]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_removal.c
MFV r337190: 9486 reduce memory used by device removal on fragmented pools
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev_removal.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
48
49 /*
50  * This file contains the necessary logic to remove vdevs from a
51  * storage pool.  Currently, the only devices that can be removed
52  * are log, cache, and spare devices; and top level vdevs from a pool
53  * w/o raidz.  (Note that members of a mirror can also be removed
54  * by the detach operation.)
55  *
56  * Log vdevs are removed by evacuating them and then turning the vdev
57  * into a hole vdev while holding spa config locks.
58  *
59  * Top level vdevs are removed and converted into an indirect vdev via
60  * a multi-step process:
61  *
62  *  - Disable allocations from this device (spa_vdev_remove_top).
63  *
64  *  - From a new thread (spa_vdev_remove_thread), copy data from
65  *    the removing vdev to a different vdev.  The copy happens in open
66  *    context (spa_vdev_copy_impl) and issues a sync task
67  *    (vdev_mapping_sync) so the sync thread can update the partial
68  *    indirect mappings in core and on disk.
69  *
70  *  - If a free happens during a removal, it is freed from the
71  *    removing vdev, and if it has already been copied, from the new
72  *    location as well (free_from_removing_vdev).
73  *
74  *  - After the removal is completed, the copy thread converts the vdev
75  *    into an indirect vdev (vdev_remove_complete) before instructing
76  *    the sync thread to destroy the space maps and finish the removal
77  *    (spa_finish_removal).
78  */
79
80 typedef struct vdev_copy_arg {
81         metaslab_t      *vca_msp;
82         uint64_t        vca_outstanding_bytes;
83         kcondvar_t      vca_cv;
84         kmutex_t        vca_lock;
85 } vdev_copy_arg_t;
86
87 /*
88  * The maximum amount of memory we can use for outstanding i/o while
89  * doing a device removal.  This determines how much i/o we can have
90  * in flight concurrently.
91  */
92 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
93
94 /*
95  * The largest contiguous segment that we will attempt to allocate when
96  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
97  * there is a performance problem with attempting to allocate large blocks,
98  * consider decreasing this.
99  *
100  * Note: we will issue I/Os of up to this size.  The mpt driver does not
101  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
102  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
103  * 2 physically contiguous pages; if this allocation fails, mpt will drop
104  * the I/O and hang the device.)
105  */
106 int zfs_remove_max_segment = 1024 * 1024;
107
108 /*
109  * Allow a remap segment to span free chunks of at most this size. The main
110  * impact of a larger span is that we will read and write larger, more
111  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
112  * for iops.  The value here was chosen to align with
113  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
114  * reads (but there's no reason it has to be the same).
115  *
116  * Additionally, a higher span will have the following relatively minor
117  * effects:
118  *  - the mapping will be smaller, since one entry can cover more allocated
119  *    segments
120  *  - more of the fragmentation in the removing device will be preserved
121  *  - we'll do larger allocations, which may fail and fall back on smaller
122  *    allocations
123  */
124 int vdev_removal_max_span = 32 * 1024;
125
126 /*
127  * This is used by the test suite so that it can ensure that certain
128  * actions happen while in the middle of a removal.
129  */
130 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
131
132 #define VDEV_REMOVAL_ZAP_OBJS   "lzap"
133
134 static void spa_vdev_remove_thread(void *arg);
135
136 static void
137 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
138 {
139         VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
140             DMU_POOL_DIRECTORY_OBJECT,
141             DMU_POOL_REMOVING, sizeof (uint64_t),
142             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
143             &spa->spa_removing_phys, tx));
144 }
145
146 static nvlist_t *
147 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
148 {
149         for (int i = 0; i < count; i++) {
150                 uint64_t guid =
151                     fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
152
153                 if (guid == target_guid)
154                         return (nvpp[i]);
155         }
156
157         return (NULL);
158 }
159
160 static void
161 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
162     nvlist_t *dev_to_remove)
163 {
164         nvlist_t **newdev = NULL;
165
166         if (count > 1)
167                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
168
169         for (int i = 0, j = 0; i < count; i++) {
170                 if (dev[i] == dev_to_remove)
171                         continue;
172                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
173         }
174
175         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
176         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
177
178         for (int i = 0; i < count - 1; i++)
179                 nvlist_free(newdev[i]);
180
181         if (count > 1)
182                 kmem_free(newdev, (count - 1) * sizeof (void *));
183 }
184
185 static spa_vdev_removal_t *
186 spa_vdev_removal_create(vdev_t *vd)
187 {
188         spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
189         mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
190         cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
191         svr->svr_allocd_segs = range_tree_create(NULL, NULL);
192         svr->svr_vdev_id = vd->vdev_id;
193
194         for (int i = 0; i < TXG_SIZE; i++) {
195                 svr->svr_frees[i] = range_tree_create(NULL, NULL);
196                 list_create(&svr->svr_new_segments[i],
197                     sizeof (vdev_indirect_mapping_entry_t),
198                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
199         }
200
201         return (svr);
202 }
203
204 void
205 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
206 {
207         for (int i = 0; i < TXG_SIZE; i++) {
208                 ASSERT0(svr->svr_bytes_done[i]);
209                 ASSERT0(svr->svr_max_offset_to_sync[i]);
210                 range_tree_destroy(svr->svr_frees[i]);
211                 list_destroy(&svr->svr_new_segments[i]);
212         }
213
214         range_tree_destroy(svr->svr_allocd_segs);
215         mutex_destroy(&svr->svr_lock);
216         cv_destroy(&svr->svr_cv);
217         kmem_free(svr, sizeof (*svr));
218 }
219
220 /*
221  * This is called as a synctask in the txg in which we will mark this vdev
222  * as removing (in the config stored in the MOS).
223  *
224  * It begins the evacuation of a toplevel vdev by:
225  * - initializing the spa_removing_phys which tracks this removal
226  * - computing the amount of space to remove for accounting purposes
227  * - dirtying all dbufs in the spa_config_object
228  * - creating the spa_vdev_removal
229  * - starting the spa_vdev_remove_thread
230  */
231 static void
232 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
233 {
234         int vdev_id = (uintptr_t)arg;
235         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
236         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
237         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
238         objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
239         spa_vdev_removal_t *svr = NULL;
240         uint64_t txg = dmu_tx_get_txg(tx);
241
242         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
243         svr = spa_vdev_removal_create(vd);
244
245         ASSERT(vd->vdev_removing);
246         ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
247
248         spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
249         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
250                 /*
251                  * By activating the OBSOLETE_COUNTS feature, we prevent
252                  * the pool from being downgraded and ensure that the
253                  * refcounts are precise.
254                  */
255                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
256                 uint64_t one = 1;
257                 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
258                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
259                     &one, tx));
260                 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
261         }
262
263         vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
264         vd->vdev_indirect_mapping =
265             vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
266         vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
267         vd->vdev_indirect_births =
268             vdev_indirect_births_open(mos, vic->vic_births_object);
269         spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
270         spa->spa_removing_phys.sr_start_time = gethrestime_sec();
271         spa->spa_removing_phys.sr_end_time = 0;
272         spa->spa_removing_phys.sr_state = DSS_SCANNING;
273         spa->spa_removing_phys.sr_to_copy = 0;
274         spa->spa_removing_phys.sr_copied = 0;
275
276         /*
277          * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
278          * there may be space in the defer tree, which is free, but still
279          * counted in vs_alloc.
280          */
281         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
282                 metaslab_t *ms = vd->vdev_ms[i];
283                 if (ms->ms_sm == NULL)
284                         continue;
285
286                 /*
287                  * Sync tasks happen before metaslab_sync(), therefore
288                  * smp_alloc and sm_alloc must be the same.
289                  */
290                 ASSERT3U(space_map_allocated(ms->ms_sm), ==,
291                     ms->ms_sm->sm_phys->smp_alloc);
292
293                 spa->spa_removing_phys.sr_to_copy +=
294                     space_map_allocated(ms->ms_sm);
295
296                 /*
297                  * Space which we are freeing this txg does not need to
298                  * be copied.
299                  */
300                 spa->spa_removing_phys.sr_to_copy -=
301                     range_tree_space(ms->ms_freeing);
302
303                 ASSERT0(range_tree_space(ms->ms_freed));
304                 for (int t = 0; t < TXG_SIZE; t++)
305                         ASSERT0(range_tree_space(ms->ms_allocating[t]));
306         }
307
308         /*
309          * Sync tasks are called before metaslab_sync(), so there should
310          * be no already-synced metaslabs in the TXG_CLEAN list.
