]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/dmu_recv.c
contrib/bsddialog: Import version 0.3
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / dmu_recv.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2019 Datto Inc.
31  * Copyright (c) 2022 Axcient.
32  */
33
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_send.h>
38 #include <sys/dmu_recv.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dbuf.h>
41 #include <sys/dnode.h>
42 #include <sys/zfs_context.h>
43 #include <sys/dmu_objset.h>
44 #include <sys/dmu_traverse.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_dir.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/dsl_synctask.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/zap.h>
52 #include <sys/zvol.h>
53 #include <sys/zio_checksum.h>
54 #include <sys/zfs_znode.h>
55 #include <zfs_fletcher.h>
56 #include <sys/avl.h>
57 #include <sys/ddt.h>
58 #include <sys/zfs_onexit.h>
59 #include <sys/dsl_destroy.h>
60 #include <sys/blkptr.h>
61 #include <sys/dsl_bookmark.h>
62 #include <sys/zfeature.h>
63 #include <sys/bqueue.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68 #include <sys/zfs_file.h>
69
70 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
71 static int zfs_recv_queue_ff = 20;
72 static int zfs_recv_write_batch_size = 1024 * 1024;
73 static int zfs_recv_best_effort_corrective = 0;
74
75 static const void *const dmu_recv_tag = "dmu_recv_tag";
76 const char *const recv_clone_name = "%recv";
77
78 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
79     void *buf);
80
81 struct receive_record_arg {
82         dmu_replay_record_t header;
83         void *payload; /* Pointer to a buffer containing the payload */
84         /*
85          * If the record is a WRITE or SPILL, pointer to the abd containing the
86          * payload.
87          */
88         abd_t *abd;
89         int payload_size;
90         uint64_t bytes_read; /* bytes read from stream when record created */
91         boolean_t eos_marker; /* Marks the end of the stream */
92         bqueue_node_t node;
93 };
94
95 struct receive_writer_arg {
96         objset_t *os;
97         boolean_t byteswap;
98         bqueue_t q;
99
100         /*
101          * These three members are used to signal to the main thread when
102          * we're done.
103          */
104         kmutex_t mutex;
105         kcondvar_t cv;
106         boolean_t done;
107
108         int err;
109         const char *tofs;
110         boolean_t heal;
111         boolean_t resumable;
112         boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
113         boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
114         boolean_t full;  /* this is a full send stream */
115         uint64_t last_object;
116         uint64_t last_offset;
117         uint64_t max_object; /* highest object ID referenced in stream */
118         uint64_t bytes_read; /* bytes read when current record created */
119
120         list_t write_batch;
121
122         /* Encryption parameters for the last received DRR_OBJECT_RANGE */
123         boolean_t or_crypt_params_present;
124         uint64_t or_firstobj;
125         uint64_t or_numslots;
126         uint8_t or_salt[ZIO_DATA_SALT_LEN];
127         uint8_t or_iv[ZIO_DATA_IV_LEN];
128         uint8_t or_mac[ZIO_DATA_MAC_LEN];
129         boolean_t or_byteorder;
130         zio_t *heal_pio;
131 };
132
133 typedef struct dmu_recv_begin_arg {
134         const char *drba_origin;
135         dmu_recv_cookie_t *drba_cookie;
136         cred_t *drba_cred;
137         proc_t *drba_proc;
138         dsl_crypto_params_t *drba_dcp;
139 } dmu_recv_begin_arg_t;
140
141 static void
142 byteswap_record(dmu_replay_record_t *drr)
143 {
144 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
145 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
146         drr->drr_type = BSWAP_32(drr->drr_type);
147         drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
148
149         switch (drr->drr_type) {
150         case DRR_BEGIN:
151                 DO64(drr_begin.drr_magic);
152                 DO64(drr_begin.drr_versioninfo);
153                 DO64(drr_begin.drr_creation_time);
154                 DO32(drr_begin.drr_type);
155                 DO32(drr_begin.drr_flags);
156                 DO64(drr_begin.drr_toguid);
157                 DO64(drr_begin.drr_fromguid);
158                 break;
159         case DRR_OBJECT:
160                 DO64(drr_object.drr_object);
161                 DO32(drr_object.drr_type);
162                 DO32(drr_object.drr_bonustype);
163                 DO32(drr_object.drr_blksz);
164                 DO32(drr_object.drr_bonuslen);
165                 DO32(drr_object.drr_raw_bonuslen);
166                 DO64(drr_object.drr_toguid);
167                 DO64(drr_object.drr_maxblkid);
168                 break;
169         case DRR_FREEOBJECTS:
170                 DO64(drr_freeobjects.drr_firstobj);
171                 DO64(drr_freeobjects.drr_numobjs);
172                 DO64(drr_freeobjects.drr_toguid);
173                 break;
174         case DRR_WRITE:
175                 DO64(drr_write.drr_object);
176                 DO32(drr_write.drr_type);
177                 DO64(drr_write.drr_offset);
178                 DO64(drr_write.drr_logical_size);
179                 DO64(drr_write.drr_toguid);
180                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
181                 DO64(drr_write.drr_key.ddk_prop);
182                 DO64(drr_write.drr_compressed_size);
183                 break;
184         case DRR_WRITE_EMBEDDED:
185                 DO64(drr_write_embedded.drr_object);
186                 DO64(drr_write_embedded.drr_offset);
187                 DO64(drr_write_embedded.drr_length);
188                 DO64(drr_write_embedded.drr_toguid);
