]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_indirect.c
MFC r334844, r336180, r336458
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev_indirect.c
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15
16 /*
17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18  */
19
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/metaslab.h>
27 #include <sys/refcount.h>
28 #include <sys/dmu.h>
29 #include <sys/vdev_indirect_mapping.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/abd.h>
34 #include <sys/zthr.h>
35
36 /*
37  * An indirect vdev corresponds to a vdev that has been removed.  Since
38  * we cannot rewrite block pointers of snapshots, etc., we keep a
39  * mapping from old location on the removed device to the new location
40  * on another device in the pool and use this mapping whenever we need
41  * to access the DVA.  Unfortunately, this mapping did not respect
42  * logical block boundaries when it was first created, and so a DVA on
43  * this indirect vdev may be "split" into multiple sections that each
44  * map to a different location.  As a consequence, not all DVAs can be
45  * translated to an equivalent new DVA.  Instead we must provide a
46  * "vdev_remap" operation that executes a callback on each contiguous
47  * segment of the new location.  This function is used in multiple ways:
48  *
49  *  - reads and repair writes to this device use the callback to create
50  *    a child io for each mapped segment.
51  *
52  *  - frees and claims to this device use the callback to free or claim
53  *    each mapped segment.  (Note that we don't actually need to claim
54  *    log blocks on indirect vdevs, because we don't allocate to
55  *    removing vdevs.  However, zdb uses zio_claim() for its leak
56  *    detection.)
57  */
58
59 /*
60  * "Big theory statement" for how we mark blocks obsolete.
61  *
62  * When a block on an indirect vdev is freed or remapped, a section of
63  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
64  * keep track of how much of each mapping entry is obsolete.  When
65  * an entry becomes completely obsolete, we can remove it, thus reducing
66  * the memory used by the mapping.  The complete picture of obsolescence
67  * is given by the following data structures, described below:
68  *  - the entry-specific obsolete count
69  *  - the vdev-specific obsolete spacemap
70  *  - the pool-specific obsolete bpobj
71  *
72  * == On disk data structures used ==
73  *
74  * We track the obsolete space for the pool using several objects.  Each
75  * of these objects is created on demand and freed when no longer
76  * needed, and is assumed to be empty if it does not exist.
77  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
78  *
79  *  - Each vic_mapping_object (associated with an indirect vdev) can
80  *    have a vimp_counts_object.  This is an array of uint32_t's
81  *    with the same number of entries as the vic_mapping_object.  When
82  *    the mapping is condensed, entries from the vic_obsolete_sm_object
83  *    (see below) are folded into the counts.  Therefore, each
84  *    obsolete_counts entry tells us the number of bytes in the
85  *    corresponding mapping entry that were not referenced when the
86  *    mapping was last condensed.
87  *
88  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
89  *    This is a space map containing an alloc entry for every DVA that
90  *    has been obsoleted since the last time this indirect vdev was
91  *    condensed.  We use this object in order to improve performance
92  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
93  *    offset of the vimp_counts_object, we only need to append an entry
94  *    to the end of this object.  When a DVA becomes obsolete, it is
95  *    added to the obsolete space map.  This happens when the DVA is
96  *    freed, remapped and not referenced by a snapshot, or the last
97  *    snapshot referencing it is destroyed.
98  *
99  *  - Each dataset can have a ds_remap_deadlist object.  This is a
100  *    deadlist object containing all blocks that were remapped in this
101  *    dataset but referenced in a previous snapshot.  Blocks can *only*
102  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
103  *    blocks that were killed in a head dataset are put on the normal
104  *    ds_deadlist and marked obsolete when they are freed.
105  *
106  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
107  *    in the pool that need to be marked obsolete.  When a snapshot is
108  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
109  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
110  *    asynchronously process the obsolete bpobj, moving its entries to
111  *    the specific vdevs' obsolete space maps.
112  *
113  * == Summary of how we mark blocks as obsolete ==
114  *
115  * - When freeing a block: if any DVA is on an indirect vdev, append to
116  *   vic_obsolete_sm_object.
117  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
118  *   references; otherwise append to vic_obsolete_sm_object).
119  * - When freeing a snapshot: move parts of ds_remap_deadlist to
120  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
121  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
122  *   individual vdev's vic_obsolete_sm_object.
123  */
124
125 /*
126  * "Big theory statement" for how we condense indirect vdevs.
