vdev_open_thread == curthread ||
1347             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1348         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1349             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1350             vd->vdev_state == VDEV_STATE_OFFLINE);
1351
1352         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1353         vd->vdev_cant_read = B_FALSE;
1354         vd->vdev_cant_write = B_FALSE;
1355         vd->vdev_notrim = B_FALSE;
1356         vd->vdev_min_asize = vdev_get_min_asize(vd);
1357
1358         /*
1359          * If this vdev is not removed, check its fault status.  If it's
1360          * faulted, bail out of the open.
1361          */
1362         if (!vd->vdev_removed && vd->vdev_faulted) {
1363                 ASSERT(vd->vdev_children == 0);
1364                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1365                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1366                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1367                     vd->vdev_label_aux);
1368                 return (SET_ERROR(ENXIO));
1369         } else if (vd->vdev_offline) {
1370                 ASSERT(vd->vdev_children == 0);
1371                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1372                 return (SET_ERROR(ENXIO));
1373         }
1374
1375         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1376             &logical_ashift, &physical_ashift);
1377
1378         /*
1379          * Reset the vdev_reopening flag so that we actually close
1380          * the vdev on error.
1381          */
1382         vd->vdev_reopening = B_FALSE;
1383         if (zio_injection_enabled && error == 0)
1384                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1385
1386         if (error) {
1387                 if (vd->vdev_removed &&
1388                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1389                         vd->vdev_removed = B_FALSE;
1390
1391                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1392                     vd->vdev_stat.vs_aux);
1393                 return (error);
1394         }
1395
1396         vd->vdev_removed = B_FALSE;
1397
1398         /*
1399          * Recheck the faulted flag now that we have confirmed that
1400          * the vdev is accessible.  If we're faulted, bail.
1401          */
1402         if (vd->vdev_faulted) {
1403                 ASSERT(vd->vdev_children == 0);
1404                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1405                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1406                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1407                     vd->vdev_label_aux);
1408                 return (SET_ERROR(ENXIO));
1409         }
1410
1411         if (vd->vdev_degraded) {
1412                 ASSERT(vd->vdev_children == 0);
1413                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1414                     VDEV_AUX_ERR_EXCEEDED);
1415         } else {
1416                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1417         }
1418
1419         /*
1420          * For hole or missing vdevs we just return success.
1421          */
1422         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1423                 return (0);
1424
1425         if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1426                 trim_map_create(vd);
1427
1428         for (int c = 0; c < vd->vdev_children; c++) {
1429                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1430                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1431                             VDEV_AUX_NONE);
1432                         break;
1433                 }
1434         }
1435
1436         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1437         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1438
1439         if (vd->vdev_children == 0) {
1440                 if (osize < SPA_MINDEVSIZE) {
1441                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1442                             VDEV_AUX_TOO_SMALL);
1443                         return (SET_ERROR(EOVERFLOW));
1444                 }
1445                 psize = osize;
1446                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1447                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1448                     VDEV_LABEL_END_SIZE);
1449         } else {
1450                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1451                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1452                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1453                             VDEV_AUX_TOO_SMALL);
1454                         return (SET_ERROR(EOVERFLOW));
1455                 }
1456                 psize = 0;
1457                 asize = osize;
1458                 max_asize = max_osize;
1459         }
1460
1461         vd->vdev_psize = psize;
1462
1463         /*
1464          * Make sure the allocatable size hasn't shrunk too much.
1465          */
1466         if (asize < vd->vdev_min_asize) {
1467                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1468                     VDEV_AUX_BAD_LABEL);
1469                 return (SET_ERROR(EINVAL));
1470         }
1471
1472         vd->vdev_physical_ashift =
1473             MAX(physical_ashift, vd->vdev_physical_ashift);
1474         vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1475         vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1476
1477         if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1478                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1479                     VDEV_AUX_ASHIFT_TOO_BIG);
1480                 return (EINVAL);
1481         }
1482
1483         if (vd->vdev_asize == 0) {
1484                 /*
1485                  * This is the first-ever open, so use the computed values.
1486                  * For testing purposes, a higher ashift can be requested.
1487                  */
1488                 vd->vdev_asize = asize;
1489                 vd->vdev_max_asize = max_asize;
1490         } else {
1491                 /*
1492                  * Make sure the alignment requirement hasn't increased.
1493                  */
1494                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1495                     vd->vdev_ops->vdev_op_leaf) {
1496                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1497                             VDEV_AUX_BAD_LABEL);
1498                         return (EINVAL);
1499                 }
1500                 vd->vdev_max_asize = max_asize;
1501         }
1502
1503         /*
1504          * If all children are healthy we update asize if either:
1505          * The asize has increased, due to a device expansion caused by dynamic
1506          * LUN growth or vdev replacement, and automatic expansion is enabled;
1507          * making the additional space available.
1508          *
1509          * The asize has decreased, due to a device shrink usually caused by a
1510          * vdev replace with a smaller device. This ensures that calculations
1511          * based of max_asize and asize e.g. esize are always valid. It's safe
1512          * to do this as we've already validated that asize is greater than
1513          * vdev_min_asize.
1514          */
1515         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1516             ((asize > vd->vdev_asize &&
1517             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1518             (asize < vd->vdev_asize)))
1519                 vd->vdev_asize = asize;
1520
1521         vdev_set_min_asize(vd);
1522
1523         /*
1524          * Ensure we can issue some IO before declaring the
1525          * vdev open for business.
1526          */
1527         if (vd->vdev_ops->vdev_op_leaf &&
1528             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1529                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1530                     VDEV_AUX_ERR_EXCEEDED);
1531                 return (error);
1532         }
1533
1534         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1535             !vd->vdev_isl2cache && !vd->vdev_islog) {
1536                 if (vd->vdev_ashift > spa->spa_max_ashift)
1537                         spa->spa_max_ashift = vd->vdev_ashift;
1538                 if (vd->vdev_ashift < spa->spa_min_ashift)
1539                         spa->spa_min_ashift = vd->vdev_ashift;
1540         }
1541
1542         /*
1543          * Track the min and max ashift values for normal data devices.
1544          */
1545         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1546             !vd->vdev_islog && vd->vdev_aux == NULL) {
1547                 if (vd->vdev_ashift > spa->spa_max_ashift)
1548                         spa->spa_max_ashift = vd->vdev_ashift;
1549                 if (vd->vdev_ashift < spa->spa_min_ashift)
1550                         spa->spa_min_ashift = vd->vdev_ashift;
1551         }
1552
1553         /*
1554          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1555          * resilver.  But don't do this if we are doing a reopen for a scrub,
1556          * since this would just restart the scrub we are already doing.
1557          */
1558         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1559             vdev_resilver_needed(vd, NULL, NULL))
1560                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1561
1562         return (0);
1563 }
1564
1565 /*
1566  * Called once the vdevs are all opened, this routine validates the label
1567  * contents.  This needs to be done before vdev_load() so that we don't
1568  * inadvertently do repair I/Os to the wrong device.
1569  *
1570  * If 'strict' is false ignore the spa guid check. This is necessary because
1571  * if the machine crashed during a re-guid the new guid might have been written
1572  * to all of the vdev labels, but not the cached config. The strict check
1573  * will be performed when the pool is opened again using the mos config.
1574  *
1575  * This function will only return failure if one of the vdevs indicates that it
1576  * has since been destroyed or exported.  This is only possible if
1577  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1578  * will be updated but the function will return 0.
1579  */
1580 int
1581 vdev_validate(vdev_t *vd, boolean_t strict)
1582 {
1583         spa_t *spa = vd->vdev_spa;
1584         nvlist_t *label;
1585         uint64_t guid = 0, top_guid;
1586         uint64_t state;
1587
1588         for (int c = 0; c < vd->vdev_children; c++)
1589                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1590                         return (SET_ERROR(EBADF));
1591
1592         /*
1593          * If the device has already failed, or was marked offline, don't do
1594          * any further validation.  Otherwise, label I/O will fail and we will
1595          * overwrite the previous state.
1596          */
1597         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1598                 uint64_t aux_guid = 0;
1599                 nvlist_t *nvl;
1600                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1601                     spa_last_synced_txg(spa) : -1ULL;
1602
1603                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1604                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1605                             VDEV_AUX_BAD_LABEL);
1606                         vdev_dbgmsg(vd, "vdev_validate: failed reading config");
1607                         return (0);
1608                 }
1609
1610                 /*
1611                  * Determine if this vdev has been split off into another
1612                  * pool.  If so, then refuse to open it.
1613                  */
1614                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1615                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1616                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1617                             VDEV_AUX_SPLIT_POOL);
1618                         nvlist_free(label);
1619                         vdev_dbgmsg(vd, "vdev_validate: vdev split into other "
1620                             "pool");
1621                         return (0);
1622                 }
1623
1624                 if (strict && (nvlist_lookup_uint64(label,
1625                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1626                     guid != spa_guid(spa))) {
1627                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1628                             VDEV_AUX_CORRUPT_DATA);
1629                         nvlist_free(label);
1630                         vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid "
1631                             "doesn't match config (%llu != %llu)",
1632                             (u_longlong_t)guid,
1633                             (u_longlong_t)spa_guid(spa));
1634                         return (0);
1635                 }
1636
1637                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1638                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1639                     &aux_guid) != 0)
1640                         aux_guid = 0;
1641
1642                 /*
1643                  * If this vdev just became a top-level vdev because its
1644                  * sibling was detached, it will have adopted the parent's
1645                  * vdev guid -- but the label may or may not be on disk yet.
1646                  * Fortunately, either version of the label will have the
1647                  * same top guid, so if we're a top-level vdev, we can
1648                  * safely compare to that instead.
1649                  *
1650                  * If we split this vdev off instead, then we also check the
1651                  * original pool's guid.  We don't want to consider the vdev
1652                  * corrupt if it is partway through a split operation.
