]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/dpdk_rte_lpm/rte_jhash.h
libarchive: merge from vendor branch
[FreeBSD/FreeBSD.git] / sys / contrib / dpdk_rte_lpm / rte_jhash.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation.
3  */
4
5 #ifndef _RTE_JHASH_H
6 #define _RTE_JHASH_H
7
8 /**
9  * @file
10  *
11  * jhash functions.
12  */
13
14 #ifdef __cplusplus
15 extern "C" {
16 #endif
17
18 //#include <rte_byteorder.h>
19
20 /* jhash.h: Jenkins hash support.
21  *
22  * Copyright (C) 2006 Bob Jenkins (bob_jenkins@burtleburtle.net)
23  *
24  * http://burtleburtle.net/bob/hash/
25  *
26  * These are the credits from Bob's sources:
27  *
28  * lookup3.c, by Bob Jenkins, May 2006, Public Domain.
29  *
30  * These are functions for producing 32-bit hashes for hash table lookup.
31  * hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
32  * are externally useful functions.  Routines to test the hash are included
33  * if SELF_TEST is defined.  You can use this free for any purpose.  It's in
34  * the public domain.  It has no warranty.
35  *
36  * $FreeBSD$
37  */
38
39 #define rot(x, k) (((x) << (k)) | ((x) >> (32-(k))))
40
41 /** @internal Internal function. NOTE: Arguments are modified. */
42 #define __rte_jhash_mix(a, b, c) do { \
43         a -= c; a ^= rot(c, 4); c += b; \
44         b -= a; b ^= rot(a, 6); a += c; \
45         c -= b; c ^= rot(b, 8); b += a; \
46         a -= c; a ^= rot(c, 16); c += b; \
47         b -= a; b ^= rot(a, 19); a += c; \
48         c -= b; c ^= rot(b, 4); b += a; \
49 } while (0)
50
51 #define __rte_jhash_final(a, b, c) do { \
52         c ^= b; c -= rot(b, 14); \
53         a ^= c; a -= rot(c, 11); \
54         b ^= a; b -= rot(a, 25); \
55         c ^= b; c -= rot(b, 16); \
56         a ^= c; a -= rot(c, 4);  \
57         b ^= a; b -= rot(a, 14); \
58         c ^= b; c -= rot(b, 24); \
59 } while (0)
60
61 /** The golden ratio: an arbitrary value. */
62 #define RTE_JHASH_GOLDEN_RATIO      0xdeadbeef
63
64 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
65 #define BIT_SHIFT(x, y, k) (((x) >> (k)) | ((uint64_t)(y) << (32-(k))))
66 #else
67 #define BIT_SHIFT(x, y, k) (((uint64_t)(x) << (k)) | ((y) >> (32-(k))))
68 #endif
69
70 #define LOWER8b_MASK rte_le_to_cpu_32(0xff)
71 #define LOWER16b_MASK rte_le_to_cpu_32(0xffff)
72 #define LOWER24b_MASK rte_le_to_cpu_32(0xffffff)
73
74 static inline void
75 __rte_jhash_2hashes(const void *key, uint32_t length, uint32_t *pc,
76                 uint32_t *pb, unsigned check_align)
77 {
78         uint32_t a, b, c;
79
80         /* Set up the internal state */
81         a = b = c = RTE_JHASH_GOLDEN_RATIO + ((uint32_t)length) + *pc;
82         c += *pb;
83
84         /*
85          * Check key alignment. For x86 architecture, first case is always optimal
86          * If check_align is not set, first case will be used
87          */
88 #if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_I686) || defined(RTE_ARCH_X86_X32)
89         const uint32_t *k = (const uint32_t *)key;
90         const uint32_t s = 0;
91 #else
92         const uint32_t *k = (uint32_t *)((uintptr_t)key & (uintptr_t)~3);
93         const uint32_t s = ((uintptr_t)key & 3) * CHAR_BIT;
94 #endif
95         if (!check_align || s == 0) {
96                 while (length > 12) {
97                         a += k[0];
98                         b += k[1];
99                         c += k[2];
100
101                         __rte_jhash_mix(a, b, c);
102
103                         k += 3;
104                         length -= 12;
105                 }
106
107                 switch (length) {
108                 case 12:
109                         c += k[2]; b += k[1]; a += k[0]; break;
110                 case 11:
111                         c += k[2] & LOWER24b_MASK; b += k[1]; a += k[0]; break;
112                 case 10:
113                         c += k[2] & LOWER16b_MASK; b += k[1]; a += k[0]; break;
114                 case 9:
115                         c += k[2] & LOWER8b_MASK; b += k[1]; a += k[0]; break;
116                 case 8:
117                         b += k[1]; a += k[0]; break;
118                 case 7:
119                         b += k[1] & LOWER24b_MASK; a += k[0]; break;
120                 case 6:
121                         b += k[1] & LOWER16b_MASK; a += k[0]; break;
122                 case 5:
123                         b += k[1] & LOWER8b_MASK; a += k[0]; break;
124                 case 4:
125                         a += k[0]; break;