127  *
128  * Condensing an indirect vdev's mapping is the process of determining
129  * the precise counts of obsolete space for each mapping entry (by
130  * integrating the obsolete spacemap into the obsolete counts) and
131  * writing out a new mapping that contains only referenced entries.
132  *
133  * We condense a vdev when we expect the mapping to shrink (see
134  * vdev_indirect_should_condense()), but only perform one condense at a
135  * time to limit the memory usage.  In addition, we use a separate
136  * open-context thread (spa_condense_indirect_thread) to incrementally
137  * create the new mapping object in a way that minimizes the impact on
138  * the rest of the system.
139  *
140  * == Generating a new mapping ==
141  *
142  * To generate a new mapping, we follow these steps:
143  *
144  * 1. Save the old obsolete space map and create a new mapping object
145  *    (see spa_condense_indirect_start_sync()).  This initializes the
146  *    spa_condensing_indirect_phys with the "previous obsolete space map",
147  *    which is now read only.  Newly obsolete DVAs will be added to a
148  *    new (initially empty) obsolete space map, and will not be
149  *    considered as part of this condense operation.
150  *
151  * 2. Construct in memory the precise counts of obsolete space for each
152  *    mapping entry, by incorporating the obsolete space map into the
153  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
154  *
155  * 3. Iterate through each mapping entry, writing to the new mapping any
156  *    entries that are not completely obsolete (i.e. which don't have
157  *    obsolete count == mapping length).  (See
158  *    spa_condense_indirect_generate_new_mapping().)
159  *
160  * 4. Destroy the old mapping object and switch over to the new one
161  *    (spa_condense_indirect_complete_sync).
162  *
163  * == Restarting from failure ==
164  *
165  * To restart the condense when we import/open the pool, we must start
166  * at the 2nd step above: reconstruct the precise counts in memory,
167  * based on the space map + counts.  Then in the 3rd step, we start
168  * iterating where we left off: at vimp_max_offset of the new mapping
169  * object.
170  */
171
172 boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
173
174 /*
175  * Condense if at least this percent of the bytes in the mapping is
176  * obsolete.  With the default of 25%, the amount of space mapped
177  * will be reduced to 1% of its original size after at most 16
178  * condenses.  Higher values will condense less often (causing less
179  * i/o); lower values will reduce the mapping size more quickly.
180  */
181 int zfs_indirect_condense_obsolete_pct = 25;
182
183 /*
184  * Condense if the obsolete space map takes up more than this amount of
185  * space on disk (logically).  This limits the amount of disk space
186  * consumed by the obsolete space map; the default of 1GB is small enough
187  * that we typically don't mind "wasting" it.
188  */
189 uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
190
191 /*
192  * Don't bother condensing if the mapping uses less than this amount of
193  * memory.  The default of 128KB is considered a "trivial" amount of
194  * memory and not worth reducing.
195  */
196 uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
197
198 /*
199  * This is used by the test suite so that it can ensure that certain
200  * actions happen while in the middle of a condense (which might otherwise
201  * complete too quickly).  If used to reduce the performance impact of
202  * condensing in production, a maximum value of 1 should be sufficient.
203  */
204 int zfs_condense_indirect_commit_entry_delay_ticks = 0;
205
206 /*
207  * Mark the given offset and size as being obsolete.
208  */
209 void
210 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
211 {
212         spa_t *spa = vd->vdev_spa;
213
214         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
215         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
216         ASSERT(size > 0);
217         VERIFY(vdev_indirect_mapping_entry_for_offset(
218             vd->vdev_indirect_mapping, offset) != NULL);
219
220         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
221                 mutex_enter(&vd->vdev_obsolete_lock);
222                 range_tree_add(vd->vdev_obsolete_segments, offset, size);
223                 mutex_exit(&vd->vdev_obsolete_lock);
224                 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
225         }
226 }
227
228 /*
229  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
230  * wrapper is provided because the DMU does not know about vdev_t's and
231  * cannot directly call vdev_indirect_mark_obsolete.