1653                  */
1654                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1655                     &guid) != 0 ||
1656                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1657                     &top_guid) != 0 ||
1658                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1659                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1660                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1661                             VDEV_AUX_CORRUPT_DATA);
1662                         nvlist_free(label);
1663                         vdev_dbgmsg(vd, "vdev_validate: config guid doesn't "
1664                             "match label guid (%llu != %llu)",
1665                             (u_longlong_t)vd->vdev_guid, (u_longlong_t)guid);
1666                         return (0);
1667                 }
1668
1669                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1670                     &state) != 0) {
1671                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1672                             VDEV_AUX_CORRUPT_DATA);
1673                         nvlist_free(label);
1674                         vdev_dbgmsg(vd, "vdev_validate: '%s' missing",
1675                             ZPOOL_CONFIG_POOL_STATE);
1676                         return (0);
1677                 }
1678
1679                 nvlist_free(label);
1680
1681                 /*
1682                  * If this is a verbatim import, no need to check the
1683                  * state of the pool.
1684                  */
1685                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1686                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1687                     state != POOL_STATE_ACTIVE) {
1688                         vdev_dbgmsg(vd, "vdev_validate: invalid pool state "
1689                             "(%llu) for spa %s", (u_longlong_t)state,
1690                             spa->spa_name);
1691                         return (SET_ERROR(EBADF));
1692                 }
1693
1694                 /*
1695                  * If we were able to open and validate a vdev that was
1696                  * previously marked permanently unavailable, clear that state
1697                  * now.
1698                  */
1699                 if (vd->vdev_not_present)
1700                         vd->vdev_not_present = 0;
1701         }
1702
1703         return (0);
1704 }
1705
1706 /*
1707  * Close a virtual device.
1708  */
1709 void
1710 vdev_close(vdev_t *vd)
1711 {
1712         spa_t *spa = vd->vdev_spa;
1713         vdev_t *pvd = vd->vdev_parent;
1714
1715         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1716
1717         /*
1718          * If our parent is reopening, then we are as well, unless we are
1719          * going offline.
1720          */
1721         if (pvd != NULL && pvd->vdev_reopening)
1722                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1723
1724         vd->vdev_ops->vdev_op_close(vd);
1725
1726         vdev_cache_purge(vd);
1727
1728         if (vd->vdev_ops->vdev_op_leaf)
1729                 trim_map_destroy(vd);
1730
1731         /*
1732          * We record the previous state before we close it, so that if we are
1733          * doing a reopen(), we don't generate FMA ereports if we notice that
1734          * it's still faulted.
1735          */
1736         vd->vdev_prevstate = vd->vdev_state;
1737
1738         if (vd->vdev_offline)
1739                 vd->vdev_state = VDEV_STATE_OFFLINE;
1740         else
1741                 vd->vdev_state = VDEV_STATE_CLOSED;
1742         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1743 }
1744
1745 void
1746 vdev_hold(vdev_t *vd)
1747 {
1748         spa_t *spa = vd->vdev_spa;
1749
1750         ASSERT(spa_is_root(spa));
1751         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1752                 return;
1753
1754         for (int c = 0; c < vd->vdev_children; c++)
1755                 vdev_hold(vd->vdev_child[c]);
1756
1757         if (vd->vdev_ops->vdev_op_leaf)
1758                 vd->vdev_ops->vdev_op_hold(vd);
1759 }
1760
1761 void
1762 vdev_rele(vdev_t *vd)
1763 {
1764         spa_t *spa = vd->vdev_spa;
1765
1766         ASSERT(spa_is_root(spa));
1767         for (int c = 0; c < vd->vdev_children; c++)
1768                 vdev_rele(vd->vdev_child[c]);
1769
1770         if (vd->vdev_ops->vdev_op_leaf)
1771                 vd->vdev_ops->vdev_op_rele(vd);
1772 }
1773
1774 /*
1775  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1776  * reopen leaf vdevs which had previously been opened as they might deadlock
1777  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1778  * If the leaf has never been opened then open it, as usual.
1779  */
1780 void
1781 vdev_reopen(vdev_t *vd)
1782 {
1783         spa_t *spa = vd->vdev_spa;
1784
1785         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1786
1787         /* set the reopening flag unless we're taking the vdev offline */
1788         vd->vdev_reopening = !vd->vdev_offline;
1789         vdev_close(vd);
1790         (void) vdev_open(vd);
1791
1792         /*
1793          * Call vdev_validate() here to make sure we have the same device.
1794          * Otherwise, a device with an invalid label could be successfully
1795          * opened in response to vdev_reopen().
1796          */
1797         if (vd->vdev_aux) {
1798                 (void) vdev_validate_aux(vd);
1799                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1800                     vd->vdev_aux == &spa->spa_l2cache &&
1801                     !l2arc_vdev_present(vd))
1802                         l2arc_add_vdev(spa, vd);
1803         } else {
1804                 (void) vdev_validate(vd, B_TRUE);
1805         }
1806
1807         /*
1808          * Reassess parent vdev's health.
1809          */
1810         vdev_propagate_state(vd);
1811 }
1812
1813 int
1814 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1815 {
1816         int error;
1817
1818         /*
1819          * Normally, partial opens (e.g. of a mirror) are allowed.
1820          * For a create, however, we want to fail the request if
1821          * there are any components we can't open.
1822          */
1823         error = vdev_open(vd);
1824
1825         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1826                 vdev_close(vd);
1827                 return (error ? error : ENXIO);
1828         }
1829
1830         /*
1831          * Recursively load DTLs and initialize all labels.
1832          */
1833         if ((error = vdev_dtl_load(vd)) != 0 ||
1834             (error = vdev_label_init(vd, txg, isreplacing ?
1835             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1836                 vdev_close(vd);
1837                 return (error);
1838         }
1839
1840         return (0);
1841 }
1842
1843 void
1844 vdev_metaslab_set_size(vdev_t *vd)
1845 {
1846         /*
1847          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1848          */
1849         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1850         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1851 }
1852
1853 /*
1854  * Maximize performance by inflating the configured ashift for top level
1855  * vdevs to be as close to the physical ashift as possible while maintaining
1856  * administrator defined limits and ensuring it doesn't go below the
1857  * logical ashift.
1858  */
1859 void
1860 vdev_ashift_optimize(vdev_t *vd)
1861 {
1862         if (vd == vd->vdev_top) {
1863                 if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1864                         vd->vdev_ashift = MIN(
1865                             MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1866                             MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1867                 } else {
1868                         /*
1869                          * Unusual case where logical ashift > physical ashift
1870                          * so we can't cap the calculated ashift based on max
1871                          * ashift as that would cause failures.
1872                          * We still check if we need to increase it to match
1873                          * the min ashift.
1874                          */
1875                         vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1876                             vd->vdev_ashift);
1877                 }
1878         }
1879 }
1880
1881 void
1882 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1883 {
1884         ASSERT(vd == vd->vdev_top);
1885         /* indirect vdevs don't have metaslabs or dtls */
1886         ASSERT(vdev_is_concrete(vd) || flags == 0);
1887         ASSERT(ISP2(flags));
1888         ASSERT(spa_writeable(vd->vdev_spa));
1889
1890         if (flags & VDD_METASLAB)
1891                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1892
1893         if (flags & VDD_DTL)
1894                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1895
1896         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1897 }
1898
1899 void
1900 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1901 {
1902         for (int c = 0; c < vd->vdev_children; c++)
1903                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1904
1905         if (vd->vdev_ops->vdev_op_leaf)
1906                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1907 }
1908
1909 /*
1910  * DTLs.
1911  *
1912  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1913  * the vdev has less than perfect replication.  There are four kinds of DTL:
1914  *
1915  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1916  *
1917  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1918  *
1919  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1920  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1921  *      txgs that was scrubbed.
1922  *
1923  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1924  *      persistent errors or just some device being offline.
1925  *      Unlike the other three, the DTL_OUTAGE map is not generally
1926  *      maintained; it's only computed when needed, typically to
1927  *      determine whether a device can be detached.
1928  *
1929  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1930  * either has the data or it doesn't.
1931  *
1932  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1933  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1934  * if any child is less than fully replicated, then so is its parent.
1935  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1936  * comprising only those txgs which appear in 'maxfaults' or more children;
1937  * those are the txgs we don't have enough replication to read.  For example,
1938  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1939  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1940  * two child DTL_MISSING maps.
1941  *
1942  * It should be clear from the above that to compute the DTLs and outage maps
1943  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1944  * Therefore, that is all we keep on disk.  When loading the pool, or after
1945  * a configuration change, we generate all other DTLs from first principles.
1946  */
1947 void
1948 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1949 {
1950         range_tree_t *rt = vd->vdev_dtl[t];
1951
1952         ASSERT(t < DTL_TYPES);
1953         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1954         ASSERT(spa_writeable(vd->vdev_spa));
1955
1956         mutex_enter(&vd->vdev_dtl_lock);
1957         if (!range_tree_contains(rt, txg, size))
1958                 range_tree_add(rt, txg, size);
1959         mutex_exit(&vd->vdev_dtl_lock);
1960 }
1961
1962 boolean_t
1963 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1964 {
1965         range_tree_t *rt = vd->vdev_dtl[t];
1966         boolean_t dirty = B_FALSE;
1967
1968         ASSERT(t < DTL_TYPES);
1969         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1970
1971         /*
1972          * While we are loading the pool, the DTLs have not been loaded yet.
1973          * Ignore the DTLs and try all devices.  This avoids a recursive
1974          * mutex enter on the vdev_dtl_lock, and also makes us try hard
1975          * when loading the pool (relying on the checksum to ensure that
1976          * we get the right data -- note that we while loading, we are
1977          * only reading the MOS, which is always checksummed).
