]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_initialize.c
MFC r337007: MFV r336991, r337001:
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev_initialize.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/refcount.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/dmu_tx.h>
35
36 /*
37  * Maximum number of metaslabs per group that can be initialized
38  * simultaneously.
39  */
40 int max_initialize_ms = 3;
41
42 /*
43  * Value that is written to disk during initialization.
44  */
45 uint64_t zfs_initialize_value = 0xdeadbeefdeadbeefULL;
46
47 /* maximum number of I/Os outstanding per leaf vdev */
48 int zfs_initialize_limit = 1;
49
50 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
51 uint64_t zfs_initialize_chunk_size = 1024 * 1024;
52
53 static boolean_t
54 vdev_initialize_should_stop(vdev_t *vd)
55 {
56         return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
57             vd->vdev_detached || vd->vdev_top->vdev_removing);
58 }
59
60 static void
61 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
62 {
63         /*
64          * We pass in the guid instead of the vdev_t since the vdev may
65          * have been freed prior to the sync task being processed. This
66          * happens when a vdev is detached as we call spa_config_vdev_exit(),
67          * stop the intializing thread, schedule the sync task, and free
68          * the vdev. Later when the scheduled sync task is invoked, it would
69          * find that the vdev has been freed.
70          */
71         uint64_t guid = *(uint64_t *)arg;
72         uint64_t txg = dmu_tx_get_txg(tx);
73         kmem_free(arg, sizeof (uint64_t));
74
75         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
76         if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
77                 return;
78
79         uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
80         vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
81
82         VERIFY(vd->vdev_leaf_zap != 0);
83
84         objset_t *mos = vd->vdev_spa->spa_meta_objset;
85
86         if (last_offset > 0) {
87                 vd->vdev_initialize_last_offset = last_offset;
88                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89                     VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
90                     sizeof (last_offset), 1, &last_offset, tx));
91         }
92         if (vd->vdev_initialize_action_time > 0) {
93                 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
94                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95                     VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
96                     1, &val, tx));
97         }
98
99         uint64_t initialize_state = vd->vdev_initialize_state;
100         VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
101             VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
102             &initialize_state, tx));
103 }
104
105 static void
106 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
107 {
108         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
109         spa_t *spa = vd->vdev_spa;
110
111         if (new_state == vd->vdev_initialize_state)
112                 return;
113
114         /*
115          * Copy the vd's guid, this will be freed by the sync task.
116          */
117         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
118         *guid = vd->vdev_guid;
119
120         /*
121          * If we're suspending, then preserving the original start time.
122          */
123         if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
124                 vd->vdev_initialize_action_time = gethrestime_sec();
125         }
126         vd->vdev_initialize_state = new_state;
127
128         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
129         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
130         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
131             guid, 2, ZFS_SPACE_CHECK_RESERVED, tx);
132
133         switch (new_state) {
134         case VDEV_INITIALIZE_ACTIVE:
135                 spa_history_log_internal(spa, "initialize", tx,
136                     "vdev=%s activated", vd->vdev_path);
137                 break;
138         case VDEV_INITIALIZE_SUSPENDED:
139                 spa_history_log_internal(spa, "initialize", tx,
140                     "vdev=%s suspended", vd->vdev_path);
141                 break;
142         case VDEV_INITIALIZE_CANCELED:
143                 spa_history_log_internal(spa, "initialize", tx,
144                     "vdev=%s canceled", vd->vdev_path);
145                 break;
146         case VDEV_INITIALIZE_COMPLETE:
147                 spa_history_log_internal(spa, "initialize", tx,
148                     "vdev=%s complete", vd->vdev_path);
149                 break;
150         default:
151                 panic("invalid state %llu", (unsigned long long)new_state);
152         }
153
154         dmu_tx_commit(tx);
155 }
156
157 static void
158 vdev_initialize_cb(zio_t *zio)
159 {
160         vdev_t *vd = zio->io_vd;
161         mutex_enter(&vd->vdev_initialize_io_lock);
162         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
163                 /*
164                  * The I/O failed because the vdev was unavailable; roll the
165                  * last offset back. (This works because spa_sync waits on
166                  * spa_txg_zio before it runs sync tasks.)