311          */
312         ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
313
314         spa_sync_removing_state(spa, tx);
315
316         /*
317          * All blocks that we need to read the most recent mapping must be
318          * stored on concrete vdevs.  Therefore, we must dirty anything that
319          * is read before spa_remove_init().  Specifically, the
320          * spa_config_object.  (Note that although we already modified the
321          * spa_config_object in spa_sync_removing_state, that may not have
322          * modified all blocks of the object.)
323          */
324         dmu_object_info_t doi;
325         VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
326         for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
327                 dmu_buf_t *dbuf;
328                 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
329                     offset, FTAG, &dbuf, 0));
330                 dmu_buf_will_dirty(dbuf, tx);
331                 offset += dbuf->db_size;
332                 dmu_buf_rele(dbuf, FTAG);
333         }
334
335         /*
336          * Now that we've allocated the im_object, dirty the vdev to ensure
337          * that the object gets written to the config on disk.
338          */
339         vdev_config_dirty(vd);
340
341         zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
342             "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
343             vic->vic_mapping_object);
344
345         spa_history_log_internal(spa, "vdev remove started", tx,
346             "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
347             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
348         /*
349          * Setting spa_vdev_removal causes subsequent frees to call
350          * free_from_removing_vdev().  Note that we don't need any locking
351          * because we are the sync thread, and metaslab_free_impl() is only
352          * called from syncing context (potentially from a zio taskq thread,
353          * but in any case only when there are outstanding free i/os, which
354          * there are not).
355          */
356         ASSERT3P(spa->spa_vdev_removal, ==, NULL);
357         spa->spa_vdev_removal = svr;
358         svr->svr_thread = thread_create(NULL, 0,
359             spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
360 }
361
362 /*
363  * When we are opening a pool, we must read the mapping for each
364  * indirect vdev in order from most recently removed to least
365  * recently removed.  We do this because the blocks for the mapping
366  * of older indirect vdevs may be stored on more recently removed vdevs.
367  * In order to read each indirect mapping object, we must have
368  * initialized all more recently removed vdevs.
369  */
370 int
371 spa_remove_init(spa_t *spa)
372 {
373         int error;
374
375         error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
376             DMU_POOL_DIRECTORY_OBJECT,
377             DMU_POOL_REMOVING, sizeof (uint64_t),
378             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
379             &spa->spa_removing_phys);
380
381         if (error == ENOENT) {
382                 spa->spa_removing_phys.sr_state = DSS_NONE;
383                 spa->spa_removing_phys.sr_removing_vdev = -1;
384                 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
385                 spa->spa_indirect_vdevs_loaded = B_TRUE;
386                 return (0);
387         } else if (error != 0) {
388                 return (error);
389         }
390
391         if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
392                 /*
393                  * We are currently removing a vdev.  Create and
394                  * initialize a spa_vdev_removal_t from the bonus
395                  * buffer of the removing vdevs vdev_im_object, and
396                  * initialize its partial mapping.
397                  */
398                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
399                 vdev_t *vd = vdev_lookup_top(spa,
400                     spa->spa_removing_phys.sr_removing_vdev);
401
402                 if (vd == NULL) {
403                         spa_config_exit(spa, SCL_STATE, FTAG);
404                         return (EINVAL);
405                 }
406
407                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
408
409                 ASSERT(vdev_is_concrete(vd));
410                 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
411                 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
412                 ASSERT(vd->vdev_removing);
413
414                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
415                     spa->spa_meta_objset, vic->vic_mapping_object);
416                 vd->vdev_indirect_births = vdev_indirect_births_open(
417                     spa->spa_meta_objset, vic->vic_births_object);
418                 spa_config_exit(spa, SCL_STATE, FTAG);
419
420                 spa->spa_vdev_removal = svr;
421         }
422
423         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
424         uint64_t indirect_vdev_id =
425             spa->spa_removing_phys.sr_prev_indirect_vdev;
426         while (indirect_vdev_id != UINT64_MAX) {
427                 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
428                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
429
430                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
431                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
432                     spa->spa_meta_objset, vic->vic_mapping_object);
433                 vd->vdev_indirect_births = vdev_indirect_births_open(
434                     spa->spa_meta_objset, vic->vic_births_object);
435
436                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
437         }
438         spa_config_exit(spa, SCL_STATE, FTAG);
439
440         /*
441          * Now that we've loaded all the indirect mappings, we can allow
442          * reads from other blocks (e.g. via predictive prefetch).
443          */
444         spa->spa_indirect_vdevs_loaded = B_TRUE;
445         return (0);
446 }
447
448 void
449 spa_restart_removal(spa_t *spa)
450 {
451         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
452
453         if (svr == NULL)
454                 return;
455
456         /*
457          * In general when this function is called there is no
458          * removal thread running. The only scenario where this
459          * is not true is during spa_import() where this function
460          * is called twice [once from spa_import_impl() and
461          * spa_async_resume()]. Thus, in the scenario where we
462          * import a pool that has an ongoing removal we don't
463          * want to spawn a second thread.
464          */
465         if (svr->svr_thread != NULL)
466                 return;
467
468         if (!spa_writeable(spa))
469                 return;
470
471         zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
472         svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
473             0, &p0, TS_RUN, minclsyspri);
474 }
475
476 /*
477  * Process freeing from a device which is in the middle of being removed.
478  * We must handle this carefully so that we attempt to copy freed data,
479  * and we correctly free already-copied data.
480  */
481 void
482 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
483 {
484         spa_t *spa = vd->vdev_spa;
485         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
486         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
487         uint64_t txg = spa_syncing_txg(spa);
488         uint64_t max_offset_yet = 0;
489
490         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
491         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
492             vdev_indirect_mapping_object(vim));
493         ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
494
495         mutex_enter(&svr->svr_lock);
496
497         /*
498          * Remove the segment from the removing vdev's spacemap.  This
499          * ensures that we will not attempt to copy this space (if the
500          * removal thread has not yet visited it), and also ensures
501          * that we know what is actually allocated on the new vdevs
502          * (needed if we cancel the removal).
503          *
504          * Note: we must do the metaslab_free_concrete() with the svr_lock
505          * held, so that the remove_thread can not load this metaslab and then
506          * visit this offset between the time that we metaslab_free_concrete()
507          * and when we check to see if it has been visited.
508          *
509          * Note: The checkpoint flag is set to false as having/taking
510          * a checkpoint and removing a device can't happen at the same
511          * time.
512          */
513         ASSERT(!spa_has_checkpoint(spa));
514         metaslab_free_concrete(vd, offset, size, B_FALSE);
515
516         uint64_t synced_size = 0;
517         uint64_t synced_offset = 0;
518         uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
519         if (offset < max_offset_synced) {
520                 /*
521                  * The mapping for this offset is already on disk.
522                  * Free from the new location.
523                  *
524                  * Note that we use svr_max_synced_offset because it is
525                  * updated atomically with respect to the in-core mapping.
526                  * By contrast, vim_max_offset is not.
527                  *
528                  * This block may be split between a synced entry and an
529                  * in-flight or unvisited entry.  Only process the synced
530                  * portion of it here.
531                  */
532                 synced_size = MIN(size, max_offset_synced - offset);
533                 synced_offset = offset;
534
535                 ASSERT3U(max_offset_yet, <=, max_offset_synced);
536                 max_offset_yet = max_offset_synced;
537
538                 DTRACE_PROBE3(remove__free__synced,
539                     spa_t *, spa,
540                     uint64_t, offset,
541                     uint64_t, synced_size);
542
543                 size -= synced_size;
544                 offset += synced_size;
545         }
546
547         /*
548          * Look at all in-flight txgs starting from the currently syncing one
549          * and see if a section of this free is being copied. By starting from
550          * this txg and iterating forward, we might find that this region
551          * was copied in two different txgs and handle it appropriately.
552          */
553         for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
554                 int txgoff = (txg + i) & TXG_MASK;
555                 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
556                         /*
557                          * The mapping for this offset is in flight, and
558                          * will be synced in txg+i.
559                          */
560                         uint64_t inflight_size = MIN(size,
561                             svr->svr_max_offset_to_sync[txgoff] - offset);
562
563                         DTRACE_PROBE4(remove__free__inflight,
564                             spa_t *, spa,
565                             uint64_t, offset,
566                             uint64_t, inflight_size,
567                             uint64_t, txg + i);
568
569                         /*
570                          * We copy data in order of increasing offset.
571                          * Therefore the max_offset_to_sync[] must increase
572                          * (or be zero, indicating that nothing is being
573                          * copied in that txg).