232  */
233 void
234 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
235     uint64_t size, dmu_tx_t *tx)
236 {
237         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
238         ASSERT(dmu_tx_is_syncing(tx));
239
240         /* The DMU can only remap indirect vdevs. */
241         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
242         vdev_indirect_mark_obsolete(vd, offset, size);
243 }
244
245 static spa_condensing_indirect_t *
246 spa_condensing_indirect_create(spa_t *spa)
247 {
248         spa_condensing_indirect_phys_t *scip =
249             &spa->spa_condensing_indirect_phys;
250         spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
251         objset_t *mos = spa->spa_meta_objset;
252
253         for (int i = 0; i < TXG_SIZE; i++) {
254                 list_create(&sci->sci_new_mapping_entries[i],
255                     sizeof (vdev_indirect_mapping_entry_t),
256                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
257         }
258
259         sci->sci_new_mapping =
260             vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
261
262         return (sci);
263 }
264
265 static void
266 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
267 {
268         for (int i = 0; i < TXG_SIZE; i++)
269                 list_destroy(&sci->sci_new_mapping_entries[i]);
270
271         if (sci->sci_new_mapping != NULL)
272                 vdev_indirect_mapping_close(sci->sci_new_mapping);
273
274         kmem_free(sci, sizeof (*sci));
275 }
276
277 boolean_t
278 vdev_indirect_should_condense(vdev_t *vd)
279 {
280         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
281         spa_t *spa = vd->vdev_spa;
282
283         ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
284
285         if (!zfs_condense_indirect_vdevs_enable)
286                 return (B_FALSE);
287
288         /*
289          * We can only condense one indirect vdev at a time.
290          */
291         if (spa->spa_condensing_indirect != NULL)
292                 return (B_FALSE);
293
294         if (spa_shutting_down(spa))
295                 return (B_FALSE);
296
297         /*
298          * The mapping object size must not change while we are
299          * condensing, so we can only condense indirect vdevs
300          * (not vdevs that are still in the middle of being removed).
301          */
302         if (vd->vdev_ops != &vdev_indirect_ops)
303                 return (B_FALSE);
304
305         /*
306          * If nothing new has been marked obsolete, there is no
307          * point in condensing.
308          */
309         if (vd->vdev_obsolete_sm == NULL) {
310                 ASSERT0(vdev_obsolete_sm_object(vd));
311                 return (B_FALSE);
312         }
313
314         ASSERT(vd->vdev_obsolete_sm != NULL);
315
316         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
317             space_map_object(vd->vdev_obsolete_sm));
318
319         uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
320         uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
321         uint64_t mapping_size = vdev_indirect_mapping_size(vim);
322         uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
323
324         ASSERT3U(bytes_obsolete, <=, bytes_mapped);
325
326         /*
327          * If a high percentage of the bytes that are mapped have become
328          * obsolete, condense (unless the mapping is already small enough).
329          * This has a good chance of reducing the amount of memory used
330          * by the mapping.
331          */
332         if (bytes_obsolete * 100 / bytes_mapped >=
333             zfs_indirect_condense_obsolete_pct &&
334             mapping_size > zfs_condense_min_mapping_bytes) {
335                 zfs_dbgmsg("should condense vdev %llu because obsolete "
336                     "spacemap covers %d%% of %lluMB mapping",
337                     (u_longlong_t)vd->vdev_id,
338                     (int)(bytes_obsolete * 100 / bytes_mapped),
339                     (u_longlong_t)bytes_mapped / 1024 / 1024);
340                 return (B_TRUE);
341         }
342
343         /*
344          * If the obsolete space map takes up too much space on disk,
345          * condense in order to free up this disk space.
346          */
347         if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
348                 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
349                     "length %lluMB >= max size %lluMB",
350                     (u_longlong_t)vd->vdev_id,
351                     (u_longlong_t)obsolete_sm_size / 1024 / 1024,
352                     (u_longlong_t)zfs_condense_max_obsolete_bytes /
353                     1024 / 1024);
354                 return (B_TRUE);
355         }
356
357         return (B_FALSE);
358 }
359
360 /*
361  * This sync task completes (finishes) a condense, deleting the old
362  * mapping and replacing it with the new one.
363  */
364 static void
365 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
366 {
367         spa_condensing_indirect_t *sci = arg;
368         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
369         spa_condensing_indirect_phys_t *scip =
370             &spa->spa_condensing_indirect_phys;
371         vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
372         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
373         objset_t *mos = spa->spa_meta_objset;
374         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
375         uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
376         uint64_t new_count =
377             vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
378
379         ASSERT(dmu_tx_is_syncing(tx));
380         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
381         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
382         for (int i = 0; i < TXG_SIZE; i++) {
383                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
384         }
385         ASSERT(vic->vic_mapping_object != 0);
386         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
387         ASSERT(scip->scip_next_mapping_object != 0);
388         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
389
390         /*
391          * Reset vdev_indirect_mapping to refer to the new object.
