]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c
MFV 331704:
[FreeBSD/FreeBSD.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / zap_leaf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  */
27
28 /*
29  * The 512-byte leaf is broken into 32 16-byte chunks.
30  * chunk number n means l_chunk[n], even though the header precedes it.
31  * the names are stored null-terminated.
32  */
33
34 #include <sys/zio.h>
35 #include <sys/spa.h>
36 #include <sys/dmu.h>
37 #include <sys/zfs_context.h>
38 #include <sys/fs/zfs.h>
39 #include <sys/zap.h>
40 #include <sys/zap_impl.h>
41 #include <sys/zap_leaf.h>
42 #include <sys/arc.h>
43
44 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
45
46 #define CHAIN_END 0xffff /* end of the chunk chain */
47
48 /* half the (current) minimum block size */
49 #define MAX_ARRAY_BYTES (8<<10)
50
51 #define LEAF_HASH(l, h) \
52         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
53         ((h) >> \
54         (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
55
56 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
57
58 extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);
59
60 static void
61 zap_memset(void *a, int c, size_t n)
62 {
63         char *cp = a;
64         char *cpend = cp + n;
65
66         while (cp < cpend)
67                 *cp++ = c;
68 }
69
70 static void
71 stv(int len, void *addr, uint64_t value)
72 {
73         switch (len) {
74         case 1:
75                 *(uint8_t *)addr = value;
76                 return;
77         case 2:
78                 *(uint16_t *)addr = value;
79                 return;
80         case 4:
81                 *(uint32_t *)addr = value;
82                 return;
83         case 8:
84                 *(uint64_t *)addr = value;
85                 return;
86         }
87         ASSERT(!"bad int len");
88 }
89
90 static uint64_t
91 ldv(int len, const void *addr)
92 {
93         switch (len) {
94         case 1:
95                 return (*(uint8_t *)addr);
96         case 2:
97                 return (*(uint16_t *)addr);
98         case 4:
99                 return (*(uint32_t *)addr);
100         case 8:
101                 return (*(uint64_t *)addr);
102         }
103         ASSERT(!"bad int len");
104         return (0xFEEDFACEDEADBEEFULL);
105 }
106
107 void
108 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
109 {
110         int i;
111         zap_leaf_t l;
112         dmu_buf_t l_dbuf;
113
114         l_dbuf.db_data = buf;
115         l.l_bs = highbit64(size) - 1;
116         l.l_dbuf = &l_dbuf;
117
118         buf->l_hdr.lh_block_type =      BSWAP_64(buf->l_hdr.lh_block_type);
119         buf->l_hdr.lh_prefix =          BSWAP_64(buf->l_hdr.lh_prefix);
120         buf->l_hdr.lh_magic =           BSWAP_32(buf->l_hdr.lh_magic);
121         buf->l_hdr.lh_nfree =           BSWAP_16(buf->l_hdr.lh_nfree);
122         buf->l_hdr.lh_nentries =        BSWAP_16(buf->l_hdr.lh_nentries);
123         buf->l_hdr.lh_prefix_len =      BSWAP_16(buf->l_hdr.lh_prefix_len);
124         buf->l_hdr.lh_freelist =        BSWAP_16(buf->l_hdr.lh_freelist);
125
126         for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
127                 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
128
129         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
130                 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
131                 struct zap_leaf_entry *le;
132
133                 switch (lc->l_free.lf_type) {
134                 case ZAP_CHUNK_ENTRY:
135                         le = &lc->l_entry;
136
137                         le->le_type =           BSWAP_8(le->le_type);
138                         le->le_value_intlen =   BSWAP_8(le->le_value_intlen);
139                         le->le_next =           BSWAP_16(le->le_next);
140                         le->le_name_chunk =     BSWAP_16(le->le_name_chunk);
141                         le->le_name_numints =   BSWAP_16(le->le_name_numints);
142                         le->le_value_chunk =    BSWAP_16(le->le_value_chunk);
143                         le->le_value_numints =  BSWAP_16(le->le_value_numints);
144                         le->le_cd =             BSWAP_32(le->le_cd);
145                         le->le_hash =           BSWAP_64(le->le_hash);
146                         break;
147                 case ZAP_CHUNK_FREE:
148                         lc->l_free.lf_type =    BSWAP_8(lc->l_free.lf_type);
149                         lc->l_free.lf_next =    BSWAP_16(lc->l_free.lf_next);
150                         break;
151                 case ZAP_CHUNK_ARRAY:
152                         lc->l_array.la_type =   BSWAP_8(lc->l_array.la_type);
153                         lc->l_array.la_next =   BSWAP_16(lc->l_array.la_next);
154                         /* la_array doesn't need swapping */
155                         break;
156                 default:
157                         ASSERT(!"bad leaf type");
158                 }
159         }
160 }
161
162 void
163 zap_leaf_init(zap_leaf_t *l, boolean_t sort)
164 {
165         int i;
166
167         l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
168         zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
169             sizeof (struct zap_leaf_header));
170         zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
171             2*ZAP_LEAF_HASH_NUMENTRIES(l));
172         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
173                 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
174                 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
175         }
176         ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
177         zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
178         zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
179         zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
180         if (sort)
181                 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
182 }
183
184 /*
185  * Routines which manipulate leaf chunks (l_chunk[]).