574                          */
575                         if (svr->svr_max_offset_to_sync[txgoff] != 0) {
576                                 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
577                                     >=, max_offset_yet);
578                                 max_offset_yet =
579                                     svr->svr_max_offset_to_sync[txgoff];
580                         }
581
582                         /*
583                          * We've already committed to copying this segment:
584                          * we have allocated space elsewhere in the pool for
585                          * it and have an IO outstanding to copy the data. We
586                          * cannot free the space before the copy has
587                          * completed, or else the copy IO might overwrite any
588                          * new data. To free that space, we record the
589                          * segment in the appropriate svr_frees tree and free
590                          * the mapped space later, in the txg where we have
591                          * completed the copy and synced the mapping (see
592                          * vdev_mapping_sync).
593                          */
594                         range_tree_add(svr->svr_frees[txgoff],
595                             offset, inflight_size);
596                         size -= inflight_size;
597                         offset += inflight_size;
598
599                         /*
600                          * This space is already accounted for as being
601                          * done, because it is being copied in txg+i.
602                          * However, if i!=0, then it is being copied in
603                          * a future txg.  If we crash after this txg
604                          * syncs but before txg+i syncs, then the space
605                          * will be free.  Therefore we must account
606                          * for the space being done in *this* txg
607                          * (when it is freed) rather than the future txg
608                          * (when it will be copied).
609                          */
610                         ASSERT3U(svr->svr_bytes_done[txgoff], >=,
611                             inflight_size);
612                         svr->svr_bytes_done[txgoff] -= inflight_size;
613                         svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
614                 }
615         }
616         ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
617
618         if (size > 0) {
619                 /*
620                  * The copy thread has not yet visited this offset.  Ensure
621                  * that it doesn't.
622                  */
623
624                 DTRACE_PROBE3(remove__free__unvisited,
625                     spa_t *, spa,
626                     uint64_t, offset,
627                     uint64_t, size);
628
629                 if (svr->svr_allocd_segs != NULL)
630                         range_tree_clear(svr->svr_allocd_segs, offset, size);
631
632                 /*
633                  * Since we now do not need to copy this data, for
634                  * accounting purposes we have done our job and can count
635                  * it as completed.
636                  */
637                 svr->svr_bytes_done[txg & TXG_MASK] += size;
638         }
639         mutex_exit(&svr->svr_lock);
640
641         /*
642          * Now that we have dropped svr_lock, process the synced portion
643          * of this free.
644          */
645         if (synced_size > 0) {
646                 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
647
648                 /*
649                  * Note: this can only be called from syncing context,
650                  * and the vdev_indirect_mapping is only changed from the
651                  * sync thread, so we don't need svr_lock while doing
652                  * metaslab_free_impl_cb.
653                  */
654                 boolean_t checkpoint = B_FALSE;
655                 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
656                     metaslab_free_impl_cb, &checkpoint);
657         }
658 }
659
660 /*
661  * Stop an active removal and update the spa_removing phys.
662  */
663 static void
664 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
665 {
666         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
667         ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
668
669         /* Ensure the removal thread has completed before we free the svr. */
670         spa_vdev_remove_suspend(spa);
671
672         ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
673
674         if (state == DSS_FINISHED) {
675                 spa_removing_phys_t *srp = &spa->spa_removing_phys;
676                 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
677                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
678
679                 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
680                         vdev_t *pvd = vdev_lookup_top(spa,
681                             srp->sr_prev_indirect_vdev);
682                         ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
683                 }
684
685                 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
686                 srp->sr_prev_indirect_vdev = vd->vdev_id;
687         }
688         spa->spa_removing_phys.sr_state = state;
689         spa->spa_removing_phys.sr_end_time = gethrestime_sec();
690
691         spa->spa_vdev_removal = NULL;
692         spa_vdev_removal_destroy(svr);
693
694         spa_sync_removing_state(spa, tx);
695
696         vdev_config_dirty(spa->spa_root_vdev);
697 }
698
699 static void
700 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
701 {
702         vdev_t *vd = arg;
703         vdev_indirect_mark_obsolete(vd, offset, size);
704         boolean_t checkpoint = B_FALSE;
705         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
706             metaslab_free_impl_cb, &checkpoint);
707 }
708
709 /*
710  * On behalf of the removal thread, syncs an incremental bit more of
711  * the indirect mapping to disk and updates the in-memory mapping.
712  * Called as a sync task in every txg that the removal thread makes progress.
713  */
714 static void
715 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
716 {
717         spa_vdev_removal_t *svr = arg;
718         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
719         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
720         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
721         uint64_t txg = dmu_tx_get_txg(tx);
722         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
723
724         ASSERT(vic->vic_mapping_object != 0);
725         ASSERT3U(txg, ==, spa_syncing_txg(spa));
726
727         vdev_indirect_mapping_add_entries(vim,
728             &svr->svr_new_segments[txg & TXG_MASK], tx);
729         vdev_indirect_births_add_entry(vd->vdev_indirect_births,
730             vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
731
732         /*
733          * Free the copied data for anything that was freed while the
734          * mapping entries were in flight.
735          */
736         mutex_enter(&svr->svr_lock);
737         range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
738             free_mapped_segment_cb, vd);
739         ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
740             vdev_indirect_mapping_max_offset(vim));
741         svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
742         mutex_exit(&svr->svr_lock);
743
744         spa_sync_removing_state(spa, tx);
745 }
746
747 typedef struct vdev_copy_segment_arg {
748         spa_t *vcsa_spa;
749         dva_t *vcsa_dest_dva;
750         uint64_t vcsa_txg;
751         range_tree_t *vcsa_obsolete_segs;
752 } vdev_copy_segment_arg_t;
753
754 static void
755 unalloc_seg(void *arg, uint64_t start, uint64_t size)
756 {
757         vdev_copy_segment_arg_t *vcsa = arg;
758         spa_t *spa = vcsa->vcsa_spa;
759         blkptr_t bp = { 0 };
760
761         BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
762         BP_SET_LSIZE(&bp, size);
763         BP_SET_PSIZE(&bp, size);
764         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
765         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
766         BP_SET_TYPE(&bp, DMU_OT_NONE);
767         BP_SET_LEVEL(&bp, 0);
768         BP_SET_DEDUP(&bp, 0);
769         BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
770
771         DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
772         DVA_SET_OFFSET(&bp.blk_dva[0],
773             DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
774         DVA_SET_ASIZE(&bp.blk_dva[0], size);
775
776         zio_free(spa, vcsa->vcsa_txg, &bp);
777 }
778
779 /*
780  * All reads and writes associated with a call to spa_vdev_copy_segment()
781  * are done.
782  */
783 static void
784 spa_vdev_copy_segment_done(zio_t *zio)
785 {
786         vdev_copy_segment_arg_t *vcsa = zio->io_private;
787
788         range_tree_vacate(vcsa->vcsa_obsolete_segs,
789             unalloc_seg, vcsa);
790         range_tree_destroy(vcsa->vcsa_obsolete_segs);
791         kmem_free(vcsa, sizeof (*vcsa));
792
793         spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
794 }
795
796 /*
797  * The write of the new location is done.
798  */
799 static void
800 spa_vdev_copy_segment_write_done(zio_t *zio)
801 {
802         vdev_copy_arg_t *vca = zio->io_private;
803
804         abd_free(zio->io_abd);
805
806         mutex_enter(&vca->vca_lock);
807         vca->vca_outstanding_bytes -= zio->io_size;
808         cv_signal(&vca->vca_cv);
809         mutex_exit(&vca->vca_lock);
810 }
811
812 /*
813  * The read of the old location is done.  The parent zio is the write to
814  * the new location.  Allow it to start.
815  */
816 static void
817 spa_vdev_copy_segment_read_done(zio_t *zio)
818 {
819         zio_nowait(zio_unique_parent(zio));
820 }
821
822 /*
823  * If the old and new vdevs are mirrors, we will read both sides of the old
824  * mirror, and write each copy to the corresponding side of the new mirror.
825  * If the old and new vdevs have a different number of children, we will do
826  * this as best as possible.  Since we aren't verifying checksums, this
827  * ensures that as long as there's a good copy of the data, we'll have a
828  * good copy after the removal, even if there's silent damage to one side
829  * of the mirror. If we're removing a mirror that has some silent damage,
830  * we'll have exactly the same damage in the new location (assuming that
831  * the new location is also a mirror).
832  *
833  * We accomplish this by creating a tree of zio_t's, with as many writes as
834  * there are "children" of the new vdev (a non-redundant vdev counts as one
835  * child, a 2-way mirror has 2 children, etc). Each write has an associated
836  * read from a child of the old vdev. Typically there will be the same
837  * number of children of the old and new vdevs.  However, if there are more
838  * children of the new vdev, some child(ren) of the old vdev will be issued
839  * multiple reads.  If there are more children of the old vdev, some copies
840  * will be dropped.
