]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/dev/iwlwifi/pcie/rx.c
iwlwifi: update from iwlwifi-next
[FreeBSD/FreeBSD.git] / sys / contrib / dev / iwlwifi / pcie / rx.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2003-2014, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16
17 /******************************************************************************
18  *
19  * RX path functions
20  *
21  ******************************************************************************/
22
23 /*
24  * Rx theory of operation
25  *
26  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27  * each of which point to Receive Buffers to be filled by the NIC.  These get
28  * used not only for Rx frames, but for any command response or notification
29  * from the NIC.  The driver and NIC manage the Rx buffers by means
30  * of indexes into the circular buffer.
31  *
32  * Rx Queue Indexes
33  * The host/firmware share two index registers for managing the Rx buffers.
34  *
35  * The READ index maps to the first position that the firmware may be writing
36  * to -- the driver can read up to (but not including) this position and get
37  * good data.
38  * The READ index is managed by the firmware once the card is enabled.
39  *
40  * The WRITE index maps to the last position the driver has read from -- the
41  * position preceding WRITE is the last slot the firmware can place a packet.
42  *
43  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44  * WRITE = READ.
45  *
46  * During initialization, the host sets up the READ queue position to the first
47  * INDEX position, and WRITE to the last (READ - 1 wrapped)
48  *
49  * When the firmware places a packet in a buffer, it will advance the READ index
50  * and fire the RX interrupt.  The driver can then query the READ index and
51  * process as many packets as possible, moving the WRITE index forward as it
52  * resets the Rx queue buffers with new memory.
53  *
54  * The management in the driver is as follows:
55  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56  *   When the interrupt handler is called, the request is processed.
57  *   The page is either stolen - transferred to the upper layer
58  *   or reused - added immediately to the iwl->rxq->rx_free list.
59  * + When the page is stolen - the driver updates the matching queue's used
60  *   count, detaches the RBD and transfers it to the queue used list.
61  *   When there are two used RBDs - they are transferred to the allocator empty
62  *   list. Work is then scheduled for the allocator to start allocating
63  *   eight buffers.
64  *   When there are another 6 used RBDs - they are transferred to the allocator
65  *   empty list and the driver tries to claim the pre-allocated buffers and
66  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67  *   until ready.
68  *   When there are 8+ buffers in the free list - either from allocation or from
69  *   8 reused unstolen pages - restock is called to update the FW and indexes.
70  * + In order to make sure the allocator always has RBDs to use for allocation
71  *   the allocator has initial pool in the size of num_queues*(8-2) - the
72  *   maximum missing RBDs per allocation request (request posted with 2
73  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74  *   The queues supplies the recycle of the rest of the RBDs.
75  * + A received packet is processed and handed to the kernel network stack,
76  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
77  * + If there are no allocated buffers in iwl->rxq->rx_free,
78  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79  *   If there were enough free buffers and RX_STALLED is set it is cleared.
80  *
81  *
82  * Driver sequence:
83  *
84  * iwl_rxq_alloc()            Allocates rx_free
85  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
86  *                            iwl_pcie_rxq_restock.
87  *                            Used only during initialization.
88  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
89  *                            queue, updates firmware pointers, and updates
90  *                            the WRITE index.
91  * iwl_pcie_rx_allocator()     Background work for allocating pages.
92  *
93  * -- enable interrupts --
94  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
95  *                            READ INDEX, detaching the SKB from the pool.
96  *                            Moves the packet buffer from queue to rx_used.
97  *                            Posts and claims requests to the allocator.
98  *                            Calls iwl_pcie_rxq_restock to refill any empty
99  *                            slots.
100  *
101  * RBD life-cycle:
102  *
103  * Init:
104  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105  *
106  * Regular Receive interrupt:
107  * Page Stolen:
108  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110  * Page not Stolen:
111  * rxq.queue -> rxq.rx_free -> rxq.queue
112  * ...
113  *
114  */
115
116 /*
117  * iwl_rxq_space - Return number of free slots available in queue.
118  */
119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121         /* Make sure rx queue size is a power of 2 */
122         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123
124         /*
125          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126          * between empty and completely full queues.
127          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128          * defined for negative dividends.
129          */
130         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132
133 /*
134  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135  */
136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138         return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140
141 /*
142  * iwl_pcie_rx_stop - stops the Rx DMA
143  */
144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147                 /* TODO: remove this once fw does it */
148                 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149                 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150                                               RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151         } else if (trans->trans_cfg->mq_rx_supported) {
152                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155         } else {
156                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159                                            1000);
160         }
161 }
162
163 /*
164  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165  */
166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167                                     struct iwl_rxq *rxq)
168 {
169         u32 reg;
170
171         lockdep_assert_held(&rxq->lock);
172
173         /*
174          * explicitly wake up the NIC if:
175          * 1. shadow registers aren't enabled
176          * 2. there is a chance that the NIC is asleep
177          */
178         if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181
182                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184                                        reg);
185                         iwl_set_bit(trans, CSR_GP_CNTRL,
186                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187                         rxq->need_update = true;
188                         return;
189                 }
190         }
191
192         rxq->write_actual = round_down(rxq->write, 8);
193         if (!trans->trans_cfg->mq_rx_supported)
194                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
195         else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
196                 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
197                             HBUS_TARG_WRPTR_RX_Q(rxq->id));
198         else
199                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
200                             rxq->write_actual);
201 }
202
203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
204 {
205         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
206         int i;
207
208         for (i = 0; i < trans->num_rx_queues; i++) {
209                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
210
211                 if (!rxq->need_update)
212                         continue;
213                 spin_lock_bh(&rxq->lock);
214                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
215                 rxq->need_update = false;
216                 spin_unlock_bh(&rxq->lock);
217         }
218 }
219
220 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
221                                 struct iwl_rxq *rxq,
222                                 struct iwl_rx_mem_buffer *rxb)
223 {
224         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
225                 struct iwl_rx_transfer_desc *bd = rxq->bd;
226
227                 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
228
229                 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
230                 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
231         } else {
232                 __le64 *bd = rxq->bd;
233
234                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
235         }
236
237 #if defined(__linux__)
238         IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
239 #elif defined(__FreeBSD__)
240         IWL_DEBUG_PCI_RW(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
241                      (u32)rxb->vid, rxq->id, rxq->write);
242 #endif
243 }
244
245 /*
246  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
247  */
248 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
249                                   struct iwl_rxq *rxq)
250 {
251         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
252         struct iwl_rx_mem_buffer *rxb;
253
254         /*
255          * If the device isn't enabled - no need to try to add buffers...
256          * This can happen when we stop the device and still have an interrupt
257          * pending. We stop the APM before we sync the interrupts because we
258          * have to (see comment there). On the other hand, since the APM is
259          * stopped, we cannot access the HW (in particular not prph).
260          * So don't try to restock if the APM has been already stopped.
261          */
262         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
263                 return;
264
265         spin_lock_bh(&rxq->lock);
266         while (rxq->free_count) {
267                 /* Get next free Rx buffer, remove from free list */
268                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
269                                        list);
270                 list_del(&rxb->list);
271                 rxb->invalid = false;
272                 /* some low bits are expected to be unset (depending on hw) */
273                 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
274                 /* Point to Rx buffer via next RBD in circular buffer */
275                 iwl_pcie_restock_bd(trans, rxq, rxb);
276                 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
277                 rxq->free_count--;
278         }
279         spin_unlock_bh(&rxq->lock);
280
281         /*
282          * If we've added more space for the firmware to place data, tell it.
283          * Increment device's write pointer in multiples of 8.
284          */
285         if (rxq->write_actual != (rxq->write & ~0x7)) {
286                 spin_lock_bh(&rxq->lock);
287                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
288                 spin_unlock_bh(&rxq->lock);
289         }
290 }
291
292 /*
293  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
294  */
295 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
296                                   struct iwl_rxq *rxq)
297 {
298         struct iwl_rx_mem_buffer *rxb;
299
300         /*
301          * If the device isn't enabled - not need to try to add buffers...
302          * This can happen when we stop the device and still have an interrupt
303          * pending. We stop the APM before we sync the interrupts because we
304          * have to (see comment there). On the other hand, since the APM is
305          * stopped, we cannot access the HW (in particular not prph).
306          * So don't try to restock if the APM has been already stopped.
307          */
308         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
309                 return;
310
311         spin_lock_bh(&rxq->lock);
312         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
313                 __le32 *bd = (__le32 *)rxq->bd;
314                 /* The overwritten rxb must be a used one */
315                 rxb = rxq->queue[rxq->write];
316                 BUG_ON(rxb && rxb->page);
317
318                 /* Get next free Rx buffer, remove from free list */
319                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
320                                        list);
321                 list_del(&rxb->list);
322                 rxb->invalid = false;
323
324                 /* Point to Rx buffer via next RBD in circular buffer */
325                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
326                 rxq->queue[rxq->write] = rxb;
327                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
328                 rxq->free_count--;
329         }
330         spin_unlock_bh(&rxq->lock);
331
332         /* If we've added more space for the firmware to place data, tell it.
