]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_initialize.c
MFC r354941,r354948: 10601 10757 Pool allocation classes
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev_initialize.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/refcount.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/dmu_tx.h>
35
36 /*
37  * Maximum number of metaslabs per group that can be initialized
38  * simultaneously.
39  */
40 int max_initialize_ms = 3;
41
42 /*
43  * Value that is written to disk during initialization.
44  */
45 uint64_t zfs_initialize_value = 0xdeadbeefdeadbeefULL;
46
47 /* maximum number of I/Os outstanding per leaf vdev */
48 int zfs_initialize_limit = 1;
49
50 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
51 uint64_t zfs_initialize_chunk_size = 1024 * 1024;
52
53 static boolean_t
54 vdev_initialize_should_stop(vdev_t *vd)
55 {
56         return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
57             vd->vdev_detached || vd->vdev_top->vdev_removing);
58 }
59
60 static void
61 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
62 {
63         /*
64          * We pass in the guid instead of the vdev_t since the vdev may
65          * have been freed prior to the sync task being processed. This
66          * happens when a vdev is detached as we call spa_config_vdev_exit(),
67          * stop the intializing thread, schedule the sync task, and free
68          * the vdev. Later when the scheduled sync task is invoked, it would
69          * find that the vdev has been freed.
70          */
71         uint64_t guid = *(uint64_t *)arg;
72         uint64_t txg = dmu_tx_get_txg(tx);
73         kmem_free(arg, sizeof (uint64_t));
74
75         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
76         if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
77                 return;
78
79         uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
80         vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
81
82         VERIFY(vd->vdev_leaf_zap != 0);
83
84         objset_t *mos = vd->vdev_spa->spa_meta_objset;
85
86         if (last_offset > 0) {
87                 vd->vdev_initialize_last_offset = last_offset;
88                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89                     VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
90                     sizeof (last_offset), 1, &last_offset, tx));
91         }
92         if (vd->vdev_initialize_action_time > 0) {
93                 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
94                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95                     VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
96                     1, &val, tx));
97         }
98
99         uint64_t initialize_state = vd->vdev_initialize_state;
100         VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
101             VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
102             &initialize_state, tx));
103 }
104
105 static void
106 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
107 {
108         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
109         spa_t *spa = vd->vdev_spa;
110
111         if (new_state == vd->vdev_initialize_state)
112                 return;
113
114         /*
115          * Copy the vd's guid, this will be freed by the sync task.
116          */
117         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
118         *guid = vd->vdev_guid;
119
120         /*
121          * If we're suspending, then preserving the original start time.
122          */
123         if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
124                 vd->vdev_initialize_action_time = gethrestime_sec();
125         }
126         vd->vdev_initialize_state = new_state;
127
128         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
129         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
130         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
131             guid, 2, ZFS_SPACE_CHECK_RESERVED, tx);
132
133         switch (new_state) {
134         case VDEV_INITIALIZE_ACTIVE:
135                 spa_history_log_internal(spa, "initialize", tx,
136                     "vdev=%s activated", vd->vdev_path);
137                 break;
138         case VDEV_INITIALIZE_SUSPENDED:
139                 spa_history_log_internal(spa, "initialize", tx,
140                     "vdev=%s suspended", vd->vdev_path);
141                 break;
142         case VDEV_INITIALIZE_CANCELED:
143                 spa_history_log_internal(spa, "initialize", tx,
144                     "vdev=%s canceled", vd->vdev_path);
145                 break;
146         case VDEV_INITIALIZE_COMPLETE:
147                 spa_history_log_internal(spa, "initialize", tx,
148                     "vdev=%s complete", vd->vdev_path);
149                 break;
150         default:
151                 panic("invalid state %llu", (unsigned long long)new_state);
152         }
153
154         dmu_tx_commit(tx);
155 }
156
157 static void
158 vdev_initialize_cb(zio_t *zio)
159 {
160         vdev_t *vd = zio->io_vd;
161         mutex_enter(&vd->vdev_initialize_io_lock);
162         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
163                 /*
164                  * The I/O failed because the vdev was unavailable; roll the
165                  * last offset back. (This works because spa_sync waits on
166                  * spa_txg_zio before it runs sync tasks.)