1978          */
1979         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
1980                 return (B_FALSE);
1981
1982         mutex_enter(&vd->vdev_dtl_lock);
1983         if (range_tree_space(rt) != 0)
1984                 dirty = range_tree_contains(rt, txg, size);
1985         mutex_exit(&vd->vdev_dtl_lock);
1986
1987         return (dirty);
1988 }
1989
1990 boolean_t
1991 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1992 {
1993         range_tree_t *rt = vd->vdev_dtl[t];
1994         boolean_t empty;
1995
1996         mutex_enter(&vd->vdev_dtl_lock);
1997         empty = (range_tree_space(rt) == 0);
1998         mutex_exit(&vd->vdev_dtl_lock);
1999
2000         return (empty);
2001 }
2002
2003 /*
2004  * Returns the lowest txg in the DTL range.
2005  */
2006 static uint64_t
2007 vdev_dtl_min(vdev_t *vd)
2008 {
2009         range_seg_t *rs;
2010
2011         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2012         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2013         ASSERT0(vd->vdev_children);
2014
2015         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2016         return (rs->rs_start - 1);
2017 }
2018
2019 /*
2020  * Returns the highest txg in the DTL.
2021  */
2022 static uint64_t
2023 vdev_dtl_max(vdev_t *vd)
2024 {
2025         range_seg_t *rs;
2026
2027         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2028         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2029         ASSERT0(vd->vdev_children);
2030
2031         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2032         return (rs->rs_end);
2033 }
2034
2035 /*
2036  * Determine if a resilvering vdev should remove any DTL entries from
2037  * its range. If the vdev was resilvering for the entire duration of the
2038  * scan then it should excise that range from its DTLs. Otherwise, this
2039  * vdev is considered partially resilvered and should leave its DTL
2040  * entries intact. The comment in vdev_dtl_reassess() describes how we
2041  * excise the DTLs.
2042  */
2043 static boolean_t
2044 vdev_dtl_should_excise(vdev_t *vd)
2045 {
2046         spa_t *spa = vd->vdev_spa;
2047         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2048
2049         ASSERT0(scn->scn_phys.scn_errors);
2050         ASSERT0(vd->vdev_children);
2051
2052         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2053                 return (B_FALSE);
2054
2055         if (vd->vdev_resilver_txg == 0 ||
2056             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
2057                 return (B_TRUE);
2058
2059         /*
2060          * When a resilver is initiated the scan will assign the scn_max_txg
2061          * value to the highest txg value that exists in all DTLs. If this
2062          * device's max DTL is not part of this scan (i.e. it is not in
2063          * the range (scn_min_txg, scn_max_txg] then it is not eligible
2064          * for excision.
2065          */
2066         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2067                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2068                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2069                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2070                 return (B_TRUE);
2071         }
2072         return (B_FALSE);
2073 }
2074
2075 /*
2076  * Reassess DTLs after a config change or scrub completion.
2077  */
2078 void
2079 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2080 {
2081         spa_t *spa = vd->vdev_spa;
2082         avl_tree_t reftree;
2083         int minref;
2084
2085         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2086
2087         for (int c = 0; c < vd->vdev_children; c++)
2088                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2089                     scrub_txg, scrub_done);
2090
2091         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2092                 return;
2093
2094         if (vd->vdev_ops->vdev_op_leaf) {
2095                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2096
2097                 mutex_enter(&vd->vdev_dtl_lock);
2098
2099                 /*
2100                  * If we've completed a scan cleanly then determine
2101                  * if this vdev should remove any DTLs. We only want to
2102                  * excise regions on vdevs that were available during
2103                  * the entire duration of this scan.
2104                  */
2105                 if (scrub_txg != 0 &&
2106                     (spa->spa_scrub_started ||
2107                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2108                     vdev_dtl_should_excise(vd)) {
2109                         /*
2110                          * We completed a scrub up to scrub_txg.  If we
2111                          * did it without rebooting, then the scrub dtl
2112                          * will be valid, so excise the old region and
2113                          * fold in the scrub dtl.  Otherwise, leave the
2114                          * dtl as-is if there was an error.
2115                          *
2116                          * There's little trick here: to excise the beginning
2117                          * of the DTL_MISSING map, we put it into a reference
2118                          * tree and then add a segment with refcnt -1 that
2119                          * covers the range [0, scrub_txg).  This means
2120                          * that each txg in that range has refcnt -1 or 0.
2121                          * We then add DTL_SCRUB with a refcnt of 2, so that
2122                          * entries in the range [0, scrub_txg) will have a
2123                          * positive refcnt -- either 1 or 2.  We then convert
2124                          * the reference tree into the new DTL_MISSING map.
2125                          */
2126                         space_reftree_create(&reftree);
2127                         space_reftree_add_map(&reftree,
2128                             vd->vdev_dtl[DTL_MISSING], 1);
2129                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2130                         space_reftree_add_map(&reftree,
2131                             vd->vdev_dtl[DTL_SCRUB], 2);
2132                         space_reftree_generate_map(&reftree,
2133                             vd->vdev_dtl[DTL_MISSING], 1);
2134                         space_reftree_destroy(&reftree);
2135                 }
2136                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2137                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2138                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2139                 if (scrub_done)
2140                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2141                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2142                 if (!vdev_readable(vd))
2143                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2144                 else
2145                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2146                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2147
2148                 /*
2149                  * If the vdev was resilvering and no longer has any
2150                  * DTLs then reset its resilvering flag and dirty
2151                  * the top level so that we persist the change.
2152                  */
2153                 if (vd->vdev_resilver_txg != 0 &&
2154                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2155                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2156                         vd->vdev_resilver_txg = 0;
2157                         vdev_config_dirty(vd->vdev_top);
2158                 }
2159
2160                 mutex_exit(&vd->vdev_dtl_lock);
2161
2162                 if (txg != 0)
2163                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2164                 return;
2165         }
2166
2167         mutex_enter(&vd->vdev_dtl_lock);
2168         for (int t = 0; t < DTL_TYPES; t++) {
2169                 /* account for child's outage in parent's missing map */
2170                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2171                 if (t == DTL_SCRUB)
2172                         continue;                       /* leaf vdevs only */
2173                 if (t == DTL_PARTIAL)
2174                         minref = 1;                     /* i.e. non-zero */
2175                 else if (vd->vdev_nparity != 0)
2176                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2177                 else
2178                         minref = vd->vdev_children;     /* any kind of mirror */
2179                 space_reftree_create(&reftree);
2180                 for (int c = 0; c < vd->vdev_children; c++) {
2181                         vdev_t *cvd = vd->vdev_child[c];
2182                         mutex_enter(&cvd->vdev_dtl_lock);
2183                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2184                         mutex_exit(&cvd->vdev_dtl_lock);
2185                 }
2186                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2187                 space_reftree_destroy(&reftree);
2188         }
2189         mutex_exit(&vd->vdev_dtl_lock);
2190 }
2191
2192 int
2193 vdev_dtl_load(vdev_t *vd)
2194 {
2195         spa_t *spa = vd->vdev_spa;
2196         objset_t *mos = spa->spa_meta_objset;
2197         int error = 0;
2198
2199         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2200                 ASSERT(vdev_is_concrete(vd));
2201
2202                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2203                     vd->vdev_dtl_object, 0, -1ULL, 0);
2204                 if (error)
2205                         return (error);
2206                 ASSERT(vd->vdev_dtl_sm != NULL);
2207
2208                 mutex_enter(&vd->vdev_dtl_lock);
2209
2210                 /*
2211                  * Now that we've opened the space_map we need to update
2212                  * the in-core DTL.
2213                  */
2214                 space_map_update(vd->vdev_dtl_sm);
2215
2216                 error = space_map_load(vd->vdev_dtl_sm,
2217                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2218                 mutex_exit(&vd->vdev_dtl_lock);
2219
2220                 return (error);
2221         }
2222
2223         for (int c = 0; c < vd->vdev_children; c++) {
2224                 error = vdev_dtl_load(vd->vdev_child[c]);
2225                 if (error != 0)
2226                         break;
2227         }
2228
2229         return (error);
2230 }
2231
2232 void
2233 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2234 {
2235         spa_t *spa = vd->vdev_spa;
2236
2237         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2238         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2239             zapobj, tx));
2240 }
2241
2242 uint64_t
2243 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2244 {
2245         spa_t *spa = vd->vdev_spa;
2246         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2247             DMU_OT_NONE, 0, tx);
2248
2249         ASSERT(zap != 0);
2250         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2251             zap, tx));
2252
2253         return (zap);
2254 }
2255
2256 void
2257 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2258 {
2259         if (vd->vdev_ops != &vdev_hole_ops &&
2260             vd->vdev_ops != &vdev_missing_ops &&
2261             vd->vdev_ops != &vdev_root_ops &&
2262             !vd->vdev_top->vdev_removing) {
2263                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2264                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2265                 }
2266                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2267                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2268                 }
2269         }
2270         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2271                 vdev_construct_zaps(vd->vdev_child[i], tx);
2272         }
2273 }
2274
2275 void
2276 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2277 {
2278         spa_t *spa = vd->vdev_spa;
2279         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2280         objset_t *mos = spa->spa_meta_objset;
2281         range_tree_t *rtsync;
2282         dmu_tx_t *tx;
2283         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2284
2285         ASSERT(vdev_is_concrete(vd));
2286         ASSERT(vd->vdev_ops->vdev_op_leaf);
2287
2288         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2289
2290         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2291                 mutex_enter(&vd->vdev_dtl_lock);
2292                 space_map_free(vd->vdev_dtl_sm, tx);
2293                 space_map_close(vd->vdev_dtl_sm);
2294                 vd->vdev_dtl_sm = NULL;
2295                 mutex_exit(&vd->vdev_dtl_lock);
2296
2297                 /*
2298                  * We only destroy the leaf ZAP for detached leaves or for
2299                  * removed log devices. Removed data devices handle leaf ZAP
2300                  * cleanup later, once cancellation is no longer possible.