167                  */
168                 uint64_t *off =
169                     &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
170                 *off = MIN(*off, zio->io_offset);
171         } else {
172                 /*
173                  * Since initializing is best-effort, we ignore I/O errors and
174                  * rely on vdev_probe to determine if the errors are more
175                  * critical.
176                  */
177                 if (zio->io_error != 0)
178                         vd->vdev_stat.vs_initialize_errors++;
179
180                 vd->vdev_initialize_bytes_done += zio->io_orig_size;
181         }
182         ASSERT3U(vd->vdev_initialize_inflight, >, 0);
183         vd->vdev_initialize_inflight--;
184         cv_broadcast(&vd->vdev_initialize_io_cv);
185         mutex_exit(&vd->vdev_initialize_io_lock);
186
187         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
188 }
189
190 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
191 static int
192 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
193 {
194         spa_t *spa = vd->vdev_spa;
195
196         /* Limit inflight initializing I/Os */
197         mutex_enter(&vd->vdev_initialize_io_lock);
198         while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
199                 cv_wait(&vd->vdev_initialize_io_cv,
200                     &vd->vdev_initialize_io_lock);
201         }
202         vd->vdev_initialize_inflight++;
203         mutex_exit(&vd->vdev_initialize_io_lock);
204
205         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
206         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
207         uint64_t txg = dmu_tx_get_txg(tx);
208
209         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
210         mutex_enter(&vd->vdev_initialize_lock);
211
212         if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
213                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
214                 *guid = vd->vdev_guid;
215
216                 /* This is the first write of this txg. */
217                 dsl_sync_task_nowait(spa_get_dsl(spa),
218                     vdev_initialize_zap_update_sync, guid, 2,
219                     ZFS_SPACE_CHECK_RESERVED, tx);
220         }
221
222         /*
223          * We know the vdev struct will still be around since all
224          * consumers of vdev_free must stop the initialization first.
225          */
226         if (vdev_initialize_should_stop(vd)) {
227                 mutex_enter(&vd->vdev_initialize_io_lock);
228                 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229                 vd->vdev_initialize_inflight--;
230                 mutex_exit(&vd->vdev_initialize_io_lock);
231                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
232                 mutex_exit(&vd->vdev_initialize_lock);
233                 dmu_tx_commit(tx);
234                 return (SET_ERROR(EINTR));
235         }
236         mutex_exit(&vd->vdev_initialize_lock);
237
238         vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
239         zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
240             size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
241             ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
242         /* vdev_initialize_cb releases SCL_STATE_ALL */
243
244         dmu_tx_commit(tx);
245
246         return (0);
247 }
248
249 /*
250  * Translate a logical range to the physical range for the specified vdev_t.
251  * This function is initially called with a leaf vdev and will walk each
252  * parent vdev until it reaches a top-level vdev. Once the top-level is
253  * reached the physical range is initialized and the recursive function
254  * begins to unwind. As it unwinds it calls the parent's vdev specific
255  * translation function to do the real conversion.
256  */
257 void
258 vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
259 {
260         /*
261          * Walk up the vdev tree
262          */
263         if (vd != vd->vdev_top) {
264                 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
265         } else {
266                 /*
267                  * We've reached the top-level vdev, initialize the
268                  * physical range to the logical range and start to
269                  * unwind.
270                  */
271                 physical_rs->rs_start = logical_rs->rs_start;
272                 physical_rs->rs_end = logical_rs->rs_end;
273                 return;
274         }
275
276         vdev_t *pvd = vd->vdev_parent;
277         ASSERT3P(pvd, !=, NULL);
278         ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
279
280         /*
281          * As this recursive function unwinds, translate the logical
282          * range into its physical components by calling the
283          * vdev specific translate function.
284          */
285         range_seg_t intermediate = { 0 };
286         pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
287
288         physical_rs->rs_start = intermediate.rs_start;
289         physical_rs->rs_end = intermediate.rs_end;
290 }
291
292 /*
293  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
294  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
295  * allocation will guarantee these for us.