126                 case 3:
127                         a += k[0] & LOWER24b_MASK; break;
128                 case 2:
129                         a += k[0] & LOWER16b_MASK; break;
130                 case 1:
131                         a += k[0] & LOWER8b_MASK; break;
132                 /* zero length strings require no mixing */
133                 case 0:
134                         *pc = c;
135                         *pb = b;
136                         return;
137                 };
138         } else {
139                 /* all but the last block: affect some 32 bits of (a, b, c) */
140                 while (length > 12) {
141                         a += BIT_SHIFT(k[0], k[1], s);
142                         b += BIT_SHIFT(k[1], k[2], s);
143                         c += BIT_SHIFT(k[2], k[3], s);
144                         __rte_jhash_mix(a, b, c);
145
146                         k += 3;
147                         length -= 12;
148                 }
149
150                 /* last block: affect all 32 bits of (c) */
151                 switch (length) {
152                 case 12:
153                         a += BIT_SHIFT(k[0], k[1], s);
154                         b += BIT_SHIFT(k[1], k[2], s);
155                         c += BIT_SHIFT(k[2], k[3], s);
156                         break;
157                 case 11:
158                         a += BIT_SHIFT(k[0], k[1], s);
159                         b += BIT_SHIFT(k[1], k[2], s);
160                         c += BIT_SHIFT(k[2], k[3], s) & LOWER24b_MASK;
161                         break;
162                 case 10:
163                         a += BIT_SHIFT(k[0], k[1], s);
164                         b += BIT_SHIFT(k[1], k[2], s);
165                         c += BIT_SHIFT(k[2], k[3], s) & LOWER16b_MASK;
166                         break;
167                 case 9:
168                         a += BIT_SHIFT(k[0], k[1], s);
169                         b += BIT_SHIFT(k[1], k[2], s);
170                         c += BIT_SHIFT(k[2], k[3], s) & LOWER8b_MASK;
171                         break;
172                 case 8:
173                         a += BIT_SHIFT(k[0], k[1], s);
174                         b += BIT_SHIFT(k[1], k[2], s);
175                         break;
176                 case 7:
177                         a += BIT_SHIFT(k[0], k[1], s);
178                         b += BIT_SHIFT(k[1], k[2], s) & LOWER24b_MASK;
179                         break;
180                 case 6:
181                         a += BIT_SHIFT(k[0], k[1], s);
182                         b += BIT_SHIFT(k[1], k[2], s) & LOWER16b_MASK;
183                         break;
184                 case 5:
185                         a += BIT_SHIFT(k[0], k[1], s);
186                         b += BIT_SHIFT(k[1], k[2], s) & LOWER8b_MASK;
187                         break;
188                 case 4:
189                         a += BIT_SHIFT(k[0], k[1], s);
190                         break;
191                 case 3:
192                         a += BIT_SHIFT(k[0], k[1], s) & LOWER24b_MASK;
193                         break;
194                 case 2:
195                         a += BIT_SHIFT(k[0], k[1], s) & LOWER16b_MASK;
196                         break;
197                 case 1:
198                         a += BIT_SHIFT(k[0], k[1], s) & LOWER8b_MASK;
199                         break;
200                 /* zero length strings require no mixing */
201                 case 0:
202                         *pc = c;
203                         *pb = b;
204                         return;
205                 }
206         }
207
208         __rte_jhash_final(a, b, c);
209
210         *pc = c;
211         *pb = b;
212 }
213
214 /**
215  * Same as rte_jhash, but takes two seeds and return two uint32_ts.
216  * pc and pb must be non-null, and *pc and *pb must both be initialized
217  * with seeds. If you pass in (*pb)=0, the output (*pc) will be
218  * the same as the return value from rte_jhash.
219  *
220  * @param key
221  *   Key to calculate hash of.
222  * @param length
223  *   Length of key in bytes.
224  * @param pc
225  *   IN: seed OUT: primary hash value.
226  * @param pb
227  *   IN: second seed OUT: secondary hash value.
228  */
229 static inline void
230 rte_jhash_2hashes(const void *key, uint32_t length, uint32_t *pc, uint32_t *pb)
231 {
232         __rte_jhash_2hashes(key, length, pc, pb, 1);
233 }
234
235 /**
236  * Same as rte_jhash_32b, but takes two seeds and return two uint32_ts.