2301                  */
2302                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2303                     vd->vdev_top->vdev_islog)) {
2304                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2305                         vd->vdev_leaf_zap = 0;
2306                 }
2307
2308                 dmu_tx_commit(tx);
2309                 return;
2310         }
2311
2312         if (vd->vdev_dtl_sm == NULL) {
2313                 uint64_t new_object;
2314
2315                 new_object = space_map_alloc(mos, tx);
2316                 VERIFY3U(new_object, !=, 0);
2317
2318                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2319                     0, -1ULL, 0));
2320                 ASSERT(vd->vdev_dtl_sm != NULL);
2321         }
2322
2323         rtsync = range_tree_create(NULL, NULL);
2324
2325         mutex_enter(&vd->vdev_dtl_lock);
2326         range_tree_walk(rt, range_tree_add, rtsync);
2327         mutex_exit(&vd->vdev_dtl_lock);
2328
2329         space_map_truncate(vd->vdev_dtl_sm, tx);
2330         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2331         range_tree_vacate(rtsync, NULL, NULL);
2332
2333         range_tree_destroy(rtsync);
2334
2335         /*
2336          * If the object for the space map has changed then dirty
2337          * the top level so that we update the config.
2338          */
2339         if (object != space_map_object(vd->vdev_dtl_sm)) {
2340                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2341                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
2342                     (u_longlong_t)object,
2343                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2344                 vdev_config_dirty(vd->vdev_top);
2345         }
2346
2347         dmu_tx_commit(tx);
2348
2349         mutex_enter(&vd->vdev_dtl_lock);
2350         space_map_update(vd->vdev_dtl_sm);
2351         mutex_exit(&vd->vdev_dtl_lock);
2352 }
2353
2354 /*
2355  * Determine whether the specified vdev can be offlined/detached/removed
2356  * without losing data.
2357  */
2358 boolean_t
2359 vdev_dtl_required(vdev_t *vd)
2360 {
2361         spa_t *spa = vd->vdev_spa;
2362         vdev_t *tvd = vd->vdev_top;
2363         uint8_t cant_read = vd->vdev_cant_read;
2364         boolean_t required;
2365
2366         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2367
2368         if (vd == spa->spa_root_vdev || vd == tvd)
2369                 return (B_TRUE);
2370
2371         /*
2372          * Temporarily mark the device as unreadable, and then determine
2373          * whether this results in any DTL outages in the top-level vdev.
2374          * If not, we can safely offline/detach/remove the device.
2375          */
2376         vd->vdev_cant_read = B_TRUE;
2377         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2378         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2379         vd->vdev_cant_read = cant_read;
2380         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2381
2382         if (!required && zio_injection_enabled)
2383                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2384
2385         return (required);
2386 }
2387
2388 /*
2389  * Determine if resilver is needed, and if so the txg range.
2390  */
2391 boolean_t
2392 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2393 {
2394         boolean_t needed = B_FALSE;
2395         uint64_t thismin = UINT64_MAX;
2396         uint64_t thismax = 0;
2397
2398         if (vd->vdev_children == 0) {
2399                 mutex_enter(&vd->vdev_dtl_lock);
2400                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2401                     vdev_writeable(vd)) {
2402
2403                         thismin = vdev_dtl_min(vd);
2404                         thismax = vdev_dtl_max(vd);
2405                         needed = B_TRUE;
2406                 }
2407                 mutex_exit(&vd->vdev_dtl_lock);
2408         } else {
2409                 for (int c = 0; c < vd->vdev_children; c++) {
2410                         vdev_t *cvd = vd->vdev_child[c];
2411                         uint64_t cmin, cmax;
2412
2413                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2414                                 thismin = MIN(thismin, cmin);
2415                                 thismax = MAX(thismax, cmax);
2416                                 needed = B_TRUE;
2417                         }
2418                 }
2419         }
2420
2421         if (needed && minp) {
2422                 *minp = thismin;
2423                 *maxp = thismax;
2424         }
2425         return (needed);
2426 }
2427
2428 int
2429 vdev_load(vdev_t *vd)
2430 {
2431         int error = 0;
2432         /*
2433          * Recursively load all children.
2434          */
2435         for (int c = 0; c < vd->vdev_children; c++) {
2436                 error = vdev_load(vd->vdev_child[c]);
2437                 if (error != 0) {
2438                         return (error);
2439                 }
2440         }
2441
2442         vdev_set_deflate_ratio(vd);
2443
2444         /*
2445          * If this is a top-level vdev, initialize its metaslabs.
2446          */
2447         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2448                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2449                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2450                             VDEV_AUX_CORRUPT_DATA);
2451                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2452                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2453                             (u_longlong_t)vd->vdev_asize);
2454                         return (SET_ERROR(ENXIO));
2455                 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2456                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2457                             "[error=%d]", error);
2458                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2459                             VDEV_AUX_CORRUPT_DATA);
2460                         return (error);
2461                 }
2462         }
2463
2464         /*
2465          * If this is a leaf vdev, load its DTL.
2466          */
2467         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2468                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2469                     VDEV_AUX_CORRUPT_DATA);
2470                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2471                     "[error=%d]", error);
2472                 return (error);
2473         }
2474
2475         uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2476         if (obsolete_sm_object != 0) {
2477                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2478                 ASSERT(vd->vdev_asize != 0);
2479                 ASSERT(vd->vdev_obsolete_sm == NULL);
2480
2481                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2482                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2483                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2484                             VDEV_AUX_CORRUPT_DATA);
2485                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2486                             "obsolete spacemap (obj %llu) [error=%d]",
2487                             (u_longlong_t)obsolete_sm_object, error);
2488                         return (error);
2489                 }
2490                 space_map_update(vd->vdev_obsolete_sm);
2491         }
2492
2493         return (0);
2494 }
2495
2496 /*
2497  * The special vdev case is used for hot spares and l2cache devices.  Its
2498  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2499  * we make sure that we can open the underlying device, then try to read the
2500  * label, and make sure that the label is sane and that it hasn't been
2501  * repurposed to another pool.
2502  */
2503 int
2504 vdev_validate_aux(vdev_t *vd)
2505 {
2506         nvlist_t *label;
2507         uint64_t guid, version;
2508         uint64_t state;
2509
2510         if (!vdev_readable(vd))
2511                 return (0);
2512
2513         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2514                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2515                     VDEV_AUX_CORRUPT_DATA);
2516                 return (-1);
2517         }
2518
2519         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2520             !SPA_VERSION_IS_SUPPORTED(version) ||
2521             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2522             guid != vd->vdev_guid ||
2523             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2524                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2525                     VDEV_AUX_CORRUPT_DATA);
2526                 nvlist_free(label);
2527                 return (-1);
2528         }
2529
2530         /*
2531          * We don't actually check the pool state here.  If it's in fact in
2532          * use by another pool, we update this fact on the fly when requested.
2533          */
2534         nvlist_free(label);
2535         return (0);
2536 }
2537
2538 /*
2539  * Free the objects used to store this vdev's spacemaps, and the array
2540  * that points to them.
2541  */
2542 void
2543 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2544 {
2545         if (vd->vdev_ms_array == 0)
2546                 return;
2547
2548         objset_t *mos = vd->vdev_spa->spa_meta_objset;
2549         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2550         size_t array_bytes = array_count * sizeof (uint64_t);
2551         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2552         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2553             array_bytes, smobj_array, 0));
2554
2555         for (uint64_t i = 0; i < array_count; i++) {
2556                 uint64_t smobj = smobj_array[i];
2557                 if (smobj == 0)
2558                         continue;
2559
2560                 space_map_free_obj(mos, smobj, tx);
2561         }
2562
2563         kmem_free(smobj_array, array_bytes);
2564         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2565         vd->vdev_ms_array = 0;
2566 }
2567
2568 static void
2569 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2570 {
2571         spa_t *spa = vd->vdev_spa;
2572         dmu_tx_t *tx;
2573
2574         ASSERT(vd == vd->vdev_top);
2575         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2576
2577         if (vd->vdev_ms != NULL) {
2578                 metaslab_group_t *mg = vd->vdev_mg;
2579
2580                 metaslab_group_histogram_verify(mg);
2581                 metaslab_class_histogram_verify(mg->mg_class);
2582
2583                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2584                         metaslab_t *msp = vd->vdev_ms[m];
2585
2586                         if (msp == NULL || msp->ms_sm == NULL)
2587                                 continue;
2588
2589                         mutex_enter(&msp->ms_lock);
2590                         /*
2591                          * If the metaslab was not loaded when the vdev
2592                          * was removed then the histogram accounting may
2593                          * not be accurate. Update the histogram information
2594                          * here so that we ensure that the metaslab group
2595                          * and metaslab class are up-to-date.
2596                          */
2597                         metaslab_group_histogram_remove(mg, msp);
2598
2599                         VERIFY0(space_map_allocated(msp->ms_sm));
2600                         space_map_close(msp->ms_sm);
2601                         msp->ms_sm = NULL;
2602                         mutex_exit(&msp->ms_lock);
2603                 }
2604
2605                 metaslab_group_histogram_verify(mg);
2606                 metaslab_class_histogram_verify(mg->mg_class);
2607                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2608                         ASSERT0(mg->mg_histogram[i]);
2609         }
2610
2611         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2612         vdev_destroy_spacemaps(vd, tx);
2613
2614         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2615                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2616                 vd->vdev_top_zap = 0;
2617         }
2618         dmu_tx_commit(tx);
2619 }
2620
2621 void
2622 vdev_sync_done(vdev_t *vd, uint64_t txg)
2623 {
2624         metaslab_t *msp;
2625         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2626
2627         ASSERT(vdev_is_concrete(vd));
2628
2629         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2630                 metaslab_sync_done(msp, txg);
2631
2632         if (reassess)
2633                 metaslab_sync_reassess(vd->vdev_mg);
2634 }
2635
2636 void
2637 vdev_sync(vdev_t *vd, uint64_t txg)
2638 {
2639         spa_t *spa = vd->vdev_spa;
2640         vdev_t *lvd;
2641         metaslab_t *msp;
2642         dmu_tx_t *tx;
2643
2644         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2645                 dmu_tx_t *tx;
2646
2647                 ASSERT(vd->vdev_removing ||
2648                     vd->vdev_ops == &vdev_indirect_ops);
2649
2650                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2651                 vdev_indirect_sync_obsolete(vd, tx);
2652                 dmu_tx_commit(tx);
2653
2654                 /*
2655                  * If the vdev is indirect, it can't have dirty
2656                  * metaslabs or DTLs.