167                  */
168                 uint64_t *off =
169                     &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
170                 *off = MIN(*off, zio->io_offset);
171         } else {
172                 /*
173                  * Since initializing is best-effort, we ignore I/O errors and
174                  * rely on vdev_probe to determine if the errors are more
175                  * critical.
176                  */
177                 if (zio->io_error != 0)
178                         vd->vdev_stat.vs_initialize_errors++;
179
180                 vd->vdev_initialize_bytes_done += zio->io_orig_size;
181         }
182         ASSERT3U(vd->vdev_initialize_inflight, >, 0);
183         vd->vdev_initialize_inflight--;
184         cv_broadcast(&vd->vdev_initialize_io_cv);
185         mutex_exit(&vd->vdev_initialize_io_lock);
186
187         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
188 }
189
190 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
191 static int
192 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
193 {
194         spa_t *spa = vd->vdev_spa;
195
196         /* Limit inflight initializing I/Os */
197         mutex_enter(&vd->vdev_initialize_io_lock);
198         while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
199                 cv_wait(&vd->vdev_initialize_io_cv,
200                     &vd->vdev_initialize_io_lock);
201         }
202         vd->vdev_initialize_inflight++;
203         mutex_exit(&vd->vdev_initialize_io_lock);
204
205         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
206         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
207         uint64_t txg = dmu_tx_get_txg(tx);
208
209         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
210         mutex_enter(&vd->vdev_initialize_lock);
211
212         if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
213                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
214                 *guid = vd->vdev_guid;
215
216                 /* This is the first write of this txg. */
217                 dsl_sync_task_nowait(spa_get_dsl(spa),
218                     vdev_initialize_zap_update_sync, guid, 2,
219                     ZFS_SPACE_CHECK_RESERVED, tx);
220         }
221
222         /*
223          * We know the vdev struct will still be around since all
224          * consumers of vdev_free must stop the initialization first.
225          */
226         if (vdev_initialize_should_stop(vd)) {
227                 mutex_enter(&vd->vdev_initialize_io_lock);
228                 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229                 vd->vdev_initialize_inflight--;
230                 mutex_exit(&vd->vdev_initialize_io_lock);
231                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
232                 mutex_exit(&vd->vdev_initialize_lock);
233                 dmu_tx_commit(tx);
234                 return (SET_ERROR(EINTR));
235         }
236         mutex_exit(&vd->vdev_initialize_lock);
237
238         vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
239         zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
240             size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
241             ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
242         /* vdev_initialize_cb releases SCL_STATE_ALL */
243
244         dmu_tx_commit(tx);
245
246         return (0);
247 }
248
249 /*
250  * Translate a logical range to the physical range for the specified vdev_t.
251  * This function is initially called with a leaf vdev and will walk each
252  * parent vdev until it reaches a top-level vdev. Once the top-level is
253  * reached the physical range is initialized and the recursive function
254  * begins to unwind. As it unwinds it calls the parent's vdev specific
255  * translation function to do the real conversion.
256  */
257 void
258 vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
259 {
260         /*
261          * Walk up the vdev tree
262          */
263         if (vd != vd->vdev_top) {
264                 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
265         } else {
266                 /*
267                  * We've reached the top-level vdev, initialize the
268                  * physical range to the logical range and start to
269                  * unwind.
270                  */
271                 physical_rs->rs_start = logical_rs->rs_start;
272                 physical_rs->rs_end = logical_rs->rs_end;
273                 return;
274         }
275
276         vdev_t *pvd = vd->vdev_parent;
277         ASSERT3P(pvd, !=, NULL);
278         ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
279
280         /*
281          * As this recursive function unwinds, translate the logical
282          * range into its physical components by calling the
283          * vdev specific translate function.
284          */
285         range_seg_t intermediate = { 0 };
286         pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
287
288         physical_rs->rs_start = intermediate.rs_start;
289         physical_rs->rs_end = intermediate.rs_end;
290 }
291
292 /*
293  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
294  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
295  * allocation will guarantee these for us.