186  */
187
188 static uint16_t
189 zap_leaf_chunk_alloc(zap_leaf_t *l)
190 {
191         int chunk;
192
193         ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
194
195         chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
196         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
197         ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
198
199         zap_leaf_phys(l)->l_hdr.lh_freelist =
200             ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
201
202         zap_leaf_phys(l)->l_hdr.lh_nfree--;
203
204         return (chunk);
205 }
206
207 static void
208 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
209 {
210         struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
211         ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
212         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
213         ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
214
215         zlf->lf_type = ZAP_CHUNK_FREE;
216         zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
217         bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
218         zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
219
220         zap_leaf_phys(l)->l_hdr.lh_nfree++;
221 }
222
223 /*
224  * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
225  */
226
227 static uint16_t
228 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
229     int integer_size, int num_integers)
230 {
231         uint16_t chunk_head;
232         uint16_t *chunkp = &chunk_head;
233         int byten = 0;
234         uint64_t value = 0;
235         int shift = (integer_size-1)*8;
236         int len = num_integers;
237
238         ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
239
240         while (len > 0) {
241                 uint16_t chunk = zap_leaf_chunk_alloc(l);
242                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
243                 int i;
244
245                 la->la_type = ZAP_CHUNK_ARRAY;
246                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
247                         if (byten == 0)
248                                 value = ldv(integer_size, buf);
249                         la->la_array[i] = value >> shift;
250                         value <<= 8;
251                         if (++byten == integer_size) {
252                                 byten = 0;
253                                 buf += integer_size;
254                                 if (--len == 0)
255                                         break;
256                         }
257                 }
258
259                 *chunkp = chunk;
260                 chunkp = &la->la_next;
261         }
262         *chunkp = CHAIN_END;
263
264         return (chunk_head);
265 }
266
267 static void
268 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
269 {
270         uint16_t chunk = *chunkp;
271
272         *chunkp = CHAIN_END;
273
274         while (chunk != CHAIN_END) {
275                 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
276                 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
277                     ZAP_CHUNK_ARRAY);
278                 zap_leaf_chunk_free(l, chunk);
279                 chunk = nextchunk;
280         }
281 }
282
283 /* array_len and buf_len are in integers, not bytes */
284 static void
285 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
286     int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
287     void *buf)
288 {
289         int len = MIN(array_len, buf_len);
290         int byten = 0;
291         uint64_t value = 0;
292         char *p = buf;
293
294         ASSERT3U(array_int_len, <=, buf_int_len);
295
296         /* Fast path for one 8-byte integer */
297         if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
298                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
299                 uint8_t *ip = la->la_array;
300                 uint64_t *buf64 = buf;
301
302                 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
303                     (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
304                     (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
305                     (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
306                 return;
307         }
308
309         /* Fast path for an array of 1-byte integers (eg. the entry name) */
310         if (array_int_len == 1 && buf_int_len == 1 &&
311             buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
312                 while (chunk != CHAIN_END) {
313                         struct zap_leaf_array *la =
314                             &ZAP_LEAF_CHUNK(l, chunk).l_array;
315                         bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
316                         p += ZAP_LEAF_ARRAY_BYTES;
317                         chunk = la->la_next;
318                 }
319                 return;
320         }
321
322         while (len > 0) {
323                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
324                 int i;
325
326                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
327                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
328                         value = (value << 8) | la->la_array[i];
329                         byten++;
330                         if (byten == array_int_len) {
331                                 stv(buf_int_len, p, value);
332                                 byten = 0;
333                                 len--;
334                                 if (len == 0)
335                                         return;
336                                 p += buf_int_len;
337                         }
338                 }