333          * Increment device's write pointer in multiples of 8. */
334         if (rxq->write_actual != (rxq->write & ~0x7)) {
335                 spin_lock_bh(&rxq->lock);
336                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
337                 spin_unlock_bh(&rxq->lock);
338         }
339 }
340
341 /*
342  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
343  *
344  * If there are slots in the RX queue that need to be restocked,
345  * and we have free pre-allocated buffers, fill the ranks as much
346  * as we can, pulling from rx_free.
347  *
348  * This moves the 'write' index forward to catch up with 'processed', and
349  * also updates the memory address in the firmware to reference the new
350  * target buffer.
351  */
352 static
353 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
354 {
355         if (trans->trans_cfg->mq_rx_supported)
356                 iwl_pcie_rxmq_restock(trans, rxq);
357         else
358                 iwl_pcie_rxsq_restock(trans, rxq);
359 }
360
361 /*
362  * iwl_pcie_rx_alloc_page - allocates and returns a page.
363  *
364  */
365 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
366                                            u32 *offset, gfp_t priority)
367 {
368         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
369         unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
370         unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
371         struct page *page;
372         gfp_t gfp_mask = priority;
373
374         if (trans_pcie->rx_page_order > 0)
375                 gfp_mask |= __GFP_COMP;
376
377         if (trans_pcie->alloc_page) {
378                 spin_lock_bh(&trans_pcie->alloc_page_lock);
379                 /* recheck */
380                 if (trans_pcie->alloc_page) {
381                         *offset = trans_pcie->alloc_page_used;
382                         page = trans_pcie->alloc_page;
383                         trans_pcie->alloc_page_used += rbsize;
384                         if (trans_pcie->alloc_page_used >= allocsize)
385                                 trans_pcie->alloc_page = NULL;
386                         else
387                                 get_page(page);
388                         spin_unlock_bh(&trans_pcie->alloc_page_lock);
389                         return page;
390                 }
391                 spin_unlock_bh(&trans_pcie->alloc_page_lock);
392         }
393
394         /* Alloc a new receive buffer */
395         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
396         if (!page) {
397                 if (net_ratelimit())
398                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
399                                        trans_pcie->rx_page_order);
400                 /*
401                  * Issue an error if we don't have enough pre-allocated
402                   * buffers.
403                  */
404                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
405                         IWL_CRIT(trans,
406                                  "Failed to alloc_pages\n");
407                 return NULL;
408         }
409
410         if (2 * rbsize <= allocsize) {
411                 spin_lock_bh(&trans_pcie->alloc_page_lock);
412                 if (!trans_pcie->alloc_page) {
413                         get_page(page);
414                         trans_pcie->alloc_page = page;
415                         trans_pcie->alloc_page_used = rbsize;
416                 }
417                 spin_unlock_bh(&trans_pcie->alloc_page_lock);
418         }
419
420         *offset = 0;
421         return page;
422 }
423
424 /*
425  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
426  *
427  * A used RBD is an Rx buffer that has been given to the stack. To use it again
428  * a page must be allocated and the RBD must point to the page. This function
429  * doesn't change the HW pointer but handles the list of pages that is used by
430  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
431  * allocated buffers.
432  */
433 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
434                             struct iwl_rxq *rxq)
435 {
436         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
437         struct iwl_rx_mem_buffer *rxb;
438         struct page *page;
439
440         while (1) {
441                 unsigned int offset;
442
443                 spin_lock_bh(&rxq->lock);
444                 if (list_empty(&rxq->rx_used)) {
445                         spin_unlock_bh(&rxq->lock);
446                         return;
447                 }
448                 spin_unlock_bh(&rxq->lock);
449
450                 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
451                 if (!page)
452                         return;
453
454                 spin_lock_bh(&rxq->lock);
455
456                 if (list_empty(&rxq->rx_used)) {
457                         spin_unlock_bh(&rxq->lock);
458                         __free_pages(page, trans_pcie->rx_page_order);
459                         return;
460                 }
461                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
462                                        list);
463                 list_del(&rxb->list);
464                 spin_unlock_bh(&rxq->lock);
465
466                 BUG_ON(rxb->page);
467                 rxb->page = page;
468                 rxb->offset = offset;
469                 /* Get physical address of the RB */
470                 rxb->page_dma =
471                         dma_map_page(trans->dev, page, rxb->offset,
472                                      trans_pcie->rx_buf_bytes,
473                                      DMA_FROM_DEVICE);
474                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
475                         rxb->page = NULL;
476                         spin_lock_bh(&rxq->lock);
477                         list_add(&rxb->list, &rxq->rx_used);
478                         spin_unlock_bh(&rxq->lock);
479                         __free_pages(page, trans_pcie->rx_page_order);
480                         return;
481                 }
482
483                 spin_lock_bh(&rxq->lock);
484
485                 list_add_tail(&rxb->list, &rxq->rx_free);
486                 rxq->free_count++;
487
488                 spin_unlock_bh(&rxq->lock);
489         }
490 }
491
492 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
493 {
494         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
495         int i;
496
497         if (!trans_pcie->rx_pool)
498                 return;
499
500         for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
501                 if (!trans_pcie->rx_pool[i].page)
502                         continue;
503                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
504                                trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
505                 __free_pages(trans_pcie->rx_pool[i].page,
506                              trans_pcie->rx_page_order);
507                 trans_pcie->rx_pool[i].page = NULL;
508         }
509 }
510
511 /*
512  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
513  *
514  * Allocates for each received request 8 pages
515  * Called as a scheduled work item.
516  */
517 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
518 {
519         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
520         struct iwl_rb_allocator *rba = &trans_pcie->rba;
521         struct list_head local_empty;
522         int pending = atomic_read(&rba->req_pending);
523
524         IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
525
526         /* If we were scheduled - there is at least one request */
527         spin_lock_bh(&rba->lock);
528         /* swap out the rba->rbd_empty to a local list */
529         list_replace_init(&rba->rbd_empty, &local_empty);
530         spin_unlock_bh(&rba->lock);
531
532         while (pending) {
533                 int i;
534                 LIST_HEAD(local_allocated);
535                 gfp_t gfp_mask = GFP_KERNEL;
536
537                 /* Do not post a warning if there are only a few requests */
538                 if (pending < RX_PENDING_WATERMARK)
539                         gfp_mask |= __GFP_NOWARN;
540
541                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
542                         struct iwl_rx_mem_buffer *rxb;
543                         struct page *page;
544
545                         /* List should never be empty - each reused RBD is
546                          * returned to the list, and initial pool covers any
547                          * possible gap between the time the page is allocated
548                          * to the time the RBD is added.
549                          */
550                         BUG_ON(list_empty(&local_empty));
551                         /* Get the first rxb from the rbd list */
552                         rxb = list_first_entry(&local_empty,
553                                                struct iwl_rx_mem_buffer, list);
554                         BUG_ON(rxb->page);
555
556                         /* Alloc a new receive buffer */
557                         page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
558                                                       gfp_mask);
559                         if (!page)
560                                 continue;
561                         rxb->page = page;
562
563                         /* Get physical address of the RB */
564                         rxb->page_dma = dma_map_page(trans->dev, page,
565                                                      rxb->offset,
566                                                      trans_pcie->rx_buf_bytes,
567                                                      DMA_FROM_DEVICE);
568                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
569                                 rxb->page = NULL;
570                                 __free_pages(page, trans_pcie->rx_page_order);
571                                 continue;
572                         }
573
574                         /* move the allocated entry to the out list */
575                         list_move(&rxb->list, &local_allocated);
576                         i++;
577                 }
578
579                 atomic_dec(&rba->req_pending);
580                 pending--;
581
582                 if (!pending) {
583                         pending = atomic_read(&rba->req_pending);
584                         if (pending)
585                                 IWL_DEBUG_TPT(trans,
586                                               "Got more pending allocation requests = %d\n",
587                                               pending);
588                 }
589
590                 spin_lock_bh(&rba->lock);
591                 /* add the allocated rbds to the allocator allocated list */
592                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
593                 /* get more empty RBDs for current pending requests */
594                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
595                 spin_unlock_bh(&rba->lock);
596
597                 atomic_inc(&rba->req_ready);
598
599         }
600
601         spin_lock_bh(&rba->lock);
602         /* return unused rbds to the allocator empty list */
603         list_splice_tail(&local_empty, &rba->rbd_empty);
604         spin_unlock_bh(&rba->lock);
605
606         IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
607 }
608
609 /*
610  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
611 .*
612 .* Called by queue when the queue posted allocation request and
613  * has freed 8 RBDs in order to restock itself.
614  * This function directly moves the allocated RBs to the queue's ownership
615  * and updates the relevant counters.
616  */
617 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
618                                       struct iwl_rxq *rxq)
619 {
620         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
621         struct iwl_rb_allocator *rba = &trans_pcie->rba;
622         int i;
623
624         lockdep_assert_held(&rxq->lock);
625
626         /*
627          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
628          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
629          * function will return early, as there are no ready requests.