392          */
393         rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
394         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
395         vd->vdev_indirect_mapping = sci->sci_new_mapping;
396         rw_exit(&vd->vdev_indirect_rwlock);
397
398         sci->sci_new_mapping = NULL;
399         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
400         vic->vic_mapping_object = scip->scip_next_mapping_object;
401         scip->scip_next_mapping_object = 0;
402
403         space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
404         spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
405         scip->scip_prev_obsolete_sm_object = 0;
406
407         scip->scip_vdev = 0;
408
409         VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
410             DMU_POOL_CONDENSING_INDIRECT, tx));
411         spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
412         spa->spa_condensing_indirect = NULL;
413
414         zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
415             "new mapping object %llu has %llu entries "
416             "(was %llu entries)",
417             vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
418             new_count, old_count);
419
420         vdev_config_dirty(spa->spa_root_vdev);
421 }
422
423 /*
424  * This sync task appends entries to the new mapping object.
425  */
426 static void
427 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
428 {
429         spa_condensing_indirect_t *sci = arg;
430         uint64_t txg = dmu_tx_get_txg(tx);
431         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
432
433         ASSERT(dmu_tx_is_syncing(tx));
434         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
435
436         vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
437             &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
438         ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
439 }
440
441 /*
442  * Open-context function to add one entry to the new mapping.  The new
443  * entry will be remembered and written from syncing context.
444  */
445 static void
446 spa_condense_indirect_commit_entry(spa_t *spa,
447     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
448 {
449         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
450
451         ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
452
453         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
454         dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
455         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
456         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
457
458         /*
459          * If we are the first entry committed this txg, kick off the sync
460          * task to write to the MOS on our behalf.
461          */
462         if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
463                 dsl_sync_task_nowait(dmu_tx_pool(tx),
464                     spa_condense_indirect_commit_sync, sci,
465                     0, ZFS_SPACE_CHECK_NONE, tx);
466         }
467
468         vdev_indirect_mapping_entry_t *vime =
469             kmem_alloc(sizeof (*vime), KM_SLEEP);
470         vime->vime_mapping = *vimep;
471         vime->vime_obsolete_count = count;
472         list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
473
474         dmu_tx_commit(tx);
475 }
476
477 static void
478 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
479     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
480 {
481         spa_t *spa = vd->vdev_spa;
482         uint64_t mapi = start_index;
483         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
484         uint64_t old_num_entries =
485             vdev_indirect_mapping_num_entries(old_mapping);
486
487         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
488         ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
489
490         zfs_dbgmsg("starting condense of vdev %llu from index %llu",
491             (u_longlong_t)vd->vdev_id,
492             (u_longlong_t)mapi);
493
494         while (mapi < old_num_entries) {
495
496                 if (zthr_iscancelled(zthr)) {
497                         zfs_dbgmsg("pausing condense of vdev %llu "
498                             "at index %llu", (u_longlong_t)vd->vdev_id,
499                             (u_longlong_t)mapi);
500                         break;
501                 }
502
503                 vdev_indirect_mapping_entry_phys_t *entry =
504                     &old_mapping->vim_entries[mapi];
505                 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
506                 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
507                 if (obsolete_counts[mapi] < entry_size) {
508                         spa_condense_indirect_commit_entry(spa, entry,
509                             obsolete_counts[mapi]);
510
511                         /*
512                          * This delay may be requested for testing, debugging,
513                          * or performance reasons.
514                          */
515                         delay(zfs_condense_indirect_commit_entry_delay_ticks);
516                 }
517
518                 mapi++;
519         }
520 }
521
522 /* ARGSUSED */
523 static boolean_t
524 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
525 {
526         spa_t *spa = arg;
527
528         return (spa->spa_condensing_indirect != NULL);
529 }
530
531 /* ARGSUSED */
532 static int
533 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
534 {
535         spa_t *spa = arg;
536         vdev_t *vd;
537
538         ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
539         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
540         vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
541         ASSERT3P(vd, !=, NULL);
542         spa_config_exit(spa, SCL_VDEV, FTAG);
543
544         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
545         spa_condensing_indirect_phys_t *scip =
546             &spa->spa_condensing_indirect_phys;
547         uint32_t *counts;
548         uint64_t start_index;
549         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
550         space_map_t *prev_obsolete_sm = NULL;
551
552         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
553         ASSERT(scip->scip_next_mapping_object != 0);
554         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
555         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
556
557         for (int i = 0; i < TXG_SIZE; i++) {
558                 /*
559                  * The list must start out empty in order for the
560                  * _commit_sync() sync task to be properly registered
561                  * on the first call to _commit_entry(); so it's wise
562                  * to double check and ensure we actually are starting
563                  * with empty lists.
