]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_indirect.c
MFC r354941,r354948: 10601 10757 Pool allocation classes
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev_indirect.c
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15
16 /*
17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18  */
19
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zio_checksum.h>
27 #include <sys/metaslab.h>
28 #include <sys/refcount.h>
29 #include <sys/dmu.h>
30 #include <sys/vdev_indirect_mapping.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/abd.h>
35 #include <sys/zthr.h>
36
37 /*
38  * An indirect vdev corresponds to a vdev that has been removed.  Since
39  * we cannot rewrite block pointers of snapshots, etc., we keep a
40  * mapping from old location on the removed device to the new location
41  * on another device in the pool and use this mapping whenever we need
42  * to access the DVA.  Unfortunately, this mapping did not respect
43  * logical block boundaries when it was first created, and so a DVA on
44  * this indirect vdev may be "split" into multiple sections that each
45  * map to a different location.  As a consequence, not all DVAs can be
46  * translated to an equivalent new DVA.  Instead we must provide a
47  * "vdev_remap" operation that executes a callback on each contiguous
48  * segment of the new location.  This function is used in multiple ways:
49  *
50  *  - i/os to this vdev use the callback to determine where the
51  *    data is now located, and issue child i/os for each segment's new
52  *    location.
53  *
54  *  - frees and claims to this vdev use the callback to free or claim
55  *    each mapped segment.  (Note that we don't actually need to claim
56  *    log blocks on indirect vdevs, because we don't allocate to
57  *    removing vdevs.  However, zdb uses zio_claim() for its leak
58  *    detection.)
59  */
60
61 /*
62  * "Big theory statement" for how we mark blocks obsolete.
63  *
64  * When a block on an indirect vdev is freed or remapped, a section of
65  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
66  * keep track of how much of each mapping entry is obsolete.  When
67  * an entry becomes completely obsolete, we can remove it, thus reducing
68  * the memory used by the mapping.  The complete picture of obsolescence
69  * is given by the following data structures, described below:
70  *  - the entry-specific obsolete count
71  *  - the vdev-specific obsolete spacemap
72  *  - the pool-specific obsolete bpobj
73  *
74  * == On disk data structures used ==
75  *
76  * We track the obsolete space for the pool using several objects.  Each
77  * of these objects is created on demand and freed when no longer
78  * needed, and is assumed to be empty if it does not exist.
79  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80  *
81  *  - Each vic_mapping_object (associated with an indirect vdev) can
82  *    have a vimp_counts_object.  This is an array of uint32_t's
83  *    with the same number of entries as the vic_mapping_object.  When
84  *    the mapping is condensed, entries from the vic_obsolete_sm_object
85  *    (see below) are folded into the counts.  Therefore, each
86  *    obsolete_counts entry tells us the number of bytes in the
87  *    corresponding mapping entry that were not referenced when the
88  *    mapping was last condensed.
89  *
90  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91  *    This is a space map containing an alloc entry for every DVA that
92  *    has been obsoleted since the last time this indirect vdev was
93  *    condensed.  We use this object in order to improve performance
94  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
95  *    offset of the vimp_counts_object, we only need to append an entry
96  *    to the end of this object.  When a DVA becomes obsolete, it is
97  *    added to the obsolete space map.  This happens when the DVA is
98  *    freed, remapped and not referenced by a snapshot, or the last
99  *    snapshot referencing it is destroyed.
100  *
101  *  - Each dataset can have a ds_remap_deadlist object.  This is a
102  *    deadlist object containing all blocks that were remapped in this
103  *    dataset but referenced in a previous snapshot.  Blocks can *only*
104  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
105  *    blocks that were killed in a head dataset are put on the normal
106  *    ds_deadlist and marked obsolete when they are freed.
107  *
108  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
109  *    in the pool that need to be marked obsolete.  When a snapshot is
110  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
111  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
112  *    asynchronously process the obsolete bpobj, moving its entries to
113  *    the specific vdevs' obsolete space maps.
114  *
115  * == Summary of how we mark blocks as obsolete ==
116  *
117  * - When freeing a block: if any DVA is on an indirect vdev, append to
118  *   vic_obsolete_sm_object.
119  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120  *   references; otherwise append to vic_obsolete_sm_object).
121  * - When freeing a snapshot: move parts of ds_remap_deadlist to
122  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
123  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124  *   individual vdev's vic_obsolete_sm_object.
125  */
126
127 /*
128  * "Big theory statement" for how we condense indirect vdevs.
129  *
130  * Condensing an indirect vdev's mapping is the process of determining
131  * the precise counts of obsolete space for each mapping entry (by
132  * integrating the obsolete spacemap into the obsolete counts) and
133  * writing out a new mapping that contains only referenced entries.
134  *
135  * We condense a vdev when we expect the mapping to shrink (see
136  * vdev_indirect_should_condense()), but only perform one condense at a
137  * time to limit the memory usage.  In addition, we use a separate
138  * open-context thread (spa_condense_indirect_thread) to incrementally
139  * create the new mapping object in a way that minimizes the impact on
140  * the rest of the system.
141  *
142  * == Generating a new mapping ==
143  *
144  * To generate a new mapping, we follow these steps:
145  *
146  * 1. Save the old obsolete space map and create a new mapping object
147  *    (see spa_condense_indirect_start_sync()).  This initializes the
148  *    spa_condensing_indirect_phys with the "previous obsolete space map",
149  *    which is now read only.  Newly obsolete DVAs will be added to a
150  *    new (initially empty) obsolete space map, and will not be
151  *    considered as part of this condense operation.
152  *
153  * 2. Construct in memory the precise counts of obsolete space for each
154  *    mapping entry, by incorporating the obsolete space map into the
155  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156  *
157  * 3. Iterate through each mapping entry, writing to the new mapping any
158  *    entries that are not completely obsolete (i.e. which don't have
159  *    obsolete count == mapping length).  (See
160  *    spa_condense_indirect_generate_new_mapping().)
161  *
162  * 4. Destroy the old mapping object and switch over to the new one
163  *    (spa_condense_indirect_complete_sync).
164  *
165  * == Restarting from failure ==
166  *
167  * To restart the condense when we import/open the pool, we must start
168  * at the 2nd step above: reconstruct the precise counts in memory,
169  * based on the space map + counts.  Then in the 3rd step, we start
170  * iterating where we left off: at vimp_max_offset of the new mapping
171  * object.
172  */
173
174 boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
175
176 /*
177  * Condense if at least this percent of the bytes in the mapping is
178  * obsolete.  With the default of 25%, the amount of space mapped
179  * will be reduced to 1% of its original size after at most 16
180  * condenses.  Higher values will condense less often (causing less
181  * i/o); lower values will reduce the mapping size more quickly.
182  */
183 int zfs_indirect_condense_obsolete_pct = 25;
184
185 /*
186  * Condense if the obsolete space map takes up more than this amount of
187  * space on disk (logically).  This limits the amount of disk space
188  * consumed by the obsolete space map; the default of 1GB is small enough
189  * that we typically don't mind "wasting" it.
190  */
191 uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192
193 /*
194  * Don't bother condensing if the mapping uses less than this amount of
195  * memory.  The default of 128KB is considered a "trivial" amount of
196  * memory and not worth reducing.
197  */
198 uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
199
200 /*
201  * This is used by the test suite so that it can ensure that certain
202  * actions happen while in the middle of a condense (which might otherwise
203  * complete too quickly).  If used to reduce the performance impact of
204  * condensing in production, a maximum value of 1 should be sufficient.