339                 chunk = la->la_next;
340         }
341 }
342
343 static boolean_t
344 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
345     int chunk, int array_numints)
346 {
347         int bseen = 0;
348
349         if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
350                 uint64_t *thiskey;
351                 boolean_t match;
352
353                 ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
354                 thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
355                     KM_SLEEP);
356
357                 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
358                     sizeof (*thiskey), array_numints, thiskey);
359                 match = bcmp(thiskey, zn->zn_key_orig,
360                     array_numints * sizeof (*thiskey)) == 0;
361                 kmem_free(thiskey, array_numints * sizeof (*thiskey));
362                 return (match);
363         }
364
365         ASSERT(zn->zn_key_intlen == 1);
366         if (zn->zn_matchtype & MT_NORMALIZE) {
367                 char *thisname = kmem_alloc(array_numints, KM_SLEEP);
368                 boolean_t match;
369
370                 zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
371                     sizeof (char), array_numints, thisname);
372                 match = zap_match(zn, thisname);
373                 kmem_free(thisname, array_numints);
374                 return (match);
375         }
376
377         /*
378          * Fast path for exact matching.
379          * First check that the lengths match, so that we don't read
380          * past the end of the zn_key_orig array.
381          */
382         if (array_numints != zn->zn_key_orig_numints)
383                 return (B_FALSE);
384         while (bseen < array_numints) {
385                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
386                 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
387                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
388                 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
389                         break;
390                 chunk = la->la_next;
391                 bseen += toread;
392         }
393         return (bseen == array_numints);
394 }
395
396 /*
397  * Routines which manipulate leaf entries.
398  */
399
400 int
401 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
402 {
403         uint16_t *chunkp;
404         struct zap_leaf_entry *le;
405
406         ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
407
408         for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
409             *chunkp != CHAIN_END; chunkp = &le->le_next) {
410                 uint16_t chunk = *chunkp;
411                 le = ZAP_LEAF_ENTRY(l, chunk);
412
413                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
414                 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
415
416                 if (le->le_hash != zn->zn_hash)
417                         continue;
418
419                 /*
420                  * NB: the entry chain is always sorted by cd on
421                  * normalized zap objects, so this will find the
422                  * lowest-cd match for MT_NORMALIZE.
423                  */
424                 ASSERT((zn->zn_matchtype == 0) ||
425                     (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
426                 if (zap_leaf_array_match(l, zn, le->le_name_chunk,
427                     le->le_name_numints)) {
428                         zeh->zeh_num_integers = le->le_value_numints;
429                         zeh->zeh_integer_size = le->le_value_intlen;
430                         zeh->zeh_cd = le->le_cd;
431                         zeh->zeh_hash = le->le_hash;
432                         zeh->zeh_chunkp = chunkp;
433                         zeh->zeh_leaf = l;
434                         return (0);
435                 }
436         }
437
438         return (SET_ERROR(ENOENT));
439 }
440
441 /* Return (h1,cd1 >= h2,cd2) */
442 #define HCD_GTEQ(h1, cd1, h2, cd2) \
443         ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
444
445 int
446 zap_leaf_lookup_closest(zap_leaf_t *l,
447     uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
448 {
449         uint16_t chunk;
450         uint64_t besth = -1ULL;
451         uint32_t bestcd = -1U;
452         uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
453         uint16_t lh;
454         struct zap_leaf_entry *le;
455
456         ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
457
458         for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
459                 for (chunk = zap_leaf_phys(l)->l_hash[lh];
460                     chunk != CHAIN_END; chunk = le->le_next) {
461                         le = ZAP_LEAF_ENTRY(l, chunk);
462
463                         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
464                         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
465
466                         if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
467                             HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
468                                 ASSERT3U(bestlh, >=, lh);
469                                 bestlh = lh;
470                                 besth = le->le_hash;
471                                 bestcd = le->le_cd;
472
473                                 zeh->zeh_num_integers = le->le_value_numints;
474                                 zeh->zeh_integer_size = le->le_value_intlen;
475                                 zeh->zeh_cd = le->le_cd;
476                                 zeh->zeh_hash = le->le_hash;
477                                 zeh->zeh_fakechunk = chunk;