630          * atomic_dec_if_positive will perofrm the *actual* decrement only if
631          * req_ready > 0, i.e. - there are ready requests and the function
632          * hands one request to the caller.
633          */
634         if (atomic_dec_if_positive(&rba->req_ready) < 0)
635                 return;
636
637         spin_lock(&rba->lock);
638         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
639                 /* Get next free Rx buffer, remove it from free list */
640                 struct iwl_rx_mem_buffer *rxb =
641                         list_first_entry(&rba->rbd_allocated,
642                                          struct iwl_rx_mem_buffer, list);
643
644                 list_move(&rxb->list, &rxq->rx_free);
645         }
646         spin_unlock(&rba->lock);
647
648         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
649         rxq->free_count += RX_CLAIM_REQ_ALLOC;
650 }
651
652 void iwl_pcie_rx_allocator_work(struct work_struct *data)
653 {
654         struct iwl_rb_allocator *rba_p =
655                 container_of(data, struct iwl_rb_allocator, rx_alloc);
656         struct iwl_trans_pcie *trans_pcie =
657                 container_of(rba_p, struct iwl_trans_pcie, rba);
658
659         iwl_pcie_rx_allocator(trans_pcie->trans);
660 }
661
662 static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
663 {
664         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
665                 return sizeof(struct iwl_rx_transfer_desc);
666
667         return trans->trans_cfg->mq_rx_supported ?
668                         sizeof(__le64) : sizeof(__le32);
669 }
670
671 static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
672 {
673         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
674                 return sizeof(struct iwl_rx_completion_desc_bz);
675
676         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
677                 return sizeof(struct iwl_rx_completion_desc);
678
679         return sizeof(__le32);
680 }
681
682 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
683                                   struct iwl_rxq *rxq)
684 {
685         int free_size = iwl_pcie_free_bd_size(trans);
686
687         if (rxq->bd)
688                 dma_free_coherent(trans->dev,
689                                   free_size * rxq->queue_size,
690                                   rxq->bd, rxq->bd_dma);
691         rxq->bd_dma = 0;
692         rxq->bd = NULL;
693
694         rxq->rb_stts_dma = 0;
695         rxq->rb_stts = NULL;
696
697         if (rxq->used_bd)
698                 dma_free_coherent(trans->dev,
699                                   iwl_pcie_used_bd_size(trans) *
700                                         rxq->queue_size,
701                                   rxq->used_bd, rxq->used_bd_dma);
702         rxq->used_bd_dma = 0;
703         rxq->used_bd = NULL;
704 }
705
706 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
707                                   struct iwl_rxq *rxq)
708 {
709         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
710         struct device *dev = trans->dev;
711         int i;
712         int free_size;
713         bool use_rx_td = (trans->trans_cfg->device_family >=
714                           IWL_DEVICE_FAMILY_AX210);
715         size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
716                               sizeof(struct iwl_rb_status);
717
718         spin_lock_init(&rxq->lock);
719         if (trans->trans_cfg->mq_rx_supported)
720                 rxq->queue_size = trans->cfg->num_rbds;
721         else
722                 rxq->queue_size = RX_QUEUE_SIZE;
723
724         free_size = iwl_pcie_free_bd_size(trans);
725
726         /*
727          * Allocate the circular buffer of Read Buffer Descriptors
728          * (RBDs)
729          */
730         rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
731                                      &rxq->bd_dma, GFP_KERNEL);
732         if (!rxq->bd)
733                 goto err;
734
735         if (trans->trans_cfg->mq_rx_supported) {
736                 rxq->used_bd = dma_alloc_coherent(dev,
737                                                   iwl_pcie_used_bd_size(trans) *
738                                                         rxq->queue_size,
739                                                   &rxq->used_bd_dma,
740                                                   GFP_KERNEL);
741                 if (!rxq->used_bd)
742                         goto err;
743         }
744
745         rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
746         rxq->rb_stts_dma =
747                 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
748
749         return 0;
750
751 err:
752         for (i = 0; i < trans->num_rx_queues; i++) {
753                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
754
755                 iwl_pcie_free_rxq_dma(trans, rxq);
756         }
757
758         return -ENOMEM;
759 }
760
761 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
762 {
763         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
764         struct iwl_rb_allocator *rba = &trans_pcie->rba;
765         int i, ret;
766         size_t rb_stts_size = trans->trans_cfg->device_family >=
767                                 IWL_DEVICE_FAMILY_AX210 ?
768                               sizeof(__le16) : sizeof(struct iwl_rb_status);
769
770         if (WARN_ON(trans_pcie->rxq))
771                 return -EINVAL;
772
773         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
774                                   GFP_KERNEL);
775         trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
776                                       sizeof(trans_pcie->rx_pool[0]),
777                                       GFP_KERNEL);
778         trans_pcie->global_table =
779                 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
780                         sizeof(trans_pcie->global_table[0]),
781                         GFP_KERNEL);
782         if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
783             !trans_pcie->global_table) {
784                 ret = -ENOMEM;
785                 goto err;
786         }
787
788         spin_lock_init(&rba->lock);
789
790         /*
791          * Allocate the driver's pointer to receive buffer status.
792          * Allocate for all queues continuously (HW requirement).
793          */
794         trans_pcie->base_rb_stts =
795                         dma_alloc_coherent(trans->dev,
796                                            rb_stts_size * trans->num_rx_queues,
797                                            &trans_pcie->base_rb_stts_dma,
798                                            GFP_KERNEL);
799         if (!trans_pcie->base_rb_stts) {
800                 ret = -ENOMEM;
801                 goto err;
802         }
803
804         for (i = 0; i < trans->num_rx_queues; i++) {
805                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
806
807                 rxq->id = i;
808                 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
809                 if (ret)
810                         goto err;
811         }
812         return 0;
813
814 err:
815         if (trans_pcie->base_rb_stts) {
816                 dma_free_coherent(trans->dev,
817                                   rb_stts_size * trans->num_rx_queues,
818                                   trans_pcie->base_rb_stts,
819                                   trans_pcie->base_rb_stts_dma);
820                 trans_pcie->base_rb_stts = NULL;
821                 trans_pcie->base_rb_stts_dma = 0;
822         }
823         kfree(trans_pcie->rx_pool);
824         trans_pcie->rx_pool = NULL;
825         kfree(trans_pcie->global_table);
826         trans_pcie->global_table = NULL;
827         kfree(trans_pcie->rxq);
828         trans_pcie->rxq = NULL;
829
830         return ret;
831 }
832
833 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
834 {
835         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
836         u32 rb_size;
837         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
838
839         switch (trans_pcie->rx_buf_size) {
840         case IWL_AMSDU_4K:
841                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
842                 break;
843         case IWL_AMSDU_8K:
844                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
845                 break;
846         case IWL_AMSDU_12K:
847                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
848                 break;
849         default:
850                 WARN_ON(1);
851                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
852         }
853
854         if (!iwl_trans_grab_nic_access(trans))
855                 return;
856
857         /* Stop Rx DMA */
858         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
859         /* reset and flush pointers */
860         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
861         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
862         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
863
864         /* Reset driver's Rx queue write index */
865         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
866
867         /* Tell device where to find RBD circular buffer in DRAM */
868         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
869                     (u32)(rxq->bd_dma >> 8));
870
871         /* Tell device where in DRAM to update its Rx status */
872         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
873                     rxq->rb_stts_dma >> 4);
874
875         /* Enable Rx DMA
876          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
877          *      the credit mechanism in 5000 HW RX FIFO
878          * Direct rx interrupts to hosts
879          * Rx buffer size 4 or 8k or 12k
880          * RB timeout 0x10
881          * 256 RBDs
882          */
883         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
884                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
885                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
886                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
887                     rb_size |
888                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
889                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
890
891         iwl_trans_release_nic_access(trans);
892
893         /* Set interrupt coalescing timer to default (2048 usecs) */
894         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
895
896         /* W/A for interrupt coalescing bug in 7260 and 3160 */
897         if (trans->cfg->host_interrupt_operation_mode)
898                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
899 }
900
901 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
902 {
903         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
904         u32 rb_size, enabled = 0;
905         int i;
906
907         switch (trans_pcie->rx_buf_size) {
908         case IWL_AMSDU_2K:
909                 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
910                 break;
911         case IWL_AMSDU_4K:
912                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
913                 break;
914         case IWL_AMSDU_8K:
915                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
916                 break;
917         case IWL_AMSDU_12K:
918                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
919                 break;
920         default:
921                 WARN_ON(1);
922                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
923         }
924
925         if (!iwl_trans_grab_nic_access(trans))
926                 return;
927
928         /* Stop Rx DMA */
929         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
930         /* disable free amd used rx queue operation */
931         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
932
933         for (i = 0; i < trans->num_rx_queues; i++) {
934                 /* Tell device where to find RBD free table in DRAM */
935                 iwl_write_prph64_no_grab(trans,
936                                          RFH_Q_FRBDCB_BA_LSB(i),
937                                          trans_pcie->rxq[i].bd_dma);
938                 /* Tell device where to find RBD used table in DRAM */
939                 iwl_write_prph64_no_grab(trans,
940                                          RFH_Q_URBDCB_BA_LSB(i),
941                                          trans_pcie->rxq[i].used_bd_dma);
942                 /* Tell device where in DRAM to update its Rx status */
943                 iwl_write_prph64_no_grab(trans,
944                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
945                                          trans_pcie->rxq[i].rb_stts_dma);
946                 /* Reset device indice tables */
947                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
948                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
949                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
950
951                 enabled |= BIT(i) | BIT(i + 16);
952         }
953
954         /*
955          * Enable Rx DMA
956          * Rx buffer size 4 or 8k or 12k
957          * Min RB size 4 or 8
958          * Drop frames that exceed RB size
959          * 512 RBDs
960          */
961         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
962                                RFH_DMA_EN_ENABLE_VAL | rb_size |
963                                RFH_RXF_DMA_MIN_RB_4_8 |
964                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
965                                RFH_RXF_DMA_RBDCB_SIZE_512);
966
967         /*
968          * Activate DMA snooping.