205  */
206 int zfs_condense_indirect_commit_entry_delay_ticks = 0;
207
208 /*
209  * If an indirect split block contains more than this many possible unique
210  * combinations when being reconstructed, consider it too computationally
211  * expensive to check them all. Instead, try at most 100 randomly-selected
212  * combinations each time the block is accessed.  This allows all segment
213  * copies to participate fairly in the reconstruction when all combinations
214  * cannot be checked and prevents repeated use of one bad copy.
215  */
216 int zfs_reconstruct_indirect_combinations_max = 256;
217
218
219 /*
220  * Enable to simulate damaged segments and validate reconstruction.
221  * Used by ztest
222  */
223 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
224
225 /*
226  * The indirect_child_t represents the vdev that we will read from, when we
227  * need to read all copies of the data (e.g. for scrub or reconstruction).
228  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
229  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
230  * ic_vdev is a child of the mirror.
231  */
232 typedef struct indirect_child {
233         abd_t *ic_data;
234         vdev_t *ic_vdev;
235
236         /*
237          * ic_duplicate is NULL when the ic_data contents are unique, when it
238          * is determined to be a duplicate it references the primary child.
239          */
240         struct indirect_child *ic_duplicate;
241         list_node_t ic_node; /* node on is_unique_child */
242 } indirect_child_t;
243
244 /*
245  * The indirect_split_t represents one mapped segment of an i/o to the
246  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
247  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
248  * For split blocks, there will be several of these.
249  */
250 typedef struct indirect_split {
251         list_node_t is_node; /* link on iv_splits */
252
253         /*
254          * is_split_offset is the offset into the i/o.
255          * This is the sum of the previous splits' is_size's.
256          */
257         uint64_t is_split_offset;
258
259         vdev_t *is_vdev; /* top-level vdev */
260         uint64_t is_target_offset; /* offset on is_vdev */
261         uint64_t is_size;
262         int is_children; /* number of entries in is_child[] */
263         int is_unique_children; /* number of entries in is_unique_child */
264         list_t is_unique_child;
265
266         /*
267          * is_good_child is the child that we are currently using to
268          * attempt reconstruction.
269          */
270         indirect_child_t *is_good_child;
271
272         indirect_child_t is_child[1]; /* variable-length */
273 } indirect_split_t;
274
275 /*
276  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
277  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
278  */
279 typedef struct indirect_vsd {
280         boolean_t iv_split_block;
281         boolean_t iv_reconstruct;
282         uint64_t iv_unique_combinations;
283         uint64_t iv_attempts;
284         uint64_t iv_attempts_max;
285
286         list_t iv_splits; /* list of indirect_split_t's */
287 } indirect_vsd_t;
288
289 static void
290 vdev_indirect_map_free(zio_t *zio)
291 {
292         indirect_vsd_t *iv = zio->io_vsd;
293
294         indirect_split_t *is;
295         while ((is = list_head(&iv->iv_splits)) != NULL) {
296                 for (int c = 0; c < is->is_children; c++) {
297                         indirect_child_t *ic = &is->is_child[c];
298                         if (ic->ic_data != NULL)
299                                 abd_free(ic->ic_data);
300                 }
301                 list_remove(&iv->iv_splits, is);
302
303                 indirect_child_t *ic;
304                 while ((ic = list_head(&is->is_unique_child)) != NULL)
305                         list_remove(&is->is_unique_child, ic);
306
307                 list_destroy(&is->is_unique_child);
308
309                 kmem_free(is,
310                     offsetof(indirect_split_t, is_child[is->is_children]));
311         }
312         kmem_free(iv, sizeof (*iv));
313 }
314
315 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
316         vdev_indirect_map_free,
317         zio_vsd_default_cksum_report
318 };
319 /*
320  * Mark the given offset and size as being obsolete.
321  */
322 void
323 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
324 {
325         spa_t *spa = vd->vdev_spa;
326
327         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
328         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
329         ASSERT(size > 0);
330         VERIFY(vdev_indirect_mapping_entry_for_offset(
331             vd->vdev_indirect_mapping, offset) != NULL);
332
333         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
334                 mutex_enter(&vd->vdev_obsolete_lock);
335                 range_tree_add(vd->vdev_obsolete_segments, offset, size);
336                 mutex_exit(&vd->vdev_obsolete_lock);
337                 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
338         }
339 }
340
341 /*
342  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
343  * wrapper is provided because the DMU does not know about vdev_t's and
344  * cannot directly call vdev_indirect_mark_obsolete.
345  */
346 void
347 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
348     uint64_t size, dmu_tx_t *tx)
349 {
350         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
351         ASSERT(dmu_tx_is_syncing(tx));
352
353         /* The DMU can only remap indirect vdevs. */
354         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
355         vdev_indirect_mark_obsolete(vd, offset, size);
356 }
357
358 static spa_condensing_indirect_t *
359 spa_condensing_indirect_create(spa_t *spa)
360 {
361         spa_condensing_indirect_phys_t *scip =
362             &spa->spa_condensing_indirect_phys;
363         spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
364         objset_t *mos = spa->spa_meta_objset;
365
366         for (int i = 0; i < TXG_SIZE; i++) {
367                 list_create(&sci->sci_new_mapping_entries[i],
368                     sizeof (vdev_indirect_mapping_entry_t),
369                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
370         }
371
372         sci->sci_new_mapping =
373             vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
374
375         return (sci);
376 }
377
378 static void
379 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
380 {
381         for (int i = 0; i < TXG_SIZE; i++)
382                 list_destroy(&sci->sci_new_mapping_entries[i]);
383
384         if (sci->sci_new_mapping != NULL)
385                 vdev_indirect_mapping_close(sci->sci_new_mapping);
386
387         kmem_free(sci, sizeof (*sci));
388 }
389
390 boolean_t
391 vdev_indirect_should_condense(vdev_t *vd)
392 {
393         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
394         spa_t *spa = vd->vdev_spa;
395
396         ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
397
398         if (!zfs_condense_indirect_vdevs_enable)
399                 return (B_FALSE);
400
401         /*
402          * We can only condense one indirect vdev at a time.
403          */
404         if (spa->spa_condensing_indirect != NULL)
405                 return (B_FALSE);
406
407         if (spa_shutting_down(spa))
408                 return (B_FALSE);
409
410         /*
411          * The mapping object size must not change while we are
412          * condensing, so we can only condense indirect vdevs
413          * (not vdevs that are still in the middle of being removed).
414          */
415         if (vd->vdev_ops != &vdev_indirect_ops)
416                 return (B_FALSE);
417
418         /*
419          * If nothing new has been marked obsolete, there is no
420          * point in condensing.
421          */
422         if (vd->vdev_obsolete_sm == NULL) {
423                 ASSERT0(vdev_obsolete_sm_object(vd));
424                 return (B_FALSE);
425         }
426
427         ASSERT(vd->vdev_obsolete_sm != NULL);
428
429         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
430             space_map_object(vd->vdev_obsolete_sm));
431
432         uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
433         uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
434         uint64_t mapping_size = vdev_indirect_mapping_size(vim);
435         uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
436
437         ASSERT3U(bytes_obsolete, <=, bytes_mapped);
438
439         /*
440          * If a high percentage of the bytes that are mapped have become
441          * obsolete, condense (unless the mapping is already small enough).
442          * This has a good chance of reducing the amount of memory used
443          * by the mapping.
444          */
445         if (bytes_obsolete * 100 / bytes_mapped >=
446             zfs_indirect_condense_obsolete_pct &&
447             mapping_size > zfs_condense_min_mapping_bytes) {
448                 zfs_dbgmsg("should condense vdev %llu because obsolete "
449                     "spacemap covers %d%% of %lluMB mapping",
450                     (u_longlong_t)vd->vdev_id,
451                     (int)(bytes_obsolete * 100 / bytes_mapped),
452                     (u_longlong_t)bytes_mapped / 1024 / 1024);
453                 return (B_TRUE);
454         }
455
456         /*
457          * If the obsolete space map takes up too much space on disk,
458          * condense in order to free up this disk space.