2657                  */
2658                 if (vd->vdev_ops == &vdev_indirect_ops) {
2659                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2660                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2661                         return;
2662                 }
2663         }
2664
2665         ASSERT(vdev_is_concrete(vd));
2666
2667         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2668             !vd->vdev_removing) {
2669                 ASSERT(vd == vd->vdev_top);
2670                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2671                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2672                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2673                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2674                 ASSERT(vd->vdev_ms_array != 0);
2675                 vdev_config_dirty(vd);
2676                 dmu_tx_commit(tx);
2677         }
2678
2679         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2680                 metaslab_sync(msp, txg);
2681                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2682         }
2683
2684         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2685                 vdev_dtl_sync(lvd, txg);
2686
2687         /*
2688          * Remove the metadata associated with this vdev once it's empty.
2689          * Note that this is typically used for log/cache device removal;
2690          * we don't empty toplevel vdevs when removing them.  But if
2691          * a toplevel happens to be emptied, this is not harmful.
2692          */
2693         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2694                 vdev_remove_empty(vd, txg);
2695         }
2696
2697         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2698 }
2699
2700 uint64_t
2701 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2702 {
2703         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2704 }
2705
2706 /*
2707  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2708  * not be opened, and no I/O is attempted.
2709  */
2710 int
2711 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2712 {
2713         vdev_t *vd, *tvd;
2714
2715         spa_vdev_state_enter(spa, SCL_NONE);
2716
2717         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2718                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2719
2720         if (!vd->vdev_ops->vdev_op_leaf)
2721                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2722
2723         tvd = vd->vdev_top;
2724
2725         /*
2726          * We don't directly use the aux state here, but if we do a
2727          * vdev_reopen(), we need this value to be present to remember why we
2728          * were faulted.
2729          */
2730         vd->vdev_label_aux = aux;
2731
2732         /*
2733          * Faulted state takes precedence over degraded.
2734          */
2735         vd->vdev_delayed_close = B_FALSE;
2736         vd->vdev_faulted = 1ULL;
2737         vd->vdev_degraded = 0ULL;
2738         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2739
2740         /*
2741          * If this device has the only valid copy of the data, then
2742          * back off and simply mark the vdev as degraded instead.
2743          */
2744         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2745                 vd->vdev_degraded = 1ULL;
2746                 vd->vdev_faulted = 0ULL;
2747
2748                 /*
2749                  * If we reopen the device and it's not dead, only then do we
2750                  * mark it degraded.
2751                  */
2752                 vdev_reopen(tvd);
2753
2754                 if (vdev_readable(vd))
2755                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2756         }
2757
2758         return (spa_vdev_state_exit(spa, vd, 0));
2759 }
2760
2761 /*
2762  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2763  * user that something is wrong.  The vdev continues to operate as normal as far
2764  * as I/O is concerned.
2765  */
2766 int
2767 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2768 {
2769         vdev_t *vd;
2770
2771         spa_vdev_state_enter(spa, SCL_NONE);
2772
2773         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2774                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2775
2776         if (!vd->vdev_ops->vdev_op_leaf)
2777                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2778
2779         /*
2780          * If the vdev is already faulted, then don't do anything.
2781          */
2782         if (vd->vdev_faulted || vd->vdev_degraded)
2783                 return (spa_vdev_state_exit(spa, NULL, 0));
2784
2785         vd->vdev_degraded = 1ULL;
2786         if (!vdev_is_dead(vd))
2787                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2788                     aux);
2789
2790         return (spa_vdev_state_exit(spa, vd, 0));
2791 }
2792
2793 /*
2794  * Online the given vdev.
2795  *
2796  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2797  * spare device should be detached when the device finishes resilvering.
2798  * Second, the online should be treated like a 'test' online case, so no FMA
2799  * events are generated if the device fails to open.
2800  */
2801 int
2802 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2803 {
2804         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2805         boolean_t wasoffline;
2806         vdev_state_t oldstate;
2807
2808         spa_vdev_state_enter(spa, SCL_NONE);
2809
2810         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2811                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2812
2813         if (!vd->vdev_ops->vdev_op_leaf)
2814                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2815
2816         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2817         oldstate = vd->vdev_state;
2818
2819         tvd = vd->vdev_top;
2820         vd->vdev_offline = B_FALSE;
2821         vd->vdev_tmpoffline = B_FALSE;
2822         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2823         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2824
2825         /* XXX - L2ARC 1.0 does not support expansion */
2826         if (!vd->vdev_aux) {
2827                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2828                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2829         }
2830
2831         vdev_reopen(tvd);
2832         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2833
2834         if (!vd->vdev_aux) {
2835                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2836                         pvd->vdev_expanding = B_FALSE;
2837         }
2838
2839         if (newstate)
2840                 *newstate = vd->vdev_state;
2841         if ((flags & ZFS_ONLINE_UNSPARE) &&
2842             !vdev_is_dead(vd) && vd->vdev_parent &&
2843             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2844             vd->vdev_parent->vdev_child[0] == vd)
2845                 vd->vdev_unspare = B_TRUE;
2846
2847         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2848
2849                 /* XXX - L2ARC 1.0 does not support expansion */
2850                 if (vd->vdev_aux)
2851                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2852                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2853         }
2854
2855         if (wasoffline ||
2856             (oldstate < VDEV_STATE_DEGRADED &&
2857             vd->vdev_state >= VDEV_STATE_DEGRADED))
2858                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2859
2860         return (spa_vdev_state_exit(spa, vd, 0));
2861 }
2862
2863 static int
2864 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2865 {
2866         vdev_t *vd, *tvd;
2867         int error = 0;
2868         uint64_t generation;
2869         metaslab_group_t *mg;
2870
2871 top:
2872         spa_vdev_state_enter(spa, SCL_ALLOC);
2873
2874         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2875                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2876
2877         if (!vd->vdev_ops->vdev_op_leaf)
2878                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2879
2880         tvd = vd->vdev_top;
2881         mg = tvd->vdev_mg;
2882         generation = spa->spa_config_generation + 1;
2883
2884         /*
2885          * If the device isn't already offline, try to offline it.
2886          */
2887         if (!vd->vdev_offline) {
2888                 /*
2889                  * If this device has the only valid copy of some data,
2890                  * don't allow it to be offlined. Log devices are always
2891                  * expendable.
2892                  */
2893                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2894                     vdev_dtl_required(vd))
2895                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2896
2897                 /*
2898                  * If the top-level is a slog and it has had allocations
2899                  * then proceed.  We check that the vdev's metaslab group
2900                  * is not NULL since it's possible that we may have just
2901                  * added this vdev but not yet initialized its metaslabs.
2902                  */
2903                 if (tvd->vdev_islog && mg != NULL) {
2904                         /*
2905                          * Prevent any future allocations.
2906                          */
2907                         metaslab_group_passivate(mg);
2908                         (void) spa_vdev_state_exit(spa, vd, 0);
2909
2910                         error = spa_reset_logs(spa);
2911
2912                         spa_vdev_state_enter(spa, SCL_ALLOC);
2913
2914                         /*
2915                          * Check to see if the config has changed.
2916                          */
2917                         if (error || generation != spa->spa_config_generation) {
2918                                 metaslab_group_activate(mg);
2919                                 if (error)
2920                                         return (spa_vdev_state_exit(spa,
2921                                             vd, error));
2922                                 (void) spa_vdev_state_exit(spa, vd, 0);
2923                                 goto top;
2924                         }
2925                         ASSERT0(tvd->vdev_stat.vs_alloc);
2926                 }
2927
2928                 /*
2929                  * Offline this device and reopen its top-level vdev.
2930                  * If the top-level vdev is a log device then just offline
2931                  * it. Otherwise, if this action results in the top-level
2932                  * vdev becoming unusable, undo it and fail the request.
2933                  */
2934                 vd->vdev_offline = B_TRUE;
2935                 vdev_reopen(tvd);
2936
2937                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2938                     vdev_is_dead(tvd)) {
2939                         vd->vdev_offline = B_FALSE;
2940                         vdev_reopen(tvd);
2941                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2942                 }
2943
2944                 /*
2945                  * Add the device back into the metaslab rotor so that
2946                  * once we online the device it's open for business.
2947                  */
2948                 if (tvd->vdev_islog && mg != NULL)
2949                         metaslab_group_activate(mg);
2950         }
2951
2952         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2953
2954         return (spa_vdev_state_exit(spa, vd, 0));
2955 }
2956
2957 int
2958 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2959 {
2960         int error;
2961
2962         mutex_enter(&spa->spa_vdev_top_lock);
2963         error = vdev_offline_locked(spa, guid, flags);
2964         mutex_exit(&spa->spa_vdev_top_lock);
2965
2966         return (error);
2967 }
2968
2969 /*
2970  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2971  * vdev_offline(), we assume the spa config is locked.  We also clear all
2972  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2973  */
2974 void
2975 vdev_clear(spa_t *spa, vdev_t *vd)
2976 {
2977         vdev_t *rvd = spa->spa_root_vdev;
2978
2979         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2980
2981         if (vd == NULL)
2982                 vd = rvd;
2983
2984         vd->vdev_stat.vs_read_errors = 0;
2985         vd->vdev_stat.vs_write_errors = 0;
2986         vd->vdev_stat.vs_checksum_errors = 0;
2987
2988         for (int c = 0; c < vd->vdev_children; c++)
2989                 vdev_clear(spa, vd->vdev_child[c]);
2990
2991         if (vd == rvd) {
2992                 for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2993                         vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2994
2995                 for (int c = 0; c < spa->spa_spares.sav_count; c++)
2996                         vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2997         }
2998
2999         /*
3000          * It makes no sense to "clear" an indirect vdev.