478                                 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
479                                 zeh->zeh_leaf = l;
480                         }
481                 }
482         }
483
484         return (bestcd == -1U ? ENOENT : 0);
485 }
486
487 int
488 zap_entry_read(const zap_entry_handle_t *zeh,
489     uint8_t integer_size, uint64_t num_integers, void *buf)
490 {
491         struct zap_leaf_entry *le =
492             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
493         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
494
495         if (le->le_value_intlen > integer_size)
496                 return (SET_ERROR(EINVAL));
497
498         zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
499             le->le_value_intlen, le->le_value_numints,
500             integer_size, num_integers, buf);
501
502         if (zeh->zeh_num_integers > num_integers)
503                 return (SET_ERROR(EOVERFLOW));
504         return (0);
505
506 }
507
508 int
509 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
510     char *buf)
511 {
512         struct zap_leaf_entry *le =
513             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
514         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
515
516         if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
517                 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
518                     le->le_name_numints, 8, buflen / 8, buf);
519         } else {
520                 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
521                     le->le_name_numints, 1, buflen, buf);
522         }
523         if (le->le_name_numints > buflen)
524                 return (SET_ERROR(EOVERFLOW));
525         return (0);
526 }
527
528 int
529 zap_entry_update(zap_entry_handle_t *zeh,
530     uint8_t integer_size, uint64_t num_integers, const void *buf)
531 {
532         int delta_chunks;
533         zap_leaf_t *l = zeh->zeh_leaf;
534         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
535
536         delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
537             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
538
539         if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
540                 return (SET_ERROR(EAGAIN));
541
542         zap_leaf_array_free(l, &le->le_value_chunk);
543         le->le_value_chunk =
544             zap_leaf_array_create(l, buf, integer_size, num_integers);
545         le->le_value_numints = num_integers;
546         le->le_value_intlen = integer_size;
547         return (0);
548 }
549
550 void
551 zap_entry_remove(zap_entry_handle_t *zeh)
552 {
553         uint16_t entry_chunk;
554         struct zap_leaf_entry *le;
555         zap_leaf_t *l = zeh->zeh_leaf;
556
557         ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
558
559         entry_chunk = *zeh->zeh_chunkp;
560         le = ZAP_LEAF_ENTRY(l, entry_chunk);
561         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
562
563         zap_leaf_array_free(l, &le->le_name_chunk);
564         zap_leaf_array_free(l, &le->le_value_chunk);
565
566         *zeh->zeh_chunkp = le->le_next;
567         zap_leaf_chunk_free(l, entry_chunk);
568
569         zap_leaf_phys(l)->l_hdr.lh_nentries--;
570 }
571
572 int
573 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
574     uint8_t integer_size, uint64_t num_integers, const void *buf,
575     zap_entry_handle_t *zeh)
576 {
577         uint16_t chunk;
578         uint16_t *chunkp;
579         struct zap_leaf_entry *le;
580         uint64_t valuelen;
581         int numchunks;
582         uint64_t h = zn->zn_hash;
583
584         valuelen = integer_size * num_integers;
585
586         numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
587             zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
588         if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
589                 return (E2BIG);
590
591         if (cd == ZAP_NEED_CD) {
592                 /* find the lowest unused cd */
593                 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
594                         cd = 0;
595
596                         for (chunk = *LEAF_HASH_ENTPTR(l, h);
597                             chunk != CHAIN_END; chunk = le->le_next) {
598                                 le = ZAP_LEAF_ENTRY(l, chunk);
599                                 if (le->le_cd > cd)
600                                         break;
601                                 if (le->le_hash == h) {
602                                         ASSERT3U(cd, ==, le->le_cd);
603                                         cd++;
604                                 }
605                         }
606                 } else {
607                         /* old unsorted format; do it the O(n^2) way */
608                         for (cd = 0; ; cd++) {
609                                 for (chunk = *LEAF_HASH_ENTPTR(l, h);
610                                     chunk != CHAIN_END; chunk = le->le_next) {
611                                         le = ZAP_LEAF_ENTRY(l, chunk);
612                                         if (le->le_hash == h &&
613                                             le->le_cd == cd) {
614                                                 break;
615                                         }
616                                 }
617                                 /* If this cd is not in use, we are good. */
618                                 if (chunk == CHAIN_END)
619                                         break;
620                         }
621                 }
622                 /*
623                  * We would run out of space in a block before we could
624                  * store enough entries to run out of CD values.