841  *
842  * For example, the tree of zio_t's for a 2-way mirror is:
843  *
844  *                            null
845  *                           /    \
846  *    write(new vdev, child 0)      write(new vdev, child 1)
847  *      |                             |
848  *    read(old vdev, child 0)       read(old vdev, child 1)
849  *
850  * Child zio's complete before their parents complete.  However, zio's
851  * created with zio_vdev_child_io() may be issued before their children
852  * complete.  In this case we need to make sure that the children (reads)
853  * complete before the parents (writes) are *issued*.  We do this by not
854  * calling zio_nowait() on each write until its corresponding read has
855  * completed.
856  *
857  * The spa_config_lock must be held while zio's created by
858  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
859  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
860  * zio is needed to release the spa_config_lock after all the reads and
861  * writes complete. (Note that we can't grab the config lock for each read,
862  * because it is not reentrant - we could deadlock with a thread waiting
863  * for a write lock.)
864  */
865 static void
866 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
867     vdev_t *source_vd, uint64_t source_offset,
868     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
869 {
870         ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
871
872         mutex_enter(&vca->vca_lock);
873         vca->vca_outstanding_bytes += size;
874         mutex_exit(&vca->vca_lock);
875
876         abd_t *abd = abd_alloc_for_io(size, B_FALSE);
877
878         vdev_t *source_child_vd;
879         if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
880                 /*
881                  * Source and dest are both mirrors.  Copy from the same
882                  * child id as we are copying to (wrapping around if there
883                  * are more dest children than source children).
884                  */
885                 source_child_vd =
886                     source_vd->vdev_child[dest_id % source_vd->vdev_children];
887         } else {
888                 source_child_vd = source_vd;
889         }
890
891         zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
892             dest_child_vd, dest_offset, abd, size,
893             ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
894             ZIO_FLAG_CANFAIL,
895             spa_vdev_copy_segment_write_done, vca);
896
897         zio_nowait(zio_vdev_child_io(write_zio, NULL,
898             source_child_vd, source_offset, abd, size,
899             ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
900             ZIO_FLAG_CANFAIL,
901             spa_vdev_copy_segment_read_done, vca));
902 }
903
904 /*
905  * Allocate a new location for this segment, and create the zio_t's to
906  * read from the old location and write to the new location.
907  */
908 static int
909 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
910     uint64_t maxalloc, uint64_t txg,
911     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
912 {
913         metaslab_group_t *mg = vd->vdev_mg;
914         spa_t *spa = vd->vdev_spa;
915         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
916         vdev_indirect_mapping_entry_t *entry;
917         dva_t dst = { 0 };
918         uint64_t start = range_tree_min(segs);
919
920         ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
921
922         uint64_t size = range_tree_span(segs);
923         if (range_tree_span(segs) > maxalloc) {
924                 /*
925                  * We can't allocate all the segments.  Prefer to end
926                  * the allocation at the end of a segment, thus avoiding
927                  * additional split blocks.
928                  */
929                 range_seg_t search;
930                 avl_index_t where;
931                 search.rs_start = start + maxalloc;
932                 search.rs_end = search.rs_start;
933                 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
934                 if (rs == NULL) {
935                         rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
936                 } else {
937                         rs = AVL_PREV(&segs->rt_root, rs);
938                 }
939                 if (rs != NULL) {
940                         size = rs->rs_end - start;
941                 } else {
942                         /*
943                          * There are no segments that end before maxalloc.
944                          * I.e. the first segment is larger than maxalloc,
945                          * so we must split it.
946                          */
947                         size = maxalloc;
948                 }
949         }
950         ASSERT3U(size, <=, maxalloc);
951
952         /*
953          * We use allocator 0 for this I/O because we don't expect device remap
954          * to be the steady state of the system, so parallelizing is not as
955          * critical as it is for other allocation types. We also want to ensure
956          * that the IOs are allocated together as much as possible, to reduce
957          * mapping sizes.
958          */
959         int error = metaslab_alloc_dva(spa, mg->mg_class, size,
960             &dst, 0, NULL, txg, 0, zal, 0);
961         if (error != 0)
962                 return (error);
963
964         /*
965          * Determine the ranges that are not actually needed.  Offsets are
966          * relative to the start of the range to be copied (i.e. relative to the
967          * local variable "start").
968          */
969         range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
970
971         range_seg_t *rs = avl_first(&segs->rt_root);
972         ASSERT3U(rs->rs_start, ==, start);
973         uint64_t prev_seg_end = rs->rs_end;
974         while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
975                 if (rs->rs_start >= start + size) {
976                         break;
977                 } else {
978                         range_tree_add(obsolete_segs,
979                             prev_seg_end - start,
980                             rs->rs_start - prev_seg_end);
981                 }
982                 prev_seg_end = rs->rs_end;
983         }
984         /* We don't end in the middle of an obsolete range */
985         ASSERT3U(start + size, <=, prev_seg_end);
986
987         range_tree_clear(segs, start, size);
988
989         /*
990          * We can't have any padding of the allocated size, otherwise we will
991          * misunderstand what's allocated, and the size of the mapping.
992          * The caller ensures this will be true by passing in a size that is
993          * aligned to the worst (highest) ashift in the pool.
994          */
995         ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
996
997         entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
998         DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
999         entry->vime_mapping.vimep_dst = dst;
1000         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1001                 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1002         }
1003
1004         vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1005         vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1006         vcsa->vcsa_obsolete_segs = obsolete_segs;
1007         vcsa->vcsa_spa = spa;
1008         vcsa->vcsa_txg = txg;
1009
1010         /*
1011          * See comment before spa_vdev_copy_one_child().
1012          */
1013         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1014         zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1015             spa_vdev_copy_segment_done, vcsa, 0);
1016         vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1017         if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1018                 for (int i = 0; i < dest_vd->vdev_children; i++) {
1019                         vdev_t *child = dest_vd->vdev_child[i];
1020                         spa_vdev_copy_one_child(vca, nzio, vd, start,
1021                             child, DVA_GET_OFFSET(&dst), i, size);
1022                 }
1023         } else {
1024                 spa_vdev_copy_one_child(vca, nzio, vd, start,
1025                     dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1026         }
1027         zio_nowait(nzio);
1028
1029         list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1030         ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1031         vdev_dirty(vd, 0, NULL, txg);
1032
1033         return (0);
1034 }
1035
1036 /*
1037  * Complete the removal of a toplevel vdev. This is called as a
1038  * synctask in the same txg that we will sync out the new config (to the
1039  * MOS object) which indicates that this vdev is indirect.
1040  */
1041 static void
1042 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1043 {
1044         spa_vdev_removal_t *svr = arg;
1045         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1046         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1047
1048         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1049
1050         for (int i = 0; i < TXG_SIZE; i++) {
1051                 ASSERT0(svr->svr_bytes_done[i]);
1052         }
1053
1054         ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1055             spa->spa_removing_phys.sr_to_copy);
1056
1057         vdev_destroy_spacemaps(vd, tx);
1058
1059         /* destroy leaf zaps, if any */
1060         ASSERT3P(svr->svr_zaplist, !=, NULL);
1061         for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1062             pair != NULL;
1063             pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1064                 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1065         }
1066         fnvlist_free(svr->svr_zaplist);
1067
1068         spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1069         /* vd->vdev_path is not available here */
1070         spa_history_log_internal(spa, "vdev remove completed",  tx,
1071             "%s vdev %llu", spa_name(spa), vd->vdev_id);
1072 }
1073
1074 static void
1075 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1076 {
1077         ASSERT3P(zlist, !=, NULL);
1078         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1079
1080         if (vd->vdev_leaf_zap != 0) {
1081                 char zkey[32];
1082                 (void) snprintf(zkey, sizeof (zkey), "%s-%ju",
1083                     VDEV_REMOVAL_ZAP_OBJS, (uintmax_t)vd->vdev_leaf_zap);
1084                 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1085         }
1086
1087         for (uint64_t id = 0; id < vd->vdev_children; id++) {
1088                 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1089         }
1090 }
1091
1092 static void
1093 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1094 {
1095         vdev_t *ivd;
1096         dmu_tx_t *tx;
1097         spa_t *spa = vd->vdev_spa;
1098         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1099
1100         /*
1101          * First, build a list of leaf zaps to be destroyed.
1102          * This is passed to the sync context thread,
1103          * which does the actual unlinking.