296  */
297 /* ARGSUSED */
298 static int
299 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
300 {
301         ASSERT0(len % sizeof (uint64_t));
302         for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
303                 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
304         }
305         return (0);
306 }
307
308 static abd_t *
309 vdev_initialize_block_alloc()
310 {
311         /* Allocate ABD for filler data */
312         abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
313
314         ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
315         (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
316             vdev_initialize_block_fill, NULL);
317
318         return (data);
319 }
320
321 static void
322 vdev_initialize_block_free(abd_t *data)
323 {
324         abd_free(data);
325 }
326
327 static int
328 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
329 {
330         avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
331
332         for (range_seg_t *rs = avl_first(rt); rs != NULL;
333             rs = AVL_NEXT(rt, rs)) {
334                 uint64_t size = rs->rs_end - rs->rs_start;
335
336                 /* Split range into legally-sized physical chunks */
337                 uint64_t writes_required =
338                     ((size - 1) / zfs_initialize_chunk_size) + 1;
339
340                 for (uint64_t w = 0; w < writes_required; w++) {
341                         int error;
342
343                         error = vdev_initialize_write(vd,
344                             VDEV_LABEL_START_SIZE + rs->rs_start +
345                             (w * zfs_initialize_chunk_size),
346                             MIN(size - (w * zfs_initialize_chunk_size),
347                             zfs_initialize_chunk_size), data);
348                         if (error != 0)
349                                 return (error);
350                 }
351         }
352         return (0);
353 }
354
355 static void
356 vdev_initialize_ms_load(metaslab_t *msp)
357 {
358         ASSERT(MUTEX_HELD(&msp->ms_lock));
359
360         metaslab_load_wait(msp);
361         if (!msp->ms_loaded)
362                 VERIFY0(metaslab_load(msp));
363 }
364
365 static void
366 vdev_initialize_mg_wait(metaslab_group_t *mg)
367 {
368         ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
369         while (mg->mg_initialize_updating) {
370                 cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
371         }
372 }
373
374 static void
375 vdev_initialize_mg_mark(metaslab_group_t *mg)
376 {
377         ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
378         ASSERT(mg->mg_initialize_updating);
379
380         while (mg->mg_ms_initializing >= max_initialize_ms) {
381                 cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
382         }
383         mg->mg_ms_initializing++;
384         ASSERT3U(mg->mg_ms_initializing, <=, max_initialize_ms);
385 }
386
387 /*
388  * Mark the metaslab as being initialized to prevent any allocations
389  * on this metaslab. We must also track how many metaslabs are currently
390  * being initialized within a metaslab group and limit them to prevent
391  * allocation failures from occurring because all metaslabs are being
392  * initialized.
393  */
394 static void
395 vdev_initialize_ms_mark(metaslab_t *msp)
396 {
397         ASSERT(!MUTEX_HELD(&msp->ms_lock));
398         metaslab_group_t *mg = msp->ms_group;
399
400         mutex_enter(&mg->mg_ms_initialize_lock);
401
402         /*
403          * To keep an accurate count of how many threads are initializing
404          * a specific metaslab group, we only allow one thread to mark
405          * the metaslab group at a time. This ensures that the value of
406          * ms_initializing will be accurate when we decide to mark a metaslab
407          * group as being initialized. To do this we force all other threads
408          * to wait till the metaslab's mg_initialize_updating flag is no
409          * longer set.