625                  */
626                 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
627         }
628
629         if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
630                 return (SET_ERROR(EAGAIN));
631
632         /* make the entry */
633         chunk = zap_leaf_chunk_alloc(l);
634         le = ZAP_LEAF_ENTRY(l, chunk);
635         le->le_type = ZAP_CHUNK_ENTRY;
636         le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
637             zn->zn_key_intlen, zn->zn_key_orig_numints);
638         le->le_name_numints = zn->zn_key_orig_numints;
639         le->le_value_chunk =
640             zap_leaf_array_create(l, buf, integer_size, num_integers);
641         le->le_value_numints = num_integers;
642         le->le_value_intlen = integer_size;
643         le->le_hash = h;
644         le->le_cd = cd;
645
646         /* link it into the hash chain */
647         /* XXX if we did the search above, we could just use that */
648         chunkp = zap_leaf_rehash_entry(l, chunk);
649
650         zap_leaf_phys(l)->l_hdr.lh_nentries++;
651
652         zeh->zeh_leaf = l;
653         zeh->zeh_num_integers = num_integers;
654         zeh->zeh_integer_size = le->le_value_intlen;
655         zeh->zeh_cd = le->le_cd;
656         zeh->zeh_hash = le->le_hash;
657         zeh->zeh_chunkp = chunkp;
658
659         return (0);
660 }
661
662 /*
663  * Determine if there is another entry with the same normalized form.
664  * For performance purposes, either zn or name must be provided (the
665  * other can be NULL).  Note, there usually won't be any hash
666  * conflicts, in which case we don't need the concatenated/normalized
667  * form of the name.  But all callers have one of these on hand anyway,
668  * so might as well take advantage.  A cleaner but slower interface
669  * would accept neither argument, and compute the normalized name as
670  * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
671  */
672 boolean_t
673 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
674     const char *name, zap_t *zap)
675 {
676         uint64_t chunk;
677         struct zap_leaf_entry *le;
678         boolean_t allocdzn = B_FALSE;
679
680         if (zap->zap_normflags == 0)
681                 return (B_FALSE);
682
683         for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
684             chunk != CHAIN_END; chunk = le->le_next) {
685                 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
686                 if (le->le_hash != zeh->zeh_hash)
687                         continue;
688                 if (le->le_cd == zeh->zeh_cd)
689                         continue;
690
691                 if (zn == NULL) {
692                         zn = zap_name_alloc(zap, name, MT_NORMALIZE);
693                         allocdzn = B_TRUE;
694                 }
695                 if (zap_leaf_array_match(zeh->zeh_leaf, zn,
696                     le->le_name_chunk, le->le_name_numints)) {
697                         if (allocdzn)
698                                 zap_name_free(zn);
699                         return (B_TRUE);
700                 }
701         }
702         if (allocdzn)
703                 zap_name_free(zn);
704         return (B_FALSE);
705 }
706
707 /*
708  * Routines for transferring entries between leafs.
709  */
710
711 static uint16_t *
712 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
713 {
714         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
715         struct zap_leaf_entry *le2;
716         uint16_t *chunkp;
717
718         /*
719          * keep the entry chain sorted by cd
720          * NB: this will not cause problems for unsorted leafs, though
721          * it is unnecessary there.