1104          */
1105         svr->svr_zaplist = fnvlist_alloc();
1106         vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1107
1108         ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1109         ivd->vdev_removing = 0;
1110
1111         vd->vdev_leaf_zap = 0;
1112
1113         vdev_remove_child(ivd, vd);
1114         vdev_compact_children(ivd);
1115
1116         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1117
1118         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1119         dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1120             0, ZFS_SPACE_CHECK_NONE, tx);
1121         dmu_tx_commit(tx);
1122
1123         /*
1124          * Indicate that this thread has exited.
1125          * After this, we can not use svr.
1126          */
1127         mutex_enter(&svr->svr_lock);
1128         svr->svr_thread = NULL;
1129         cv_broadcast(&svr->svr_cv);
1130         mutex_exit(&svr->svr_lock);
1131 }
1132
1133 /*
1134  * Complete the removal of a toplevel vdev. This is called in open
1135  * context by the removal thread after we have copied all vdev's data.
1136  */
1137 static void
1138 vdev_remove_complete(spa_t *spa)
1139 {
1140         uint64_t txg;
1141
1142         /*
1143          * Wait for any deferred frees to be synced before we call
1144          * vdev_metaslab_fini()
1145          */
1146         txg_wait_synced(spa->spa_dsl_pool, 0);
1147         txg = spa_vdev_enter(spa);
1148         vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1149         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1150
1151         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1152             ESC_ZFS_VDEV_REMOVE_DEV);
1153
1154         zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1155             vd->vdev_id, txg);
1156
1157         /*
1158          * Discard allocation state.
1159          */
1160         if (vd->vdev_mg != NULL) {
1161                 vdev_metaslab_fini(vd);
1162                 metaslab_group_destroy(vd->vdev_mg);
1163                 vd->vdev_mg = NULL;
1164         }
1165         ASSERT0(vd->vdev_stat.vs_space);
1166         ASSERT0(vd->vdev_stat.vs_dspace);
1167
1168         vdev_remove_replace_with_indirect(vd, txg);
1169
1170         /*
1171          * We now release the locks, allowing spa_sync to run and finish the
1172          * removal via vdev_remove_complete_sync in syncing context.
1173          *
1174          * Note that we hold on to the vdev_t that has been replaced.  Since
1175          * it isn't part of the vdev tree any longer, it can't be concurrently
1176          * manipulated, even while we don't have the config lock.
1177          */
1178         (void) spa_vdev_exit(spa, NULL, txg, 0);
1179
1180         /*
1181          * Top ZAP should have been transferred to the indirect vdev in
1182          * vdev_remove_replace_with_indirect.
1183          */
1184         ASSERT0(vd->vdev_top_zap);
1185
1186         /*
1187          * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1188          */
1189         ASSERT0(vd->vdev_leaf_zap);
1190
1191         txg = spa_vdev_enter(spa);
1192         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1193         /*
1194          * Request to update the config and the config cachefile.
1195          */
1196         vdev_config_dirty(spa->spa_root_vdev);
1197         (void) spa_vdev_exit(spa, vd, txg, 0);
1198
1199         spa_event_post(ev);
1200 }
1201
1202 /*
1203  * Evacuates a segment of size at most max_alloc from the vdev
1204  * via repeated calls to spa_vdev_copy_segment. If an allocation
1205  * fails, the pool is probably too fragmented to handle such a
1206  * large size, so decrease max_alloc so that the caller will not try
1207  * this size again this txg.
1208  */
1209 static void
1210 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1211     uint64_t *max_alloc, dmu_tx_t *tx)
1212 {
1213         uint64_t txg = dmu_tx_get_txg(tx);
1214         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1215
1216         mutex_enter(&svr->svr_lock);
1217
1218         /*
1219          * Determine how big of a chunk to copy.  We can allocate up
1220          * to max_alloc bytes, and we can span up to vdev_removal_max_span
1221          * bytes of unallocated space at a time.  "segs" will track the
1222          * allocated segments that we are copying.  We may also be copying
1223          * free segments (of up to vdev_removal_max_span bytes).
1224          */
1225         range_tree_t *segs = range_tree_create(NULL, NULL);
1226         for (;;) {
1227                 range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1228                 if (rs == NULL)
1229                         break;
1230
1231                 uint64_t seg_length;
1232
1233                 if (range_tree_is_empty(segs)) {
1234                         /* need to truncate the first seg based on max_alloc */
1235                         seg_length =
1236                             MIN(rs->rs_end - rs->rs_start, *max_alloc);
1237                 } else {
1238                         if (rs->rs_start - range_tree_max(segs) >
1239                             vdev_removal_max_span) {
1240                                 /*
1241                                  * Including this segment would cause us to
1242                                  * copy a larger unneeded chunk than is allowed.
1243                                  */
1244                                 break;
1245                         } else if (rs->rs_end - range_tree_min(segs) >
1246                             *max_alloc) {
1247                                 /*
1248                                  * This additional segment would extend past
1249                                  * max_alloc. Rather than splitting this
1250                                  * segment, leave it for the next mapping.
1251                                  */
1252                                 break;
1253                         } else {
1254                                 seg_length = rs->rs_end - rs->rs_start;
1255                         }
1256                 }
1257
1258                 range_tree_add(segs, rs->rs_start, seg_length);
1259                 range_tree_remove(svr->svr_allocd_segs,
1260                     rs->rs_start, seg_length);
1261         }
1262
1263         if (range_tree_is_empty(segs)) {
1264                 mutex_exit(&svr->svr_lock);
1265                 range_tree_destroy(segs);
1266                 return;
1267         }
1268
1269         if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1270                 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1271                     svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1272         }
1273
1274         svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1275
1276         /*
1277          * Note: this is the amount of *allocated* space
1278          * that we are taking care of each txg.
1279          */
1280         svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1281
1282         mutex_exit(&svr->svr_lock);
1283
1284         zio_alloc_list_t zal;
1285         metaslab_trace_init(&zal);
1286         uint64_t thismax = SPA_MAXBLOCKSIZE;
1287         while (!range_tree_is_empty(segs)) {
1288                 int error = spa_vdev_copy_segment(vd,
1289                     segs, thismax, txg, vca, &zal);
1290
1291                 if (error == ENOSPC) {
1292                         /*
1293                          * Cut our segment in half, and don't try this
1294                          * segment size again this txg.  Note that the
1295                          * allocation size must be aligned to the highest
1296                          * ashift in the pool, so that the allocation will
1297                          * not be padded out to a multiple of the ashift,
1298                          * which could cause us to think that this mapping
1299                          * is larger than we intended.
1300                          */
1301                         ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1302                         ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1303                         uint64_t attempted =
1304                             MIN(range_tree_span(segs), thismax);
1305                         thismax = P2ROUNDUP(attempted / 2,
1306                             1 << spa->spa_max_ashift);
1307                         /*
1308                          * The minimum-size allocation can not fail.
1309                          */
1310                         ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1311                         *max_alloc = attempted - (1 << spa->spa_max_ashift);
1312                 } else {
1313                         ASSERT0(error);
1314
1315                         /*
1316                          * We've performed an allocation, so reset the
1317                          * alloc trace list.
1318                          */
1319                         metaslab_trace_fini(&zal);
1320                         metaslab_trace_init(&zal);
1321                 }
1322         }
1323         metaslab_trace_fini(&zal);
1324         range_tree_destroy(segs);
1325 }
1326
1327 /*
1328  * The removal thread operates in open context.  It iterates over all
1329  * allocated space in the vdev, by loading each metaslab's spacemap.
1330  * For each contiguous segment of allocated space (capping the segment
1331  * size at SPA_MAXBLOCKSIZE), we:
1332  *    - Allocate space for it on another vdev.
1333  *    - Create a new mapping from the old location to the new location
1334  *      (as a record in svr_new_segments).
1335  *    - Initiate a logical read zio to get the data off the removing disk.
1336  *    - In the read zio's done callback, initiate a logical write zio to
1337  *      write it to the new vdev.
1338  * Note that all of this will take effect when a particular TXG syncs.
1339  * The sync thread ensures that all the phys reads and writes for the syncing
1340  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1341  * (see vdev_mapping_sync()).
1342  */
1343 static void
1344 spa_vdev_remove_thread(void *arg)
1345 {
1346         spa_t *spa = arg;
1347         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1348         vdev_copy_arg_t vca;
1349         uint64_t max_alloc = zfs_remove_max_segment;
1350         uint64_t last_txg = 0;
1351
1352         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1353         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1354         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1355         uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1356
1357         ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1358         ASSERT(vdev_is_concrete(vd));
1359         ASSERT(vd->vdev_removing);
1360         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1361         ASSERT(vim != NULL);
1362
1363         mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1364         cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1365         vca.vca_outstanding_bytes = 0;
1366
1367         mutex_enter(&svr->svr_lock);
1368
1369         /*
1370          * Start from vim_max_offset so we pick up where we left off
1371          * if we are restarting the removal after opening the pool.
