]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_removal.c
Upgrade Unbound to 1.6.2. More to follow.
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev_removal.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47
48 /*
49  * This file contains the necessary logic to remove vdevs from a
50  * storage pool.  Currently, the only devices that can be removed
51  * are log, cache, and spare devices; and top level vdevs from a pool
52  * w/o raidz.  (Note that members of a mirror can also be removed
53  * by the detach operation.)
54  *
55  * Log vdevs are removed by evacuating them and then turning the vdev
56  * into a hole vdev while holding spa config locks.
57  *
58  * Top level vdevs are removed and converted into an indirect vdev via
59  * a multi-step process:
60  *
61  *  - Disable allocations from this device (spa_vdev_remove_top).
62  *
63  *  - From a new thread (spa_vdev_remove_thread), copy data from
64  *    the removing vdev to a different vdev.  The copy happens in open
65  *    context (spa_vdev_copy_impl) and issues a sync task
66  *    (vdev_mapping_sync) so the sync thread can update the partial
67  *    indirect mappings in core and on disk.
68  *
69  *  - If a free happens during a removal, it is freed from the
70  *    removing vdev, and if it has already been copied, from the new
71  *    location as well (free_from_removing_vdev).
72  *
73  *  - After the removal is completed, the copy thread converts the vdev
74  *    into an indirect vdev (vdev_remove_complete) before instructing
75  *    the sync thread to destroy the space maps and finish the removal
76  *    (spa_finish_removal).
77  */
78
79 typedef struct vdev_copy_arg {
80         metaslab_t      *vca_msp;
81         uint64_t        vca_outstanding_bytes;
82         kcondvar_t      vca_cv;
83         kmutex_t        vca_lock;
84 } vdev_copy_arg_t;
85
86 typedef struct vdev_copy_seg_arg {
87         vdev_copy_arg_t *vcsa_copy_arg;
88         uint64_t        vcsa_txg;
89         dva_t           *vcsa_dest_dva;
90         blkptr_t        *vcsa_dest_bp;
91 } vdev_copy_seg_arg_t;
92
93 /*
94  * The maximum amount of allowed data we're allowed to copy from a device
95  * at a time when removing it.
96  */
97 int zfs_remove_max_copy_bytes = 8 * 1024 * 1024;
98
99 /*
100  * The largest contiguous segment that we will attempt to allocate when
101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102  * there is a performance problem with attempting to allocate large blocks,
103  * consider decreasing this.
104  *
105  * Note: we will issue I/Os of up to this size.  The mpt driver does not
106  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
107  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
108  * 2 physically contiguous pages; if this allocation fails, mpt will drop
109  * the I/O and hang the device.)
110  */
111 int zfs_remove_max_segment = 1024 * 1024;
112
113 /*
114  * This is used by the test suite so that it can ensure that certain
115  * actions happen while in the middle of a removal.
116  */
117 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
118
119 #define VDEV_REMOVAL_ZAP_OBJS   "lzap"
120
121 static void spa_vdev_remove_thread(void *arg);
122
123 static void
124 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
125 {
126         VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
127             DMU_POOL_DIRECTORY_OBJECT,
128             DMU_POOL_REMOVING, sizeof (uint64_t),
129             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
130             &spa->spa_removing_phys, tx));
131 }
132
133 static nvlist_t *
134 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
135 {
136         for (int i = 0; i < count; i++) {
137                 uint64_t guid =
138                     fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
139
140                 if (guid == target_guid)
141                         return (nvpp[i]);
142         }
143
144         return (NULL);
145 }
146
147 static void
148 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
149     nvlist_t *dev_to_remove)
150 {
151         nvlist_t **newdev = NULL;
152
153         if (count > 1)
154                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
155
156         for (int i = 0, j = 0; i < count; i++) {
157                 if (dev[i] == dev_to_remove)
158                         continue;
159                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
160         }
161
162         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
163         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
164
165         for (int i = 0; i < count - 1; i++)
166                 nvlist_free(newdev[i]);
167
168         if (count > 1)
169                 kmem_free(newdev, (count - 1) * sizeof (void *));
170 }
171
172 static spa_vdev_removal_t *
173 spa_vdev_removal_create(vdev_t *vd)
174 {
175         spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
176         mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
177         cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
178         svr->svr_allocd_segs = range_tree_create(NULL, NULL);
179         svr->svr_vdev = vd;
180
181         for (int i = 0; i < TXG_SIZE; i++) {
182                 svr->svr_frees[i] = range_tree_create(NULL, NULL);
183                 list_create(&svr->svr_new_segments[i],
184                     sizeof (vdev_indirect_mapping_entry_t),
185                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
186         }
187
188         return (svr);
189 }
190
191 void
192 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
193 {
194         for (int i = 0; i < TXG_SIZE; i++) {
195                 ASSERT0(svr->svr_bytes_done[i]);
196                 ASSERT0(svr->svr_max_offset_to_sync[i]);
197                 range_tree_destroy(svr->svr_frees[i]);
198                 list_destroy(&svr->svr_new_segments[i]);
199         }
200
201         range_tree_destroy(svr->svr_allocd_segs);
202         mutex_destroy(&svr->svr_lock);
203         cv_destroy(&svr->svr_cv);
204         kmem_free(svr, sizeof (*svr));
205 }
206
207 /*
208  * This is called as a synctask in the txg in which we will mark this vdev
209  * as removing (in the config stored in the MOS).
210  *
211  * It begins the evacuation of a toplevel vdev by:
212  * - initializing the spa_removing_phys which tracks this removal
213  * - computing the amount of space to remove for accounting purposes
214  * - dirtying all dbufs in the spa_config_object
215  * - creating the spa_vdev_removal
216  * - starting the spa_vdev_remove_thread
217  */
218 static void
219 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
220 {
221         vdev_t *vd = arg;
222         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
223         spa_t *spa = vd->vdev_spa;
224         objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
225         spa_vdev_removal_t *svr = NULL;
226         uint64_t txg = dmu_tx_get_txg(tx);
227
228         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
229         svr = spa_vdev_removal_create(vd);
230
231         ASSERT(vd->vdev_removing);
232         ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
233
234         spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
235         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
236                 /*
237                  * By activating the OBSOLETE_COUNTS feature, we prevent
238                  * the pool from being downgraded and ensure that the
239                  * refcounts are precise.
240                  */
241                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
242                 uint64_t one = 1;
243                 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
244                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
245                     &one, tx));
246                 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
247         }
248
249         vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
250         vd->vdev_indirect_mapping =
251             vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
252         vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
253         vd->vdev_indirect_births =
254             vdev_indirect_births_open(mos, vic->vic_births_object);
255         spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
256         spa->spa_removing_phys.sr_start_time = gethrestime_sec();
257         spa->spa_removing_phys.sr_end_time = 0;
258         spa->spa_removing_phys.sr_state = DSS_SCANNING;
259         spa->spa_removing_phys.sr_to_copy = 0;
260         spa->spa_removing_phys.sr_copied = 0;
261
262         /*
263          * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
264          * there may be space in the defer tree, which is free, but still
265          * counted in vs_alloc.
266          */
267         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
268                 metaslab_t *ms = vd->vdev_ms[i];
269                 if (ms->ms_sm == NULL)
270                         continue;
271
272                 /*
273                  * Sync tasks happen before metaslab_sync(), therefore
274                  * smp_alloc and sm_alloc must be the same.
275                  */
276                 ASSERT3U(space_map_allocated(ms->ms_sm), ==,
277                     ms->ms_sm->sm_phys->smp_alloc);
278
279                 spa->spa_removing_phys.sr_to_copy +=
280                     space_map_allocated(ms->ms_sm);
281
282                 /*
283                  * Space which we are freeing this txg does not need to
284                  * be copied.