410          */
411         vdev_initialize_mg_wait(mg);
412         mg->mg_initialize_updating = B_TRUE;
413         if (msp->ms_initializing == 0) {
414                 vdev_initialize_mg_mark(mg);
415         }
416         mutex_enter(&msp->ms_lock);
417         msp->ms_initializing++;
418         mutex_exit(&msp->ms_lock);
419
420         mg->mg_initialize_updating = B_FALSE;
421         cv_broadcast(&mg->mg_ms_initialize_cv);
422         mutex_exit(&mg->mg_ms_initialize_lock);
423 }
424
425 static void
426 vdev_initialize_ms_unmark(metaslab_t *msp)
427 {
428         ASSERT(!MUTEX_HELD(&msp->ms_lock));
429         metaslab_group_t *mg = msp->ms_group;
430         mutex_enter(&mg->mg_ms_initialize_lock);
431         mutex_enter(&msp->ms_lock);
432         if (--msp->ms_initializing == 0) {
433                 mg->mg_ms_initializing--;
434                 cv_broadcast(&mg->mg_ms_initialize_cv);
435         }
436         mutex_exit(&msp->ms_lock);
437         mutex_exit(&mg->mg_ms_initialize_lock);
438 }
439
440 static void
441 vdev_initialize_calculate_progress(vdev_t *vd)
442 {
443         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
444             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
445         ASSERT(vd->vdev_leaf_zap != 0);
446
447         vd->vdev_initialize_bytes_est = 0;
448         vd->vdev_initialize_bytes_done = 0;
449
450         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
451                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
452                 mutex_enter(&msp->ms_lock);
453
454                 uint64_t ms_free = msp->ms_size -
455                     space_map_allocated(msp->ms_sm);
456
457                 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
458                         ms_free /= vd->vdev_top->vdev_children;
459
460                 /*
461                  * Convert the metaslab range to a physical range
462                  * on our vdev. We use this to determine if we are
463                  * in the middle of this metaslab range.
464                  */
465                 range_seg_t logical_rs, physical_rs;
466                 logical_rs.rs_start = msp->ms_start;
467                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
468                 vdev_xlate(vd, &logical_rs, &physical_rs);
469
470                 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
471                         vd->vdev_initialize_bytes_est += ms_free;
472                         mutex_exit(&msp->ms_lock);
473                         continue;
474                 } else if (vd->vdev_initialize_last_offset >
475                     physical_rs.rs_end) {
476                         vd->vdev_initialize_bytes_done += ms_free;
477                         vd->vdev_initialize_bytes_est += ms_free;
478                         mutex_exit(&msp->ms_lock);
479                         continue;
480                 }
481
482                 /*
483                  * If we get here, we're in the middle of initializing this
484                  * metaslab. Load it and walk the free tree for more accurate
485                  * progress estimation.
486                  */
487                 vdev_initialize_ms_load(msp);
488
489                 for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root); rs;
490                     rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
491                         logical_rs.rs_start = rs->rs_start;
492                         logical_rs.rs_end = rs->rs_end;
493                         vdev_xlate(vd, &logical_rs, &physical_rs);
494
495                         uint64_t size = physical_rs.rs_end -
496                             physical_rs.rs_start;
497                         vd->vdev_initialize_bytes_est += size;
498                         if (vd->vdev_initialize_last_offset >
499                             physical_rs.rs_end) {
500                                 vd->vdev_initialize_bytes_done += size;
501                         } else if (vd->vdev_initialize_last_offset >
502                             physical_rs.rs_start &&
503                             vd->vdev_initialize_last_offset <
504                             physical_rs.rs_end) {
505                                 vd->vdev_initialize_bytes_done +=
506                                     vd->vdev_initialize_last_offset -
507                                     physical_rs.rs_start;
508                         }
509                 }
510                 mutex_exit(&msp->ms_lock);
511         }
512 }
513
514 static void
515 vdev_initialize_load(vdev_t *vd)
516 {
517         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
518             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
519         ASSERT(vd->vdev_leaf_zap != 0);
520
521         if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
522             vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
523                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
524                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
525                     sizeof (vd->vdev_initialize_last_offset), 1,
526                     &vd->vdev_initialize_last_offset);
527                 ASSERT(err == 0 || err == ENOENT);
528         }
529
530         vdev_initialize_calculate_progress(vd);
531 }
532
533
534 /*
535  * Convert the logical range into a physcial range and add it to our
536  * avl tree.