459          */
460         if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
461                 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
462                     "length %lluMB >= max size %lluMB",
463                     (u_longlong_t)vd->vdev_id,
464                     (u_longlong_t)obsolete_sm_size / 1024 / 1024,
465                     (u_longlong_t)zfs_condense_max_obsolete_bytes /
466                     1024 / 1024);
467                 return (B_TRUE);
468         }
469
470         return (B_FALSE);
471 }
472
473 /*
474  * This sync task completes (finishes) a condense, deleting the old
475  * mapping and replacing it with the new one.
476  */
477 static void
478 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
479 {
480         spa_condensing_indirect_t *sci = arg;
481         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
482         spa_condensing_indirect_phys_t *scip =
483             &spa->spa_condensing_indirect_phys;
484         vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
485         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
486         objset_t *mos = spa->spa_meta_objset;
487         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
488         uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
489         uint64_t new_count =
490             vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
491
492         ASSERT(dmu_tx_is_syncing(tx));
493         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
494         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
495         for (int i = 0; i < TXG_SIZE; i++) {
496                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
497         }
498         ASSERT(vic->vic_mapping_object != 0);
499         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
500         ASSERT(scip->scip_next_mapping_object != 0);
501         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
502
503         /*
504          * Reset vdev_indirect_mapping to refer to the new object.
505          */
506         rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
507         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
508         vd->vdev_indirect_mapping = sci->sci_new_mapping;
509         rw_exit(&vd->vdev_indirect_rwlock);
510
511         sci->sci_new_mapping = NULL;
512         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
513         vic->vic_mapping_object = scip->scip_next_mapping_object;
514         scip->scip_next_mapping_object = 0;
515
516         space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
517         spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
518         scip->scip_prev_obsolete_sm_object = 0;
519
520         scip->scip_vdev = 0;
521
522         VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
523             DMU_POOL_CONDENSING_INDIRECT, tx));
524         spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
525         spa->spa_condensing_indirect = NULL;
526
527         zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
528             "new mapping object %llu has %llu entries "
529             "(was %llu entries)",
530             vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
531             new_count, old_count);
532
533         vdev_config_dirty(spa->spa_root_vdev);
534 }
535
536 /*
537  * This sync task appends entries to the new mapping object.
538  */
539 static void
540 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
541 {
542         spa_condensing_indirect_t *sci = arg;
543         uint64_t txg = dmu_tx_get_txg(tx);
544         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
545
546         ASSERT(dmu_tx_is_syncing(tx));
547         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
548
549         vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
550             &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
551         ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
552 }
553
554 /*
555  * Open-context function to add one entry to the new mapping.  The new
556  * entry will be remembered and written from syncing context.
557  */
558 static void
559 spa_condense_indirect_commit_entry(spa_t *spa,
560     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
561 {
562         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
563
564         ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
565
566         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
567         dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
568         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
569         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
570
571         /*
572          * If we are the first entry committed this txg, kick off the sync
573          * task to write to the MOS on our behalf.
574          */
575         if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
576                 dsl_sync_task_nowait(dmu_tx_pool(tx),
577                     spa_condense_indirect_commit_sync, sci,
578                     0, ZFS_SPACE_CHECK_NONE, tx);
579         }
580
581         vdev_indirect_mapping_entry_t *vime =
582             kmem_alloc(sizeof (*vime), KM_SLEEP);
583         vime->vime_mapping = *vimep;
584         vime->vime_obsolete_count = count;
585         list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
586
587         dmu_tx_commit(tx);
588 }
589
590 static void
591 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
592     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
593 {
594         spa_t *spa = vd->vdev_spa;
595         uint64_t mapi = start_index;
596         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
597         uint64_t old_num_entries =
598             vdev_indirect_mapping_num_entries(old_mapping);
599
600         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
601         ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
602
603         zfs_dbgmsg("starting condense of vdev %llu from index %llu",
604             (u_longlong_t)vd->vdev_id,
605             (u_longlong_t)mapi);
606
607         while (mapi < old_num_entries) {
608
609                 if (zthr_iscancelled(zthr)) {
610                         zfs_dbgmsg("pausing condense of vdev %llu "
611                             "at index %llu", (u_longlong_t)vd->vdev_id,
612                             (u_longlong_t)mapi);
613                         break;
614                 }
615
616                 vdev_indirect_mapping_entry_phys_t *entry =
617                     &old_mapping->vim_entries[mapi];
618                 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
619                 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
620                 if (obsolete_counts[mapi] < entry_size) {
621                         spa_condense_indirect_commit_entry(spa, entry,
622                             obsolete_counts[mapi]);
623
624                         /*
625                          * This delay may be requested for testing, debugging,
626                          * or performance reasons.
627                          */
628                         delay(zfs_condense_indirect_commit_entry_delay_ticks);
629                 }
630
631                 mapi++;
632         }
633 }
634
635 /* ARGSUSED */
636 static boolean_t
637 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
638 {
639         spa_t *spa = arg;
640
641         return (spa->spa_condensing_indirect != NULL);
642 }
643
644 /* ARGSUSED */
645 static void
646 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
647 {
648         spa_t *spa = arg;
649         vdev_t *vd;
650
651         ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
652         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
653         vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
654         ASSERT3P(vd, !=, NULL);
655         spa_config_exit(spa, SCL_VDEV, FTAG);
656
657         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
658         spa_condensing_indirect_phys_t *scip =
659             &spa->spa_condensing_indirect_phys;
660         uint32_t *counts;
661         uint64_t start_index;
662         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
663         space_map_t *prev_obsolete_sm = NULL;
664
665         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
666         ASSERT(scip->scip_next_mapping_object != 0);
667         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
668         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
669
670         for (int i = 0; i < TXG_SIZE; i++) {
671                 /*
672                  * The list must start out empty in order for the
673                  * _commit_sync() sync task to be properly registered
674                  * on the first call to _commit_entry(); so it's wise
675                  * to double check and ensure we actually are starting
676                  * with empty lists.
677                  */
678                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
679         }
680
681         VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
682             scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
683         counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
684         if (prev_obsolete_sm != NULL) {
685                 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
686                     counts, prev_obsolete_sm);
687         }
688         space_map_close(prev_obsolete_sm);
689
690         /*
691          * Generate new mapping.  Determine what index to continue from
692          * based on the max offset that we've already written in the
693          * new mapping.
694          */
695         uint64_t max_offset =
696             vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
697         if (max_offset == 0) {
698                 /* We haven't written anything to the new mapping yet. */
699                 start_index = 0;
700         } else {
701                 /*
702                  * Pick up from where we left off. _entry_for_offset()
703                  * returns a pointer into the vim_entries array. If
704                  * max_offset is greater than any of the mappings
705                  * contained in the table  NULL will be returned and
706                  * that indicates we've exhausted our iteration of the
707                  * old_mapping.
708                  */
709
710                 vdev_indirect_mapping_entry_phys_t *entry =
711                     vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
712                     max_offset);
713
714                 if (entry == NULL) {
715                         /*
716                          * We've already written the whole new mapping.
717                          * This special value will cause us to skip the
718                          * generate_new_mapping step and just do the sync
719                          * task to complete the condense.