564                  */
565                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
566         }
567
568         VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
569             scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
570         space_map_update(prev_obsolete_sm);
571         counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
572         if (prev_obsolete_sm != NULL) {
573                 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
574                     counts, prev_obsolete_sm);
575         }
576         space_map_close(prev_obsolete_sm);
577
578         /*
579          * Generate new mapping.  Determine what index to continue from
580          * based on the max offset that we've already written in the
581          * new mapping.
582          */
583         uint64_t max_offset =
584             vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
585         if (max_offset == 0) {
586                 /* We haven't written anything to the new mapping yet. */
587                 start_index = 0;
588         } else {
589                 /*
590                  * Pick up from where we left off. _entry_for_offset()
591                  * returns a pointer into the vim_entries array. If
592                  * max_offset is greater than any of the mappings
593                  * contained in the table  NULL will be returned and
594                  * that indicates we've exhausted our iteration of the
595                  * old_mapping.
596                  */
597
598                 vdev_indirect_mapping_entry_phys_t *entry =
599                     vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
600                     max_offset);
601
602                 if (entry == NULL) {
603                         /*
604                          * We've already written the whole new mapping.
605                          * This special value will cause us to skip the
606                          * generate_new_mapping step and just do the sync
607                          * task to complete the condense.
608                          */
609                         start_index = UINT64_MAX;
610                 } else {
611                         start_index = entry - old_mapping->vim_entries;
612                         ASSERT3U(start_index, <,
613                             vdev_indirect_mapping_num_entries(old_mapping));
614                 }
615         }
616
617         spa_condense_indirect_generate_new_mapping(vd, counts,
618             start_index, zthr);
619
620         vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
621
622         /*
623          * If the zthr has received a cancellation signal while running
624          * in generate_new_mapping() or at any point after that, then bail
625          * early. We don't want to complete the condense if the spa is
626          * shutting down.
627          */
628         if (zthr_iscancelled(zthr))
629                 return (0);
630
631         VERIFY0(dsl_sync_task(spa_name(spa), NULL,
632             spa_condense_indirect_complete_sync, sci, 0,
633             ZFS_SPACE_CHECK_EXTRA_RESERVED));
634
635         return (0);
636         thread_exit();
637 }
638
639 /*
640  * Sync task to begin the condensing process.
641  */
642 void
643 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
644 {
645         spa_t *spa = vd->vdev_spa;
646         spa_condensing_indirect_phys_t *scip =
647             &spa->spa_condensing_indirect_phys;
648
649         ASSERT0(scip->scip_next_mapping_object);
650         ASSERT0(scip->scip_prev_obsolete_sm_object);
651         ASSERT0(scip->scip_vdev);
652         ASSERT(dmu_tx_is_syncing(tx));
653         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
654         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
655         ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
656
657         uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
658         ASSERT(obsolete_sm_obj != 0);
659
660         scip->scip_vdev = vd->vdev_id;
661         scip->scip_next_mapping_object =
662             vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
663
664         scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
665
666         /*
667          * We don't need to allocate a new space map object, since
668          * vdev_indirect_sync_obsolete will allocate one when needed.
669          */
670         space_map_close(vd->vdev_obsolete_sm);
671         vd->vdev_obsolete_sm = NULL;
672         VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
673             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
674
675         VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
676             DMU_POOL_DIRECTORY_OBJECT,
677             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
678             sizeof (*scip) / sizeof (uint64_t), scip, tx));
679
680         ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
681         spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
682
683         zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
684             "posm=%llu nm=%llu",
685             vd->vdev_id, dmu_tx_get_txg(tx),
686             (u_longlong_t)scip->scip_prev_obsolete_sm_object,
687             (u_longlong_t)scip->scip_next_mapping_object);
688
689         zthr_wakeup(spa->spa_condense_zthr);
690 }
691
692 /*
693  * Sync to the given vdev's obsolete space map any segments that are no longer
694  * referenced as of the given txg.
695  *
696  * If the obsolete space map doesn't exist yet, create and open it.