285                  */
286                 spa->spa_removing_phys.sr_to_copy -=
287                     range_tree_space(ms->ms_freeing);
288
289                 ASSERT0(range_tree_space(ms->ms_freed));
290                 for (int t = 0; t < TXG_SIZE; t++)
291                         ASSERT0(range_tree_space(ms->ms_allocating[t]));
292         }
293
294         /*
295          * Sync tasks are called before metaslab_sync(), so there should
296          * be no already-synced metaslabs in the TXG_CLEAN list.
297          */
298         ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
299
300         spa_sync_removing_state(spa, tx);
301
302         /*
303          * All blocks that we need to read the most recent mapping must be
304          * stored on concrete vdevs.  Therefore, we must dirty anything that
305          * is read before spa_remove_init().  Specifically, the
306          * spa_config_object.  (Note that although we already modified the
307          * spa_config_object in spa_sync_removing_state, that may not have
308          * modified all blocks of the object.)
309          */
310         dmu_object_info_t doi;
311         VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
312         for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
313                 dmu_buf_t *dbuf;
314                 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
315                     offset, FTAG, &dbuf, 0));
316                 dmu_buf_will_dirty(dbuf, tx);
317                 offset += dbuf->db_size;
318                 dmu_buf_rele(dbuf, FTAG);
319         }
320
321         /*
322          * Now that we've allocated the im_object, dirty the vdev to ensure
323          * that the object gets written to the config on disk.
324          */
325         vdev_config_dirty(vd);
326
327         zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
328             "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
329             vic->vic_mapping_object);
330
331         spa_history_log_internal(spa, "vdev remove started", tx,
332             "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
333             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
334         /*
335          * Setting spa_vdev_removal causes subsequent frees to call
336          * free_from_removing_vdev().  Note that we don't need any locking
337          * because we are the sync thread, and metaslab_free_impl() is only
338          * called from syncing context (potentially from a zio taskq thread,
339          * but in any case only when there are outstanding free i/os, which
340          * there are not).
341          */
342         ASSERT3P(spa->spa_vdev_removal, ==, NULL);
343         spa->spa_vdev_removal = svr;
344         svr->svr_thread = thread_create(NULL, 0,
345             spa_vdev_remove_thread, vd, 0, &p0, TS_RUN, minclsyspri);
346 }
347
348 /*
349  * When we are opening a pool, we must read the mapping for each
350  * indirect vdev in order from most recently removed to least
351  * recently removed.  We do this because the blocks for the mapping
352  * of older indirect vdevs may be stored on more recently removed vdevs.
353  * In order to read each indirect mapping object, we must have
354  * initialized all more recently removed vdevs.
355  */
356 int
357 spa_remove_init(spa_t *spa)
358 {
359         int error;
360
361         error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
362             DMU_POOL_DIRECTORY_OBJECT,
363             DMU_POOL_REMOVING, sizeof (uint64_t),
364             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
365             &spa->spa_removing_phys);
366
367         if (error == ENOENT) {
368                 spa->spa_removing_phys.sr_state = DSS_NONE;
369                 spa->spa_removing_phys.sr_removing_vdev = -1;
370                 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
371                 spa->spa_indirect_vdevs_loaded = B_TRUE;
372                 return (0);
373         } else if (error != 0) {
374                 return (error);
375         }
376
377         if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
378                 /*
379                  * We are currently removing a vdev.  Create and
380                  * initialize a spa_vdev_removal_t from the bonus
381                  * buffer of the removing vdevs vdev_im_object, and
382                  * initialize its partial mapping.
383                  */
384                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
385                 vdev_t *vd = vdev_lookup_top(spa,
386                     spa->spa_removing_phys.sr_removing_vdev);
387                 spa_config_exit(spa, SCL_STATE, FTAG);
388
389                 if (vd == NULL)
390                         return (EINVAL);
391
392                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
393
394                 ASSERT(vdev_is_concrete(vd));
395                 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
396                 ASSERT(svr->svr_vdev->vdev_removing);
397
398                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
399                     spa->spa_meta_objset, vic->vic_mapping_object);
400                 vd->vdev_indirect_births = vdev_indirect_births_open(
401                     spa->spa_meta_objset, vic->vic_births_object);
402
403                 spa->spa_vdev_removal = svr;
404         }
405
406         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
407         uint64_t indirect_vdev_id =
408             spa->spa_removing_phys.sr_prev_indirect_vdev;
409         while (indirect_vdev_id != UINT64_MAX) {
410                 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
411                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
412
413                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
414                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
415                     spa->spa_meta_objset, vic->vic_mapping_object);
416                 vd->vdev_indirect_births = vdev_indirect_births_open(
417                     spa->spa_meta_objset, vic->vic_births_object);
418
419                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
420         }
421         spa_config_exit(spa, SCL_STATE, FTAG);
422
423         /*
424          * Now that we've loaded all the indirect mappings, we can allow
425          * reads from other blocks (e.g. via predictive prefetch).
426          */
427         spa->spa_indirect_vdevs_loaded = B_TRUE;
428         return (0);
429 }
430
431 void
432 spa_restart_removal(spa_t *spa)
433 {
434         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
435
436         if (svr == NULL)
437                 return;
438
439         /*
440          * In general when this function is called there is no
441          * removal thread running. The only scenario where this
442          * is not true is during spa_import() where this function
443          * is called twice [once from spa_import_impl() and
444          * spa_async_resume()]. Thus, in the scenario where we
445          * import a pool that has an ongoing removal we don't
446          * want to spawn a second thread.
447          */
448         if (svr->svr_thread != NULL)
449                 return;
450
451         if (!spa_writeable(spa))
452                 return;
453
454         vdev_t *vd = svr->svr_vdev;
455         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
456
457         ASSERT3P(vd, !=, NULL);
458         ASSERT(vd->vdev_removing);
459
460         zfs_dbgmsg("restarting removal of %llu at count=%llu",
461             vd->vdev_id, vdev_indirect_mapping_num_entries(vim));
462         svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, vd,
463             0, &p0, TS_RUN, minclsyspri);
464 }
465
466 /*
467  * Process freeing from a device which is in the middle of being removed.
468  * We must handle this carefully so that we attempt to copy freed data,
469  * and we correctly free already-copied data.
470  */
471 void
472 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
473 {
474         spa_t *spa = vd->vdev_spa;
475         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
476         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
477         uint64_t txg = spa_syncing_txg(spa);
478         uint64_t max_offset_yet = 0;
479
480         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
481         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
482             vdev_indirect_mapping_object(vim));
483         ASSERT3P(vd, ==, svr->svr_vdev);
484
485         mutex_enter(&svr->svr_lock);
486
487         /*
488          * Remove the segment from the removing vdev's spacemap.  This
489          * ensures that we will not attempt to copy this space (if the
490          * removal thread has not yet visited it), and also ensures
491          * that we know what is actually allocated on the new vdevs
492          * (needed if we cancel the removal).
493          *
494          * Note: we must do the metaslab_free_concrete() with the svr_lock
495          * held, so that the remove_thread can not load this metaslab and then
496          * visit this offset between the time that we metaslab_free_concrete()
497          * and when we check to see if it has been visited.
498          *
499          * Note: The checkpoint flag is set to false as having/taking
500          * a checkpoint and removing a device can't happen at the same
501          * time.
502          */
503         ASSERT(!spa_has_checkpoint(spa));
504         metaslab_free_concrete(vd, offset, size, B_FALSE);
505
506         uint64_t synced_size = 0;
507         uint64_t synced_offset = 0;
508         uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
509         if (offset < max_offset_synced) {
510                 /*
511                  * The mapping for this offset is already on disk.
512                  * Free from the new location.
513                  *
514                  * Note that we use svr_max_synced_offset because it is
515                  * updated atomically with respect to the in-core mapping.
516                  * By contrast, vim_max_offset is not.
517                  *
518                  * This block may be split between a synced entry and an
519                  * in-flight or unvisited entry.  Only process the synced
520                  * portion of it here.