720                          */
721                         start_index = UINT64_MAX;
722                 } else {
723                         start_index = entry - old_mapping->vim_entries;
724                         ASSERT3U(start_index, <,
725                             vdev_indirect_mapping_num_entries(old_mapping));
726                 }
727         }
728
729         spa_condense_indirect_generate_new_mapping(vd, counts,
730             start_index, zthr);
731
732         vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
733
734         /*
735          * If the zthr has received a cancellation signal while running
736          * in generate_new_mapping() or at any point after that, then bail
737          * early. We don't want to complete the condense if the spa is
738          * shutting down.
739          */
740         if (zthr_iscancelled(zthr))
741                 return;
742
743         VERIFY0(dsl_sync_task(spa_name(spa), NULL,
744             spa_condense_indirect_complete_sync, sci, 0,
745             ZFS_SPACE_CHECK_EXTRA_RESERVED));
746 }
747
748 /*
749  * Sync task to begin the condensing process.
750  */
751 void
752 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
753 {
754         spa_t *spa = vd->vdev_spa;
755         spa_condensing_indirect_phys_t *scip =
756             &spa->spa_condensing_indirect_phys;
757
758         ASSERT0(scip->scip_next_mapping_object);
759         ASSERT0(scip->scip_prev_obsolete_sm_object);
760         ASSERT0(scip->scip_vdev);
761         ASSERT(dmu_tx_is_syncing(tx));
762         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
763         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
764         ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
765
766         uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
767         ASSERT(obsolete_sm_obj != 0);
768
769         scip->scip_vdev = vd->vdev_id;
770         scip->scip_next_mapping_object =
771             vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
772
773         scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
774
775         /*
776          * We don't need to allocate a new space map object, since
777          * vdev_indirect_sync_obsolete will allocate one when needed.
778          */
779         space_map_close(vd->vdev_obsolete_sm);
780         vd->vdev_obsolete_sm = NULL;
781         VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
782             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
783
784         VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
785             DMU_POOL_DIRECTORY_OBJECT,
786             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
787             sizeof (*scip) / sizeof (uint64_t), scip, tx));
788
789         ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
790         spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
791
792         zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
793             "posm=%llu nm=%llu",
794             vd->vdev_id, dmu_tx_get_txg(tx),
795             (u_longlong_t)scip->scip_prev_obsolete_sm_object,
796             (u_longlong_t)scip->scip_next_mapping_object);
797
798         zthr_wakeup(spa->spa_condense_zthr);
799 }
800
801 /*
802  * Sync to the given vdev's obsolete space map any segments that are no longer
803  * referenced as of the given txg.
804  *
805  * If the obsolete space map doesn't exist yet, create and open it.
806  */
807 void
808 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
809 {
810         spa_t *spa = vd->vdev_spa;
811         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
812
813         ASSERT3U(vic->vic_mapping_object, !=, 0);
814         ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
815         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
816         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
817
818         if (vdev_obsolete_sm_object(vd) == 0) {
819                 uint64_t obsolete_sm_object =
820                     space_map_alloc(spa->spa_meta_objset,
821                     vdev_standard_sm_blksz, tx);
822
823                 ASSERT(vd->vdev_top_zap != 0);
824                 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
825                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
826                     sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
827                 ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
828
829                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
830                 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
831                     spa->spa_meta_objset, obsolete_sm_object,
832                     0, vd->vdev_asize, 0));
833         }
834
835         ASSERT(vd->vdev_obsolete_sm != NULL);
836         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
837             space_map_object(vd->vdev_obsolete_sm));
838
839         space_map_write(vd->vdev_obsolete_sm,
840             vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
841         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
842 }
843
844 int
845 spa_condense_init(spa_t *spa)
846 {
847         int error = zap_lookup(spa->spa_meta_objset,
848             DMU_POOL_DIRECTORY_OBJECT,
849             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
850             sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
851             &spa->spa_condensing_indirect_phys);
852         if (error == 0) {
853                 if (spa_writeable(spa)) {
854                         spa->spa_condensing_indirect =
855                             spa_condensing_indirect_create(spa);
856                 }
857                 return (0);
858         } else if (error == ENOENT) {
859                 return (0);
860         } else {
861                 return (error);
862         }
863 }
864
865 void
866 spa_condense_fini(spa_t *spa)
867 {
868         if (spa->spa_condensing_indirect != NULL) {
869                 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
870                 spa->spa_condensing_indirect = NULL;
871         }
872 }
873
874 void
875 spa_start_indirect_condensing_thread(spa_t *spa)
876 {
877         ASSERT3P(spa->spa_condense_zthr, ==, NULL);
878         spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
879             spa_condense_indirect_thread, spa);
880 }
881
882 /*
883  * Gets the obsolete spacemap object from the vdev's ZAP.
884  * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
885  * exist yet.
886  */
887 int
888 vdev_obsolete_sm_object(vdev_t *vd)
889 {
890         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
891         if (vd->vdev_top_zap == 0) {
892                 return (0);
893         }
894
895         uint64_t sm_obj = 0;
896         int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
897             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
898
899         ASSERT(err == 0 || err == ENOENT);
900
901         return (sm_obj);
902 }
903
904 boolean_t
905 vdev_obsolete_counts_are_precise(vdev_t *vd)
906 {
907         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
908         if (vd->vdev_top_zap == 0) {
909                 return (B_FALSE);
910         }
911
912         uint64_t val = 0;
913         int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
914             VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
915
916         ASSERT(err == 0 || err == ENOENT);
917
918         return (val != 0);
919 }
920
921 /* ARGSUSED */
922 static void
923 vdev_indirect_close(vdev_t *vd)
924 {
925 }
926
927 /* ARGSUSED */
928 static int
929 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
930     uint64_t *logical_ashift, uint64_t *physical_ashift)
931 {
932         *psize = *max_psize = vd->vdev_asize +
933             VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
934         *logical_ashift = vd->vdev_ashift;
935         *physical_ashift = vd->vdev_physical_ashift;
936         return (0);
937 }
938
939 typedef struct remap_segment {
940         vdev_t *rs_vd;
941         uint64_t rs_offset;
942         uint64_t rs_asize;
943         uint64_t rs_split_offset;
944         list_node_t rs_node;
945 } remap_segment_t;
946
947 remap_segment_t *
948 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
949 {
950         remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
951         rs->rs_vd = vd;
952         rs->rs_offset = offset;
953         rs->rs_asize = asize;
954         rs->rs_split_offset = split_offset;
955         return (rs);
956 }
957
958 /*
959  * Given an indirect vdev and an extent on that vdev, it duplicates the
960  * physical entries of the indirect mapping that correspond to the extent
961  * to a new array and returns a pointer to it. In addition, copied_entries
962  * is populated with the number of mapping entries that were duplicated.
963  *
964  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
965  * This ensures that the mapping won't change due to condensing as we
966  * copy over its contents.
967  *
968  * Finally, since we are doing an allocation, it is up to the caller to
969  * free the array allocated in this function.
970  */
971 vdev_indirect_mapping_entry_phys_t *
972 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
973     uint64_t asize, uint64_t *copied_entries)
974 {
975         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
976         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
977         uint64_t entries = 0;
978
979         ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
980
981         vdev_indirect_mapping_entry_phys_t *first_mapping =
982             vdev_indirect_mapping_entry_for_offset(vim, offset);
983         ASSERT3P(first_mapping, !=, NULL);
984
985         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
986         while (asize > 0) {
987                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
988
989                 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
990                 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
991
992                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
993                 uint64_t inner_size = MIN(asize, size - inner_offset);
994
995                 offset += inner_size;
996                 asize -= inner_size;
997                 entries++;
998                 m++;
999         }
1000
1001         size_t copy_length = entries * sizeof (*first_mapping);
1002         duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1003         bcopy(first_mapping, duplicate_mappings, copy_length);
1004         *copied_entries = entries;
1005
1006         return (duplicate_mappings);
1007 }
1008
1009 /*
1010  * Goes through the relevant indirect mappings until it hits a concrete vdev
1011  * and issues the callback. On the way to the concrete vdev, if any other
1012  * indirect vdevs are encountered, then the callback will also be called on
1013  * each of those indirect vdevs. For example, if the segment is mapped to
1014  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1015  * mapped to segment B on concrete vdev 2, then the callback will be called on
1016  * both vdev 1 and vdev 2.