537  */
538 void
539 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
540 {
541         vdev_t *vd = arg;
542         range_seg_t logical_rs, physical_rs;
543         logical_rs.rs_start = start;
544         logical_rs.rs_end = start + size;
545
546         ASSERT(vd->vdev_ops->vdev_op_leaf);
547         vdev_xlate(vd, &logical_rs, &physical_rs);
548
549         IMPLY(vd->vdev_top == vd,
550             logical_rs.rs_start == physical_rs.rs_start);
551         IMPLY(vd->vdev_top == vd,
552             logical_rs.rs_end == physical_rs.rs_end);
553
554         /* Only add segments that we have not visited yet */
555         if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
556                 return;
557
558         /* Pick up where we left off mid-range. */
559         if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
560                 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
561                     "(%llu, %llu)", vd->vdev_path,
562                     (u_longlong_t)physical_rs.rs_start,
563                     (u_longlong_t)physical_rs.rs_end,
564                     (u_longlong_t)vd->vdev_initialize_last_offset,
565                     (u_longlong_t)physical_rs.rs_end);
566                 ASSERT3U(physical_rs.rs_end, >,
567                     vd->vdev_initialize_last_offset);
568                 physical_rs.rs_start = vd->vdev_initialize_last_offset;
569         }
570         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
571
572         /*
573          * With raidz, it's possible that the logical range does not live on
574          * this leaf vdev. We only add the physical range to this vdev's if it
575          * has a length greater than 0.
576          */
577         if (physical_rs.rs_end > physical_rs.rs_start) {
578                 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
579                     physical_rs.rs_end - physical_rs.rs_start);
580         } else {
581                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
582         }
583 }
584
585 static void
586 vdev_initialize_thread(void *arg)
587 {
588         vdev_t *vd = arg;
589         spa_t *spa = vd->vdev_spa;
590         int error = 0;
591         uint64_t ms_count = 0;
592
593         ASSERT(vdev_is_concrete(vd));
594         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
595
596         vd->vdev_initialize_last_offset = 0;
597         vdev_initialize_load(vd);
598
599         abd_t *deadbeef = vdev_initialize_block_alloc();
600
601         vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
602
603         for (uint64_t i = 0; !vd->vdev_detached &&
604             i < vd->vdev_top->vdev_ms_count; i++) {
605                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
606
607                 /*
608                  * If we've expanded the top-level vdev or it's our
609                  * first pass, calculate our progress.
610                  */
611                 if (vd->vdev_top->vdev_ms_count != ms_count) {
612                         vdev_initialize_calculate_progress(vd);
613                         ms_count = vd->vdev_top->vdev_ms_count;
614                 }
615
616                 vdev_initialize_ms_mark(msp);
617                 mutex_enter(&msp->ms_lock);
618                 vdev_initialize_ms_load(msp);
619
620                 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
621                     vd);
622                 mutex_exit(&msp->ms_lock);
623
624                 spa_config_exit(spa, SCL_CONFIG, FTAG);
625                 error = vdev_initialize_ranges(vd, deadbeef);
626                 vdev_initialize_ms_unmark(msp);
627                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
628
629                 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
630                 if (error != 0)
631                         break;
632         }
633
634         spa_config_exit(spa, SCL_CONFIG, FTAG);
635         mutex_enter(&vd->vdev_initialize_io_lock);
636         while (vd->vdev_initialize_inflight > 0) {
637                 cv_wait(&vd->vdev_initialize_io_cv,
638                     &vd->vdev_initialize_io_lock);
639         }
640         mutex_exit(&vd->vdev_initialize_io_lock);
641
642         range_tree_destroy(vd->vdev_initialize_tree);
643         vdev_initialize_block_free(deadbeef);
644         vd->vdev_initialize_tree = NULL;
645
646         mutex_enter(&vd->vdev_initialize_lock);
647         if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
648                 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
649         }
650         ASSERT(vd->vdev_initialize_thread != NULL ||
651             vd->vdev_initialize_inflight == 0);
652
653         /*
654          * Drop the vdev_initialize_lock while we sync out the
655          * txg since it's possible that a device might be trying to
656          * come online and must check to see if it needs to restart an
657          * initialization. That thread will be holding the spa_config_lock
658          * which would prevent the txg_wait_synced from completing.