521                  */
522                 synced_size = MIN(size, max_offset_synced - offset);
523                 synced_offset = offset;
524
525                 ASSERT3U(max_offset_yet, <=, max_offset_synced);
526                 max_offset_yet = max_offset_synced;
527
528                 DTRACE_PROBE3(remove__free__synced,
529                     spa_t *, spa,
530                     uint64_t, offset,
531                     uint64_t, synced_size);
532
533                 size -= synced_size;
534                 offset += synced_size;
535         }
536
537         /*
538          * Look at all in-flight txgs starting from the currently syncing one
539          * and see if a section of this free is being copied. By starting from
540          * this txg and iterating forward, we might find that this region
541          * was copied in two different txgs and handle it appropriately.
542          */
543         for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
544                 int txgoff = (txg + i) & TXG_MASK;
545                 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
546                         /*
547                          * The mapping for this offset is in flight, and
548                          * will be synced in txg+i.
549                          */
550                         uint64_t inflight_size = MIN(size,
551                             svr->svr_max_offset_to_sync[txgoff] - offset);
552
553                         DTRACE_PROBE4(remove__free__inflight,
554                             spa_t *, spa,
555                             uint64_t, offset,
556                             uint64_t, inflight_size,
557                             uint64_t, txg + i);
558
559                         /*
560                          * We copy data in order of increasing offset.
561                          * Therefore the max_offset_to_sync[] must increase
562                          * (or be zero, indicating that nothing is being
563                          * copied in that txg).
564                          */
565                         if (svr->svr_max_offset_to_sync[txgoff] != 0) {
566                                 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
567                                     >=, max_offset_yet);
568                                 max_offset_yet =
569                                     svr->svr_max_offset_to_sync[txgoff];
570                         }
571
572                         /*
573                          * We've already committed to copying this segment:
574                          * we have allocated space elsewhere in the pool for
575                          * it and have an IO outstanding to copy the data. We
576                          * cannot free the space before the copy has
577                          * completed, or else the copy IO might overwrite any
578                          * new data. To free that space, we record the
579                          * segment in the appropriate svr_frees tree and free
580                          * the mapped space later, in the txg where we have
581                          * completed the copy and synced the mapping (see
582                          * vdev_mapping_sync).
583                          */
584                         range_tree_add(svr->svr_frees[txgoff],
585                             offset, inflight_size);
586                         size -= inflight_size;
587                         offset += inflight_size;
588
589                         /*
590                          * This space is already accounted for as being
591                          * done, because it is being copied in txg+i.
592                          * However, if i!=0, then it is being copied in
593                          * a future txg.  If we crash after this txg
594                          * syncs but before txg+i syncs, then the space
595                          * will be free.  Therefore we must account
596                          * for the space being done in *this* txg
597                          * (when it is freed) rather than the future txg
598                          * (when it will be copied).
599                          */
600                         ASSERT3U(svr->svr_bytes_done[txgoff], >=,
601                             inflight_size);
602                         svr->svr_bytes_done[txgoff] -= inflight_size;
603                         svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
604                 }
605         }
606         ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
607
608         if (size > 0) {
609                 /*
610                  * The copy thread has not yet visited this offset.  Ensure
611                  * that it doesn't.
612                  */
613
614                 DTRACE_PROBE3(remove__free__unvisited,
615                     spa_t *, spa,
616                     uint64_t, offset,
617                     uint64_t, size);
618
619                 if (svr->svr_allocd_segs != NULL)
620                         range_tree_clear(svr->svr_allocd_segs, offset, size);
621
622                 /*
623                  * Since we now do not need to copy this data, for
624                  * accounting purposes we have done our job and can count
625                  * it as completed.
626                  */
627                 svr->svr_bytes_done[txg & TXG_MASK] += size;
628         }
629         mutex_exit(&svr->svr_lock);
630
631         /*
632          * Now that we have dropped svr_lock, process the synced portion
633          * of this free.
634          */
635         if (synced_size > 0) {
636                 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
637
638                 /*
639                  * Note: this can only be called from syncing context,
640                  * and the vdev_indirect_mapping is only changed from the
641                  * sync thread, so we don't need svr_lock while doing
642                  * metaslab_free_impl_cb.
643                  */
644                 boolean_t checkpoint = B_FALSE;
645                 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
646                     metaslab_free_impl_cb, &checkpoint);
647         }
648 }
649
650 /*
651  * Stop an active removal and update the spa_removing phys.
652  */
653 static void
654 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
655 {
656         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
657         ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
658
659         /* Ensure the removal thread has completed before we free the svr. */
660         spa_vdev_remove_suspend(spa);
661
662         ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
663
664         if (state == DSS_FINISHED) {
665                 spa_removing_phys_t *srp = &spa->spa_removing_phys;
666                 vdev_t *vd = svr->svr_vdev;
667                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
668
669                 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
670                         vdev_t *pvd = vdev_lookup_top(spa,
671                             srp->sr_prev_indirect_vdev);
672                         ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
673                 }
674
675                 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
676                 srp->sr_prev_indirect_vdev = vd->vdev_id;
677         }
678         spa->spa_removing_phys.sr_state = state;
679         spa->spa_removing_phys.sr_end_time = gethrestime_sec();
680
681         spa->spa_vdev_removal = NULL;
682         spa_vdev_removal_destroy(svr);
683
684         spa_sync_removing_state(spa, tx);
685
686         vdev_config_dirty(spa->spa_root_vdev);
687 }
688
689 static void
690 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
691 {
692         vdev_t *vd = arg;
693         vdev_indirect_mark_obsolete(vd, offset, size);
694         boolean_t checkpoint = B_FALSE;
695         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
696             metaslab_free_impl_cb, &checkpoint);
697 }
698
699 /*
700  * On behalf of the removal thread, syncs an incremental bit more of
701  * the indirect mapping to disk and updates the in-memory mapping.
702  * Called as a sync task in every txg that the removal thread makes progress.
703  */
704 static void
705 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
706 {
707         spa_vdev_removal_t *svr = arg;
708         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
709         vdev_t *vd = svr->svr_vdev;
710         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
711         uint64_t txg = dmu_tx_get_txg(tx);
712         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
713
714         ASSERT(vic->vic_mapping_object != 0);
715         ASSERT3U(txg, ==, spa_syncing_txg(spa));
716
717         vdev_indirect_mapping_add_entries(vim,
718             &svr->svr_new_segments[txg & TXG_MASK], tx);
719         vdev_indirect_births_add_entry(vd->vdev_indirect_births,
720             vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
721
722         /*
723          * Free the copied data for anything that was freed while the
724          * mapping entries were in flight.