296  */
297 /* ARGSUSED */
298 static int
299 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
300 {
301         ASSERT0(len % sizeof (uint64_t));
302         for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
303                 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
304         }
305         return (0);
306 }
307
308 static abd_t *
309 vdev_initialize_block_alloc()
310 {
311         /* Allocate ABD for filler data */
312         abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
313
314         ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
315         (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
316             vdev_initialize_block_fill, NULL);
317
318         return (data);
319 }
320
321 static void
322 vdev_initialize_block_free(abd_t *data)
323 {
324         abd_free(data);
325 }
326
327 static int
328 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
329 {
330         avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
331
332         for (range_seg_t *rs = avl_first(rt); rs != NULL;
333             rs = AVL_NEXT(rt, rs)) {
334                 uint64_t size = rs->rs_end - rs->rs_start;
335
336                 /* Split range into legally-sized physical chunks */
337                 uint64_t writes_required =
338                     ((size - 1) / zfs_initialize_chunk_size) + 1;
339
340                 for (uint64_t w = 0; w < writes_required; w++) {
341                         int error;
342
343                         error = vdev_initialize_write(vd,
344                             VDEV_LABEL_START_SIZE + rs->rs_start +
345                             (w * zfs_initialize_chunk_size),
346                             MIN(size - (w * zfs_initialize_chunk_size),
347                             zfs_initialize_chunk_size), data);
348                         if (error != 0)
349                                 return (error);
350                 }
351         }
352         return (0);
353 }
354
355 static void
356 vdev_initialize_mg_wait(metaslab_group_t *mg)
357 {
358         ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
359         while (mg->mg_initialize_updating) {
360                 cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
361         }
362 }
363
364 static void
365 vdev_initialize_mg_mark(metaslab_group_t *mg)
366 {
367         ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
368         ASSERT(mg->mg_initialize_updating);
369
370         while (mg->mg_ms_initializing >= max_initialize_ms) {
371                 cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
372         }
373         mg->mg_ms_initializing++;
374         ASSERT3U(mg->mg_ms_initializing, <=, max_initialize_ms);
375 }
376
377 /*
378  * Mark the metaslab as being initialized to prevent any allocations
379  * on this metaslab. We must also track how many metaslabs are currently
380  * being initialized within a metaslab group and limit them to prevent
381  * allocation failures from occurring because all metaslabs are being
382  * initialized.
383  */
384 static void
385 vdev_initialize_ms_mark(metaslab_t *msp)
386 {
387         ASSERT(!MUTEX_HELD(&msp->ms_lock));
388         metaslab_group_t *mg = msp->ms_group;
389
390         mutex_enter(&mg->mg_ms_initialize_lock);
391
392         /*
393          * To keep an accurate count of how many threads are initializing
394          * a specific metaslab group, we only allow one thread to mark
395          * the metaslab group at a time. This ensures that the value of
396          * ms_initializing will be accurate when we decide to mark a metaslab
397          * group as being initialized. To do this we force all other threads
398          * to wait till the metaslab's mg_initialize_updating flag is no
399          * longer set.