969          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
970          * Default queue is 0
971          */
972         iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
973                                RFH_GEN_CFG_RFH_DMA_SNOOP |
974                                RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
975                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
976                                RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
977                                                trans->trans_cfg->integrated ?
978                                                RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
979                                                RFH_GEN_CFG_RB_CHUNK_SIZE_128));
980         /* Enable the relevant rx queues */
981         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
982
983         iwl_trans_release_nic_access(trans);
984
985         /* Set interrupt coalescing timer to default (2048 usecs) */
986         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
987 }
988
989 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
990 {
991         lockdep_assert_held(&rxq->lock);
992
993         INIT_LIST_HEAD(&rxq->rx_free);
994         INIT_LIST_HEAD(&rxq->rx_used);
995         rxq->free_count = 0;
996         rxq->used_count = 0;
997 }
998
999 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1000
1001 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1002 {
1003         struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1004         struct iwl_trans_pcie *trans_pcie;
1005         struct iwl_trans *trans;
1006         int ret;
1007
1008         trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1009         trans = trans_pcie->trans;
1010
1011         ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1012
1013         IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1014                       rxq->id, ret, budget);
1015
1016         if (ret < budget) {
1017                 spin_lock(&trans_pcie->irq_lock);
1018                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1019                         _iwl_enable_interrupts(trans);
1020                 spin_unlock(&trans_pcie->irq_lock);
1021
1022                 napi_complete_done(&rxq->napi, ret);
1023         }
1024
1025         return ret;
1026 }
1027
1028 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1029 {
1030         struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1031         struct iwl_trans_pcie *trans_pcie;
1032         struct iwl_trans *trans;
1033         int ret;
1034
1035         trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1036         trans = trans_pcie->trans;
1037
1038         ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1039         IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1040                       budget);
1041
1042         if (ret < budget) {
1043                 int irq_line = rxq->id;
1044
1045                 /* FIRST_RSS is shared with line 0 */
1046                 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1047                     rxq->id == 1)
1048                         irq_line = 0;
1049
1050                 spin_lock(&trans_pcie->irq_lock);
1051                 iwl_pcie_clear_irq(trans, irq_line);
1052                 spin_unlock(&trans_pcie->irq_lock);
1053
1054                 napi_complete_done(&rxq->napi, ret);
1055         }
1056
1057         return ret;
1058 }
1059
1060 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1061 {
1062         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1063         struct iwl_rxq *def_rxq;
1064         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1065         int i, err, queue_size, allocator_pool_size, num_alloc;
1066
1067         if (!trans_pcie->rxq) {
1068                 err = iwl_pcie_rx_alloc(trans);
1069                 if (err)
1070                         return err;
1071         }
1072         def_rxq = trans_pcie->rxq;
1073
1074         cancel_work_sync(&rba->rx_alloc);
1075
1076         spin_lock_bh(&rba->lock);
1077         atomic_set(&rba->req_pending, 0);
1078         atomic_set(&rba->req_ready, 0);
1079         INIT_LIST_HEAD(&rba->rbd_allocated);
1080         INIT_LIST_HEAD(&rba->rbd_empty);
1081         spin_unlock_bh(&rba->lock);
1082
1083         /* free all first - we overwrite everything here */
1084         iwl_pcie_free_rbs_pool(trans);
1085
1086         for (i = 0; i < RX_QUEUE_SIZE; i++)
1087                 def_rxq->queue[i] = NULL;
1088
1089         for (i = 0; i < trans->num_rx_queues; i++) {
1090                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1091
1092                 spin_lock_bh(&rxq->lock);
1093                 /*
1094                  * Set read write pointer to reflect that we have processed
1095                  * and used all buffers, but have not restocked the Rx queue
1096                  * with fresh buffers
1097                  */
1098                 rxq->read = 0;
1099                 rxq->write = 0;
1100                 rxq->write_actual = 0;
1101                 memset(rxq->rb_stts, 0,
1102                        (trans->trans_cfg->device_family >=
1103                         IWL_DEVICE_FAMILY_AX210) ?
1104                        sizeof(__le16) : sizeof(struct iwl_rb_status));
1105
1106                 iwl_pcie_rx_init_rxb_lists(rxq);
1107
1108                 spin_unlock_bh(&rxq->lock);
1109
1110                 if (!rxq->napi.poll) {
1111                         int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1112
1113                         if (trans_pcie->msix_enabled)
1114                                 poll = iwl_pcie_napi_poll_msix;
1115
1116                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1117                                        poll, NAPI_POLL_WEIGHT);
1118                         napi_enable(&rxq->napi);
1119                 }
1120
1121         }
1122
1123         /* move the pool to the default queue and allocator ownerships */
1124         queue_size = trans->trans_cfg->mq_rx_supported ?
1125                         trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1126         allocator_pool_size = trans->num_rx_queues *
1127                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1128         num_alloc = queue_size + allocator_pool_size;
1129
1130         for (i = 0; i < num_alloc; i++) {
1131                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1132
1133                 if (i < allocator_pool_size)
1134                         list_add(&rxb->list, &rba->rbd_empty);
1135                 else
1136                         list_add(&rxb->list, &def_rxq->rx_used);
1137                 trans_pcie->global_table[i] = rxb;
1138                 rxb->vid = (u16)(i + 1);
1139                 rxb->invalid = true;
1140         }
1141
1142         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1143
1144         return 0;
1145 }
1146
1147 int iwl_pcie_rx_init(struct iwl_trans *trans)
1148 {
1149         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1150         int ret = _iwl_pcie_rx_init(trans);
1151
1152         if (ret)
1153                 return ret;
1154
1155         if (trans->trans_cfg->mq_rx_supported)
1156                 iwl_pcie_rx_mq_hw_init(trans);
1157         else
1158                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1159
1160         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1161
1162         spin_lock_bh(&trans_pcie->rxq->lock);
1163         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1164         spin_unlock_bh(&trans_pcie->rxq->lock);
1165
1166         return 0;
1167 }
1168
1169 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1170 {
1171         /* Set interrupt coalescing timer to default (2048 usecs) */
1172         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1173
1174         /*
1175          * We don't configure the RFH.
1176          * Restock will be done at alive, after firmware configured the RFH.
1177          */
1178         return _iwl_pcie_rx_init(trans);
1179 }
1180
1181 void iwl_pcie_rx_free(struct iwl_trans *trans)
1182 {
1183         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1184         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1185         int i;
1186         size_t rb_stts_size = trans->trans_cfg->device_family >=
1187                                 IWL_DEVICE_FAMILY_AX210 ?
1188                               sizeof(__le16) : sizeof(struct iwl_rb_status);
1189
1190         /*
1191          * if rxq is NULL, it means that nothing has been allocated,
1192          * exit now
1193          */
1194         if (!trans_pcie->rxq) {
1195                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1196                 return;
1197         }
1198
1199         cancel_work_sync(&rba->rx_alloc);
1200
1201         iwl_pcie_free_rbs_pool(trans);
1202
1203         if (trans_pcie->base_rb_stts) {
1204                 dma_free_coherent(trans->dev,
1205                                   rb_stts_size * trans->num_rx_queues,
1206                                   trans_pcie->base_rb_stts,
1207                                   trans_pcie->base_rb_stts_dma);
1208                 trans_pcie->base_rb_stts = NULL;
1209                 trans_pcie->base_rb_stts_dma = 0;
1210         }
1211
1212         for (i = 0; i < trans->num_rx_queues; i++) {
1213                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1214
1215                 iwl_pcie_free_rxq_dma(trans, rxq);
1216
1217                 if (rxq->napi.poll) {
1218                         napi_disable(&rxq->napi);
1219                         netif_napi_del(&rxq->napi);
1220                 }
1221         }
1222         kfree(trans_pcie->rx_pool);
1223         kfree(trans_pcie->global_table);
1224         kfree(trans_pcie->rxq);
1225
1226         if (trans_pcie->alloc_page)
1227                 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1228 }
1229
1230 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1231                                           struct iwl_rb_allocator *rba)
1232 {
1233         spin_lock(&rba->lock);
1234         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1235         spin_unlock(&rba->lock);
1236 }
1237
1238 /*
1239  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1240  *
1241  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1242  * When there are 2 empty RBDs - a request for allocation is posted
1243  */
1244 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1245                                   struct iwl_rx_mem_buffer *rxb,
1246                                   struct iwl_rxq *rxq, bool emergency)
1247 {
1248         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1249         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1250
1251         /* Move the RBD to the used list, will be moved to allocator in batches
1252          * before claiming or posting a request*/
1253         list_add_tail(&rxb->list, &rxq->rx_used);
1254
1255         if (unlikely(emergency))
1256                 return;
1257
1258         /* Count the allocator owned RBDs */
1259         rxq->used_count++;
1260
1261         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1262          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1263          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1264          * after but we still need to post another request.