1017  *
1018  * While the callback passed to vdev_indirect_remap() is called on every vdev
1019  * the function encounters, certain callbacks only care about concrete vdevs.
1020  * These types of callbacks should return immediately and explicitly when they
1021  * are called on an indirect vdev.
1022  *
1023  * Because there is a possibility that a DVA section in the indirect device
1024  * has been split into multiple sections in our mapping, we keep track
1025  * of the relevant contiguous segments of the new location (remap_segment_t)
1026  * in a stack. This way we can call the callback for each of the new sections
1027  * created by a single section of the indirect device. Note though, that in
1028  * this scenario the callbacks in each split block won't occur in-order in
1029  * terms of offset, so callers should not make any assumptions about that.
1030  *
1031  * For callbacks that don't handle split blocks and immediately return when
1032  * they encounter them (as is the case for remap_blkptr_cb), the caller can
1033  * assume that its callback will be applied from the first indirect vdev
1034  * encountered to the last one and then the concrete vdev, in that order.
1035  */
1036 static void
1037 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1038     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1039 {
1040         list_t stack;
1041         spa_t *spa = vd->vdev_spa;
1042
1043         list_create(&stack, sizeof (remap_segment_t),
1044             offsetof(remap_segment_t, rs_node));
1045
1046         for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1047             rs != NULL; rs = list_remove_head(&stack)) {
1048                 vdev_t *v = rs->rs_vd;
1049                 uint64_t num_entries = 0;
1050
1051                 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1052                 ASSERT(rs->rs_asize > 0);
1053
1054                 /*
1055                  * Note: As this function can be called from open context
1056                  * (e.g. zio_read()), we need the following rwlock to
1057                  * prevent the mapping from being changed by condensing.
1058                  *
1059                  * So we grab the lock and we make a copy of the entries
1060                  * that are relevant to the extent that we are working on.
1061                  * Once that is done, we drop the lock and iterate over
1062                  * our copy of the mapping. Once we are done with the with
1063                  * the remap segment and we free it, we also free our copy
1064                  * of the indirect mapping entries that are relevant to it.
1065                  *
1066                  * This way we don't need to wait until the function is
1067                  * finished with a segment, to condense it. In addition, we
1068                  * don't need a recursive rwlock for the case that a call to
1069                  * vdev_indirect_remap() needs to call itself (through the
1070                  * codepath of its callback) for the same vdev in the middle
1071                  * of its execution.
1072                  */
1073                 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1074                 vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
1075                 ASSERT3P(vim, !=, NULL);
1076
1077                 vdev_indirect_mapping_entry_phys_t *mapping =
1078                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
1079                     rs->rs_offset, rs->rs_asize, &num_entries);
1080                 ASSERT3P(mapping, !=, NULL);
1081                 ASSERT3U(num_entries, >, 0);
1082                 rw_exit(&v->vdev_indirect_rwlock);
1083
1084                 for (uint64_t i = 0; i < num_entries; i++) {
1085                         /*
1086                          * Note: the vdev_indirect_mapping can not change
1087                          * while we are running.  It only changes while the
1088                          * removal is in progress, and then only from syncing
1089                          * context. While a removal is in progress, this
1090                          * function is only called for frees, which also only
1091                          * happen from syncing context.
1092                          */
1093                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1094
1095                         ASSERT3P(m, !=, NULL);
1096                         ASSERT3U(rs->rs_asize, >, 0);
1097
1098                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1099                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1100                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1101
1102                         ASSERT3U(rs->rs_offset, >=,
1103                             DVA_MAPPING_GET_SRC_OFFSET(m));
1104                         ASSERT3U(rs->rs_offset, <,
1105                             DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1106                         ASSERT3U(dst_vdev, !=, v->vdev_id);
1107
1108                         uint64_t inner_offset = rs->rs_offset -
1109                             DVA_MAPPING_GET_SRC_OFFSET(m);
1110                         uint64_t inner_size =
1111                             MIN(rs->rs_asize, size - inner_offset);
1112
1113                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1114                         ASSERT3P(dst_v, !=, NULL);
1115
1116                         if (dst_v->vdev_ops == &vdev_indirect_ops) {
1117                                 list_insert_head(&stack,
1118                                     rs_alloc(dst_v, dst_offset + inner_offset,
1119                                     inner_size, rs->rs_split_offset));
1120
1121                         }
1122
1123                         if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1124                             IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1125                                 /*
1126                                  * Note: This clause exists only solely for
1127                                  * testing purposes. We use it to ensure that
1128                                  * split blocks work and that the callbacks
1129                                  * using them yield the same result if issued
1130                                  * in reverse order.
1131                                  */
1132                                 uint64_t inner_half = inner_size / 2;
1133
1134                                 func(rs->rs_split_offset + inner_half, dst_v,
1135                                     dst_offset + inner_offset + inner_half,
1136                                     inner_half, arg);
1137
1138                                 func(rs->rs_split_offset, dst_v,
1139                                     dst_offset + inner_offset,
1140                                     inner_half, arg);
1141                         } else {
1142                                 func(rs->rs_split_offset, dst_v,
1143                                     dst_offset + inner_offset,
1144                                     inner_size, arg);
1145                         }
1146
1147                         rs->rs_offset += inner_size;
1148                         rs->rs_asize -= inner_size;
1149                         rs->rs_split_offset += inner_size;
1150                 }
1151                 VERIFY0(rs->rs_asize);
1152
1153                 kmem_free(mapping, num_entries * sizeof (*mapping));
1154                 kmem_free(rs, sizeof (remap_segment_t));
1155         }
1156         list_destroy(&stack);
1157 }
1158
1159 static void
1160 vdev_indirect_child_io_done(zio_t *zio)
1161 {
1162         zio_t *pio = zio->io_private;
1163
1164         mutex_enter(&pio->io_lock);
1165         pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1166         mutex_exit(&pio->io_lock);
1167
1168 #ifdef __FreeBSD__
1169         if (zio->io_abd != NULL)
1170 #endif
1171         abd_put(zio->io_abd);
1172 }
1173
1174 /*
1175  * This is a callback for vdev_indirect_remap() which allocates an
1176  * indirect_split_t for each split segment and adds it to iv_splits.
1177  */
1178 static void
1179 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1180     uint64_t size, void *arg)
1181 {
1182         zio_t *zio = arg;
1183         indirect_vsd_t *iv = zio->io_vsd;
1184
1185         ASSERT3P(vd, !=, NULL);
1186
1187         if (vd->vdev_ops == &vdev_indirect_ops)
1188                 return;
1189
1190         int n = 1;
1191         if (vd->vdev_ops == &vdev_mirror_ops)
1192                 n = vd->vdev_children;
1193
1194         indirect_split_t *is =
1195             kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1196
1197         is->is_children = n;
1198         is->is_size = size;
1199         is->is_split_offset = split_offset;
1200         is->is_target_offset = offset;
1201         is->is_vdev = vd;
1202         list_create(&is->is_unique_child, sizeof (indirect_child_t),
1203             offsetof(indirect_child_t, ic_node));
1204
1205         /*
1206          * Note that we only consider multiple copies of the data for
1207          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1208          * though they use the same ops as mirror, because there's only one
1209          * "good" copy under the replacing/spare.