400          */
401         vdev_initialize_mg_wait(mg);
402         mg->mg_initialize_updating = B_TRUE;
403         if (msp->ms_initializing == 0) {
404                 vdev_initialize_mg_mark(mg);
405         }
406         mutex_enter(&msp->ms_lock);
407         msp->ms_initializing++;
408         mutex_exit(&msp->ms_lock);
409
410         mg->mg_initialize_updating = B_FALSE;
411         cv_broadcast(&mg->mg_ms_initialize_cv);
412         mutex_exit(&mg->mg_ms_initialize_lock);
413 }
414
415 static void
416 vdev_initialize_ms_unmark(metaslab_t *msp)
417 {
418         ASSERT(!MUTEX_HELD(&msp->ms_lock));
419         metaslab_group_t *mg = msp->ms_group;
420         mutex_enter(&mg->mg_ms_initialize_lock);
421         mutex_enter(&msp->ms_lock);
422         if (--msp->ms_initializing == 0) {
423                 mg->mg_ms_initializing--;
424                 cv_broadcast(&mg->mg_ms_initialize_cv);
425         }
426         mutex_exit(&msp->ms_lock);
427         mutex_exit(&mg->mg_ms_initialize_lock);
428 }
429
430 static void
431 vdev_initialize_calculate_progress(vdev_t *vd)
432 {
433         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
434             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
435         ASSERT(vd->vdev_leaf_zap != 0);
436
437         vd->vdev_initialize_bytes_est = 0;
438         vd->vdev_initialize_bytes_done = 0;
439
440         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
441                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
442                 mutex_enter(&msp->ms_lock);
443
444                 uint64_t ms_free = msp->ms_size -
445                     metaslab_allocated_space(msp);
446
447                 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
448                         ms_free /= vd->vdev_top->vdev_children;
449
450                 /*
451                  * Convert the metaslab range to a physical range
452                  * on our vdev. We use this to determine if we are
453                  * in the middle of this metaslab range.
454                  */
455                 range_seg_t logical_rs, physical_rs;
456                 logical_rs.rs_start = msp->ms_start;
457                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
458                 vdev_xlate(vd, &logical_rs, &physical_rs);
459
460                 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
461                         vd->vdev_initialize_bytes_est += ms_free;
462                         mutex_exit(&msp->ms_lock);
463                         continue;
464                 } else if (vd->vdev_initialize_last_offset >
465                     physical_rs.rs_end) {
466                         vd->vdev_initialize_bytes_done += ms_free;
467                         vd->vdev_initialize_bytes_est += ms_free;
468                         mutex_exit(&msp->ms_lock);
469                         continue;
470                 }
471
472                 /*
473                  * If we get here, we're in the middle of initializing this
474                  * metaslab. Load it and walk the free tree for more accurate
475                  * progress estimation.
476                  */
477                 VERIFY0(metaslab_load(msp));
478
479                 for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root);
480                     rs; rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
481                         logical_rs.rs_start = rs->rs_start;
482                         logical_rs.rs_end = rs->rs_end;
483                         vdev_xlate(vd, &logical_rs, &physical_rs);
484
485                         uint64_t size = physical_rs.rs_end -
486                             physical_rs.rs_start;
487                         vd->vdev_initialize_bytes_est += size;
488                         if (vd->vdev_initialize_last_offset >
489                             physical_rs.rs_end) {
490                                 vd->vdev_initialize_bytes_done += size;
491                         } else if (vd->vdev_initialize_last_offset >
492                             physical_rs.rs_start &&
493                             vd->vdev_initialize_last_offset <
494                             physical_rs.rs_end) {
495                                 vd->vdev_initialize_bytes_done +=
496                                     vd->vdev_initialize_last_offset -
497                                     physical_rs.rs_start;
498                         }
499                 }
500                 mutex_exit(&msp->ms_lock);
501         }
502 }
503
504 static void
505 vdev_initialize_load(vdev_t *vd)
506 {
507         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
508             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
509         ASSERT(vd->vdev_leaf_zap != 0);
510
511         if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
512             vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
513                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
514                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
515                     sizeof (vd->vdev_initialize_last_offset), 1,
516                     &vd->vdev_initialize_last_offset);
517                 ASSERT(err == 0 || err == ENOENT);
518         }
519
520         vdev_initialize_calculate_progress(vd);
521 }
522
523
524 /*
525  * Convert the logical range into a physcial range and add it to our
526  * avl tree.