722          */
723         for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
724             *chunkp != CHAIN_END; chunkp = &le2->le_next) {
725                 le2 = ZAP_LEAF_ENTRY(l, *chunkp);
726                 if (le2->le_cd > le->le_cd)
727                         break;
728         }
729
730         le->le_next = *chunkp;
731         *chunkp = entry;
732         return (chunkp);
733 }
734
735 static uint16_t
736 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
737 {
738         uint16_t new_chunk;
739         uint16_t *nchunkp = &new_chunk;
740
741         while (chunk != CHAIN_END) {
742                 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
743                 struct zap_leaf_array *nla =
744                     &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
745                 struct zap_leaf_array *la =
746                     &ZAP_LEAF_CHUNK(l, chunk).l_array;
747                 int nextchunk = la->la_next;
748
749                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
750                 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
751
752                 *nla = *la; /* structure assignment */
753
754                 zap_leaf_chunk_free(l, chunk);
755                 chunk = nextchunk;
756                 *nchunkp = nchunk;
757                 nchunkp = &nla->la_next;
758         }
759         *nchunkp = CHAIN_END;
760         return (new_chunk);
761 }
762
763 static void
764 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
765 {
766         struct zap_leaf_entry *le, *nle;
767         uint16_t chunk;
768
769         le = ZAP_LEAF_ENTRY(l, entry);
770         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
771
772         chunk = zap_leaf_chunk_alloc(nl);
773         nle = ZAP_LEAF_ENTRY(nl, chunk);
774         *nle = *le; /* structure assignment */
775
776         (void) zap_leaf_rehash_entry(nl, chunk);
777
778         nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
779         nle->le_value_chunk =
780             zap_leaf_transfer_array(l, le->le_value_chunk, nl);
781
782         zap_leaf_chunk_free(l, entry);
783
784         zap_leaf_phys(l)->l_hdr.lh_nentries--;
785         zap_leaf_phys(nl)->l_hdr.lh_nentries++;
786 }
787
788 /*
789  * Transfer the entries whose hash prefix ends in 1 to the new leaf.
790  */
791 void
792 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
793 {
794         int i;
795         int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
796
797         /* set new prefix and prefix_len */
798         zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
799         zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
800         zap_leaf_phys(nl)->l_hdr.lh_prefix =
801             zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
802         zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
803             zap_leaf_phys(l)->l_hdr.lh_prefix_len;
804
805         /* break existing hash chains */
806         zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
807             2*ZAP_LEAF_HASH_NUMENTRIES(l));
808
809         if (sort)
810                 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
811
812         /*
813          * Transfer entries whose hash bit 'bit' is set to nl; rehash
814          * the remaining entries
815          *
816          * NB: We could find entries via the hashtable instead. That
817          * would be O(hashents+numents) rather than O(numblks+numents),
818          * but this accesses memory more sequentially, and when we're
819          * called, the block is usually pretty full.
820          */
821         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
822                 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
823                 if (le->le_type != ZAP_CHUNK_ENTRY)
824                         continue;
825
826                 if (le->le_hash & (1ULL << bit))
827                         zap_leaf_transfer_entry(l, i, nl);
828                 else
829                         (void) zap_leaf_rehash_entry(l, i);
830         }
831 }
832
833 void
834 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
835 {
836         int i, n;
837
838         n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
839             zap_leaf_phys(l)->l_hdr.lh_prefix_len;
840         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
841         zs->zs_leafs_with_2n_pointers[n]++;
842
843
844         n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
845         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
846         zs->zs_blocks_with_n5_entries[n]++;
847
848         n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
849             zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
850             (1<<FZAP_BLOCK_SHIFT(zap));
851         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
852         zs->zs_blocks_n_tenths_full[n]++;
853
854         for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
855                 int nentries = 0;
856                 int chunk = zap_leaf_phys(l)->l_hash[i];
857
858                 while (chunk != CHAIN_END) {
859                         struct zap_leaf_entry *le =
860                             ZAP_LEAF_ENTRY(l, chunk);
861
862                         n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
863                             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
864                             le->le_value_intlen);
865                         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
866                         zs->zs_entries_using_n_chunks[n]++;
867
868                         chunk = le->le_next;
869                         nentries++;
870                 }
871
872                 n = nentries;
873                 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
874                 zs->zs_buckets_with_n_entries[n]++;
875         }
876 }