1210          */
1211         if (vd->vdev_ops == &vdev_mirror_ops) {
1212                 for (int i = 0; i < n; i++) {
1213                         is->is_child[i].ic_vdev = vd->vdev_child[i];
1214                         list_link_init(&is->is_child[i].ic_node);
1215                 }
1216         } else {
1217                 is->is_child[0].ic_vdev = vd;
1218         }
1219
1220         list_insert_tail(&iv->iv_splits, is);
1221 }
1222
1223 static void
1224 vdev_indirect_read_split_done(zio_t *zio)
1225 {
1226         indirect_child_t *ic = zio->io_private;
1227
1228         if (zio->io_error != 0) {
1229                 /*
1230                  * Clear ic_data to indicate that we do not have data for this
1231                  * child.
1232                  */
1233                 abd_free(ic->ic_data);
1234                 ic->ic_data = NULL;
1235         }
1236 }
1237
1238 /*
1239  * Issue reads for all copies (mirror children) of all splits.
1240  */
1241 static void
1242 vdev_indirect_read_all(zio_t *zio)
1243 {
1244         indirect_vsd_t *iv = zio->io_vsd;
1245
1246         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1247
1248         for (indirect_split_t *is = list_head(&iv->iv_splits);
1249             is != NULL; is = list_next(&iv->iv_splits, is)) {
1250                 for (int i = 0; i < is->is_children; i++) {
1251                         indirect_child_t *ic = &is->is_child[i];
1252
1253                         if (!vdev_readable(ic->ic_vdev))
1254                                 continue;
1255
1256                         /*
1257                          * Note, we may read from a child whose DTL
1258                          * indicates that the data may not be present here.
1259                          * While this might result in a few i/os that will
1260                          * likely return incorrect data, it simplifies the
1261                          * code since we can treat scrub and resilver
1262                          * identically.  (The incorrect data will be
1263                          * detected and ignored when we verify the
1264                          * checksum.)
1265                          */
1266
1267                         ic->ic_data = abd_alloc_sametype(zio->io_abd,
1268                             is->is_size);
1269                         ic->ic_duplicate = NULL;
1270
1271                         zio_nowait(zio_vdev_child_io(zio, NULL,
1272                             ic->ic_vdev, is->is_target_offset, ic->ic_data,
1273                             is->is_size, zio->io_type, zio->io_priority, 0,
1274                             vdev_indirect_read_split_done, ic));
1275                 }
1276         }
1277         iv->iv_reconstruct = B_TRUE;
1278 }
1279
1280 static void
1281 vdev_indirect_io_start(zio_t *zio)
1282 {
1283         spa_t *spa = zio->io_spa;
1284         indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1285         list_create(&iv->iv_splits,
1286             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1287
1288         zio->io_vsd = iv;
1289         zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1290
1291         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1292 #ifdef __FreeBSD__
1293         if (zio->io_type == ZIO_TYPE_WRITE) {
1294 #else
1295         if (zio->io_type != ZIO_TYPE_READ) {
1296                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1297 #endif
1298                 /*
1299                  * Note: this code can handle other kinds of writes,
1300                  * but we don't expect them.
1301                  */
1302                 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1303                     ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1304         }
1305
1306         vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1307             vdev_indirect_gather_splits, zio);
1308
1309         indirect_split_t *first = list_head(&iv->iv_splits);
1310         if (first->is_size == zio->io_size) {
1311                 /*
1312                  * This is not a split block; we are pointing to the entire
1313                  * data, which will checksum the same as the original data.
1314                  * Pass the BP down so that the child i/o can verify the
1315                  * checksum, and try a different location if available
1316                  * (e.g. on a mirror).
1317                  *
1318                  * While this special case could be handled the same as the
1319                  * general (split block) case, doing it this way ensures
1320                  * that the vast majority of blocks on indirect vdevs
1321                  * (which are not split) are handled identically to blocks
1322                  * on non-indirect vdevs.  This allows us to be less strict
1323                  * about performance in the general (but rare) case.
1324                  */
1325                 ASSERT0(first->is_split_offset);
1326                 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1327                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1328                     first->is_vdev, first->is_target_offset,
1329 #ifdef __FreeBSD__
1330                     zio->io_abd == NULL ? NULL :
1331 #endif
1332                     abd_get_offset(zio->io_abd, 0),
1333                     zio->io_size, zio->io_type, zio->io_priority, 0,
1334                     vdev_indirect_child_io_done, zio));
1335         } else {
1336                 iv->iv_split_block = B_TRUE;
1337                 if (zio->io_type == ZIO_TYPE_READ &&
1338                     zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1339                         /*
1340                          * Read all copies.  Note that for simplicity,
1341                          * we don't bother consulting the DTL in the
1342                          * resilver case.
1343                          */
1344                         vdev_indirect_read_all(zio);
1345                 } else {
1346                         /*
1347                          * If this is a read zio, we read one copy of each
1348                          * split segment, from the top-level vdev.  Since
1349                          * we don't know the checksum of each split
1350                          * individually, the child zio can't ensure that
1351                          * we get the right data. E.g. if it's a mirror,
1352                          * it will just read from a random (healthy) leaf
1353                          * vdev. We have to verify the checksum in
1354                          * vdev_indirect_io_done().
1355                          *
1356                          * For write zios, the vdev code will ensure we write
1357                          * to all children.
1358                          */
1359                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1360                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1361                                 zio_nowait(zio_vdev_child_io(zio, NULL,
1362                                     is->is_vdev, is->is_target_offset,
1363 #ifdef __FreeBSD__
1364                                     zio->io_abd == NULL ? NULL :
1365 #endif
1366                                     abd_get_offset(zio->io_abd,
1367                                     is->is_split_offset),
1368                                     is->is_size, zio->io_type,
1369                                     zio->io_priority, 0,
1370                                     vdev_indirect_child_io_done, zio));
1371                         }
1372                 }
1373         }
1374
1375         zio_execute(zio);
1376 }
1377
1378 /*
1379  * Report a checksum error for a child.
1380  */
1381 static void
1382 vdev_indirect_checksum_error(zio_t *zio,
1383     indirect_split_t *is, indirect_child_t *ic)
1384 {
1385         vdev_t *vd = ic->ic_vdev;
1386
1387         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1388                 return;
1389
1390         mutex_enter(&vd->vdev_stat_lock);
1391         vd->vdev_stat.vs_checksum_errors++;
1392         mutex_exit(&vd->vdev_stat_lock);
1393
1394         zio_bad_cksum_t zbc = { 0 };
1395         void *bad_buf = abd_borrow_buf_copy(ic->ic_data, is->is_size);
1396         abd_t *good_abd = is->is_good_child->ic_data;
1397         void *good_buf = abd_borrow_buf_copy(good_abd, is->is_size);
1398         zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1399             is->is_target_offset, is->is_size, good_buf, bad_buf, &zbc);
1400         abd_return_buf(ic->ic_data, bad_buf, is->is_size);
1401         abd_return_buf(good_abd, good_buf, is->is_size);
1402 }
1403
1404 /*
1405  * Issue repair i/os for any incorrect copies.  We do this by comparing
1406  * each split segment's correct data (is_good_child's ic_data) with each
1407  * other copy of the data.  If they differ, then we overwrite the bad data
1408  * with the good copy.  Note that we do this without regard for the DTL's,
1409  * which simplifies this code and also issues the optimal number of writes
1410  * (based on which copies actually read bad data, as opposed to which we
1411  * think might be wrong).  For the same reason, we always use
1412  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1413  */
1414 static void
1415 vdev_indirect_repair(zio_t *zio)
1416 {
1417         indirect_vsd_t *iv = zio->io_vsd;
1418
1419         enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1420
1421         if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1422                 flags |= ZIO_FLAG_SELF_HEAL;
1423
1424         if (!spa_writeable(zio->io_spa))
1425                 return;
1426
1427         for (indirect_split_t *is = list_head(&iv->iv_splits);
1428             is != NULL; is = list_next(&iv->iv_splits, is)) {
1429                 for (int c = 0; c < is->is_children; c++) {
1430                         indirect_child_t *ic = &is->is_child[c];
1431                         if (ic == is->is_good_child)
1432                                 continue;
1433                         if (ic->ic_data == NULL)
1434                                 continue;
1435                         if (ic->ic_duplicate == is->is_good_child)
1436                                 continue;
1437
1438                         zio_nowait(zio_vdev_child_io(zio, NULL,
1439                             ic->ic_vdev, is->is_target_offset,
1440                             is->is_good_child->ic_data, is->is_size,
1441                             ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1442                             ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1443                             NULL, NULL));
1444
1445                         vdev_indirect_checksum_error(zio, is, ic);
1446                 }
1447         }
1448 }
1449
1450 /*
1451  * Report checksum errors on all children that we read from.