527  */
528 void
529 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
530 {
531         vdev_t *vd = arg;
532         range_seg_t logical_rs, physical_rs;
533         logical_rs.rs_start = start;
534         logical_rs.rs_end = start + size;
535
536         ASSERT(vd->vdev_ops->vdev_op_leaf);
537         vdev_xlate(vd, &logical_rs, &physical_rs);
538
539         IMPLY(vd->vdev_top == vd,
540             logical_rs.rs_start == physical_rs.rs_start);
541         IMPLY(vd->vdev_top == vd,
542             logical_rs.rs_end == physical_rs.rs_end);
543
544         /* Only add segments that we have not visited yet */
545         if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
546                 return;
547
548         /* Pick up where we left off mid-range. */
549         if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
550                 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
551                     "(%llu, %llu)", vd->vdev_path,
552                     (u_longlong_t)physical_rs.rs_start,
553                     (u_longlong_t)physical_rs.rs_end,
554                     (u_longlong_t)vd->vdev_initialize_last_offset,
555                     (u_longlong_t)physical_rs.rs_end);
556                 ASSERT3U(physical_rs.rs_end, >,
557                     vd->vdev_initialize_last_offset);
558                 physical_rs.rs_start = vd->vdev_initialize_last_offset;
559         }
560         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
561
562         /*
563          * With raidz, it's possible that the logical range does not live on
564          * this leaf vdev. We only add the physical range to this vdev's if it
565          * has a length greater than 0.
566          */
567         if (physical_rs.rs_end > physical_rs.rs_start) {
568                 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
569                     physical_rs.rs_end - physical_rs.rs_start);
570         } else {
571                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
572         }
573 }
574
575 static void
576 vdev_initialize_thread(void *arg)
577 {
578         vdev_t *vd = arg;
579         spa_t *spa = vd->vdev_spa;
580         int error = 0;
581         uint64_t ms_count = 0;
582
583         ASSERT(vdev_is_concrete(vd));
584         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
585
586         vd->vdev_initialize_last_offset = 0;
587         vdev_initialize_load(vd);
588
589         abd_t *deadbeef = vdev_initialize_block_alloc();
590
591         vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
592
593         for (uint64_t i = 0; !vd->vdev_detached &&
594             i < vd->vdev_top->vdev_ms_count; i++) {
595                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
596
597                 /*
598                  * If we've expanded the top-level vdev or it's our
599                  * first pass, calculate our progress.
600                  */
601                 if (vd->vdev_top->vdev_ms_count != ms_count) {
602                         vdev_initialize_calculate_progress(vd);
603                         ms_count = vd->vdev_top->vdev_ms_count;
604                 }
605
606                 vdev_initialize_ms_mark(msp);
607                 mutex_enter(&msp->ms_lock);
608                 VERIFY0(metaslab_load(msp));
609
610                 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
611                     vd);
612                 mutex_exit(&msp->ms_lock);
613
614                 spa_config_exit(spa, SCL_CONFIG, FTAG);
615                 error = vdev_initialize_ranges(vd, deadbeef);
616                 vdev_initialize_ms_unmark(msp);
617                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
618
619                 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
620                 if (error != 0)
621                         break;
622         }
623
624         spa_config_exit(spa, SCL_CONFIG, FTAG);
625         mutex_enter(&vd->vdev_initialize_io_lock);
626         while (vd->vdev_initialize_inflight > 0) {
627                 cv_wait(&vd->vdev_initialize_io_cv,
628                     &vd->vdev_initialize_io_lock);
629         }
630         mutex_exit(&vd->vdev_initialize_io_lock);
631
632         range_tree_destroy(vd->vdev_initialize_tree);
633         vdev_initialize_block_free(deadbeef);
634         vd->vdev_initialize_tree = NULL;
635
636         mutex_enter(&vd->vdev_initialize_lock);
637         if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
638                 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
639         }
640         ASSERT(vd->vdev_initialize_thread != NULL ||
641             vd->vdev_initialize_inflight == 0);
642
643         /*
644          * Drop the vdev_initialize_lock while we sync out the
645          * txg since it's possible that a device might be trying to
646          * come online and must check to see if it needs to restart an
647          * initialization. That thread will be holding the spa_config_lock
648          * which would prevent the txg_wait_synced from completing.
649          */
650         mutex_exit(&vd->vdev_initialize_lock);
651         txg_wait_synced(spa_get_dsl(spa), 0);
652         mutex_enter(&vd->vdev_initialize_lock);
653
654         vd->vdev_initialize_thread = NULL;
655         cv_broadcast(&vd->vdev_initialize_cv);
656         mutex_exit(&vd->vdev_initialize_lock);
657         thread_exit();
658 }
659
660 /*
661  * Initiates a device. Caller must hold vdev_initialize_lock.