725          */
726         mutex_enter(&svr->svr_lock);
727         range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
728             free_mapped_segment_cb, vd);
729         ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
730             vdev_indirect_mapping_max_offset(vim));
731         svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
732         mutex_exit(&svr->svr_lock);
733
734         spa_sync_removing_state(spa, tx);
735 }
736
737 static void
738 spa_vdev_copy_segment_write_done(zio_t *zio)
739 {
740         vdev_copy_seg_arg_t *vcsa = zio->io_private;
741         vdev_copy_arg_t *vca = vcsa->vcsa_copy_arg;
742         spa_config_exit(zio->io_spa, SCL_STATE, FTAG);
743         abd_free(zio->io_abd);
744
745         mutex_enter(&vca->vca_lock);
746         vca->vca_outstanding_bytes -= zio->io_size;
747         cv_signal(&vca->vca_cv);
748         mutex_exit(&vca->vca_lock);
749
750         ASSERT0(zio->io_error);
751         kmem_free(vcsa->vcsa_dest_bp, sizeof (blkptr_t));
752         kmem_free(vcsa, sizeof (vdev_copy_seg_arg_t));
753 }
754
755 static void
756 spa_vdev_copy_segment_read_done(zio_t *zio)
757 {
758         vdev_copy_seg_arg_t *vcsa = zio->io_private;
759         dva_t *dest_dva = vcsa->vcsa_dest_dva;
760         uint64_t txg = vcsa->vcsa_txg;
761         spa_t *spa = zio->io_spa;
762         vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(dest_dva));
763         blkptr_t *bp = NULL;
764         dva_t *dva = NULL;
765         uint64_t size = zio->io_size;
766
767         ASSERT3P(dest_vd, !=, NULL);
768         ASSERT0(zio->io_error);
769
770         vcsa->vcsa_dest_bp = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
771         bp = vcsa->vcsa_dest_bp;
772         dva = bp->blk_dva;
773
774         BP_ZERO(bp);
775
776         /* initialize with dest_dva */
777         bcopy(dest_dva, dva, sizeof (dva_t));
778         BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
779
780         BP_SET_LSIZE(bp, size);
781         BP_SET_PSIZE(bp, size);
782         BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
783         BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
784         BP_SET_TYPE(bp, DMU_OT_NONE);
785         BP_SET_LEVEL(bp, 0);
786         BP_SET_DEDUP(bp, 0);
787         BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
788
789         zio_nowait(zio_rewrite(spa->spa_txg_zio[txg & TXG_MASK], spa,
790             txg, bp, zio->io_abd, size,
791             spa_vdev_copy_segment_write_done, vcsa,
792             ZIO_PRIORITY_REMOVAL, 0, NULL));
793 }
794
795 static int
796 spa_vdev_copy_segment(vdev_t *vd, uint64_t start, uint64_t size, uint64_t txg,
797     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
798 {
799         metaslab_group_t *mg = vd->vdev_mg;
800         spa_t *spa = vd->vdev_spa;
801         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
802         vdev_indirect_mapping_entry_t *entry;
803         vdev_copy_seg_arg_t *private;
804         dva_t dst = { 0 };
805         blkptr_t blk, *bp = &blk;
806         dva_t *dva = bp->blk_dva;
807
808         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
809
810         int error = metaslab_alloc_dva(spa, mg->mg_class, size,
811             &dst, 0, NULL, txg, 0, zal);
812         if (error != 0)
813                 return (error);
814
815         /*
816          * We can't have any padding of the allocated size, otherwise we will
817          * misunderstand what's allocated, and the size of the mapping.
818          * The caller ensures this will be true by passing in a size that is
819          * aligned to the worst (highest) ashift in the pool.
820          */
821         ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
822
823         mutex_enter(&vca->vca_lock);
824         vca->vca_outstanding_bytes += size;
825         mutex_exit(&vca->vca_lock);
826
827         entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
828         DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
829         entry->vime_mapping.vimep_dst = dst;
830
831         private = kmem_alloc(sizeof (vdev_copy_seg_arg_t), KM_SLEEP);
832         private->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
833         private->vcsa_txg = txg;
834         private->vcsa_copy_arg = vca;
835
836         /*
837          * This lock is eventually released by the donefunc for the
838          * zio_write_phys that finishes copying the data.
839          */
840         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
841
842         /*
843          * Do logical I/O, letting the redundancy vdevs (like mirror)
844          * handle their own I/O instead of duplicating that code here.
845          */
846         BP_ZERO(bp);
847
848         DVA_SET_VDEV(&dva[0], vd->vdev_id);
849         DVA_SET_OFFSET(&dva[0], start);
850         DVA_SET_GANG(&dva[0], 0);
851         DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, size));
852
853         BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
854
855         BP_SET_LSIZE(bp, size);
856         BP_SET_PSIZE(bp, size);
857         BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
858         BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
859         BP_SET_TYPE(bp, DMU_OT_NONE);
860         BP_SET_LEVEL(bp, 0);
861         BP_SET_DEDUP(bp, 0);
862         BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
863
864         zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa,
865             bp, abd_alloc_for_io(size, B_FALSE), size,
866             spa_vdev_copy_segment_read_done, private,
867             ZIO_PRIORITY_REMOVAL, 0, NULL));
868
869         list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
870         ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
871         vdev_dirty(vd, 0, NULL, txg);
872
873         return (0);
874 }
875
876 /*
877  * Complete the removal of a toplevel vdev. This is called as a
878  * synctask in the same txg that we will sync out the new config (to the
879  * MOS object) which indicates that this vdev is indirect.
880  */
881 static void
882 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
883 {
884         spa_vdev_removal_t *svr = arg;
885         vdev_t *vd = svr->svr_vdev;
886         spa_t *spa = vd->vdev_spa;
887
888         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
889
890         for (int i = 0; i < TXG_SIZE; i++) {
891                 ASSERT0(svr->svr_bytes_done[i]);
892         }
893
894         ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
895             spa->spa_removing_phys.sr_to_copy);
896
897         vdev_destroy_spacemaps(vd, tx);
898
899         /* destroy leaf zaps, if any */
900         ASSERT3P(svr->svr_zaplist, !=, NULL);
901         for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
902             pair != NULL;
903             pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
904                 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
905         }
906         fnvlist_free(svr->svr_zaplist);
907
908         spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
909         /* vd->vdev_path is not available here */
910         spa_history_log_internal(spa, "vdev remove completed",  tx,
911             "%s vdev %llu", spa_name(spa), vd->vdev_id);
912 }
913
914 static void
915 vdev_indirect_state_transfer(vdev_t *ivd, vdev_t *vd)
916 {
917         ivd->vdev_indirect_config = vd->vdev_indirect_config;
918
919         ASSERT3P(ivd->vdev_indirect_mapping, ==, NULL);
920         ASSERT(vd->vdev_indirect_mapping != NULL);
921         ivd->vdev_indirect_mapping = vd->vdev_indirect_mapping;
922         vd->vdev_indirect_mapping = NULL;
923
924         ASSERT3P(ivd->vdev_indirect_births, ==, NULL);
925         ASSERT(vd->vdev_indirect_births != NULL);
926         ivd->vdev_indirect_births = vd->vdev_indirect_births;
927         vd->vdev_indirect_births = NULL;
928
929         ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
930         ASSERT0(range_tree_space(ivd->vdev_obsolete_segments));
931
932         if (vd->vdev_obsolete_sm != NULL) {
933                 ASSERT3U(ivd->vdev_asize, ==, vd->vdev_asize);
934
935                 /*
936                  * We cannot use space_map_{open,close} because we hold all
937                  * the config locks as writer.
938                  */
939                 ASSERT3P(ivd->vdev_obsolete_sm, ==, NULL);
940                 ivd->vdev_obsolete_sm = vd->vdev_obsolete_sm;
941                 vd->vdev_obsolete_sm = NULL;
942         }
943 }
944
945 static void
946 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
947 {
948         ASSERT3P(zlist, !=, NULL);
949         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
950
951         if (vd->vdev_leaf_zap != 0) {
952                 char zkey[32];
953                 (void) snprintf(zkey, sizeof (zkey), "%s-%ju",
954                     VDEV_REMOVAL_ZAP_OBJS, (uintmax_t)vd->vdev_leaf_zap);
955                 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
956         }
957
958         for (uint64_t id = 0; id < vd->vdev_children; id++) {
959                 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
960         }
961 }
962
963 static void
964 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
965 {
966         vdev_t *ivd;
967         dmu_tx_t *tx;
968         spa_t *spa = vd->vdev_spa;
969         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
970
971         /*
972          * First, build a list of leaf zaps to be destroyed.
973          * This is passed to the sync context thread,
974          * which does the actual unlinking.
975          */
976         svr->svr_zaplist = fnvlist_alloc();
977         vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
978
979         ivd = vdev_add_parent(vd, &vdev_indirect_ops);
980
981         vd->vdev_leaf_zap = 0;
982
983         vdev_remove_child(ivd, vd);
984         vdev_compact_children(ivd);
985
986         vdev_indirect_state_transfer(ivd, vd);
987
988         svr->svr_vdev = ivd;
989
990         ASSERT(!ivd->vdev_removing);
991         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
992
993         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
994         dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
995             0, ZFS_SPACE_CHECK_NONE, tx);
996         dmu_tx_commit(tx);
997
998         /*
999          * Indicate that this thread has exited.