1265          */
1266         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1267                 /* Move the 2 RBDs to the allocator ownership.
1268                  Allocator has another 6 from pool for the request completion*/
1269                 iwl_pcie_rx_move_to_allocator(rxq, rba);
1270
1271                 atomic_inc(&rba->req_pending);
1272                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1273         }
1274 }
1275
1276 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1277                                 struct iwl_rxq *rxq,
1278                                 struct iwl_rx_mem_buffer *rxb,
1279                                 bool emergency,
1280                                 int i)
1281 {
1282         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1283         struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1284         bool page_stolen = false;
1285         int max_len = trans_pcie->rx_buf_bytes;
1286         u32 offset = 0;
1287
1288         if (WARN_ON(!rxb))
1289                 return;
1290
1291         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1292
1293         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1294                 struct iwl_rx_packet *pkt;
1295                 bool reclaim;
1296                 int len;
1297                 struct iwl_rx_cmd_buffer rxcb = {
1298                         ._offset = rxb->offset + offset,
1299                         ._rx_page_order = trans_pcie->rx_page_order,
1300                         ._page = rxb->page,
1301                         ._page_stolen = false,
1302                         .truesize = max_len,
1303                 };
1304
1305                 pkt = rxb_addr(&rxcb);
1306
1307                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1308                         IWL_DEBUG_RX(trans,
1309                                      "Q %d: RB end marker at offset %d\n",
1310                                      rxq->id, offset);
1311                         break;
1312                 }
1313
1314                 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1315                         FH_RSCSR_RXQ_POS != rxq->id,
1316                      "frame on invalid queue - is on %d and indicates %d\n",
1317                      rxq->id,
1318                      (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1319                         FH_RSCSR_RXQ_POS);
1320
1321                 IWL_DEBUG_RX(trans,
1322                              "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1323                              rxq->id, offset,
1324                              iwl_get_cmd_string(trans,
1325                                                 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
1326                              pkt->hdr.group_id, pkt->hdr.cmd,
1327                              le16_to_cpu(pkt->hdr.sequence));
1328
1329                 len = iwl_rx_packet_len(pkt);
1330                 len += sizeof(u32); /* account for status word */
1331
1332                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1333
1334                 /* check that what the device tells us made sense */
1335                 if (len < sizeof(*pkt) || offset > max_len)
1336                         break;
1337
1338                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1339                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1340
1341                 /* Reclaim a command buffer only if this packet is a response
1342                  *   to a (driver-originated) command.
1343                  * If the packet (e.g. Rx frame) originated from uCode,
1344                  *   there is no command buffer to reclaim.
1345                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1346                  *   but apparently a few don't get set; catch them here. */
1347                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1348                 if (reclaim && !pkt->hdr.group_id) {
1349                         int i;
1350
1351                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1352                                 if (trans_pcie->no_reclaim_cmds[i] ==
1353                                                         pkt->hdr.cmd) {
1354                                         reclaim = false;
1355                                         break;
1356                                 }
1357                         }
1358                 }
1359
1360                 if (rxq->id == trans_pcie->def_rx_queue)
1361                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1362                                        &rxcb);
1363                 else
1364                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1365                                            &rxcb, rxq->id);
1366
1367                 /*
1368                  * After here, we should always check rxcb._page_stolen,
1369                  * if it is true then one of the handlers took the page.
1370                  */
1371
1372                 if (reclaim) {
1373                         u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1374                         int index = SEQ_TO_INDEX(sequence);
1375                         int cmd_index = iwl_txq_get_cmd_index(txq, index);
1376
1377                         kfree_sensitive(txq->entries[cmd_index].free_buf);
1378                         txq->entries[cmd_index].free_buf = NULL;
1379
1380                         /* Invoke any callbacks, transfer the buffer to caller,
1381                          * and fire off the (possibly) blocking
1382                          * iwl_trans_send_cmd()
1383                          * as we reclaim the driver command queue */
1384                         if (!rxcb._page_stolen)
1385                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1386                         else
1387                                 IWL_WARN(trans, "Claim null rxb?\n");
1388                 }
1389
1390                 page_stolen |= rxcb._page_stolen;
1391                 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1392                         break;
1393         }
1394
1395         /* page was stolen from us -- free our reference */
1396         if (page_stolen) {
1397                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1398                 rxb->page = NULL;
1399         }
1400
1401         /* Reuse the page if possible. For notification packets and
1402          * SKBs that fail to Rx correctly, add them back into the
1403          * rx_free list for reuse later. */
1404         if (rxb->page != NULL) {
1405                 rxb->page_dma =
1406                         dma_map_page(trans->dev, rxb->page, rxb->offset,
1407                                      trans_pcie->rx_buf_bytes,
1408                                      DMA_FROM_DEVICE);
1409                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1410                         /*
1411                          * free the page(s) as well to not break
1412                          * the invariant that the items on the used
1413                          * list have no page(s)
1414                          */
1415                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1416                         rxb->page = NULL;
1417                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1418                 } else {
1419                         list_add_tail(&rxb->list, &rxq->rx_free);
1420                         rxq->free_count++;
1421                 }
1422         } else
1423                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1424 }
1425
1426 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1427                                                   struct iwl_rxq *rxq, int i,
1428                                                   bool *join)
1429 {
1430         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1431         struct iwl_rx_mem_buffer *rxb;
1432         u16 vid;
1433
1434         BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1435         BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1436
1437         if (!trans->trans_cfg->mq_rx_supported) {
1438                 rxb = rxq->queue[i];
1439                 rxq->queue[i] = NULL;
1440                 return rxb;
1441         }
1442
1443         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1444                 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1445
1446                 vid = le16_to_cpu(cd[i].rbid);
1447                 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1448         } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1449                 struct iwl_rx_completion_desc *cd = rxq->used_bd;
1450
1451                 vid = le16_to_cpu(cd[i].rbid);
1452                 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1453         } else {
1454                 __le32 *cd = rxq->used_bd;
1455
1456                 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1457         }
1458
1459         if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1460                 goto out_err;
1461
1462         rxb = trans_pcie->global_table[vid - 1];
1463         if (rxb->invalid)
1464                 goto out_err;
1465
1466         IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1467
1468         rxb->invalid = true;
1469
1470         return rxb;
1471
1472 out_err:
1473         WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1474         iwl_force_nmi(trans);
1475         return NULL;
1476 }
1477
1478 /*
1479  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1480  */
1481 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1482 {
1483         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1484         struct iwl_rxq *rxq;
1485         u32 r, i, count = 0, handled = 0;
1486         bool emergency = false;
1487
1488         if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1489                 return budget;
1490
1491         rxq = &trans_pcie->rxq[queue];
1492
1493 restart:
1494         spin_lock(&rxq->lock);
1495         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1496          * buffer that the driver may process (last buffer filled by ucode). */
1497         r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1498         i = rxq->read;
1499
1500         /* W/A 9000 device step A0 wrap-around bug */
1501         r &= (rxq->queue_size - 1);
1502
1503         /* Rx interrupt, but nothing sent from uCode */
1504         if (i == r)
1505                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1506
1507         while (i != r && ++handled < budget) {
1508                 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1509                 struct iwl_rx_mem_buffer *rxb;
1510                 /* number of RBDs still waiting for page allocation */
1511                 u32 rb_pending_alloc =
1512                         atomic_read(&trans_pcie->rba.req_pending) *
1513                         RX_CLAIM_REQ_ALLOC;
1514                 bool join = false;
1515
1516                 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1517                              !emergency)) {
1518                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1519                         emergency = true;
1520                         IWL_DEBUG_TPT(trans,
1521                                       "RX path is in emergency. Pending allocations %d\n",
1522                                       rb_pending_alloc);
1523                 }
1524
1525                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1526
1527                 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1528                 if (!rxb)
1529                         goto out;
1530
1531                 if (unlikely(join || rxq->next_rb_is_fragment)) {
1532                         rxq->next_rb_is_fragment = join;
1533                         /*
1534                          * We can only get a multi-RB in the following cases:
1535                          *  - firmware issue, sending a too big notification
1536                          *  - sniffer mode with a large A-MSDU
1537                          *  - large MTU frames (>2k)
1538                          * since the multi-RB functionality is limited to newer
1539                          * hardware that cannot put multiple entries into a
1540                          * single RB.