659          */
660         mutex_exit(&vd->vdev_initialize_lock);
661         txg_wait_synced(spa_get_dsl(spa), 0);
662         mutex_enter(&vd->vdev_initialize_lock);
663
664         vd->vdev_initialize_thread = NULL;
665         cv_broadcast(&vd->vdev_initialize_cv);
666         mutex_exit(&vd->vdev_initialize_lock);
667         thread_exit();
668 }
669
670 /*
671  * Initiates a device. Caller must hold vdev_initialize_lock.
672  * Device must be a leaf and not already be initializing.
673  */
674 void
675 vdev_initialize(vdev_t *vd)
676 {
677         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
678         ASSERT(vd->vdev_ops->vdev_op_leaf);
679         ASSERT(vdev_is_concrete(vd));
680         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
681         ASSERT(!vd->vdev_detached);
682         ASSERT(!vd->vdev_initialize_exit_wanted);
683         ASSERT(!vd->vdev_top->vdev_removing);
684
685         vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
686         vd->vdev_initialize_thread = thread_create(NULL, 0,
687             vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
688 }
689
690 /*
691  * Stop initializng a device, with the resultant initialing state being
692  * tgt_state. Blocks until the initializing thread has exited.
693  * Caller must hold vdev_initialize_lock and must not be writing to the spa
694  * config, as the initializing thread may try to enter the config as a reader
695  * before exiting.
696  */
697 void
698 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state)
699 {
700         spa_t *spa = vd->vdev_spa;
701         ASSERT(!spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_WRITER));
702
703         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
704         ASSERT(vd->vdev_ops->vdev_op_leaf);
705         ASSERT(vdev_is_concrete(vd));
706
707         /*
708          * Allow cancel requests to proceed even if the initialize thread
709          * has stopped.
710          */
711         if (vd->vdev_initialize_thread == NULL &&
712             tgt_state != VDEV_INITIALIZE_CANCELED) {
713                 return;
714         }
715
716         vdev_initialize_change_state(vd, tgt_state);
717         vd->vdev_initialize_exit_wanted = B_TRUE;
718         while (vd->vdev_initialize_thread != NULL)
719                 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
720
721         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
722         vd->vdev_initialize_exit_wanted = B_FALSE;
723 }
724
725 static void
726 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state)
727 {
728         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
729                 mutex_enter(&vd->vdev_initialize_lock);
730                 vdev_initialize_stop(vd, tgt_state);
731                 mutex_exit(&vd->vdev_initialize_lock);
732                 return;
733         }
734
735         for (uint64_t i = 0; i < vd->vdev_children; i++) {
736                 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state);
737         }
738 }
739
740 /*
741  * Convenience function to stop initializing of a vdev tree and set all
742  * initialize thread pointers to NULL.
743  */
744 void
745 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
746 {
747         vdev_initialize_stop_all_impl(vd, tgt_state);
748
749         if (vd->vdev_spa->spa_sync_on) {
750                 /* Make sure that our state has been synced to disk */
751                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
752         }
753 }
754
755 void
756 vdev_initialize_restart(vdev_t *vd)
757 {
758         ASSERT(MUTEX_HELD(&spa_namespace_lock));
759         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
760
761         if (vd->vdev_leaf_zap != 0) {
762                 mutex_enter(&vd->vdev_initialize_lock);
763                 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
764                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
765                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
766                     sizeof (initialize_state), 1, &initialize_state);
767                 ASSERT(err == 0 || err == ENOENT);
768                 vd->vdev_initialize_state = initialize_state;
769
770                 uint64_t timestamp = 0;
771                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
772                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
773                     sizeof (timestamp), 1, &timestamp);
774                 ASSERT(err == 0 || err == ENOENT);
775                 vd->vdev_initialize_action_time = (time_t)timestamp;
776
777                 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
778                     vd->vdev_offline) {
779                         /* load progress for reporting, but don't resume */
780                         vdev_initialize_load(vd);
781                 } else if (vd->vdev_initialize_state ==
782                     VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd)) {
783                         vdev_initialize(vd);
784                 }
785
786                 mutex_exit(&vd->vdev_initialize_lock);
787         }
788
789         for (uint64_t i = 0; i < vd->vdev_children; i++) {
790                 vdev_initialize_restart(vd->vdev_child[i]);
791         }
792 }