1000          * After this, we can not use svr.
1001          */
1002         mutex_enter(&svr->svr_lock);
1003         svr->svr_thread = NULL;
1004         cv_broadcast(&svr->svr_cv);
1005         mutex_exit(&svr->svr_lock);
1006 }
1007
1008 /*
1009  * Complete the removal of a toplevel vdev. This is called in open
1010  * context by the removal thread after we have copied all vdev's data.
1011  */
1012 static void
1013 vdev_remove_complete(vdev_t *vd)
1014 {
1015         spa_t *spa = vd->vdev_spa;
1016         uint64_t txg;
1017
1018         /*
1019          * Wait for any deferred frees to be synced before we call
1020          * vdev_metaslab_fini()
1021          */
1022         txg_wait_synced(spa->spa_dsl_pool, 0);
1023
1024         txg = spa_vdev_enter(spa);
1025         zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1026             vd->vdev_id, txg);
1027
1028         /*
1029          * Discard allocation state.
1030          */
1031         if (vd->vdev_mg != NULL) {
1032                 vdev_metaslab_fini(vd);
1033                 metaslab_group_destroy(vd->vdev_mg);
1034                 vd->vdev_mg = NULL;
1035         }
1036         ASSERT0(vd->vdev_stat.vs_space);
1037         ASSERT0(vd->vdev_stat.vs_dspace);
1038
1039         vdev_remove_replace_with_indirect(vd, txg);
1040
1041         /*
1042          * We now release the locks, allowing spa_sync to run and finish the
1043          * removal via vdev_remove_complete_sync in syncing context.
1044          */
1045         (void) spa_vdev_exit(spa, NULL, txg, 0);
1046
1047         /*
1048          * Top ZAP should have been transferred to the indirect vdev in
1049          * vdev_remove_replace_with_indirect.
1050          */
1051         ASSERT0(vd->vdev_top_zap);
1052
1053         /*
1054          * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1055          */
1056         ASSERT0(vd->vdev_leaf_zap);
1057
1058         txg = spa_vdev_enter(spa);
1059         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1060         /*
1061          * Request to update the config and the config cachefile.
1062          */
1063         vdev_config_dirty(spa->spa_root_vdev);
1064         (void) spa_vdev_exit(spa, vd, txg, 0);
1065 }
1066
1067 /*
1068  * Evacuates a segment of size at most max_alloc from the vdev
1069  * via repeated calls to spa_vdev_copy_segment. If an allocation
1070  * fails, the pool is probably too fragmented to handle such a
1071  * large size, so decrease max_alloc so that the caller will not try
1072  * this size again this txg.
1073  */
1074 static void
1075 spa_vdev_copy_impl(spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1076     uint64_t *max_alloc, dmu_tx_t *tx)
1077 {
1078         uint64_t txg = dmu_tx_get_txg(tx);
1079         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1080
1081         mutex_enter(&svr->svr_lock);
1082
1083         range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1084         if (rs == NULL) {
1085                 mutex_exit(&svr->svr_lock);
1086                 return;
1087         }
1088         uint64_t offset = rs->rs_start;
1089         uint64_t length = MIN(rs->rs_end - rs->rs_start, *max_alloc);
1090
1091         range_tree_remove(svr->svr_allocd_segs, offset, length);
1092
1093         if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1094                 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1095                     svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1096         }
1097
1098         svr->svr_max_offset_to_sync[txg & TXG_MASK] = offset + length;
1099
1100         /*
1101          * Note: this is the amount of *allocated* space
1102          * that we are taking care of each txg.
1103          */
1104         svr->svr_bytes_done[txg & TXG_MASK] += length;
1105
1106         mutex_exit(&svr->svr_lock);
1107
1108         zio_alloc_list_t zal;
1109         metaslab_trace_init(&zal);
1110         uint64_t thismax = *max_alloc;
1111         while (length > 0) {
1112                 uint64_t mylen = MIN(length, thismax);
1113
1114                 int error = spa_vdev_copy_segment(svr->svr_vdev,
1115                     offset, mylen, txg, vca, &zal);
1116
1117                 if (error == ENOSPC) {
1118                         /*
1119                          * Cut our segment in half, and don't try this
1120                          * segment size again this txg.  Note that the
1121                          * allocation size must be aligned to the highest
1122                          * ashift in the pool, so that the allocation will
1123                          * not be padded out to a multiple of the ashift,
1124                          * which could cause us to think that this mapping
1125                          * is larger than we intended.
1126                          */
1127                         ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1128                         ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1129                         thismax = P2ROUNDUP(mylen / 2,
1130                             1 << spa->spa_max_ashift);
1131                         ASSERT3U(thismax, <, mylen);
1132                         /*
1133                          * The minimum-size allocation can not fail.
1134                          */
1135                         ASSERT3U(mylen, >, 1 << spa->spa_max_ashift);
1136                         *max_alloc = mylen - (1 << spa->spa_max_ashift);
1137                 } else {
1138                         ASSERT0(error);
1139                         length -= mylen;
1140                         offset += mylen;
1141
1142                         /*
1143                          * We've performed an allocation, so reset the
1144                          * alloc trace list.
1145                          */
1146                         metaslab_trace_fini(&zal);
1147                         metaslab_trace_init(&zal);
1148                 }
1149         }
1150         metaslab_trace_fini(&zal);
1151 }
1152
1153 /*
1154  * The removal thread operates in open context.  It iterates over all
1155  * allocated space in the vdev, by loading each metaslab's spacemap.
1156  * For each contiguous segment of allocated space (capping the segment
1157  * size at SPA_MAXBLOCKSIZE), we:
1158  *    - Allocate space for it on another vdev.
1159  *    - Create a new mapping from the old location to the new location
1160  *      (as a record in svr_new_segments).
1161  *    - Initiate a logical read zio to get the data off the removing disk.
1162  *    - In the read zio's done callback, initiate a logical write zio to
1163  *      write it to the new vdev.
1164  * Note that all of this will take effect when a particular TXG syncs.
1165  * The sync thread ensures that all the phys reads and writes for the syncing
1166  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1167  * (see vdev_mapping_sync()).
1168  */
1169 static void
1170 spa_vdev_remove_thread(void *arg)
1171 {
1172         vdev_t *vd = arg;
1173         spa_t *spa = vd->vdev_spa;
1174         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1175         vdev_copy_arg_t vca;
1176         uint64_t max_alloc = zfs_remove_max_segment;
1177         uint64_t last_txg = 0;
1178         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1179         uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1180
1181         ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1182         ASSERT(vdev_is_concrete(vd));
1183         ASSERT(vd->vdev_removing);
1184         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1185         ASSERT3P(svr->svr_vdev, ==, vd);
1186         ASSERT(vim != NULL);
1187
1188         mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1189         cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1190         vca.vca_outstanding_bytes = 0;
1191
1192         mutex_enter(&svr->svr_lock);
1193
1194         /*
1195          * Start from vim_max_offset so we pick up where we left off
1196          * if we are restarting the removal after opening the pool.
1197          */
1198         uint64_t msi;
1199         for (msi = start_offset >> vd->vdev_ms_shift;
1200             msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1201                 metaslab_t *msp = vd->vdev_ms[msi];
1202                 ASSERT3U(msi, <=, vd->vdev_ms_count);
1203
1204                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1205
1206                 mutex_enter(&msp->ms_sync_lock);
1207                 mutex_enter(&msp->ms_lock);
1208
1209                 /*
1210                  * Assert nothing in flight -- ms_*tree is empty.
1211                  */
1212                 for (int i = 0; i < TXG_SIZE; i++) {
1213                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1214                 }
1215
1216                 /*
1217                  * If the metaslab has ever been allocated from (ms_sm!=NULL),
1218                  * read the allocated segments from the space map object
1219                  * into svr_allocd_segs. Since we do this while holding
1220                  * svr_lock and ms_sync_lock, concurrent frees (which
1221                  * would have modified the space map) will wait for us
1222                  * to finish loading the spacemap, and then take the
1223                  * appropriate action (see free_from_removing_vdev()).