697  */
698 void
699 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
700 {
701         spa_t *spa = vd->vdev_spa;
702         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
703
704         ASSERT3U(vic->vic_mapping_object, !=, 0);
705         ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
706         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
707         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
708
709         if (vdev_obsolete_sm_object(vd) == 0) {
710                 uint64_t obsolete_sm_object =
711                     space_map_alloc(spa->spa_meta_objset,
712                     vdev_standard_sm_blksz, tx);
713
714                 ASSERT(vd->vdev_top_zap != 0);
715                 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
716                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
717                     sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
718                 ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
719
720                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
721                 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
722                     spa->spa_meta_objset, obsolete_sm_object,
723                     0, vd->vdev_asize, 0));
724                 space_map_update(vd->vdev_obsolete_sm);
725         }
726
727         ASSERT(vd->vdev_obsolete_sm != NULL);
728         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
729             space_map_object(vd->vdev_obsolete_sm));
730
731         space_map_write(vd->vdev_obsolete_sm,
732             vd->vdev_obsolete_segments, SM_ALLOC, tx);
733         space_map_update(vd->vdev_obsolete_sm);
734         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
735 }
736
737 int
738 spa_condense_init(spa_t *spa)
739 {
740         int error = zap_lookup(spa->spa_meta_objset,
741             DMU_POOL_DIRECTORY_OBJECT,
742             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
743             sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
744             &spa->spa_condensing_indirect_phys);
745         if (error == 0) {
746                 if (spa_writeable(spa)) {
747                         spa->spa_condensing_indirect =
748                             spa_condensing_indirect_create(spa);
749                 }
750                 return (0);
751         } else if (error == ENOENT) {
752                 return (0);
753         } else {
754                 return (error);
755         }
756 }
757
758 void
759 spa_condense_fini(spa_t *spa)
760 {
761         if (spa->spa_condensing_indirect != NULL) {
762                 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
763                 spa->spa_condensing_indirect = NULL;
764         }
765 }
766
767 void
768 spa_start_indirect_condensing_thread(spa_t *spa)
769 {
770         ASSERT3P(spa->spa_condense_zthr, ==, NULL);
771         spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
772             spa_condense_indirect_thread, spa);
773 }
774
775 /*
776  * Gets the obsolete spacemap object from the vdev's ZAP.
777  * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
778  * exist yet.
779  */
780 int
781 vdev_obsolete_sm_object(vdev_t *vd)
782 {
783         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
784         if (vd->vdev_top_zap == 0) {
785                 return (0);
786         }
787
788         uint64_t sm_obj = 0;
789         int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
790             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
791
792         ASSERT(err == 0 || err == ENOENT);
793
794         return (sm_obj);
795 }
796
797 boolean_t
798 vdev_obsolete_counts_are_precise(vdev_t *vd)
799 {
800         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
801         if (vd->vdev_top_zap == 0) {
802                 return (B_FALSE);
803         }
804
805         uint64_t val = 0;
806         int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
807             VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
808
809         ASSERT(err == 0 || err == ENOENT);
810
811         return (val != 0);
812 }
813
814 /* ARGSUSED */
815 static void
816 vdev_indirect_close(vdev_t *vd)
817 {
818 }
819
820 /* ARGSUSED */
821 static void
822 vdev_indirect_io_done(zio_t *zio)
823 {
824 }
825
826 /* ARGSUSED */
827 static int
828 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
829     uint64_t *logical_ashift, uint64_t *physical_ashift)
830 {
831         *psize = *max_psize = vd->vdev_asize +
832             VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
833         *logical_ashift = vd->vdev_ashift;
834         *physical_ashift = vd->vdev_physical_ashift;
835         return (0);
836 }
837
838 typedef struct remap_segment {
839         vdev_t *rs_vd;
840         uint64_t rs_offset;
841         uint64_t rs_asize;
842         uint64_t rs_split_offset;
843         list_node_t rs_node;
844 } remap_segment_t;
845
846 remap_segment_t *
847 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
848 {
849         remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
850         rs->rs_vd = vd;
851         rs->rs_offset = offset;
852         rs->rs_asize = asize;
853         rs->rs_split_offset = split_offset;
854         return (rs);
855 }
856
857 /*
858  * Given an indirect vdev and an extent on that vdev, it duplicates the
859  * physical entries of the indirect mapping that correspond to the extent
860  * to a new array and returns a pointer to it. In addition, copied_entries
861  * is populated with the number of mapping entries that were duplicated.
862  *
863  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
864  * This ensures that the mapping won't change due to condensing as we
865  * copy over its contents.