237  * pc and pb must be non-null, and *pc and *pb must both be initialized
238  * with seeds. If you pass in (*pb)=0, the output (*pc) will be
239  * the same as the return value from rte_jhash_32b.
240  *
241  * @param k
242  *   Key to calculate hash of.
243  * @param length
244  *   Length of key in units of 4 bytes.
245  * @param pc
246  *   IN: seed OUT: primary hash value.
247  * @param pb
248  *   IN: second seed OUT: secondary hash value.
249  */
250 static inline void
251 rte_jhash_32b_2hashes(const uint32_t *k, uint32_t length, uint32_t *pc, uint32_t *pb)
252 {
253         __rte_jhash_2hashes((const void *) k, (length << 2), pc, pb, 0);
254 }
255
256 /**
257  * The most generic version, hashes an arbitrary sequence
258  * of bytes.  No alignment or length assumptions are made about
259  * the input key.  For keys not aligned to four byte boundaries
260  * or a multiple of four bytes in length, the memory region
261  * just after may be read (but not used in the computation).
262  * This may cross a page boundary.
263  *
264  * @param key
265  *   Key to calculate hash of.
266  * @param length
267  *   Length of key in bytes.
268  * @param initval
269  *   Initialising value of hash.
270  * @return
271  *   Calculated hash value.
272  */
273 static inline uint32_t
274 rte_jhash(const void *key, uint32_t length, uint32_t initval)
275 {
276         uint32_t initval2 = 0;
277
278         rte_jhash_2hashes(key, length, &initval, &initval2);
279
280         return initval;
281 }
282
283 /**
284  * A special optimized version that handles 1 or more of uint32_ts.
285  * The length parameter here is the number of uint32_ts in the key.
286  *
287  * @param k
288  *   Key to calculate hash of.
289  * @param length
290  *   Length of key in units of 4 bytes.
291  * @param initval
292  *   Initialising value of hash.
293  * @return
294  *   Calculated hash value.
295  */
296 static inline uint32_t
297 rte_jhash_32b(const uint32_t *k, uint32_t length, uint32_t initval)
298 {
299         uint32_t initval2 = 0;
300
301         rte_jhash_32b_2hashes(k, length, &initval, &initval2);
302
303         return initval;
304 }
305
306 static inline uint32_t
307 __rte_jhash_3words(uint32_t a, uint32_t b, uint32_t c, uint32_t initval)
308 {
309         a += RTE_JHASH_GOLDEN_RATIO + initval;
310         b += RTE_JHASH_GOLDEN_RATIO + initval;
311         c += RTE_JHASH_GOLDEN_RATIO + initval;
312
313         __rte_jhash_final(a, b, c);
314
315         return c;
316 }
317
318 /**
319  * A special ultra-optimized versions that knows it is hashing exactly
320  * 3 words.
321  *
322  * @param a
323  *   First word to calculate hash of.
324  * @param b
325  *   Second word to calculate hash of.
326  * @param c
327  *   Third word to calculate hash of.
328  * @param initval
329  *   Initialising value of hash.
330  * @return
331  *   Calculated hash value.
332  */
333 static inline uint32_t
334 rte_jhash_3words(uint32_t a, uint32_t b, uint32_t c, uint32_t initval)
335 {
336         return __rte_jhash_3words(a + 12, b + 12, c + 12, initval);
337 }
338
339 /**
340  * A special ultra-optimized versions that knows it is hashing exactly
341  * 2 words.
342  *
343  * @param a
344  *   First word to calculate hash of.
345  * @param b
346  *   Second word to calculate hash of.
347  * @param initval
348  *   Initialising value of hash.
349  * @return
350  *   Calculated hash value.
351  */
352 static inline uint32_t
353 rte_jhash_2words(uint32_t a, uint32_t b, uint32_t initval)
354 {
355         return __rte_jhash_3words(a + 8, b + 8, 8, initval);
356 }
357
358 /**
359  * A special ultra-optimized versions that knows it is hashing exactly
360  * 1 word.
361  *
362  * @param a
363  *   Word to calculate hash of.
364  * @param initval
365  *   Initialising value of hash.
366  * @return
367  *   Calculated hash value.
368  */
369 static inline uint32_t
370 rte_jhash_1word(uint32_t a, uint32_t initval)
371 {
372         return __rte_jhash_3words(a + 4, 4, 4, initval);
373 }
374
375 #ifdef __cplusplus
376 }
377 #endif
378
379 #endif /* _RTE_JHASH_H */