3001          */
3002         if (!vdev_is_concrete(vd))
3003                 return;
3004
3005         /*
3006          * If we're in the FAULTED state or have experienced failed I/O, then
3007          * clear the persistent state and attempt to reopen the device.  We
3008          * also mark the vdev config dirty, so that the new faulted state is
3009          * written out to disk.
3010          */
3011         if (vd->vdev_faulted || vd->vdev_degraded ||
3012             !vdev_readable(vd) || !vdev_writeable(vd)) {
3013
3014                 /*
3015                  * When reopening in reponse to a clear event, it may be due to
3016                  * a fmadm repair request.  In this case, if the device is
3017                  * still broken, we want to still post the ereport again.
3018                  */
3019                 vd->vdev_forcefault = B_TRUE;
3020
3021                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3022                 vd->vdev_cant_read = B_FALSE;
3023                 vd->vdev_cant_write = B_FALSE;
3024
3025                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3026
3027                 vd->vdev_forcefault = B_FALSE;
3028
3029                 if (vd != rvd && vdev_writeable(vd->vdev_top))
3030                         vdev_state_dirty(vd->vdev_top);
3031
3032                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3033                         spa_async_request(spa, SPA_ASYNC_RESILVER);
3034
3035                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3036         }
3037
3038         /*
3039          * When clearing a FMA-diagnosed fault, we always want to
3040          * unspare the device, as we assume that the original spare was
3041          * done in response to the FMA fault.
3042          */
3043         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3044             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3045             vd->vdev_parent->vdev_child[0] == vd)
3046                 vd->vdev_unspare = B_TRUE;
3047 }
3048
3049 boolean_t
3050 vdev_is_dead(vdev_t *vd)
3051 {
3052         /*
3053          * Holes and missing devices are always considered "dead".
3054          * This simplifies the code since we don't have to check for
3055          * these types of devices in the various code paths.
3056          * Instead we rely on the fact that we skip over dead devices
3057          * before issuing I/O to them.
3058          */
3059         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3060             vd->vdev_ops == &vdev_hole_ops ||
3061             vd->vdev_ops == &vdev_missing_ops);
3062 }
3063
3064 boolean_t
3065 vdev_readable(vdev_t *vd)
3066 {
3067         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3068 }
3069
3070 boolean_t
3071 vdev_writeable(vdev_t *vd)
3072 {
3073         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3074             vdev_is_concrete(vd));
3075 }
3076
3077 boolean_t
3078 vdev_allocatable(vdev_t *vd)
3079 {
3080         uint64_t state = vd->vdev_state;
3081
3082         /*
3083          * We currently allow allocations from vdevs which may be in the
3084          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3085          * fails to reopen then we'll catch it later when we're holding
3086          * the proper locks.  Note that we have to get the vdev state
3087          * in a local variable because although it changes atomically,
3088          * we're asking two separate questions about it.
3089          */
3090         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3091             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3092             vd->vdev_mg->mg_initialized);
3093 }
3094
3095 boolean_t
3096 vdev_accessible(vdev_t *vd, zio_t *zio)
3097 {
3098         ASSERT(zio->io_vd == vd);
3099
3100         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3101                 return (B_FALSE);
3102
3103         if (zio->io_type == ZIO_TYPE_READ)
3104                 return (!vd->vdev_cant_read);
3105
3106         if (zio->io_type == ZIO_TYPE_WRITE)
3107                 return (!vd->vdev_cant_write);
3108
3109         return (B_TRUE);
3110 }
3111
3112 /*
3113  * Get statistics for the given vdev.
3114  */
3115 void
3116 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3117 {
3118         spa_t *spa = vd->vdev_spa;
3119         vdev_t *rvd = spa->spa_root_vdev;
3120         vdev_t *tvd = vd->vdev_top;
3121
3122         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3123
3124         mutex_enter(&vd->vdev_stat_lock);
3125         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3126         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3127         vs->vs_state = vd->vdev_state;
3128         vs->vs_rsize = vdev_get_min_asize(vd);
3129         if (vd->vdev_ops->vdev_op_leaf)
3130                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3131         /*
3132          * Report expandable space on top-level, non-auxillary devices only.
3133          * The expandable space is reported in terms of metaslab sized units
3134          * since that determines how much space the pool can expand.
3135          */
3136         if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
3137                 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3138                     spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3139         }
3140         vs->vs_configured_ashift = vd->vdev_top != NULL
3141             ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
3142         vs->vs_logical_ashift = vd->vdev_logical_ashift;
3143         vs->vs_physical_ashift = vd->vdev_physical_ashift;
3144         if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3145             vdev_is_concrete(vd)) {
3146                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3147         }
3148
3149         /*
3150          * If we're getting stats on the root vdev, aggregate the I/O counts
3151          * over all top-level vdevs (i.e. the direct children of the root).
3152          */
3153         if (vd == rvd) {
3154                 for (int c = 0; c < rvd->vdev_children; c++) {
3155                         vdev_t *cvd = rvd->vdev_child[c];
3156                         vdev_stat_t *cvs = &cvd->vdev_stat;
3157
3158                         for (int t = 0; t < ZIO_TYPES; t++) {
3159                                 vs->vs_ops[t] += cvs->vs_ops[t];
3160                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3161                         }
3162                         cvs->vs_scan_removing = cvd->vdev_removing;
3163                 }
3164         }
3165         mutex_exit(&vd->vdev_stat_lock);
3166 }
3167
3168 void
3169 vdev_clear_stats(vdev_t *vd)
3170 {
3171         mutex_enter(&vd->vdev_stat_lock);
3172         vd->vdev_stat.vs_space = 0;
3173         vd->vdev_stat.vs_dspace = 0;
3174         vd->vdev_stat.vs_alloc = 0;
3175         mutex_exit(&vd->vdev_stat_lock);
3176 }
3177
3178 void
3179 vdev_scan_stat_init(vdev_t *vd)
3180 {
3181         vdev_stat_t *vs = &vd->vdev_stat;
3182
3183         for (int c = 0; c < vd->vdev_children; c++)
3184                 vdev_scan_stat_init(vd->vdev_child[c]);
3185
3186         mutex_enter(&vd->vdev_stat_lock);
3187         vs->vs_scan_processed = 0;
3188         mutex_exit(&vd->vdev_stat_lock);
3189 }
3190
3191 void
3192 vdev_stat_update(zio_t *zio, uint64_t psize)
3193 {
3194         spa_t *spa = zio->io_spa;
3195         vdev_t *rvd = spa->spa_root_vdev;
3196         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3197         vdev_t *pvd;
3198         uint64_t txg = zio->io_txg;
3199         vdev_stat_t *vs = &vd->vdev_stat;
3200         zio_type_t type = zio->io_type;
3201         int flags = zio->io_flags;
3202
3203         /*
3204          * If this i/o is a gang leader, it didn't do any actual work.
3205          */
3206         if (zio->io_gang_tree)
3207                 return;
3208
3209         if (zio->io_error == 0) {
3210                 /*
3211                  * If this is a root i/o, don't count it -- we've already
3212                  * counted the top-level vdevs, and vdev_get_stats() will
3213                  * aggregate them when asked.  This reduces contention on
3214                  * the root vdev_stat_lock and implicitly handles blocks
3215                  * that compress away to holes, for which there is no i/o.
3216                  * (Holes never create vdev children, so all the counters
3217                  * remain zero, which is what we want.)
3218                  *
3219                  * Note: this only applies to successful i/o (io_error == 0)
3220                  * because unlike i/o counts, errors are not additive.
3221                  * When reading a ditto block, for example, failure of
3222                  * one top-level vdev does not imply a root-level error.
3223                  */
3224                 if (vd == rvd)
3225                         return;
3226
3227                 ASSERT(vd == zio->io_vd);
3228
3229                 if (flags & ZIO_FLAG_IO_BYPASS)
3230                         return;
3231
3232                 mutex_enter(&vd->vdev_stat_lock);
3233
3234                 if (flags & ZIO_FLAG_IO_REPAIR) {
3235                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3236                                 dsl_scan_phys_t *scn_phys =
3237                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3238                                 uint64_t *processed = &scn_phys->scn_processed;
3239
3240                                 /* XXX cleanup? */
3241                                 if (vd->vdev_ops->vdev_op_leaf)
3242                                         atomic_add_64(processed, psize);
3243                                 vs->vs_scan_processed += psize;
3244                         }
3245
3246                         if (flags & ZIO_FLAG_SELF_HEAL)
3247                                 vs->vs_self_healed += psize;
3248                 }
3249
3250                 vs->vs_ops[type]++;
3251                 vs->vs_bytes[type] += psize;
3252
3253                 mutex_exit(&vd->vdev_stat_lock);
3254                 return;
3255         }
3256
3257         if (flags & ZIO_FLAG_SPECULATIVE)
3258                 return;
3259
3260         /*
3261          * If this is an I/O error that is going to be retried, then ignore the
3262          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3263          * hard errors, when in reality they can happen for any number of
3264          * innocuous reasons (bus resets, MPxIO link failure, etc).
3265          */
3266         if (zio->io_error == EIO &&
3267             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3268                 return;
3269
3270         /*
3271          * Intent logs writes won't propagate their error to the root
3272          * I/O so don't mark these types of failures as pool-level
3273          * errors.