1541                          *
1542                          * Right now, the higher layers aren't set up to deal
1543                          * with that, so discard all of these.
1544                          */
1545                         list_add_tail(&rxb->list, &rxq->rx_free);
1546                         rxq->free_count++;
1547                 } else {
1548                         iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1549                 }
1550
1551                 i = (i + 1) & (rxq->queue_size - 1);
1552
1553                 /*
1554                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1555                  * try to claim the pre-allocated buffers from the allocator.
1556                  * If not ready - will try to reclaim next time.
1557                  * There is no need to reschedule work - allocator exits only
1558                  * on success
1559                  */
1560                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1561                         iwl_pcie_rx_allocator_get(trans, rxq);
1562
1563                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1564                         /* Add the remaining empty RBDs for allocator use */
1565                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1566                 } else if (emergency) {
1567                         count++;
1568                         if (count == 8) {
1569                                 count = 0;
1570                                 if (rb_pending_alloc < rxq->queue_size / 3) {
1571                                         IWL_DEBUG_TPT(trans,
1572                                                       "RX path exited emergency. Pending allocations %d\n",
1573                                                       rb_pending_alloc);
1574                                         emergency = false;
1575                                 }
1576
1577                                 rxq->read = i;
1578                                 spin_unlock(&rxq->lock);
1579                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1580                                 iwl_pcie_rxq_restock(trans, rxq);
1581                                 goto restart;
1582                         }
1583                 }
1584         }
1585 out:
1586         /* Backtrack one entry */
1587         rxq->read = i;
1588         spin_unlock(&rxq->lock);
1589
1590         /*
1591          * handle a case where in emergency there are some unallocated RBDs.
1592          * those RBDs are in the used list, but are not tracked by the queue's
1593          * used_count which counts allocator owned RBDs.
1594          * unallocated emergency RBDs must be allocated on exit, otherwise
1595          * when called again the function may not be in emergency mode and
1596          * they will be handed to the allocator with no tracking in the RBD
1597          * allocator counters, which will lead to them never being claimed back
1598          * by the queue.
1599          * by allocating them here, they are now in the queue free list, and
1600          * will be restocked by the next call of iwl_pcie_rxq_restock.
1601          */
1602         if (unlikely(emergency && count))
1603                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1604
1605         iwl_pcie_rxq_restock(trans, rxq);
1606
1607         return handled;
1608 }
1609
1610 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1611 {
1612         u8 queue = entry->entry;
1613         struct msix_entry *entries = entry - queue;
1614
1615         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1616 }
1617
1618 /*
1619  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1620  * This interrupt handler should be used with RSS queue only.
1621  */
1622 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1623 {
1624         struct msix_entry *entry = dev_id;
1625         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1626         struct iwl_trans *trans = trans_pcie->trans;
1627         struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
1628
1629         trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1630
1631         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1632                 return IRQ_NONE;
1633
1634         if (!rxq) {
1635                 if (net_ratelimit())
1636                         IWL_ERR(trans,
1637                                 "[%d] Got MSI-X interrupt before we have Rx queues\n",
1638                                 entry->entry);
1639                 return IRQ_NONE;
1640         }
1641
1642         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1643         IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1644
1645         local_bh_disable();
1646         if (napi_schedule_prep(&rxq->napi))
1647                 __napi_schedule(&rxq->napi);
1648         else
1649                 iwl_pcie_clear_irq(trans, entry->entry);
1650         local_bh_enable();
1651
1652         lock_map_release(&trans->sync_cmd_lockdep_map);
1653
1654         return IRQ_HANDLED;
1655 }
1656
1657 /*
1658  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1659  */
1660 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1661 {
1662         int i;
1663
1664         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1665         if (trans->cfg->internal_wimax_coex &&
1666             !trans->cfg->apmg_not_supported &&
1667             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1668                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1669              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1670                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1671                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1672                 iwl_op_mode_wimax_active(trans->op_mode);
1673                 wake_up(&trans->wait_command_queue);
1674                 return;
1675         }
1676
1677         for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1678                 if (!trans->txqs.txq[i])
1679                         continue;
1680                 del_timer(&trans->txqs.txq[i]->stuck_timer);
1681         }
1682
1683         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1684          * before we wake up the command caller, to ensure a proper cleanup. */
1685         iwl_trans_fw_error(trans, false);
1686
1687         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1688         wake_up(&trans->wait_command_queue);
1689 }
1690
1691 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1692 {
1693         u32 inta;
1694
1695         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1696
1697         trace_iwlwifi_dev_irq(trans->dev);
1698
1699         /* Discover which interrupts are active/pending */
1700         inta = iwl_read32(trans, CSR_INT);
1701
1702         /* the thread will service interrupts and re-enable them */
1703         return inta;
1704 }
1705
1706 /* a device (PCI-E) page is 4096 bytes long */
1707 #define ICT_SHIFT       12
1708 #define ICT_SIZE        (1 << ICT_SHIFT)
1709 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1710
1711 /* interrupt handler using ict table, with this interrupt driver will
1712  * stop using INTA register to get device's interrupt, reading this register
1713  * is expensive, device will write interrupts in ICT dram table, increment
1714  * index then will fire interrupt to driver, driver will OR all ICT table
1715  * entries from current index up to table entry with 0 value. the result is
1716  * the interrupt we need to service, driver will set the entries back to 0 and
1717  * set index.
1718  */
1719 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1720 {
1721         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1722         u32 inta;
1723         u32 val = 0;
1724         u32 read;
1725
1726         trace_iwlwifi_dev_irq(trans->dev);
1727
1728         /* Ignore interrupt if there's nothing in NIC to service.
1729          * This may be due to IRQ shared with another device,
1730          * or due to sporadic interrupts thrown from our NIC. */
1731         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1732         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1733         if (!read)
1734                 return 0;
1735
1736         /*
1737          * Collect all entries up to the first 0, starting from ict_index;
1738          * note we already read at ict_index.
1739          */
1740         do {
1741                 val |= read;
1742                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1743                                 trans_pcie->ict_index, read);
1744                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1745                 trans_pcie->ict_index =
1746                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1747
1748                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1749                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1750                                            read);
1751         } while (read);
1752
1753         /* We should not get this value, just ignore it. */
1754         if (val == 0xffffffff)
1755                 val = 0;
1756
1757         /*
1758          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1759          * (bit 15 before shifting it to 31) to clear when using interrupt
1760          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1761          * so we use them to decide on the real state of the Rx bit.
1762          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1763          */
1764         if (val & 0xC0000)
1765                 val |= 0x8000;
1766
1767         inta = (0xff & val) | ((0xff00 & val) << 16);
1768         return inta;
1769 }
1770
1771 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1772 {
1773         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1774         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1775         bool hw_rfkill, prev, report;
1776
1777         mutex_lock(&trans_pcie->mutex);
1778         prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1779         hw_rfkill = iwl_is_rfkill_set(trans);
1780         if (hw_rfkill) {
1781                 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1782                 set_bit(STATUS_RFKILL_HW, &trans->status);
1783         }
1784         if (trans_pcie->opmode_down)
1785                 report = hw_rfkill;
1786         else
1787                 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1788
1789         IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1790                  hw_rfkill ? "disable radio" : "enable radio");
1791
1792         isr_stats->rfkill++;
1793
1794         if (prev != report)
1795                 iwl_trans_pcie_rf_kill(trans, report);
1796         mutex_unlock(&trans_pcie->mutex);
1797
1798         if (hw_rfkill) {
1799                 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1800                                        &trans->status))
1801                         IWL_DEBUG_RF_KILL(trans,
1802                                           "Rfkill while SYNC HCMD in flight\n");
1803                 wake_up(&trans->wait_command_queue);
1804         } else {
1805                 clear_bit(STATUS_RFKILL_HW, &trans->status);
1806                 if (trans_pcie->opmode_down)
1807                         clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1808         }
1809 }
1810
1811 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1812 {
1813         struct iwl_trans *trans = dev_id;
1814         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1815         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1816         u32 inta = 0;
1817         u32 handled = 0;
1818         bool polling = false;
1819
1820         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1821
1822         spin_lock_bh(&trans_pcie->irq_lock);
1823
1824         /* dram interrupt table not set yet,
1825          * use legacy interrupt.
1826          */
1827         if (likely(trans_pcie->use_ict))
1828                 inta = iwl_pcie_int_cause_ict(trans);
1829         else
1830                 inta = iwl_pcie_int_cause_non_ict(trans);
1831
1832 #ifdef CONFIG_IWLWIFI_DEBUG
1833         if (iwl_have_debug_level(IWL_DL_ISR)) {
1834                 IWL_DEBUG_ISR(trans,
1835                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1836                               inta, trans_pcie->inta_mask,
1837                               iwl_read32(trans, CSR_INT_MASK),
1838                               iwl_read32(trans, CSR_FH_INT_STATUS));
1839                 if (inta & (~trans_pcie->inta_mask))
1840                         IWL_DEBUG_ISR(trans,
1841                                       "We got a masked interrupt (0x%08x)\n",
1842                                       inta & (~trans_pcie->inta_mask));
1843         }
1844 #endif
1845
1846         inta &= trans_pcie->inta_mask;
1847
1848         /*
1849          * Ignore interrupt if there's nothing in NIC to service.