1224                  */
1225                 if (msp->ms_sm != NULL) {
1226                         space_map_t *sm = NULL;
1227
1228                         /*
1229                          * We have to open a new space map here, because
1230                          * ms_sm's sm_length and sm_alloc may not reflect
1231                          * what's in the object contents, if we are in between
1232                          * metaslab_sync() and metaslab_sync_done().
1233                          */
1234                         VERIFY0(space_map_open(&sm,
1235                             spa->spa_dsl_pool->dp_meta_objset,
1236                             msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1237                             msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1238                         space_map_update(sm);
1239                         VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1240                             SM_ALLOC));
1241                         space_map_close(sm);
1242
1243                         range_tree_walk(msp->ms_freeing,
1244                             range_tree_remove, svr->svr_allocd_segs);
1245
1246                         /*
1247                          * When we are resuming from a paused removal (i.e.
1248                          * when importing a pool with a removal in progress),
1249                          * discard any state that we have already processed.
1250                          */
1251                         range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1252                 }
1253                 mutex_exit(&msp->ms_lock);
1254                 mutex_exit(&msp->ms_sync_lock);
1255
1256                 vca.vca_msp = msp;
1257                 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1258                     avl_numnodes(&svr->svr_allocd_segs->rt_root),
1259                     msp->ms_id);
1260
1261                 while (!svr->svr_thread_exit &&
1262                     !range_tree_is_empty(svr->svr_allocd_segs)) {
1263
1264                         mutex_exit(&svr->svr_lock);
1265
1266                         /*
1267                          * This delay will pause the removal around the point
1268                          * specified by zfs_remove_max_bytes_pause. We do this
1269                          * solely from the test suite or during debugging.
1270                          */
1271                         uint64_t bytes_copied =
1272                             spa->spa_removing_phys.sr_copied;
1273                         for (int i = 0; i < TXG_SIZE; i++)
1274                                 bytes_copied += svr->svr_bytes_done[i];
1275                         while (zfs_remove_max_bytes_pause <= bytes_copied &&
1276                             !svr->svr_thread_exit)
1277                                 delay(hz);
1278
1279                         mutex_enter(&vca.vca_lock);
1280                         while (vca.vca_outstanding_bytes >
1281                             zfs_remove_max_copy_bytes) {
1282                                 cv_wait(&vca.vca_cv, &vca.vca_lock);
1283                         }
1284                         mutex_exit(&vca.vca_lock);
1285
1286                         dmu_tx_t *tx =
1287                             dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1288
1289                         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1290                         uint64_t txg = dmu_tx_get_txg(tx);
1291
1292                         if (txg != last_txg)
1293                                 max_alloc = zfs_remove_max_segment;
1294                         last_txg = txg;
1295
1296                         spa_vdev_copy_impl(svr, &vca, &max_alloc, tx);
1297
1298                         dmu_tx_commit(tx);
1299                         mutex_enter(&svr->svr_lock);
1300                 }
1301         }
1302
1303         mutex_exit(&svr->svr_lock);
1304         /*
1305          * Wait for all copies to finish before cleaning up the vca.
1306          */
1307         txg_wait_synced(spa->spa_dsl_pool, 0);
1308         ASSERT0(vca.vca_outstanding_bytes);
1309
1310         mutex_destroy(&vca.vca_lock);
1311         cv_destroy(&vca.vca_cv);
1312
1313         if (svr->svr_thread_exit) {
1314                 mutex_enter(&svr->svr_lock);
1315                 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1316                 svr->svr_thread = NULL;
1317                 cv_broadcast(&svr->svr_cv);
1318                 mutex_exit(&svr->svr_lock);
1319         } else {
1320                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1321                 vdev_remove_complete(vd);
1322         }
1323         thread_exit();
1324 }
1325
1326 void
1327 spa_vdev_remove_suspend(spa_t *spa)
1328 {
1329         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1330
1331         if (svr == NULL)
1332                 return;
1333
1334         mutex_enter(&svr->svr_lock);
1335         svr->svr_thread_exit = B_TRUE;
1336         while (svr->svr_thread != NULL)
1337                 cv_wait(&svr->svr_cv, &svr->svr_lock);
1338         svr->svr_thread_exit = B_FALSE;
1339         mutex_exit(&svr->svr_lock);
1340 }
1341
1342 /* ARGSUSED */
1343 static int
1344 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1345 {
1346         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1347
1348         if (spa->spa_vdev_removal == NULL)
1349                 return (ESRCH);
1350         return (0);
1351 }
1352
1353 /*
1354  * Cancel a removal by freeing all entries from the partial mapping
1355  * and marking the vdev as no longer being removing.
1356  */
1357 /* ARGSUSED */
1358 static void
1359 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1360 {
1361         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1362         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1363         vdev_t *vd = svr->svr_vdev;
1364         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1365         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1366         objset_t *mos = spa->spa_meta_objset;
1367
1368         ASSERT3P(svr->svr_thread, ==, NULL);
1369
1370         spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1371         if (vdev_obsolete_counts_are_precise(vd)) {
1372                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1373                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1374                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1375         }
1376
1377         if (vdev_obsolete_sm_object(vd) != 0) {
1378                 ASSERT(vd->vdev_obsolete_sm != NULL);
1379                 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1380                     space_map_object(vd->vdev_obsolete_sm));
1381
1382                 space_map_free(vd->vdev_obsolete_sm, tx);
1383                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1384                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1385                 space_map_close(vd->vdev_obsolete_sm);
1386                 vd->vdev_obsolete_sm = NULL;
1387                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1388         }
1389         for (int i = 0; i < TXG_SIZE; i++) {
1390                 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1391                 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1392                     vdev_indirect_mapping_max_offset(vim));
1393         }
1394
1395         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1396                 metaslab_t *msp = vd->vdev_ms[msi];
1397
1398                 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1399                         break;
1400
1401                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1402
1403                 mutex_enter(&msp->ms_lock);
1404
1405                 /*
1406                  * Assert nothing in flight -- ms_*tree is empty.
1407                  */
1408                 for (int i = 0; i < TXG_SIZE; i++)
1409                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1410                 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1411                         ASSERT0(range_tree_space(msp->ms_defer[i]));
1412                 ASSERT0(range_tree_space(msp->ms_freed));
1413
1414                 if (msp->ms_sm != NULL) {
1415                         /*
1416                          * Assert that the in-core spacemap has the same
1417                          * length as the on-disk one, so we can use the
1418                          * existing in-core spacemap to load it from disk.
1419                          */
1420                         ASSERT3U(msp->ms_sm->sm_alloc, ==,
1421                             msp->ms_sm->sm_phys->smp_alloc);
1422                         ASSERT3U(msp->ms_sm->sm_length, ==,
1423                             msp->ms_sm->sm_phys->smp_objsize);
1424
1425                         mutex_enter(&svr->svr_lock);
1426                         VERIFY0(space_map_load(msp->ms_sm,
1427                             svr->svr_allocd_segs, SM_ALLOC));
1428                         range_tree_walk(msp->ms_freeing,
1429                             range_tree_remove, svr->svr_allocd_segs);
1430
1431                         /*
1432                          * Clear everything past what has been synced,
1433                          * because we have not allocated mappings for it yet.
1434                          */
1435                         uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1436                         range_tree_clear(svr->svr_allocd_segs, syncd,
1437                             msp->ms_sm->sm_start + msp->ms_sm->sm_size - syncd);
1438
1439                         mutex_exit(&svr->svr_lock);
1440                 }
1441                 mutex_exit(&msp->ms_lock);
1442
1443                 mutex_enter(&svr->svr_lock);
1444                 range_tree_vacate(svr->svr_allocd_segs,
1445                     free_mapped_segment_cb, vd);
1446                 mutex_exit(&svr->svr_lock);
1447         }
1448
1449         /*
1450          * Note: this must happen after we invoke free_mapped_segment_cb,
1451          * because it adds to the obsolete_segments.