662  * Device must be a leaf and not already be initializing.
663  */
664 void
665 vdev_initialize(vdev_t *vd)
666 {
667         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
668         ASSERT(vd->vdev_ops->vdev_op_leaf);
669         ASSERT(vdev_is_concrete(vd));
670         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
671         ASSERT(!vd->vdev_detached);
672         ASSERT(!vd->vdev_initialize_exit_wanted);
673         ASSERT(!vd->vdev_top->vdev_removing);
674
675         vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
676         vd->vdev_initialize_thread = thread_create(NULL, 0,
677             vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
678 }
679
680 /*
681  * Stop initializng a device, with the resultant initialing state being
682  * tgt_state. Blocks until the initializing thread has exited.
683  * Caller must hold vdev_initialize_lock and must not be writing to the spa
684  * config, as the initializing thread may try to enter the config as a reader
685  * before exiting.
686  */
687 void
688 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state)
689 {
690         spa_t *spa = vd->vdev_spa;
691         ASSERT(!spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_WRITER));
692
693         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
694         ASSERT(vd->vdev_ops->vdev_op_leaf);
695         ASSERT(vdev_is_concrete(vd));
696
697         /*
698          * Allow cancel requests to proceed even if the initialize thread
699          * has stopped.
700          */
701         if (vd->vdev_initialize_thread == NULL &&
702             tgt_state != VDEV_INITIALIZE_CANCELED) {
703                 return;
704         }
705
706         vdev_initialize_change_state(vd, tgt_state);
707         vd->vdev_initialize_exit_wanted = B_TRUE;
708         while (vd->vdev_initialize_thread != NULL)
709                 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
710
711         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
712         vd->vdev_initialize_exit_wanted = B_FALSE;
713 }
714
715 static void
716 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state)
717 {
718         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
719                 mutex_enter(&vd->vdev_initialize_lock);
720                 vdev_initialize_stop(vd, tgt_state);
721                 mutex_exit(&vd->vdev_initialize_lock);
722                 return;
723         }
724
725         for (uint64_t i = 0; i < vd->vdev_children; i++) {
726                 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state);
727         }
728 }
729
730 /*
731  * Convenience function to stop initializing of a vdev tree and set all
732  * initialize thread pointers to NULL.
733  */
734 void
735 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
736 {
737         vdev_initialize_stop_all_impl(vd, tgt_state);
738
739         if (vd->vdev_spa->spa_sync_on) {
740                 /* Make sure that our state has been synced to disk */
741                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
742         }
743 }
744
745 void
746 vdev_initialize_restart(vdev_t *vd)
747 {
748         ASSERT(MUTEX_HELD(&spa_namespace_lock));
749         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
750
751         if (vd->vdev_leaf_zap != 0) {
752                 mutex_enter(&vd->vdev_initialize_lock);
753                 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
754                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
755                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
756                     sizeof (initialize_state), 1, &initialize_state);
757                 ASSERT(err == 0 || err == ENOENT);
758                 vd->vdev_initialize_state = initialize_state;
759
760                 uint64_t timestamp = 0;
761                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
762                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
763                     sizeof (timestamp), 1, &timestamp);
764                 ASSERT(err == 0 || err == ENOENT);
765                 vd->vdev_initialize_action_time = (time_t)timestamp;
766
767                 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
768                     vd->vdev_offline) {
769                         /* load progress for reporting, but don't resume */
770                         vdev_initialize_load(vd);
771                 } else if (vd->vdev_initialize_state ==
772                     VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd)) {
773                         vdev_initialize(vd);
774                 }
775
776                 mutex_exit(&vd->vdev_initialize_lock);
777         }
778
779         for (uint64_t i = 0; i < vd->vdev_children; i++) {
780                 vdev_initialize_restart(vd->vdev_child[i]);
781         }
782 }