3274          */
3275         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3276                 return;
3277
3278         mutex_enter(&vd->vdev_stat_lock);
3279         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3280                 if (zio->io_error == ECKSUM)
3281                         vs->vs_checksum_errors++;
3282                 else
3283                         vs->vs_read_errors++;
3284         }
3285         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3286                 vs->vs_write_errors++;
3287         mutex_exit(&vd->vdev_stat_lock);
3288
3289         if (spa->spa_load_state == SPA_LOAD_NONE &&
3290             type == ZIO_TYPE_WRITE && txg != 0 &&
3291             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3292             (flags & ZIO_FLAG_SCAN_THREAD) ||
3293             spa->spa_claiming)) {
3294                 /*
3295                  * This is either a normal write (not a repair), or it's
3296                  * a repair induced by the scrub thread, or it's a repair
3297                  * made by zil_claim() during spa_load() in the first txg.
3298                  * In the normal case, we commit the DTL change in the same
3299                  * txg as the block was born.  In the scrub-induced repair
3300                  * case, we know that scrubs run in first-pass syncing context,
3301                  * so we commit the DTL change in spa_syncing_txg(spa).
3302                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3303                  *
3304                  * We currently do not make DTL entries for failed spontaneous
3305                  * self-healing writes triggered by normal (non-scrubbing)
3306                  * reads, because we have no transactional context in which to
3307                  * do so -- and it's not clear that it'd be desirable anyway.
3308                  */
3309                 if (vd->vdev_ops->vdev_op_leaf) {
3310                         uint64_t commit_txg = txg;
3311                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3312                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3313                                 ASSERT(spa_sync_pass(spa) == 1);
3314                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3315                                 commit_txg = spa_syncing_txg(spa);
3316                         } else if (spa->spa_claiming) {
3317                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3318                                 commit_txg = spa_first_txg(spa);
3319                         }
3320                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3321                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3322                                 return;
3323                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3324                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3325                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3326                 }
3327                 if (vd != rvd)
3328                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3329         }
3330 }
3331
3332 /*
3333  * Update the in-core space usage stats for this vdev, its metaslab class,
3334  * and the root vdev.
3335  */
3336 void
3337 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3338     int64_t space_delta)
3339 {
3340         int64_t dspace_delta = space_delta;
3341         spa_t *spa = vd->vdev_spa;
3342         vdev_t *rvd = spa->spa_root_vdev;
3343         metaslab_group_t *mg = vd->vdev_mg;
3344         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3345
3346         ASSERT(vd == vd->vdev_top);
3347
3348         /*
3349          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3350          * factor.  We must calculate this here and not at the root vdev
3351          * because the root vdev's psize-to-asize is simply the max of its
3352          * childrens', thus not accurate enough for us.
3353          */
3354         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3355         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3356         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3357             vd->vdev_deflate_ratio;
3358
3359         mutex_enter(&vd->vdev_stat_lock);
3360         vd->vdev_stat.vs_alloc += alloc_delta;
3361         vd->vdev_stat.vs_space += space_delta;
3362         vd->vdev_stat.vs_dspace += dspace_delta;
3363         mutex_exit(&vd->vdev_stat_lock);
3364
3365         if (mc == spa_normal_class(spa)) {
3366                 mutex_enter(&rvd->vdev_stat_lock);
3367                 rvd->vdev_stat.vs_alloc += alloc_delta;
3368                 rvd->vdev_stat.vs_space += space_delta;
3369                 rvd->vdev_stat.vs_dspace += dspace_delta;
3370                 mutex_exit(&rvd->vdev_stat_lock);
3371         }
3372
3373         if (mc != NULL) {
3374                 ASSERT(rvd == vd->vdev_parent);
3375                 ASSERT(vd->vdev_ms_count != 0);
3376
3377                 metaslab_class_space_update(mc,
3378                     alloc_delta, defer_delta, space_delta, dspace_delta);
3379         }
3380 }
3381
3382 /*
3383  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3384  * so that it will be written out next time the vdev configuration is synced.
3385  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3386  */
3387 void
3388 vdev_config_dirty(vdev_t *vd)
3389 {
3390         spa_t *spa = vd->vdev_spa;
3391         vdev_t *rvd = spa->spa_root_vdev;
3392         int c;
3393
3394         ASSERT(spa_writeable(spa));
3395
3396         /*
3397          * If this is an aux vdev (as with l2cache and spare devices), then we
3398          * update the vdev config manually and set the sync flag.
3399          */
3400         if (vd->vdev_aux != NULL) {
3401                 spa_aux_vdev_t *sav = vd->vdev_aux;
3402                 nvlist_t **aux;
3403                 uint_t naux;
3404
3405                 for (c = 0; c < sav->sav_count; c++) {
3406                         if (sav->sav_vdevs[c] == vd)
3407                                 break;
3408                 }
3409
3410                 if (c == sav->sav_count) {
3411                         /*
3412                          * We're being removed.  There's nothing more to do.
3413                          */
3414                         ASSERT(sav->sav_sync == B_TRUE);
3415                         return;
3416                 }
3417
3418                 sav->sav_sync = B_TRUE;
3419
3420                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3421                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3422                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3423                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3424                 }
3425
3426                 ASSERT(c < naux);
3427
3428                 /*
3429                  * Setting the nvlist in the middle if the array is a little
3430                  * sketchy, but it will work.
3431                  */
3432                 nvlist_free(aux[c]);
3433                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3434
3435                 return;
3436         }
3437
3438         /*
3439          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3440          * must either hold SCL_CONFIG as writer, or must be the sync thread
3441          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3442          * so this is sufficient to ensure mutual exclusion.
3443          */
3444         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3445             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3446             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3447
3448         if (vd == rvd) {
3449                 for (c = 0; c < rvd->vdev_children; c++)
3450                         vdev_config_dirty(rvd->vdev_child[c]);
3451         } else {
3452                 ASSERT(vd == vd->vdev_top);
3453
3454                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3455                     vdev_is_concrete(vd)) {
3456                         list_insert_head(&spa->spa_config_dirty_list, vd);
3457                 }
3458         }
3459 }
3460
3461 void
3462 vdev_config_clean(vdev_t *vd)
3463 {
3464         spa_t *spa = vd->vdev_spa;
3465
3466         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3467             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3468             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3469
3470         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3471         list_remove(&spa->spa_config_dirty_list, vd);
3472 }
3473
3474 /*
3475  * Mark a top-level vdev's state as dirty, so that the next pass of
3476  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3477  * the state changes from larger config changes because they require
3478  * much less locking, and are often needed for administrative actions.
3479  */
3480 void
3481 vdev_state_dirty(vdev_t *vd)
3482 {
3483         spa_t *spa = vd->vdev_spa;
3484
3485         ASSERT(spa_writeable(spa));
3486         ASSERT(vd == vd->vdev_top);
3487
3488         /*
3489          * The state list is protected by the SCL_STATE lock.  The caller
3490          * must either hold SCL_STATE as writer, or must be the sync thread
3491          * (which holds SCL_STATE as reader).  There's only one sync thread,
3492          * so this is sufficient to ensure mutual exclusion.
3493          */
3494         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3495             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3496             spa_config_held(spa, SCL_STATE, RW_READER)));
3497
3498         if (!list_link_active(&vd->vdev_state_dirty_node) &&
3499             vdev_is_concrete(vd))
3500                 list_insert_head(&spa->spa_state_dirty_list, vd);
3501 }
3502
3503 void
3504 vdev_state_clean(vdev_t *vd)
3505 {
3506         spa_t *spa = vd->vdev_spa;
3507
3508         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3509             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3510             spa_config_held(spa, SCL_STATE, RW_READER)));
3511
3512         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3513         list_remove(&spa->spa_state_dirty_list, vd);
3514 }
3515
3516 /*
3517  * Propagate vdev state up from children to parent.
3518  */
3519 void
3520 vdev_propagate_state(vdev_t *vd)
3521 {
3522         spa_t *spa = vd->vdev_spa;
3523         vdev_t *rvd = spa->spa_root_vdev;
3524         int degraded = 0, faulted = 0;
3525         int corrupted = 0;
3526         vdev_t *child;
3527
3528         if (vd->vdev_children > 0) {
3529                 for (int c = 0; c < vd->vdev_children; c++) {
3530                         child = vd->vdev_child[c];
3531
3532                         /*
3533                          * Don't factor holes or indirect vdevs into the
3534                          * decision.
3535                          */
3536                         if (!vdev_is_concrete(child))
3537                                 continue;
3538
3539                         if (!vdev_readable(child) ||
3540                             (!vdev_writeable(child) && spa_writeable(spa))) {
3541                                 /*
3542                                  * Root special: if there is a top-level log
3543                                  * device, treat the root vdev as if it were
3544                                  * degraded.
3545                                  */
3546                                 if (child->vdev_islog && vd == rvd)
3547                                         degraded++;
3548                                 else
3549                                         faulted++;
3550                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3551                                 degraded++;
3552                         }
3553
3554                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3555                                 corrupted++;
3556                 }
3557
3558                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3559
3560                 /*
3561                  * Root special: if there is a top-level vdev that cannot be
3562                  * opened due to corrupted metadata, then propagate the root
3563                  * vdev's aux state as 'corrupt' rather than 'insufficient
3564                  * replicas'.
3565                  */
3566                 if (corrupted && vd == rvd &&
3567                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3568                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3569                             VDEV_AUX_CORRUPT_DATA);
3570         }
3571
3572         if (vd->vdev_parent)
3573                 vdev_propagate_state(vd->vdev_parent);
3574 }
3575
3576 /*
3577  * Set a vdev's state.  If this is during an open, we don't update the parent
3578  * state, because we're in the process of opening children depth-first.
3579  * Otherwise, we propagate the change to the parent.
3580  *
3581  * If this routine places a device in a faulted state, an appropriate ereport is
3582  * generated.