1452          */
1453         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1454
1455         ASSERT3U(vic->vic_mapping_object, ==,
1456             vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1457         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1458         vd->vdev_indirect_mapping = NULL;
1459         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1460         vic->vic_mapping_object = 0;
1461
1462         ASSERT3U(vic->vic_births_object, ==,
1463             vdev_indirect_births_object(vd->vdev_indirect_births));
1464         vdev_indirect_births_close(vd->vdev_indirect_births);
1465         vd->vdev_indirect_births = NULL;
1466         vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1467         vic->vic_births_object = 0;
1468
1469         /*
1470          * We may have processed some frees from the removing vdev in this
1471          * txg, thus increasing svr_bytes_done; discard that here to
1472          * satisfy the assertions in spa_vdev_removal_destroy().
1473          * Note that future txg's can not have any bytes_done, because
1474          * future TXG's are only modified from open context, and we have
1475          * already shut down the copying thread.
1476          */
1477         svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1478         spa_finish_removal(spa, DSS_CANCELED, tx);
1479
1480         vd->vdev_removing = B_FALSE;
1481         vdev_config_dirty(vd);
1482
1483         zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1484             vd->vdev_id, dmu_tx_get_txg(tx));
1485         spa_history_log_internal(spa, "vdev remove canceled", tx,
1486             "%s vdev %llu %s", spa_name(spa),
1487             vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1488 }
1489
1490 int
1491 spa_vdev_remove_cancel(spa_t *spa)
1492 {
1493         spa_vdev_remove_suspend(spa);
1494
1495         if (spa->spa_vdev_removal == NULL)
1496                 return (ESRCH);
1497
1498         uint64_t vdid = spa->spa_vdev_removal->svr_vdev->vdev_id;
1499
1500         int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1501             spa_vdev_remove_cancel_sync, NULL, 0,
1502             ZFS_SPACE_CHECK_EXTRA_RESERVED);
1503
1504         if (error == 0) {
1505                 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1506                 vdev_t *vd = vdev_lookup_top(spa, vdid);
1507                 metaslab_group_activate(vd->vdev_mg);
1508                 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1509         }
1510
1511         return (error);
1512 }
1513
1514 /*
1515  * Called every sync pass of every txg if there's a svr.
1516  */
1517 void
1518 svr_sync(spa_t *spa, dmu_tx_t *tx)
1519 {
1520         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1521         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1522
1523         /*
1524          * This check is necessary so that we do not dirty the
1525          * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1526          * is nothing to do.  Dirtying it every time would prevent us
1527          * from syncing-to-convergence.
1528          */
1529         if (svr->svr_bytes_done[txgoff] == 0)
1530                 return;
1531
1532         /*
1533          * Update progress accounting.
1534          */
1535         spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1536         svr->svr_bytes_done[txgoff] = 0;
1537
1538         spa_sync_removing_state(spa, tx);
1539 }
1540
1541 static void
1542 vdev_remove_make_hole_and_free(vdev_t *vd)
1543 {
1544         uint64_t id = vd->vdev_id;
1545         spa_t *spa = vd->vdev_spa;
1546         vdev_t *rvd = spa->spa_root_vdev;
1547         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1548
1549         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1550         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1551
1552         vdev_free(vd);
1553
1554         if (last_vdev) {
1555                 vdev_compact_children(rvd);
1556         } else {
1557                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1558                 vdev_add_child(rvd, vd);
1559         }
1560         vdev_config_dirty(rvd);
1561
1562         /*
1563          * Reassess the health of our root vdev.
1564          */
1565         vdev_reopen(rvd);
1566 }
1567
1568 /*
1569  * Remove a log device.  The config lock is held for the specified TXG.
1570  */
1571 static int
1572 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1573 {
1574         metaslab_group_t *mg = vd->vdev_mg;
1575         spa_t *spa = vd->vdev_spa;
1576         int error = 0;
1577
1578         ASSERT(vd->vdev_islog);
1579         ASSERT(vd == vd->vdev_top);
1580
1581         /*
1582          * Stop allocating from this vdev.
1583          */
1584         metaslab_group_passivate(mg);
1585
1586         /*
1587          * Wait for the youngest allocations and frees to sync,
1588          * and then wait for the deferral of those frees to finish.
1589          */
1590         spa_vdev_config_exit(spa, NULL,
1591             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1592
1593         /*
1594          * Evacuate the device.  We don't hold the config lock as writer
1595          * since we need to do I/O but we do keep the
1596          * spa_namespace_lock held.  Once this completes the device
1597          * should no longer have any blocks allocated on it.
1598          */
1599         if (vd->vdev_islog) {
1600                 if (vd->vdev_stat.vs_alloc != 0)
1601                         error = spa_reset_logs(spa);
1602         }
1603
1604         *txg = spa_vdev_config_enter(spa);
1605
1606         if (error != 0) {
1607                 metaslab_group_activate(mg);
1608                 return (error);
1609         }
1610         ASSERT0(vd->vdev_stat.vs_alloc);
1611
1612         /*
1613          * The evacuation succeeded.  Remove any remaining MOS metadata
1614          * associated with this vdev, and wait for these changes to sync.
1615          */
1616         vd->vdev_removing = B_TRUE;
1617
1618         vdev_dirty_leaves(vd, VDD_DTL, *txg);
1619         vdev_config_dirty(vd);
1620
1621         spa_history_log_internal(spa, "vdev remove", NULL,
1622             "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1623             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1624
1625         /* Make sure these changes are sync'ed */
1626         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1627
1628         *txg = spa_vdev_config_enter(spa);
1629
1630         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1631             ESC_ZFS_VDEV_REMOVE_DEV);
1632         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1633         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1634
1635         /* The top ZAP should have been destroyed by vdev_remove_empty. */
1636         ASSERT0(vd->vdev_top_zap);
1637         /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1638         ASSERT0(vd->vdev_leaf_zap);
1639
1640         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1641
1642         if (list_link_active(&vd->vdev_state_dirty_node))
1643                 vdev_state_clean(vd);
1644         if (list_link_active(&vd->vdev_config_dirty_node))
1645                 vdev_config_clean(vd);
1646
1647         /*
1648          * Clean up the vdev namespace.
1649          */
1650         vdev_remove_make_hole_and_free(vd);
1651
1652         if (ev != NULL)
1653                 spa_event_post(ev);
1654
1655         return (0);
1656 }
1657
1658 static int
1659 spa_vdev_remove_top_check(vdev_t *vd)
1660 {
1661         spa_t *spa = vd->vdev_spa;
1662
1663         if (vd != vd->vdev_top)
1664                 return (SET_ERROR(ENOTSUP));
1665
1666         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1667                 return (SET_ERROR(ENOTSUP));
1668
1669         /*
1670          * There has to be enough free space to remove the
1671          * device and leave double the "slop" space (i.e. we
1672          * must leave at least 3% of the pool free, in addition to
1673          * the normal slop space).
1674          */
1675         if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1676             NULL, 0, B_TRUE) <
1677             vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1678                 return (SET_ERROR(ENOSPC));
1679         }
1680
1681         /*
1682          * There can not be a removal in progress.
1683          */
1684         if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1685                 return (SET_ERROR(EBUSY));
1686
1687         /*
1688          * The device must have all its data.
1689          */
1690         if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1691             !vdev_dtl_empty(vd, DTL_OUTAGE))
1692                 return (SET_ERROR(EBUSY));
1693
1694         /*
1695          * The device must be healthy.
1696          */
1697         if (!vdev_readable(vd))
1698                 return (SET_ERROR(EIO));
1699
1700         /*
1701          * All vdevs in normal class must have the same ashift.
1702          */
1703         if (spa->spa_max_ashift != spa->spa_min_ashift) {
1704                 return (SET_ERROR(EINVAL));
1705         }
1706
1707         /*
1708          * All vdevs in normal class must have the same ashift
1709          * and not be raidz.