866  *
867  * Finally, since we are doing an allocation, it is up to the caller to
868  * free the array allocated in this function.
869  */
870 vdev_indirect_mapping_entry_phys_t *
871 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
872     uint64_t asize, uint64_t *copied_entries)
873 {
874         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
875         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
876         uint64_t entries = 0;
877
878         ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
879
880         vdev_indirect_mapping_entry_phys_t *first_mapping =
881             vdev_indirect_mapping_entry_for_offset(vim, offset);
882         ASSERT3P(first_mapping, !=, NULL);
883
884         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
885         while (asize > 0) {
886                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
887
888                 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
889                 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
890
891                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
892                 uint64_t inner_size = MIN(asize, size - inner_offset);
893
894                 offset += inner_size;
895                 asize -= inner_size;
896                 entries++;
897                 m++;
898         }
899
900         size_t copy_length = entries * sizeof (*first_mapping);
901         duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
902         bcopy(first_mapping, duplicate_mappings, copy_length);
903         *copied_entries = entries;
904
905         return (duplicate_mappings);
906 }
907
908 /*
909  * Goes through the relevant indirect mappings until it hits a concrete vdev
910  * and issues the callback. On the way to the concrete vdev, if any other
911  * indirect vdevs are encountered, then the callback will also be called on
912  * each of those indirect vdevs. For example, if the segment is mapped to
913  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
914  * mapped to segment B on concrete vdev 2, then the callback will be called on
915  * both vdev 1 and vdev 2.
916  *
917  * While the callback passed to vdev_indirect_remap() is called on every vdev
918  * the function encounters, certain callbacks only care about concrete vdevs.
919  * These types of callbacks should return immediately and explicitly when they
920  * are called on an indirect vdev.
921  *
922  * Because there is a possibility that a DVA section in the indirect device
923  * has been split into multiple sections in our mapping, we keep track
924  * of the relevant contiguous segments of the new location (remap_segment_t)
925  * in a stack. This way we can call the callback for each of the new sections
926  * created by a single section of the indirect device. Note though, that in
927  * this scenario the callbacks in each split block won't occur in-order in
928  * terms of offset, so callers should not make any assumptions about that.
929  *
930  * For callbacks that don't handle split blocks and immediately return when
931  * they encounter them (as is the case for remap_blkptr_cb), the caller can
932  * assume that its callback will be applied from the first indirect vdev
933  * encountered to the last one and then the concrete vdev, in that order.
934  */
935 static void
936 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
937     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
938 {
939         list_t stack;
940         spa_t *spa = vd->vdev_spa;
941
942         list_create(&stack, sizeof (remap_segment_t),
943             offsetof(remap_segment_t, rs_node));
944
945         for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
946             rs != NULL; rs = list_remove_head(&stack)) {
947                 vdev_t *v = rs->rs_vd;
948                 uint64_t num_entries = 0;
949
950                 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
951                 ASSERT(rs->rs_asize > 0);
952
953                 /*
954                  * Note: As this function can be called from open context
955                  * (e.g. zio_read()), we need the following rwlock to
956                  * prevent the mapping from being changed by condensing.
957                  *
958                  * So we grab the lock and we make a copy of the entries
959                  * that are relevant to the extent that we are working on.
960                  * Once that is done, we drop the lock and iterate over
961                  * our copy of the mapping. Once we are done with the with
962                  * the remap segment and we free it, we also free our copy
963                  * of the indirect mapping entries that are relevant to it.
964                  *
965                  * This way we don't need to wait until the function is
966                  * finished with a segment, to condense it. In addition, we
967                  * don't need a recursive rwlock for the case that a call to
968                  * vdev_indirect_remap() needs to call itself (through the
969                  * codepath of its callback) for the same vdev in the middle
970                  * of its execution.
971                  */
972                 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
973                 vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
974                 ASSERT3P(vim, !=, NULL);
975
976                 vdev_indirect_mapping_entry_phys_t *mapping =
977                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
978                     rs->rs_offset, rs->rs_asize, &num_entries);
979                 ASSERT3P(mapping, !=, NULL);
980                 ASSERT3U(num_entries, >, 0);
981                 rw_exit(&v->vdev_indirect_rwlock);
982
983                 for (uint64_t i = 0; i < num_entries; i++) {
984                         /*
985                          * Note: the vdev_indirect_mapping can not change
986                          * while we are running.  It only changes while the
987                          * removal is in progress, and then only from syncing
988                          * context. While a removal is in progress, this
989                          * function is only called for frees, which also only
990                          * happen from syncing context.