1372          */
1373         uint64_t msi;
1374         for (msi = start_offset >> vd->vdev_ms_shift;
1375             msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1376                 metaslab_t *msp = vd->vdev_ms[msi];
1377                 ASSERT3U(msi, <=, vd->vdev_ms_count);
1378
1379                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1380
1381                 mutex_enter(&msp->ms_sync_lock);
1382                 mutex_enter(&msp->ms_lock);
1383
1384                 /*
1385                  * Assert nothing in flight -- ms_*tree is empty.
1386                  */
1387                 for (int i = 0; i < TXG_SIZE; i++) {
1388                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1389                 }
1390
1391                 /*
1392                  * If the metaslab has ever been allocated from (ms_sm!=NULL),
1393                  * read the allocated segments from the space map object
1394                  * into svr_allocd_segs. Since we do this while holding
1395                  * svr_lock and ms_sync_lock, concurrent frees (which
1396                  * would have modified the space map) will wait for us
1397                  * to finish loading the spacemap, and then take the
1398                  * appropriate action (see free_from_removing_vdev()).
1399                  */
1400                 if (msp->ms_sm != NULL) {
1401                         space_map_t *sm = NULL;
1402
1403                         /*
1404                          * We have to open a new space map here, because
1405                          * ms_sm's sm_length and sm_alloc may not reflect
1406                          * what's in the object contents, if we are in between
1407                          * metaslab_sync() and metaslab_sync_done().
1408                          */
1409                         VERIFY0(space_map_open(&sm,
1410                             spa->spa_dsl_pool->dp_meta_objset,
1411                             msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1412                             msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1413                         space_map_update(sm);
1414                         VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1415                             SM_ALLOC));
1416                         space_map_close(sm);
1417
1418                         range_tree_walk(msp->ms_freeing,
1419                             range_tree_remove, svr->svr_allocd_segs);
1420
1421                         /*
1422                          * When we are resuming from a paused removal (i.e.
1423                          * when importing a pool with a removal in progress),
1424                          * discard any state that we have already processed.
1425                          */
1426                         range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1427                 }
1428                 mutex_exit(&msp->ms_lock);
1429                 mutex_exit(&msp->ms_sync_lock);
1430
1431                 vca.vca_msp = msp;
1432                 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1433                     avl_numnodes(&svr->svr_allocd_segs->rt_root),
1434                     msp->ms_id);
1435
1436                 while (!svr->svr_thread_exit &&
1437                     !range_tree_is_empty(svr->svr_allocd_segs)) {
1438
1439                         mutex_exit(&svr->svr_lock);
1440
1441                         /*
1442                          * We need to periodically drop the config lock so that
1443                          * writers can get in.  Additionally, we can't wait
1444                          * for a txg to sync while holding a config lock
1445                          * (since a waiting writer could cause a 3-way deadlock
1446                          * with the sync thread, which also gets a config
1447                          * lock for reader).  So we can't hold the config lock
1448                          * while calling dmu_tx_assign().
1449                          */
1450                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1451
1452                         /*
1453                          * This delay will pause the removal around the point
1454                          * specified by zfs_remove_max_bytes_pause. We do this
1455                          * solely from the test suite or during debugging.
1456                          */
1457                         uint64_t bytes_copied =
1458                             spa->spa_removing_phys.sr_copied;
1459                         for (int i = 0; i < TXG_SIZE; i++)
1460                                 bytes_copied += svr->svr_bytes_done[i];
1461                         while (zfs_remove_max_bytes_pause <= bytes_copied &&
1462                             !svr->svr_thread_exit)
1463                                 delay(hz);
1464
1465                         mutex_enter(&vca.vca_lock);
1466                         while (vca.vca_outstanding_bytes >
1467                             zfs_remove_max_copy_bytes) {
1468                                 cv_wait(&vca.vca_cv, &vca.vca_lock);
1469                         }
1470                         mutex_exit(&vca.vca_lock);
1471
1472                         dmu_tx_t *tx =
1473                             dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1474
1475                         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1476                         uint64_t txg = dmu_tx_get_txg(tx);
1477
1478                         /*
1479                          * Reacquire the vdev_config lock.  The vdev_t
1480                          * that we're removing may have changed, e.g. due
1481                          * to a vdev_attach or vdev_detach.
1482                          */
1483                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1484                         vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1485
1486                         if (txg != last_txg)
1487                                 max_alloc = zfs_remove_max_segment;
1488                         last_txg = txg;
1489
1490                         spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1491
1492                         dmu_tx_commit(tx);
1493                         mutex_enter(&svr->svr_lock);
1494                 }
1495         }
1496
1497         mutex_exit(&svr->svr_lock);
1498
1499         spa_config_exit(spa, SCL_CONFIG, FTAG);
1500
1501         /*
1502          * Wait for all copies to finish before cleaning up the vca.
1503          */
1504         txg_wait_synced(spa->spa_dsl_pool, 0);
1505         ASSERT0(vca.vca_outstanding_bytes);
1506
1507         mutex_destroy(&vca.vca_lock);
1508         cv_destroy(&vca.vca_cv);
1509
1510         if (svr->svr_thread_exit) {
1511                 mutex_enter(&svr->svr_lock);
1512                 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1513                 svr->svr_thread = NULL;
1514                 cv_broadcast(&svr->svr_cv);
1515                 mutex_exit(&svr->svr_lock);
1516         } else {
1517                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1518                 vdev_remove_complete(spa);
1519         }
1520         thread_exit();
1521 }
1522
1523 void
1524 spa_vdev_remove_suspend(spa_t *spa)
1525 {
1526         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1527
1528         if (svr == NULL)
1529                 return;
1530
1531         mutex_enter(&svr->svr_lock);
1532         svr->svr_thread_exit = B_TRUE;
1533         while (svr->svr_thread != NULL)
1534                 cv_wait(&svr->svr_cv, &svr->svr_lock);
1535         svr->svr_thread_exit = B_FALSE;
1536         mutex_exit(&svr->svr_lock);
1537 }
1538
1539 /* ARGSUSED */
1540 static int
1541 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1542 {
1543         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1544
1545         if (spa->spa_vdev_removal == NULL)
1546                 return (ESRCH);
1547         return (0);
1548 }
1549
1550 /*
1551  * Cancel a removal by freeing all entries from the partial mapping
1552  * and marking the vdev as no longer being removing.
1553  */
1554 /* ARGSUSED */
1555 static void
1556 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1557 {
1558         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1559         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1560         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1561         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1562         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1563         objset_t *mos = spa->spa_meta_objset;
1564
1565         ASSERT3P(svr->svr_thread, ==, NULL);
1566
1567         spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1568         if (vdev_obsolete_counts_are_precise(vd)) {
1569                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1570                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1571                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1572         }
1573
1574         if (vdev_obsolete_sm_object(vd) != 0) {
1575                 ASSERT(vd->vdev_obsolete_sm != NULL);
1576                 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1577                     space_map_object(vd->vdev_obsolete_sm));
1578
1579                 space_map_free(vd->vdev_obsolete_sm, tx);
1580                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1581                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1582                 space_map_close(vd->vdev_obsolete_sm);
1583                 vd->vdev_obsolete_sm = NULL;
1584                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1585         }
1586         for (int i = 0; i < TXG_SIZE; i++) {
1587                 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1588                 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1589                     vdev_indirect_mapping_max_offset(vim));
1590         }
1591
1592         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1593                 metaslab_t *msp = vd->vdev_ms[msi];
1594
1595                 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1596                         break;
1597
1598                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1599
1600                 mutex_enter(&msp->ms_lock);
1601
1602                 /*
1603                  * Assert nothing in flight -- ms_*tree is empty.
1604                  */
1605                 for (int i = 0; i < TXG_SIZE; i++)
1606                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1607                 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1608                         ASSERT0(range_tree_space(msp->ms_defer[i]));
1609                 ASSERT0(range_tree_space(msp->ms_freed));
1610
1611                 if (msp->ms_sm != NULL) {
1612                         /*
1613                          * Assert that the in-core spacemap has the same
1614                          * length as the on-disk one, so we can use the
1615                          * existing in-core spacemap to load it from disk.