1710          */
1711         vdev_t *rvd = spa->spa_root_vdev;
1712         int num_indirect = 0;
1713         for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1714                 vdev_t *cvd = rvd->vdev_child[id];
1715                 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1716                         ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1717                 if (cvd->vdev_ops == &vdev_indirect_ops)
1718                         num_indirect++;
1719                 if (!vdev_is_concrete(cvd))
1720                         continue;
1721                 if (cvd->vdev_ops == &vdev_raidz_ops)
1722                         return (SET_ERROR(EINVAL));
1723                 /*
1724                  * Need the mirror to be mirror of leaf vdevs only
1725                  */
1726                 if (cvd->vdev_ops == &vdev_mirror_ops) {
1727                         for (uint64_t cid = 0;
1728                             cid < cvd->vdev_children; cid++) {
1729                                 vdev_t *tmp = cvd->vdev_child[cid];
1730                                 if (!tmp->vdev_ops->vdev_op_leaf)
1731                                         return (SET_ERROR(EINVAL));
1732                         }
1733                 }
1734         }
1735
1736         return (0);
1737 }
1738
1739 /*
1740  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1741  * The config lock is held for the specified TXG.  Once initiated,
1742  * evacuation of all allocated space (copying it to other vdevs) happens
1743  * in the background (see spa_vdev_remove_thread()), and can be canceled
1744  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1745  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1746  */
1747 static int
1748 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1749 {
1750         spa_t *spa = vd->vdev_spa;
1751         int error;
1752
1753         /*
1754          * Check for errors up-front, so that we don't waste time
1755          * passivating the metaslab group and clearing the ZIL if there
1756          * are errors.
1757          */
1758         error = spa_vdev_remove_top_check(vd);
1759         if (error != 0)
1760                 return (error);
1761
1762         /*
1763          * Stop allocating from this vdev.  Note that we must check
1764          * that this is not the only device in the pool before
1765          * passivating, otherwise we will not be able to make
1766          * progress because we can't allocate from any vdevs.
1767          * The above check for sufficient free space serves this
1768          * purpose.
1769          */
1770         metaslab_group_t *mg = vd->vdev_mg;
1771         metaslab_group_passivate(mg);
1772
1773         /*
1774          * Wait for the youngest allocations and frees to sync,
1775          * and then wait for the deferral of those frees to finish.
1776          */
1777         spa_vdev_config_exit(spa, NULL,
1778             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1779
1780         /*
1781          * We must ensure that no "stubby" log blocks are allocated
1782          * on the device to be removed.  These blocks could be
1783          * written at any time, including while we are in the middle
1784          * of copying them.
1785          */
1786         error = spa_reset_logs(spa);
1787
1788         *txg = spa_vdev_config_enter(spa);
1789
1790         /*
1791          * Things might have changed while the config lock was dropped
1792          * (e.g. space usage).  Check for errors again.
1793          */
1794         if (error == 0)
1795                 error = spa_vdev_remove_top_check(vd);
1796
1797         if (error != 0) {
1798                 metaslab_group_activate(mg);
1799                 return (error);
1800         }
1801
1802         vd->vdev_removing = B_TRUE;
1803
1804         vdev_dirty_leaves(vd, VDD_DTL, *txg);
1805         vdev_config_dirty(vd);
1806         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
1807         dsl_sync_task_nowait(spa->spa_dsl_pool,
1808             vdev_remove_initiate_sync,
1809             vd, 0, ZFS_SPACE_CHECK_NONE, tx);
1810         dmu_tx_commit(tx);
1811
1812         return (0);
1813 }
1814
1815 /*
1816  * Remove a device from the pool.
1817  *
1818  * Removing a device from the vdev namespace requires several steps
1819  * and can take a significant amount of time.  As a result we use
1820  * the spa_vdev_config_[enter/exit] functions which allow us to
1821  * grab and release the spa_config_lock while still holding the namespace
1822  * lock.  During each step the configuration is synced out.
1823  */
1824 int
1825 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1826 {
1827         vdev_t *vd;
1828         nvlist_t **spares, **l2cache, *nv;
1829         uint64_t txg = 0;
1830         uint_t nspares, nl2cache;
1831         int error = 0;
1832         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
1833         sysevent_t *ev = NULL;
1834
1835         ASSERT(spa_writeable(spa));
1836
1837         if (!locked)
1838                 txg = spa_vdev_enter(spa);
1839
1840         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1841         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1842                 error = (spa_has_checkpoint(spa)) ?
1843                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1844
1845                 if (!locked)
1846                         return (spa_vdev_exit(spa, NULL, txg, error));
1847
1848                 return (error);
1849         }
1850
1851         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1852
1853         if (spa->spa_spares.sav_vdevs != NULL &&
1854             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1855             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
1856             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
1857                 /*
1858                  * Only remove the hot spare if it's not currently in use
1859                  * in this pool.
1860                  */
1861                 if (vd == NULL || unspare) {
1862                         char *nvstr = fnvlist_lookup_string(nv,
1863                             ZPOOL_CONFIG_PATH);
1864                         spa_history_log_internal(spa, "vdev remove", NULL,
1865                             "%s vdev (%s) %s", spa_name(spa),
1866                             VDEV_TYPE_SPARE, nvstr);
1867                         if (vd == NULL)
1868                                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1869                         ev = spa_event_create(spa, vd, NULL,
1870                             ESC_ZFS_VDEV_REMOVE_AUX);
1871                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
1872                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
1873                         spa_load_spares(spa);
1874                         spa->spa_spares.sav_sync = B_TRUE;
1875                 } else {
1876                         error = SET_ERROR(EBUSY);
1877                 }
1878         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
1879             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1880             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
1881             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
1882                 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
1883                 spa_history_log_internal(spa, "vdev remove", NULL,
1884                     "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
1885                 /*
1886                  * Cache devices can always be removed.
1887                  */
1888                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1889                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
1890                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
1891                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
1892                 spa_load_l2cache(spa);
1893                 spa->spa_l2cache.sav_sync = B_TRUE;
1894         } else if (vd != NULL && vd->vdev_islog) {
1895                 ASSERT(!locked);
1896                 error = spa_vdev_remove_log(vd, &txg);
1897         } else if (vd != NULL) {
1898                 ASSERT(!locked);
1899                 error = spa_vdev_remove_top(vd, &txg);
1900         } else {
1901                 /*
1902                  * There is no vdev of any kind with the specified guid.
1903                  */
1904                 error = SET_ERROR(ENOENT);
1905         }
1906
1907         if (!locked)
1908                 error = spa_vdev_exit(spa, NULL, txg, error);
1909
1910         if (ev != NULL) {
1911                 if (error != 0) {
1912                         spa_event_discard(ev);
1913                 } else {
1914                         spa_event_post(ev);
1915                 }
1916         }
1917
1918         return (error);
1919 }
1920
1921 int
1922 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
1923 {
1924         prs->prs_state = spa->spa_removing_phys.sr_state;
1925
1926         if (prs->prs_state == DSS_NONE)
1927                 return (SET_ERROR(ENOENT));
1928
1929         prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
1930         prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
1931         prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
1932         prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
1933         prs->prs_copied = spa->spa_removing_phys.sr_copied;
1934
1935         if (spa->spa_vdev_removal != NULL) {
1936                 for (int i = 0; i < TXG_SIZE; i++) {
1937                         prs->prs_copied +=
1938                             spa->spa_vdev_removal->svr_bytes_done[i];
1939                 }
1940         }
1941
1942         prs->prs_mapping_memory = 0;
1943         uint64_t indirect_vdev_id =
1944             spa->spa_removing_phys.sr_prev_indirect_vdev;
1945         while (indirect_vdev_id != -1) {
1946                 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
1947                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1948                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1949
1950                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1951                 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
1952                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
1953         }
1954
1955         return (0);
1956 }