3583  */
3584 void
3585 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3586 {
3587         uint64_t save_state;
3588         spa_t *spa = vd->vdev_spa;
3589
3590         if (state == vd->vdev_state) {
3591                 vd->vdev_stat.vs_aux = aux;
3592                 return;
3593         }
3594
3595         save_state = vd->vdev_state;
3596
3597         vd->vdev_state = state;
3598         vd->vdev_stat.vs_aux = aux;
3599
3600         /*
3601          * If we are setting the vdev state to anything but an open state, then
3602          * always close the underlying device unless the device has requested
3603          * a delayed close (i.e. we're about to remove or fault the device).
3604          * Otherwise, we keep accessible but invalid devices open forever.
3605          * We don't call vdev_close() itself, because that implies some extra
3606          * checks (offline, etc) that we don't want here.  This is limited to
3607          * leaf devices, because otherwise closing the device will affect other
3608          * children.
3609          */
3610         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3611             vd->vdev_ops->vdev_op_leaf)
3612                 vd->vdev_ops->vdev_op_close(vd);
3613
3614         if (vd->vdev_removed &&
3615             state == VDEV_STATE_CANT_OPEN &&
3616             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3617                 /*
3618                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3619                  * device was previously marked removed and someone attempted to
3620                  * reopen it.  If this failed due to a nonexistent device, then
3621                  * keep the device in the REMOVED state.  We also let this be if
3622                  * it is one of our special test online cases, which is only
3623                  * attempting to online the device and shouldn't generate an FMA
3624                  * fault.
3625                  */
3626                 vd->vdev_state = VDEV_STATE_REMOVED;
3627                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3628         } else if (state == VDEV_STATE_REMOVED) {
3629                 vd->vdev_removed = B_TRUE;
3630         } else if (state == VDEV_STATE_CANT_OPEN) {
3631                 /*
3632                  * If we fail to open a vdev during an import or recovery, we
3633                  * mark it as "not available", which signifies that it was
3634                  * never there to begin with.  Failure to open such a device
3635                  * is not considered an error.
3636                  */
3637                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3638                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3639                     vd->vdev_ops->vdev_op_leaf)
3640                         vd->vdev_not_present = 1;
3641
3642                 /*
3643                  * Post the appropriate ereport.  If the 'prevstate' field is
3644                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3645                  * that this is part of a vdev_reopen().  In this case, we don't
3646                  * want to post the ereport if the device was already in the
3647                  * CANT_OPEN state beforehand.
3648                  *
3649                  * If the 'checkremove' flag is set, then this is an attempt to
3650                  * online the device in response to an insertion event.  If we
3651                  * hit this case, then we have detected an insertion event for a
3652                  * faulted or offline device that wasn't in the removed state.
3653                  * In this scenario, we don't post an ereport because we are
3654                  * about to replace the device, or attempt an online with
3655                  * vdev_forcefault, which will generate the fault for us.
3656                  */
3657                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3658                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3659                     vd != spa->spa_root_vdev) {
3660                         const char *class;
3661
3662                         switch (aux) {
3663                         case VDEV_AUX_OPEN_FAILED:
3664                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3665                                 break;
3666                         case VDEV_AUX_CORRUPT_DATA:
3667                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3668                                 break;
3669                         case VDEV_AUX_NO_REPLICAS:
3670                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3671                                 break;
3672                         case VDEV_AUX_BAD_GUID_SUM:
3673                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3674                                 break;
3675                         case VDEV_AUX_TOO_SMALL:
3676                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3677                                 break;
3678                         case VDEV_AUX_BAD_LABEL:
3679                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3680                                 break;
3681                         default:
3682                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3683                         }
3684
3685                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3686                 }
3687
3688                 /* Erase any notion of persistent removed state */
3689                 vd->vdev_removed = B_FALSE;
3690         } else {
3691                 vd->vdev_removed = B_FALSE;
3692         }
3693
3694         /*
3695         * Notify the fmd of the state change.  Be verbose and post
3696         * notifications even for stuff that's not important; the fmd agent can
3697         * sort it out.  Don't emit state change events for non-leaf vdevs since
3698         * they can't change state on their own.  The FMD can check their state
3699         * if it wants to when it sees that a leaf vdev had a state change.
3700         */
3701         if (vd->vdev_ops->vdev_op_leaf)
3702                 zfs_post_state_change(spa, vd);
3703
3704         if (!isopen && vd->vdev_parent)
3705                 vdev_propagate_state(vd->vdev_parent);
3706 }
3707
3708 /*
3709  * Check the vdev configuration to ensure that it's capable of supporting
3710  * a root pool. We do not support partial configuration.
3711  * In addition, only a single top-level vdev is allowed.
3712  *
3713  * FreeBSD does not have above limitations.
3714  */
3715 boolean_t
3716 vdev_is_bootable(vdev_t *vd)
3717 {
3718 #ifdef illumos
3719         if (!vd->vdev_ops->vdev_op_leaf) {
3720                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3721
3722                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3723                     vd->vdev_children > 1) {
3724                         return (B_FALSE);
3725                 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3726                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3727                         return (B_FALSE);
3728                 }
3729         }
3730
3731         for (int c = 0; c < vd->vdev_children; c++) {
3732                 if (!vdev_is_bootable(vd->vdev_child[c]))
3733                         return (B_FALSE);
3734         }
3735 #endif  /* illumos */
3736         return (B_TRUE);
3737 }
3738
3739 boolean_t
3740 vdev_is_concrete(vdev_t *vd)
3741 {
3742         vdev_ops_t *ops = vd->vdev_ops;
3743         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3744             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3745                 return (B_FALSE);
3746         } else {
3747                 return (B_TRUE);
3748         }
3749 }
3750
3751 /*
3752  * Load the state from the original vdev tree (ovd) which
3753  * we've retrieved from the MOS config object. If the original
3754  * vdev was offline or faulted then we transfer that state to the
3755  * device in the current vdev tree (nvd).
3756  */
3757 void
3758 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3759 {
3760         spa_t *spa = nvd->vdev_spa;
3761
3762         ASSERT(nvd->vdev_top->vdev_islog);
3763         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3764         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3765
3766         for (int c = 0; c < nvd->vdev_children; c++)
3767                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3768
3769         if (nvd->vdev_ops->vdev_op_leaf) {
3770                 /*
3771                  * Restore the persistent vdev state
3772                  */
3773                 nvd->vdev_offline = ovd->vdev_offline;
3774                 nvd->vdev_faulted = ovd->vdev_faulted;
3775                 nvd->vdev_degraded = ovd->vdev_degraded;
3776                 nvd->vdev_removed = ovd->vdev_removed;
3777         }
3778 }
3779
3780 /*
3781  * Determine if a log device has valid content.  If the vdev was
3782  * removed or faulted in the MOS config then we know that
3783  * the content on the log device has already been written to the pool.
3784  */
3785 boolean_t
3786 vdev_log_state_valid(vdev_t *vd)
3787 {
3788         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3789             !vd->vdev_removed)
3790                 return (B_TRUE);
3791
3792         for (int c = 0; c < vd->vdev_children; c++)
3793                 if (vdev_log_state_valid(vd->vdev_child[c]))
3794                         return (B_TRUE);
3795
3796         return (B_FALSE);
3797 }
3798
3799 /*
3800  * Expand a vdev if possible.
3801  */
3802 void
3803 vdev_expand(vdev_t *vd, uint64_t txg)
3804 {
3805         ASSERT(vd->vdev_top == vd);
3806         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3807
3808         vdev_set_deflate_ratio(vd);
3809
3810         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3811             vdev_is_concrete(vd)) {
3812                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3813                 vdev_config_dirty(vd);
3814         }
3815 }
3816
3817 /*
3818  * Split a vdev.
3819  */
3820 void
3821 vdev_split(vdev_t *vd)
3822 {
3823         vdev_t *cvd, *pvd = vd->vdev_parent;
3824
3825         vdev_remove_child(pvd, vd);
3826         vdev_compact_children(pvd);
3827
3828         cvd = pvd->vdev_child[0];
3829         if (pvd->vdev_children == 1) {
3830                 vdev_remove_parent(cvd);
3831                 cvd->vdev_splitting = B_TRUE;
3832         }
3833         vdev_propagate_state(cvd);
3834 }
3835
3836 void
3837 vdev_deadman(vdev_t *vd)
3838 {
3839         for (int c = 0; c < vd->vdev_children; c++) {
3840                 vdev_t *cvd = vd->vdev_child[c];
3841
3842                 vdev_deadman(cvd);
3843         }
3844
3845         if (vd->vdev_ops->vdev_op_leaf) {
3846                 vdev_queue_t *vq = &vd->vdev_queue;
3847
3848                 mutex_enter(&vq->vq_lock);
3849                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3850                         spa_t *spa = vd->vdev_spa;
3851                         zio_t *fio;
3852                         uint64_t delta;
3853
3854                         /*
3855                          * Look at the head of all the pending queues,
3856                          * if any I/O has been outstanding for longer than
3857                          * the spa_deadman_synctime we panic the system.
3858                          */
3859                         fio = avl_first(&vq->vq_active_tree);
3860                         delta = gethrtime() - fio->io_timestamp;
3861                         if (delta > spa_deadman_synctime(spa)) {
3862                                 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
3863                                     "%lluns, delta %lluns, last io %lluns",
3864                                     fio->io_timestamp, (u_longlong_t)delta,
3865                                     vq->vq_io_complete_ts);
3866                                 fm_panic("I/O to pool '%s' appears to be "
3867                                     "hung on vdev guid %llu at '%s'.",
3868                                     spa_name(spa),
3869                                     (long long unsigned int) vd->vdev_guid,
3870                                     vd->vdev_path);
3871                         }
3872                 }
3873                 mutex_exit(&vq->vq_lock);
3874         }
3875 }