1616                          */
1617                         ASSERT3U(msp->ms_sm->sm_alloc, ==,
1618                             msp->ms_sm->sm_phys->smp_alloc);
1619                         ASSERT3U(msp->ms_sm->sm_length, ==,
1620                             msp->ms_sm->sm_phys->smp_objsize);
1621
1622                         mutex_enter(&svr->svr_lock);
1623                         VERIFY0(space_map_load(msp->ms_sm,
1624                             svr->svr_allocd_segs, SM_ALLOC));
1625                         range_tree_walk(msp->ms_freeing,
1626                             range_tree_remove, svr->svr_allocd_segs);
1627
1628                         /*
1629                          * Clear everything past what has been synced,
1630                          * because we have not allocated mappings for it yet.
1631                          */
1632                         uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1633                         uint64_t sm_end = msp->ms_sm->sm_start +
1634                             msp->ms_sm->sm_size;
1635                         if (sm_end > syncd)
1636                                 range_tree_clear(svr->svr_allocd_segs,
1637                                     syncd, sm_end - syncd);
1638
1639                         mutex_exit(&svr->svr_lock);
1640                 }
1641                 mutex_exit(&msp->ms_lock);
1642
1643                 mutex_enter(&svr->svr_lock);
1644                 range_tree_vacate(svr->svr_allocd_segs,
1645                     free_mapped_segment_cb, vd);
1646                 mutex_exit(&svr->svr_lock);
1647         }
1648
1649         /*
1650          * Note: this must happen after we invoke free_mapped_segment_cb,
1651          * because it adds to the obsolete_segments.
1652          */
1653         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1654
1655         ASSERT3U(vic->vic_mapping_object, ==,
1656             vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1657         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1658         vd->vdev_indirect_mapping = NULL;
1659         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1660         vic->vic_mapping_object = 0;
1661
1662         ASSERT3U(vic->vic_births_object, ==,
1663             vdev_indirect_births_object(vd->vdev_indirect_births));
1664         vdev_indirect_births_close(vd->vdev_indirect_births);
1665         vd->vdev_indirect_births = NULL;
1666         vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1667         vic->vic_births_object = 0;
1668
1669         /*
1670          * We may have processed some frees from the removing vdev in this
1671          * txg, thus increasing svr_bytes_done; discard that here to
1672          * satisfy the assertions in spa_vdev_removal_destroy().
1673          * Note that future txg's can not have any bytes_done, because
1674          * future TXG's are only modified from open context, and we have
1675          * already shut down the copying thread.
1676          */
1677         svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1678         spa_finish_removal(spa, DSS_CANCELED, tx);
1679
1680         vd->vdev_removing = B_FALSE;
1681         vdev_config_dirty(vd);
1682
1683         zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1684             vd->vdev_id, dmu_tx_get_txg(tx));
1685         spa_history_log_internal(spa, "vdev remove canceled", tx,
1686             "%s vdev %llu %s", spa_name(spa),
1687             vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1688 }
1689
1690 int
1691 spa_vdev_remove_cancel(spa_t *spa)
1692 {
1693         spa_vdev_remove_suspend(spa);
1694
1695         if (spa->spa_vdev_removal == NULL)
1696                 return (ESRCH);
1697
1698         uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1699
1700         int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1701             spa_vdev_remove_cancel_sync, NULL, 0,
1702             ZFS_SPACE_CHECK_EXTRA_RESERVED);
1703
1704         if (error == 0) {
1705                 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1706                 vdev_t *vd = vdev_lookup_top(spa, vdid);
1707                 metaslab_group_activate(vd->vdev_mg);
1708                 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1709         }
1710
1711         return (error);
1712 }
1713
1714 /*
1715  * Called every sync pass of every txg if there's a svr.
1716  */
1717 void
1718 svr_sync(spa_t *spa, dmu_tx_t *tx)
1719 {
1720         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1721         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1722
1723         /*
1724          * This check is necessary so that we do not dirty the
1725          * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1726          * is nothing to do.  Dirtying it every time would prevent us
1727          * from syncing-to-convergence.
1728          */
1729         if (svr->svr_bytes_done[txgoff] == 0)
1730                 return;
1731
1732         /*
1733          * Update progress accounting.
1734          */
1735         spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1736         svr->svr_bytes_done[txgoff] = 0;
1737
1738         spa_sync_removing_state(spa, tx);
1739 }
1740
1741 static void
1742 vdev_remove_make_hole_and_free(vdev_t *vd)
1743 {
1744         uint64_t id = vd->vdev_id;
1745         spa_t *spa = vd->vdev_spa;
1746         vdev_t *rvd = spa->spa_root_vdev;
1747         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1748
1749         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1750         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1751
1752         vdev_free(vd);
1753
1754         if (last_vdev) {
1755                 vdev_compact_children(rvd);
1756         } else {
1757                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1758                 vdev_add_child(rvd, vd);
1759         }
1760         vdev_config_dirty(rvd);
1761
1762         /*
1763          * Reassess the health of our root vdev.
1764          */
1765         vdev_reopen(rvd);
1766 }
1767
1768 /*
1769  * Remove a log device.  The config lock is held for the specified TXG.
1770  */
1771 static int
1772 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1773 {
1774         metaslab_group_t *mg = vd->vdev_mg;
1775         spa_t *spa = vd->vdev_spa;
1776         int error = 0;
1777
1778         ASSERT(vd->vdev_islog);
1779         ASSERT(vd == vd->vdev_top);
1780
1781         /*
1782          * Stop allocating from this vdev.
1783          */
1784         metaslab_group_passivate(mg);
1785
1786         /*
1787          * Wait for the youngest allocations and frees to sync,
1788          * and then wait for the deferral of those frees to finish.
1789          */
1790         spa_vdev_config_exit(spa, NULL,
1791             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1792
1793         /*
1794          * Evacuate the device.  We don't hold the config lock as writer
1795          * since we need to do I/O but we do keep the
1796          * spa_namespace_lock held.  Once this completes the device
1797          * should no longer have any blocks allocated on it.
1798          */
1799         if (vd->vdev_islog) {
1800                 if (vd->vdev_stat.vs_alloc != 0)
1801                         error = spa_reset_logs(spa);
1802         }
1803
1804         *txg = spa_vdev_config_enter(spa);
1805
1806         if (error != 0) {
1807                 metaslab_group_activate(mg);
1808                 return (error);
1809         }
1810         ASSERT0(vd->vdev_stat.vs_alloc);
1811
1812         /*
1813          * The evacuation succeeded.  Remove any remaining MOS metadata
1814          * associated with this vdev, and wait for these changes to sync.
1815          */
1816         vd->vdev_removing = B_TRUE;
1817
1818         vdev_dirty_leaves(vd, VDD_DTL, *txg);
1819         vdev_config_dirty(vd);
1820
1821         spa_history_log_internal(spa, "vdev remove", NULL,
1822             "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1823             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1824
1825         /* Make sure these changes are sync'ed */
1826         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1827
1828         /* Stop initializing */
1829         (void) vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1830
1831         *txg = spa_vdev_config_enter(spa);
1832
1833         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1834             ESC_ZFS_VDEV_REMOVE_DEV);
1835         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1836         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1837
1838         /* The top ZAP should have been destroyed by vdev_remove_empty. */
1839         ASSERT0(vd->vdev_top_zap);
1840         /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1841         ASSERT0(vd->vdev_leaf_zap);
1842
1843         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1844
1845         if (list_link_active(&vd->vdev_state_dirty_node))
1846                 vdev_state_clean(vd);
1847         if (list_link_active(&vd->vdev_config_dirty_node))
1848                 vdev_config_clean(vd);
1849
1850         /*
1851          * Clean up the vdev namespace.
1852          */
1853         vdev_remove_make_hole_and_free(vd);
1854
1855         if (ev != NULL)
1856                 spa_event_post(ev);
1857
1858         return (0);
1859 }
1860
1861 static int
1862 spa_vdev_remove_top_check(vdev_t *vd)
1863 {
1864         spa_t *spa = vd->vdev_spa;
1865
1866         if (vd != vd->vdev_top)
1867                 return (SET_ERROR(ENOTSUP));
1868
1869         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1870                 return (SET_ERROR(ENOTSUP));
1871
1872         /*
1873          * There has to be enough free space to remove the
1874          * device and leave double the "slop" space (i.e. we
1875          * must leave at least 3% of the pool free, in addition to
1876          * the normal slop space).
1877          */
1878         if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1879             NULL, 0, B_TRUE) <
1880             vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1881                 return (SET_ERROR(ENOSPC));
1882         }
1883
1884         /*
1885          * There can not be a removal in progress.
1886          */
1887         if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1888                 return (SET_ERROR(EBUSY));
1889
1890         /*
1891          * The device must have all its data.