1850          * This may be due to IRQ shared with another device,
1851          * or due to sporadic interrupts thrown from our NIC.
1852          */
1853         if (unlikely(!inta)) {
1854                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1855                 /*
1856                  * Re-enable interrupts here since we don't
1857                  * have anything to service
1858                  */
1859                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1860                         _iwl_enable_interrupts(trans);
1861                 spin_unlock_bh(&trans_pcie->irq_lock);
1862                 lock_map_release(&trans->sync_cmd_lockdep_map);
1863                 return IRQ_NONE;
1864         }
1865
1866         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1867                 /*
1868                  * Hardware disappeared. It might have
1869                  * already raised an interrupt.
1870                  */
1871                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1872                 spin_unlock_bh(&trans_pcie->irq_lock);
1873                 goto out;
1874         }
1875
1876         /* Ack/clear/reset pending uCode interrupts.
1877          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1878          */
1879         /* There is a hardware bug in the interrupt mask function that some
1880          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1881          * they are disabled in the CSR_INT_MASK register. Furthermore the
1882          * ICT interrupt handling mechanism has another bug that might cause
1883          * these unmasked interrupts fail to be detected. We workaround the
1884          * hardware bugs here by ACKing all the possible interrupts so that
1885          * interrupt coalescing can still be achieved.
1886          */
1887         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1888
1889 #ifdef CONFIG_IWLWIFI_DEBUG
1890         if (iwl_have_debug_level(IWL_DL_ISR))
1891                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1892                               inta, iwl_read32(trans, CSR_INT_MASK));
1893 #endif
1894
1895         spin_unlock_bh(&trans_pcie->irq_lock);
1896
1897         /* Now service all interrupt bits discovered above. */
1898         if (inta & CSR_INT_BIT_HW_ERR) {
1899                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1900
1901                 /* Tell the device to stop sending interrupts */
1902                 iwl_disable_interrupts(trans);
1903
1904                 isr_stats->hw++;
1905                 iwl_pcie_irq_handle_error(trans);
1906
1907                 handled |= CSR_INT_BIT_HW_ERR;
1908
1909                 goto out;
1910         }
1911
1912         /* NIC fires this, but we don't use it, redundant with WAKEUP */
1913         if (inta & CSR_INT_BIT_SCD) {
1914                 IWL_DEBUG_ISR(trans,
1915                               "Scheduler finished to transmit the frame/frames.\n");
1916                 isr_stats->sch++;
1917         }
1918
1919         /* Alive notification via Rx interrupt will do the real work */
1920         if (inta & CSR_INT_BIT_ALIVE) {
1921                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1922                 isr_stats->alive++;
1923                 if (trans->trans_cfg->gen2) {
1924                         /*
1925                          * We can restock, since firmware configured
1926                          * the RFH
1927                          */
1928                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1929                 }
1930
1931                 handled |= CSR_INT_BIT_ALIVE;
1932         }
1933
1934         /* Safely ignore these bits for debug checks below */
1935         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1936
1937         /* HW RF KILL switch toggled */
1938         if (inta & CSR_INT_BIT_RF_KILL) {
1939                 iwl_pcie_handle_rfkill_irq(trans);
1940                 handled |= CSR_INT_BIT_RF_KILL;
1941         }
1942
1943         /* Chip got too hot and stopped itself */
1944         if (inta & CSR_INT_BIT_CT_KILL) {
1945                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1946                 isr_stats->ctkill++;
1947                 handled |= CSR_INT_BIT_CT_KILL;
1948         }
1949
1950         /* Error detected by uCode */
1951         if (inta & CSR_INT_BIT_SW_ERR) {
1952                 IWL_ERR(trans, "Microcode SW error detected. "
1953                         " Restarting 0x%X.\n", inta);
1954                 isr_stats->sw++;
1955                 iwl_pcie_irq_handle_error(trans);
1956                 handled |= CSR_INT_BIT_SW_ERR;
1957         }
1958
1959         /* uCode wakes up after power-down sleep */
1960         if (inta & CSR_INT_BIT_WAKEUP) {
1961                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1962                 iwl_pcie_rxq_check_wrptr(trans);
1963                 iwl_pcie_txq_check_wrptrs(trans);
1964
1965                 isr_stats->wakeup++;
1966
1967                 handled |= CSR_INT_BIT_WAKEUP;
1968         }
1969
1970         /* All uCode command responses, including Tx command responses,
1971          * Rx "responses" (frame-received notification), and other
1972          * notifications from uCode come through here*/
1973         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1974                     CSR_INT_BIT_RX_PERIODIC)) {
1975                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1976                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1977                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1978                         iwl_write32(trans, CSR_FH_INT_STATUS,
1979                                         CSR_FH_INT_RX_MASK);
1980                 }
1981                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1982                         handled |= CSR_INT_BIT_RX_PERIODIC;
1983                         iwl_write32(trans,
1984                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1985                 }
1986                 /* Sending RX interrupt require many steps to be done in the
1987                  * device:
1988                  * 1- write interrupt to current index in ICT table.
1989                  * 2- dma RX frame.
1990                  * 3- update RX shared data to indicate last write index.
1991                  * 4- send interrupt.
1992                  * This could lead to RX race, driver could receive RX interrupt
1993                  * but the shared data changes does not reflect this;
1994                  * periodic interrupt will detect any dangling Rx activity.
1995                  */
1996
1997                 /* Disable periodic interrupt; we use it as just a one-shot. */
1998                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1999                             CSR_INT_PERIODIC_DIS);
2000
2001                 /*
2002                  * Enable periodic interrupt in 8 msec only if we received
2003                  * real RX interrupt (instead of just periodic int), to catch
2004                  * any dangling Rx interrupt.  If it was just the periodic
2005                  * interrupt, there was no dangling Rx activity, and no need
2006                  * to extend the periodic interrupt; one-shot is enough.
2007                  */
2008                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2009                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
2010                                    CSR_INT_PERIODIC_ENA);
2011
2012                 isr_stats->rx++;
2013
2014                 local_bh_disable();
2015                 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2016                         polling = true;
2017                         __napi_schedule(&trans_pcie->rxq[0].napi);
2018                 }
2019                 local_bh_enable();
2020         }
2021
2022         /* This "Tx" DMA channel is used only for loading uCode */
2023         if (inta & CSR_INT_BIT_FH_TX) {
2024                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2025                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2026                 isr_stats->tx++;
2027                 handled |= CSR_INT_BIT_FH_TX;
2028                 /* Wake up uCode load routine, now that load is complete */
2029                 trans_pcie->ucode_write_complete = true;
2030                 wake_up(&trans_pcie->ucode_write_waitq);
2031                 /* Wake up IMR write routine, now that write to SRAM is complete */
2032                 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2033                         trans_pcie->imr_status = IMR_D2S_COMPLETED;
2034                         wake_up(&trans_pcie->ucode_write_waitq);
2035                 }
2036         }
2037
2038         if (inta & ~handled) {
2039                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2040                 isr_stats->unhandled++;
2041         }
2042
2043         if (inta & ~(trans_pcie->inta_mask)) {
2044                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2045                          inta & ~trans_pcie->inta_mask);
2046         }
2047
2048         if (!polling) {
2049                 spin_lock_bh(&trans_pcie->irq_lock);
2050                 /* only Re-enable all interrupt if disabled by irq */
2051                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2052                         _iwl_enable_interrupts(trans);
2053                 /* we are loading the firmware, enable FH_TX interrupt only */
2054                 else if (handled & CSR_INT_BIT_FH_TX)
2055                         iwl_enable_fw_load_int(trans);
2056                 /* Re-enable RF_KILL if it occurred */
2057                 else if (handled & CSR_INT_BIT_RF_KILL)
2058                         iwl_enable_rfkill_int(trans);
2059                 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2060                 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2061                         iwl_enable_fw_load_int_ctx_info(trans);
2062                 spin_unlock_bh(&trans_pcie->irq_lock);
2063         }
2064
2065 out:
2066         lock_map_release(&trans->sync_cmd_lockdep_map);
2067         return IRQ_HANDLED;
2068 }
2069
2070 /******************************************************************************
2071  *
2072  * ICT functions
2073  *
2074  ******************************************************************************/
2075
2076 /* Free dram table */
2077 void iwl_pcie_free_ict(struct iwl_trans *trans)
2078 {
2079         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2080
2081         if (trans_pcie->ict_tbl) {
2082                 dma_free_coherent(trans->dev, ICT_SIZE,
2083                                   trans_pcie->ict_tbl,
2084                                   trans_pcie->ict_tbl_dma);
2085                 trans_pcie->ict_tbl = NULL;
2086                 trans_pcie->ict_tbl_dma = 0;
2087         }
2088 }
2089
2090 /*
2091  * allocate dram shared table, it is an aligned memory
2092  * block of ICT_SIZE.