1452  */
1453 static void
1454 vdev_indirect_all_checksum_errors(zio_t *zio)
1455 {
1456         indirect_vsd_t *iv = zio->io_vsd;
1457
1458         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1459                 return;
1460
1461         for (indirect_split_t *is = list_head(&iv->iv_splits);
1462             is != NULL; is = list_next(&iv->iv_splits, is)) {
1463                 for (int c = 0; c < is->is_children; c++) {
1464                         indirect_child_t *ic = &is->is_child[c];
1465
1466                         if (ic->ic_data == NULL)
1467                                 continue;
1468
1469                         vdev_t *vd = ic->ic_vdev;
1470
1471                         mutex_enter(&vd->vdev_stat_lock);
1472                         vd->vdev_stat.vs_checksum_errors++;
1473                         mutex_exit(&vd->vdev_stat_lock);
1474
1475                         zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1476                             is->is_target_offset, is->is_size,
1477                             NULL, NULL, NULL);
1478                 }
1479         }
1480 }
1481
1482 /*
1483  * Copy data from all the splits to a main zio then validate the checksum.
1484  * If then checksum is successfully validated return success.
1485  */
1486 static int
1487 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1488 {
1489         zio_bad_cksum_t zbc;
1490
1491         for (indirect_split_t *is = list_head(&iv->iv_splits);
1492             is != NULL; is = list_next(&iv->iv_splits, is)) {
1493
1494                 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1495                 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1496
1497                 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1498                     is->is_split_offset, 0, is->is_size);
1499         }
1500
1501         return (zio_checksum_error(zio, &zbc));
1502 }
1503
1504 /*
1505  * There are relatively few possible combinations making it feasible to
1506  * deterministically check them all.  We do this by setting the good_child
1507  * to the next unique split version.  If we reach the end of the list then
1508  * "carry over" to the next unique split version (like counting in base
1509  * is_unique_children, but each digit can have a different base).
1510  */
1511 static int
1512 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1513 {
1514         boolean_t more = B_TRUE;
1515
1516         iv->iv_attempts = 0;
1517
1518         for (indirect_split_t *is = list_head(&iv->iv_splits);
1519             is != NULL; is = list_next(&iv->iv_splits, is))
1520                 is->is_good_child = list_head(&is->is_unique_child);
1521
1522         while (more == B_TRUE) {
1523                 iv->iv_attempts++;
1524                 more = B_FALSE;
1525
1526                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1527                         return (0);
1528
1529                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1530                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1531                         is->is_good_child = list_next(&is->is_unique_child,
1532                             is->is_good_child);
1533                         if (is->is_good_child != NULL) {
1534                                 more = B_TRUE;
1535                                 break;
1536                         }
1537
1538                         is->is_good_child = list_head(&is->is_unique_child);
1539                 }
1540         }
1541
1542         ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1543
1544         return (SET_ERROR(ECKSUM));
1545 }
1546
1547 /*
1548  * There are too many combinations to try all of them in a reasonable amount
1549  * of time.  So try a fixed number of random combinations from the unique
1550  * split versions, after which we'll consider the block unrecoverable.
1551  */
1552 static int
1553 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1554 {
1555         iv->iv_attempts = 0;
1556
1557         while (iv->iv_attempts < iv->iv_attempts_max) {
1558                 iv->iv_attempts++;
1559
1560                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1561                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1562                         indirect_child_t *ic = list_head(&is->is_unique_child);
1563                         int children = is->is_unique_children;
1564
1565                         for (int i = spa_get_random(children); i > 0; i--)
1566                                 ic = list_next(&is->is_unique_child, ic);
1567
1568                         ASSERT3P(ic, !=, NULL);
1569                         is->is_good_child = ic;
1570                 }
1571
1572                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1573                         return (0);
1574         }
1575
1576         return (SET_ERROR(ECKSUM));
1577 }
1578
1579 /*
1580  * This is a validation function for reconstruction.  It randomly selects
1581  * a good combination, if one can be found, and then it intentionally
1582  * damages all other segment copes by zeroing them.  This forces the
1583  * reconstruction algorithm to locate the one remaining known good copy.
1584  */
1585 static int
1586 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1587 {
1588         /* Presume all the copies are unique for initial selection. */
1589         for (indirect_split_t *is = list_head(&iv->iv_splits);
1590             is != NULL; is = list_next(&iv->iv_splits, is)) {
1591                 is->is_unique_children = 0;
1592
1593                 for (int i = 0; i < is->is_children; i++) {
1594                         indirect_child_t *ic = &is->is_child[i];
1595                         if (ic->ic_data != NULL) {
1596                                 is->is_unique_children++;
1597                                 list_insert_tail(&is->is_unique_child, ic);
1598                         }
1599                 }
1600         }
1601
1602         /*
1603          * Set each is_good_child to a randomly-selected child which
1604          * is known to contain validated data.
1605          */
1606         int error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1607         if (error)
1608                 goto out;
1609
1610         /*
1611          * Damage all but the known good copy by zeroing it.  This will
1612          * result in two or less unique copies per indirect_child_t.
1613          * Both may need to be checked in order to reconstruct the block.
1614          * Set iv->iv_attempts_max such that all unique combinations will
1615          * enumerated, but limit the damage to at most 16 indirect splits.
1616          */
1617         iv->iv_attempts_max = 1;
1618
1619         for (indirect_split_t *is = list_head(&iv->iv_splits);
1620             is != NULL; is = list_next(&iv->iv_splits, is)) {
1621                 for (int c = 0; c < is->is_children; c++) {
1622                         indirect_child_t *ic = &is->is_child[c];
1623
1624                         if (ic == is->is_good_child)
1625                                 continue;
1626                         if (ic->ic_data == NULL)
1627                                 continue;
1628
1629                         abd_zero(ic->ic_data, ic->ic_data->abd_size);
1630                 }
1631
1632                 iv->iv_attempts_max *= 2;
1633                 if (iv->iv_attempts_max > (1ULL << 16)) {
1634                         iv->iv_attempts_max = UINT64_MAX;
1635                         break;
1636                 }
1637         }
1638
1639 out:
1640         /* Empty the unique children lists so they can be reconstructed. */
1641         for (indirect_split_t *is = list_head(&iv->iv_splits);
1642             is != NULL; is = list_next(&iv->iv_splits, is)) {
1643                 indirect_child_t *ic;
1644                 while ((ic = list_head(&is->is_unique_child)) != NULL)
1645                         list_remove(&is->is_unique_child, ic);
1646
1647                 is->is_unique_children = 0;
1648         }
1649
1650         return (error);
1651 }
1652
1653 /*
1654  * This function is called when we have read all copies of the data and need
1655  * to try to find a combination of copies that gives us the right checksum.