1892          */
1893         if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1894             !vdev_dtl_empty(vd, DTL_OUTAGE))
1895                 return (SET_ERROR(EBUSY));
1896
1897         /*
1898          * The device must be healthy.
1899          */
1900         if (!vdev_readable(vd))
1901                 return (SET_ERROR(EIO));
1902
1903         /*
1904          * All vdevs in normal class must have the same ashift.
1905          */
1906         if (spa->spa_max_ashift != spa->spa_min_ashift) {
1907                 return (SET_ERROR(EINVAL));
1908         }
1909
1910         /*
1911          * All vdevs in normal class must have the same ashift
1912          * and not be raidz.
1913          */
1914         vdev_t *rvd = spa->spa_root_vdev;
1915         int num_indirect = 0;
1916         for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1917                 vdev_t *cvd = rvd->vdev_child[id];
1918                 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1919                         ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1920                 if (cvd->vdev_ops == &vdev_indirect_ops)
1921                         num_indirect++;
1922                 if (!vdev_is_concrete(cvd))
1923                         continue;
1924                 if (cvd->vdev_ops == &vdev_raidz_ops)
1925                         return (SET_ERROR(EINVAL));
1926                 /*
1927                  * Need the mirror to be mirror of leaf vdevs only
1928                  */
1929                 if (cvd->vdev_ops == &vdev_mirror_ops) {
1930                         for (uint64_t cid = 0;
1931                             cid < cvd->vdev_children; cid++) {
1932                                 vdev_t *tmp = cvd->vdev_child[cid];
1933                                 if (!tmp->vdev_ops->vdev_op_leaf)
1934                                         return (SET_ERROR(EINVAL));
1935                         }
1936                 }
1937         }
1938
1939         return (0);
1940 }
1941
1942 /*
1943  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1944  * The config lock is held for the specified TXG.  Once initiated,
1945  * evacuation of all allocated space (copying it to other vdevs) happens
1946  * in the background (see spa_vdev_remove_thread()), and can be canceled
1947  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1948  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1949  */
1950 static int
1951 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1952 {
1953         spa_t *spa = vd->vdev_spa;
1954         int error;
1955
1956         /*
1957          * Check for errors up-front, so that we don't waste time
1958          * passivating the metaslab group and clearing the ZIL if there
1959          * are errors.
1960          */
1961         error = spa_vdev_remove_top_check(vd);
1962         if (error != 0)
1963                 return (error);
1964
1965         /*
1966          * Stop allocating from this vdev.  Note that we must check
1967          * that this is not the only device in the pool before
1968          * passivating, otherwise we will not be able to make
1969          * progress because we can't allocate from any vdevs.
1970          * The above check for sufficient free space serves this
1971          * purpose.
1972          */
1973         metaslab_group_t *mg = vd->vdev_mg;
1974         metaslab_group_passivate(mg);
1975
1976         /*
1977          * Wait for the youngest allocations and frees to sync,
1978          * and then wait for the deferral of those frees to finish.
1979          */
1980         spa_vdev_config_exit(spa, NULL,
1981             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1982
1983         /*
1984          * We must ensure that no "stubby" log blocks are allocated
1985          * on the device to be removed.  These blocks could be
1986          * written at any time, including while we are in the middle
1987          * of copying them.
1988          */
1989         error = spa_reset_logs(spa);
1990
1991         /*
1992          * We stop any initializing that is currently in progress but leave
1993          * the state as "active". This will allow the initializing to resume
1994          * if the removal is canceled sometime later.
1995          */
1996         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
1997
1998         *txg = spa_vdev_config_enter(spa);
1999
2000         /*
2001          * Things might have changed while the config lock was dropped
2002          * (e.g. space usage).  Check for errors again.
2003          */
2004         if (error == 0)
2005                 error = spa_vdev_remove_top_check(vd);
2006
2007         if (error != 0) {
2008                 metaslab_group_activate(mg);
2009                 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2010                 return (error);
2011         }
2012
2013         vd->vdev_removing = B_TRUE;
2014
2015         vdev_dirty_leaves(vd, VDD_DTL, *txg);
2016         vdev_config_dirty(vd);
2017         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2018         dsl_sync_task_nowait(spa->spa_dsl_pool,
2019             vdev_remove_initiate_sync,
2020             (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2021         dmu_tx_commit(tx);
2022
2023         return (0);
2024 }
2025
2026 /*
2027  * Remove a device from the pool.
2028  *
2029  * Removing a device from the vdev namespace requires several steps
2030  * and can take a significant amount of time.  As a result we use
2031  * the spa_vdev_config_[enter/exit] functions which allow us to
2032  * grab and release the spa_config_lock while still holding the namespace
2033  * lock.  During each step the configuration is synced out.
2034  */
2035 int
2036 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2037 {
2038         vdev_t *vd;
2039         nvlist_t **spares, **l2cache, *nv;
2040         uint64_t txg = 0;
2041         uint_t nspares, nl2cache;
2042         int error = 0;
2043         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2044         sysevent_t *ev = NULL;
2045
2046         ASSERT(spa_writeable(spa));
2047
2048         if (!locked)
2049                 txg = spa_vdev_enter(spa);
2050
2051         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2052         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2053                 error = (spa_has_checkpoint(spa)) ?
2054                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2055
2056                 if (!locked)
2057                         return (spa_vdev_exit(spa, NULL, txg, error));
2058
2059                 return (error);
2060         }
2061
2062         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2063
2064         if (spa->spa_spares.sav_vdevs != NULL &&
2065             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2066             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2067             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2068                 /*
2069                  * Only remove the hot spare if it's not currently in use
2070                  * in this pool.
2071                  */
2072                 if (vd == NULL || unspare) {
2073                         char *nvstr = fnvlist_lookup_string(nv,
2074                             ZPOOL_CONFIG_PATH);
2075                         spa_history_log_internal(spa, "vdev remove", NULL,
2076                             "%s vdev (%s) %s", spa_name(spa),
2077                             VDEV_TYPE_SPARE, nvstr);
2078                         if (vd == NULL)
2079                                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2080                         ev = spa_event_create(spa, vd, NULL,
2081                             ESC_ZFS_VDEV_REMOVE_AUX);
2082                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
2083                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2084                         spa_load_spares(spa);
2085                         spa->spa_spares.sav_sync = B_TRUE;
2086                 } else {
2087                         error = SET_ERROR(EBUSY);
2088                 }
2089         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2090             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2091             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2092             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2093                 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2094                 spa_history_log_internal(spa, "vdev remove", NULL,
2095                     "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2096                 /*
2097                  * Cache devices can always be removed.
2098                  */
2099                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2100                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2101                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2102                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2103                 spa_load_l2cache(spa);
2104                 spa->spa_l2cache.sav_sync = B_TRUE;
2105         } else if (vd != NULL && vd->vdev_islog) {
2106                 ASSERT(!locked);
2107                 error = spa_vdev_remove_log(vd, &txg);
2108         } else if (vd != NULL) {
2109                 ASSERT(!locked);
2110                 error = spa_vdev_remove_top(vd, &txg);
2111         } else {
2112                 /*
2113                  * There is no vdev of any kind with the specified guid.
2114                  */
2115                 error = SET_ERROR(ENOENT);
2116         }
2117
2118         if (!locked)
2119                 error = spa_vdev_exit(spa, NULL, txg, error);
2120
2121         if (ev != NULL) {
2122                 if (error != 0) {
2123                         spa_event_discard(ev);
2124                 } else {
2125                         spa_event_post(ev);
2126                 }
2127         }
2128
2129         return (error);
2130 }
2131
2132 int
2133 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2134 {
2135         prs->prs_state = spa->spa_removing_phys.sr_state;
2136
2137         if (prs->prs_state == DSS_NONE)
2138                 return (SET_ERROR(ENOENT));
2139
2140         prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2141         prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2142         prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2143         prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2144         prs->prs_copied = spa->spa_removing_phys.sr_copied;
2145
2146         if (spa->spa_vdev_removal != NULL) {
2147                 for (int i = 0; i < TXG_SIZE; i++) {
2148                         prs->prs_copied +=
2149                             spa->spa_vdev_removal->svr_bytes_done[i];
2150                 }
2151         }
2152
2153         prs->prs_mapping_memory = 0;
2154         uint64_t indirect_vdev_id =
2155             spa->spa_removing_phys.sr_prev_indirect_vdev;
2156         while (indirect_vdev_id != -1) {
2157                 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2158                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2159                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2160
2161                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2162                 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2163                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2164         }
2165
2166         return (0);
2167 }