991                          */
992                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
993
994                         ASSERT3P(m, !=, NULL);
995                         ASSERT3U(rs->rs_asize, >, 0);
996
997                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
998                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
999                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1000
1001                         ASSERT3U(rs->rs_offset, >=,
1002                             DVA_MAPPING_GET_SRC_OFFSET(m));
1003                         ASSERT3U(rs->rs_offset, <,
1004                             DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1005                         ASSERT3U(dst_vdev, !=, v->vdev_id);
1006
1007                         uint64_t inner_offset = rs->rs_offset -
1008                             DVA_MAPPING_GET_SRC_OFFSET(m);
1009                         uint64_t inner_size =
1010                             MIN(rs->rs_asize, size - inner_offset);
1011
1012                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1013                         ASSERT3P(dst_v, !=, NULL);
1014
1015                         if (dst_v->vdev_ops == &vdev_indirect_ops) {
1016                                 list_insert_head(&stack,
1017                                     rs_alloc(dst_v, dst_offset + inner_offset,
1018                                     inner_size, rs->rs_split_offset));
1019
1020                         }
1021
1022                         if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1023                             IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1024                                 /*
1025                                  * Note: This clause exists only solely for
1026                                  * testing purposes. We use it to ensure that
1027                                  * split blocks work and that the callbacks
1028                                  * using them yield the same result if issued
1029                                  * in reverse order.
1030                                  */
1031                                 uint64_t inner_half = inner_size / 2;
1032
1033                                 func(rs->rs_split_offset + inner_half, dst_v,
1034                                     dst_offset + inner_offset + inner_half,
1035                                     inner_half, arg);
1036
1037                                 func(rs->rs_split_offset, dst_v,
1038                                     dst_offset + inner_offset,
1039                                     inner_half, arg);
1040                         } else {
1041                                 func(rs->rs_split_offset, dst_v,
1042                                     dst_offset + inner_offset,
1043                                     inner_size, arg);
1044                         }
1045
1046                         rs->rs_offset += inner_size;
1047                         rs->rs_asize -= inner_size;
1048                         rs->rs_split_offset += inner_size;
1049                 }
1050                 VERIFY0(rs->rs_asize);
1051
1052                 kmem_free(mapping, num_entries * sizeof (*mapping));
1053                 kmem_free(rs, sizeof (remap_segment_t));
1054         }
1055         list_destroy(&stack);
1056 }
1057
1058 static void
1059 vdev_indirect_child_io_done(zio_t *zio)
1060 {
1061         zio_t *pio = zio->io_private;
1062
1063         mutex_enter(&pio->io_lock);
1064         pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1065         mutex_exit(&pio->io_lock);
1066
1067         abd_put(zio->io_abd);
1068 }
1069
1070 static void
1071 vdev_indirect_io_start_cb(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1072     uint64_t size, void *arg)
1073 {
1074         zio_t *zio = arg;
1075
1076         ASSERT3P(vd, !=, NULL);
1077
1078         if (vd->vdev_ops == &vdev_indirect_ops)
1079                 return;
1080
1081         zio_nowait(zio_vdev_child_io(zio, NULL, vd, offset,
1082             abd_get_offset(zio->io_abd, split_offset),
1083             size, zio->io_type, zio->io_priority,
1084             0, vdev_indirect_child_io_done, zio));
1085 }
1086
1087 static void
1088 vdev_indirect_io_start(zio_t *zio)
1089 {
1090         spa_t *spa = zio->io_spa;
1091
1092         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1093         if (zio->io_type != ZIO_TYPE_READ) {
1094                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1095                 ASSERT((zio->io_flags &
1096                     (ZIO_FLAG_SELF_HEAL | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1097         }
1098
1099         vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1100             vdev_indirect_io_start_cb, zio);
1101
1102         zio_execute(zio);
1103 }
1104
1105 vdev_ops_t vdev_indirect_ops = {
1106         vdev_indirect_open,
1107         vdev_indirect_close,
1108         vdev_default_asize,
1109         vdev_indirect_io_start,
1110         vdev_indirect_io_done,
1111         NULL,
1112         NULL,
1113         NULL,
1114         NULL,
1115         vdev_indirect_remap,
1116         VDEV_TYPE_INDIRECT,     /* name of this vdev type */
1117         B_FALSE                 /* leaf vdev */
1118 };