2093  * also reset all data related to ICT table interrupt.
2094  */
2095 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2096 {
2097         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2098
2099         trans_pcie->ict_tbl =
2100                 dma_alloc_coherent(trans->dev, ICT_SIZE,
2101                                    &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2102         if (!trans_pcie->ict_tbl)
2103                 return -ENOMEM;
2104
2105         /* just an API sanity check ... it is guaranteed to be aligned */
2106         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2107                 iwl_pcie_free_ict(trans);
2108                 return -EINVAL;
2109         }
2110
2111         return 0;
2112 }
2113
2114 /* Device is going up inform it about using ICT interrupt table,
2115  * also we need to tell the driver to start using ICT interrupt.
2116  */
2117 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2118 {
2119         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2120         u32 val;
2121
2122         if (!trans_pcie->ict_tbl)
2123                 return;
2124
2125         spin_lock_bh(&trans_pcie->irq_lock);
2126         _iwl_disable_interrupts(trans);
2127
2128         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2129
2130         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2131
2132         val |= CSR_DRAM_INT_TBL_ENABLE |
2133                CSR_DRAM_INIT_TBL_WRAP_CHECK |
2134                CSR_DRAM_INIT_TBL_WRITE_POINTER;
2135
2136         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2137
2138         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2139         trans_pcie->use_ict = true;
2140         trans_pcie->ict_index = 0;
2141         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2142         _iwl_enable_interrupts(trans);
2143         spin_unlock_bh(&trans_pcie->irq_lock);
2144 }
2145
2146 /* Device is going down disable ict interrupt usage */
2147 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2148 {
2149         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2150
2151         spin_lock_bh(&trans_pcie->irq_lock);
2152         trans_pcie->use_ict = false;
2153         spin_unlock_bh(&trans_pcie->irq_lock);
2154 }
2155
2156 irqreturn_t iwl_pcie_isr(int irq, void *data)
2157 {
2158         struct iwl_trans *trans = data;
2159
2160         if (!trans)
2161                 return IRQ_NONE;
2162
2163         /* Disable (but don't clear!) interrupts here to avoid
2164          * back-to-back ISRs and sporadic interrupts from our NIC.
2165          * If we have something to service, the tasklet will re-enable ints.
2166          * If we *don't* have something, we'll re-enable before leaving here.
2167          */
2168         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2169
2170         return IRQ_WAKE_THREAD;
2171 }
2172
2173 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2174 {
2175         return IRQ_WAKE_THREAD;
2176 }
2177
2178 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2179 {
2180         struct msix_entry *entry = dev_id;
2181         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2182         struct iwl_trans *trans = trans_pcie->trans;
2183         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2184         u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2185         u32 inta_fh, inta_hw;
2186         bool polling = false;
2187         bool sw_err;
2188
2189         if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2190                 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2191
2192         if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2193                 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2194
2195         lock_map_acquire(&trans->sync_cmd_lockdep_map);
2196
2197         spin_lock_bh(&trans_pcie->irq_lock);
2198         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2199         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2200         /*
2201          * Clear causes registers to avoid being handling the same cause.
2202          */
2203         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2204         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2205         spin_unlock_bh(&trans_pcie->irq_lock);
2206
2207         trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2208
2209         if (unlikely(!(inta_fh | inta_hw))) {
2210                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2211                 lock_map_release(&trans->sync_cmd_lockdep_map);
2212                 return IRQ_NONE;
2213         }
2214
2215 #ifdef CONFIG_IWLWIFI_DEBUG
2216         if (iwl_have_debug_level(IWL_DL_ISR)) {
2217                 IWL_DEBUG_ISR(trans,
2218                               "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2219                               entry->entry, inta_fh, trans_pcie->fh_mask,
2220                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2221                 if (inta_fh & ~trans_pcie->fh_mask)
2222                         IWL_DEBUG_ISR(trans,
2223                                       "We got a masked interrupt (0x%08x)\n",
2224                                       inta_fh & ~trans_pcie->fh_mask);
2225         }
2226 #endif
2227
2228         inta_fh &= trans_pcie->fh_mask;
2229
2230         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2231             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2232                 local_bh_disable();
2233                 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2234                         polling = true;
2235                         __napi_schedule(&trans_pcie->rxq[0].napi);
2236                 }
2237                 local_bh_enable();
2238         }
2239
2240         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2241             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2242                 local_bh_disable();
2243                 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2244                         polling = true;
2245                         __napi_schedule(&trans_pcie->rxq[1].napi);
2246                 }
2247                 local_bh_enable();
2248         }
2249
2250         /* This "Tx" DMA channel is used only for loading uCode */
2251         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2252             trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2253                 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2254                 isr_stats->tx++;
2255
2256                 /* Wake up IMR routine once write to SRAM is complete */
2257                 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2258                         trans_pcie->imr_status = IMR_D2S_COMPLETED;
2259                         wake_up(&trans_pcie->ucode_write_waitq);
2260                 }
2261         } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2262                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2263                 isr_stats->tx++;
2264                 /*
2265                  * Wake up uCode load routine,
2266                  * now that load is complete
2267                  */
2268                 trans_pcie->ucode_write_complete = true;
2269                 wake_up(&trans_pcie->ucode_write_waitq);
2270
2271                 /* Wake up IMR routine once write to SRAM is complete */
2272                 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2273                         trans_pcie->imr_status = IMR_D2S_COMPLETED;
2274                         wake_up(&trans_pcie->ucode_write_waitq);
2275                 }
2276         }
2277
2278         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2279                 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2280         else
2281                 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2282
2283         /* Error detected by uCode */
2284         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
2285                 IWL_ERR(trans,
2286                         "Microcode SW error detected. Restarting 0x%X.\n",
2287                         inta_fh);
2288                 isr_stats->sw++;
2289                 /* during FW reset flow report errors from there */
2290                 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2291                         trans_pcie->imr_status = IMR_D2S_ERROR;
2292                         wake_up(&trans_pcie->imr_waitq);
2293                 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2294                         trans_pcie->fw_reset_state = FW_RESET_ERROR;
2295                         wake_up(&trans_pcie->fw_reset_waitq);
2296                 } else {
2297                         iwl_pcie_irq_handle_error(trans);
2298                 }
2299         }
2300
2301         /* After checking FH register check HW register */
2302 #ifdef CONFIG_IWLWIFI_DEBUG
2303         if (iwl_have_debug_level(IWL_DL_ISR)) {
2304                 IWL_DEBUG_ISR(trans,
2305                               "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2306                               entry->entry, inta_hw, trans_pcie->hw_mask,
2307                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2308                 if (inta_hw & ~trans_pcie->hw_mask)
2309                         IWL_DEBUG_ISR(trans,
2310                                       "We got a masked interrupt 0x%08x\n",
2311                                       inta_hw & ~trans_pcie->hw_mask);
2312         }
2313 #endif
2314
2315         inta_hw &= trans_pcie->hw_mask;
2316
2317         /* Alive notification via Rx interrupt will do the real work */
2318         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2319                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2320                 isr_stats->alive++;
2321                 if (trans->trans_cfg->gen2) {
2322                         /* We can restock, since firmware configured the RFH */
2323                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2324                 }
2325         }
2326
2327         /*
2328          * In some rare cases when the HW is in a bad state, we may
2329          * get this interrupt too early, when prph_info is still NULL.
2330          * So make sure that it's not NULL to prevent crashing.
2331          */
2332         if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2333                 u32 sleep_notif =
2334                         le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2335                 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2336                     sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2337                         IWL_DEBUG_ISR(trans,
2338                                       "Sx interrupt: sleep notification = 0x%x\n",
2339                                       sleep_notif);
2340                         trans_pcie->sx_complete = true;
2341                         wake_up(&trans_pcie->sx_waitq);
2342                 } else {
2343                         /* uCode wakes up after power-down sleep */
2344                         IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2345                         iwl_pcie_rxq_check_wrptr(trans);
2346                         iwl_pcie_txq_check_wrptrs(trans);
2347
2348                         isr_stats->wakeup++;
2349                 }
2350         }
2351
2352         /* Chip got too hot and stopped itself */
2353         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2354                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2355                 isr_stats->ctkill++;
2356         }
2357
2358         /* HW RF KILL switch toggled */
2359         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2360                 iwl_pcie_handle_rfkill_irq(trans);
2361
2362         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2363                 IWL_ERR(trans,
2364                         "Hardware error detected. Restarting.\n");
2365
2366                 isr_stats->hw++;
2367                 trans->dbg.hw_error = true;
2368                 iwl_pcie_irq_handle_error(trans);
2369         }
2370
2371         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2372                 IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2373                 trans_pcie->fw_reset_state = FW_RESET_OK;
2374                 wake_up(&trans_pcie->fw_reset_waitq);
2375         }
2376
2377         if (!polling)
2378                 iwl_pcie_clear_irq(trans, entry->entry);
2379
2380         lock_map_release(&trans->sync_cmd_lockdep_map);
2381
2382         return IRQ_HANDLED;
2383 }