1656  *
1657  * If we pointed to any mirror vdevs, this effectively does the job of the
1658  * mirror.  The mirror vdev code can't do its own job because we don't know
1659  * the checksum of each split segment individually.
1660  *
1661  * We have to try every unique combination of copies of split segments, until
1662  * we find one that checksums correctly.  Duplicate segment copies are first
1663  * identified and latter skipped during reconstruction.  This optimization
1664  * reduces the search space and ensures that of the remaining combinations
1665  * at most one is correct.
1666  *
1667  * When the total number of combinations is small they can all be checked.
1668  * For example, if we have 3 segments in the split, and each points to a
1669  * 2-way mirror with unique copies, we will have the following pieces of data:
1670  *
1671  *       |     mirror child
1672  * split |     [0]        [1]
1673  * ======|=====================
1674  *   A   |  data_A_0   data_A_1
1675  *   B   |  data_B_0   data_B_1
1676  *   C   |  data_C_0   data_C_1
1677  *
1678  * We will try the following (mirror children)^(number of splits) (2^3=8)
1679  * combinations, which is similar to bitwise-little-endian counting in
1680  * binary.  In general each "digit" corresponds to a split segment, and the
1681  * base of each digit is is_children, which can be different for each
1682  * digit.
1683  *
1684  * "low bit"        "high bit"
1685  *        v                 v
1686  * data_A_0 data_B_0 data_C_0
1687  * data_A_1 data_B_0 data_C_0
1688  * data_A_0 data_B_1 data_C_0
1689  * data_A_1 data_B_1 data_C_0
1690  * data_A_0 data_B_0 data_C_1
1691  * data_A_1 data_B_0 data_C_1
1692  * data_A_0 data_B_1 data_C_1
1693  * data_A_1 data_B_1 data_C_1
1694  *
1695  * Note that the split segments may be on the same or different top-level
1696  * vdevs. In either case, we may need to try lots of combinations (see
1697  * zfs_reconstruct_indirect_combinations_max).  This ensures that if a mirror
1698  * has small silent errors on all of its children, we can still reconstruct
1699  * the correct data, as long as those errors are at sufficiently-separated
1700  * offsets (specifically, separated by the largest block size - default of
1701  * 128KB, but up to 16MB).
1702  */
1703 static void
1704 vdev_indirect_reconstruct_io_done(zio_t *zio)
1705 {
1706         indirect_vsd_t *iv = zio->io_vsd;
1707         boolean_t known_good = B_FALSE;
1708         int error;
1709
1710         iv->iv_unique_combinations = 1;
1711         iv->iv_attempts_max = UINT64_MAX;
1712
1713         if (zfs_reconstruct_indirect_combinations_max > 0)
1714                 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1715
1716         /*
1717          * If nonzero, every 1/x blocks will be damaged, in order to validate
1718          * reconstruction when there are split segments with damaged copies.
1719          * Known_good will TRUE when reconstruction is known to be possible.
1720          */
1721         if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1722             spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1723                 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1724
1725         /*
1726          * Determine the unique children for a split segment and add them
1727          * to the is_unique_child list.  By restricting reconstruction
1728          * to these children, only unique combinations will be considered.
1729          * This can vastly reduce the search space when there are a large
1730          * number of indirect splits.
1731          */
1732         for (indirect_split_t *is = list_head(&iv->iv_splits);
1733             is != NULL; is = list_next(&iv->iv_splits, is)) {
1734                 is->is_unique_children = 0;
1735
1736                 for (int i = 0; i < is->is_children; i++) {
1737                         indirect_child_t *ic_i = &is->is_child[i];
1738
1739                         if (ic_i->ic_data == NULL ||
1740                             ic_i->ic_duplicate != NULL)
1741                                 continue;
1742
1743                         for (int j = i + 1; j < is->is_children; j++) {
1744                                 indirect_child_t *ic_j = &is->is_child[j];
1745
1746                                 if (ic_j->ic_data == NULL ||
1747                                     ic_j->ic_duplicate != NULL)
1748                                         continue;
1749
1750                                 if (abd_cmp(ic_i->ic_data, ic_j->ic_data,
1751                                     is->is_size) == 0) {
1752                                         ic_j->ic_duplicate = ic_i;
1753                                 }
1754                         }
1755
1756                         is->is_unique_children++;
1757                         list_insert_tail(&is->is_unique_child, ic_i);
1758                 }
1759
1760                 /* Reconstruction is impossible, no valid children */
1761                 EQUIV(list_is_empty(&is->is_unique_child),
1762                     is->is_unique_children == 0);
1763                 if (list_is_empty(&is->is_unique_child)) {
1764                         zio->io_error = EIO;
1765                         vdev_indirect_all_checksum_errors(zio);
1766                         zio_checksum_verified(zio);
1767                         return;
1768                 }
1769
1770                 iv->iv_unique_combinations *= is->is_unique_children;
1771         }
1772
1773         if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1774                 error = vdev_indirect_splits_enumerate_all(iv, zio);
1775         else
1776                 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1777
1778         if (error != 0) {
1779                 /* All attempted combinations failed. */
1780                 ASSERT3B(known_good, ==, B_FALSE);
1781                 zio->io_error = error;
1782                 vdev_indirect_all_checksum_errors(zio);
1783         } else {
1784                 /*
1785                  * The checksum has been successfully validated.  Issue
1786                  * repair I/Os to any copies of splits which don't match
1787                  * the validated version.
1788                  */
1789                 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1790                 vdev_indirect_repair(zio);
1791                 zio_checksum_verified(zio);
1792         }
1793 }
1794
1795 static void
1796 vdev_indirect_io_done(zio_t *zio)
1797 {
1798         indirect_vsd_t *iv = zio->io_vsd;
1799
1800         if (iv->iv_reconstruct) {
1801                 /*
1802                  * We have read all copies of the data (e.g. from mirrors),
1803                  * either because this was a scrub/resilver, or because the
1804                  * one-copy read didn't checksum correctly.
1805                  */
1806                 vdev_indirect_reconstruct_io_done(zio);
1807                 return;
1808         }
1809
1810         if (!iv->iv_split_block) {
1811                 /*
1812                  * This was not a split block, so we passed the BP down,
1813                  * and the checksum was handled by the (one) child zio.
1814                  */
1815                 return;
1816         }
1817
1818         zio_bad_cksum_t zbc;
1819         int ret = zio_checksum_error(zio, &zbc);
1820         if (ret == 0) {
1821                 zio_checksum_verified(zio);
1822                 return;
1823         }
1824
1825         /*
1826          * The checksum didn't match.  Read all copies of all splits, and
1827          * then we will try to reconstruct.  The next time
1828          * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1829          */
1830         vdev_indirect_read_all(zio);
1831
1832         zio_vdev_io_redone(zio);
1833 }
1834
1835 vdev_ops_t vdev_indirect_ops = {
1836         vdev_indirect_open,
1837         vdev_indirect_close,
1838         vdev_default_asize,
1839         vdev_indirect_io_start,
1840         vdev_indirect_io_done,
1841         NULL,
1842         NULL,
1843         NULL,
1844         NULL,
1845         vdev_indirect_remap,
1846         NULL,
1847         VDEV_TYPE_INDIRECT,     /* name of this vdev type */
1848         B_FALSE                 /* leaf vdev */
1849 };