189                 DO32(drr_write_embedded.drr_lsize);
190                 DO32(drr_write_embedded.drr_psize);
191                 break;
192         case DRR_FREE:
193                 DO64(drr_free.drr_object);
194                 DO64(drr_free.drr_offset);
195                 DO64(drr_free.drr_length);
196                 DO64(drr_free.drr_toguid);
197                 break;
198         case DRR_SPILL:
199                 DO64(drr_spill.drr_object);
200                 DO64(drr_spill.drr_length);
201                 DO64(drr_spill.drr_toguid);
202                 DO64(drr_spill.drr_compressed_size);
203                 DO32(drr_spill.drr_type);
204                 break;
205         case DRR_OBJECT_RANGE:
206                 DO64(drr_object_range.drr_firstobj);
207                 DO64(drr_object_range.drr_numslots);
208                 DO64(drr_object_range.drr_toguid);
209                 break;
210         case DRR_REDACT:
211                 DO64(drr_redact.drr_object);
212                 DO64(drr_redact.drr_offset);
213                 DO64(drr_redact.drr_length);
214                 DO64(drr_redact.drr_toguid);
215                 break;
216         case DRR_END:
217                 DO64(drr_end.drr_toguid);
218                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
219                 break;
220         default:
221                 break;
222         }
223
224         if (drr->drr_type != DRR_BEGIN) {
225                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
226         }
227
228 #undef DO64
229 #undef DO32
230 }
231
232 static boolean_t
233 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
234 {
235         for (int i = 0; i < num_snaps; i++) {
236                 if (snaps[i] == guid)
237                         return (B_TRUE);
238         }
239         return (B_FALSE);
240 }
241
242 /*
243  * Check that the new stream we're trying to receive is redacted with respect to
244  * a subset of the snapshots that the origin was redacted with respect to.  For
245  * the reasons behind this, see the man page on redacted zfs sends and receives.
246  */
247 static boolean_t
248 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
249     uint64_t *redact_snaps, uint64_t num_redact_snaps)
250 {
251         /*
252          * Short circuit the comparison; if we are redacted with respect to
253          * more snapshots than the origin, we can't be redacted with respect
254          * to a subset.
255          */
256         if (num_redact_snaps > origin_num_snaps) {
257                 return (B_FALSE);
258         }
259
260         for (int i = 0; i < num_redact_snaps; i++) {
261                 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
262                     redact_snaps[i])) {
263                         return (B_FALSE);
264                 }
265         }
266         return (B_TRUE);
267 }
268
269 static boolean_t
270 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
271 {
272         uint64_t *origin_snaps;
273         uint64_t origin_num_snaps;
274         dmu_recv_cookie_t *drc = drba->drba_cookie;
275         struct drr_begin *drrb = drc->drc_drrb;
276         int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
277         int err = 0;
278         boolean_t ret = B_TRUE;
279         uint64_t *redact_snaps;
280         uint_t numredactsnaps;
281
282         /*
283          * If this is a full send stream, we're safe no matter what.
284          */
285         if (drrb->drr_fromguid == 0)
286                 return (ret);
287
288         VERIFY(dsl_dataset_get_uint64_array_feature(origin,
289             SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
290
291         if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
292             BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
293             0) {
294                 /*
295                  * If the send stream was sent from the redaction bookmark or
296                  * the redacted version of the dataset, then we're safe.  Verify
297                  * that this is from the a compatible redaction bookmark or
298                  * redacted dataset.
299                  */
300                 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
301                     redact_snaps, numredactsnaps)) {
302                         err = EINVAL;
303                 }
304         } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
305                 /*
306                  * If the stream is redacted, it must be redacted with respect
307                  * to a subset of what the origin is redacted with respect to.
308                  * See case number 2 in the zfs man page section on redacted zfs
309                  * send.
310                  */
311                 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
312                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
313
314                 if (err != 0 || !compatible_redact_snaps(origin_snaps,
315                     origin_num_snaps, redact_snaps, numredactsnaps)) {
316                         err = EINVAL;
317                 }
318         } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
319             drrb->drr_toguid)) {
320                 /*
321                  * If the stream isn't redacted but the origin is, this must be
322                  * one of the snapshots the origin is redacted with respect to.
323                  * See case number 1 in the zfs man page section on redacted zfs
324                  * send.
325                  */
326                 err = EINVAL;
327         }
328
329         if (err != 0)
330                 ret = B_FALSE;
331         return (ret);
332 }
333
334 /*
335  * If we previously received a stream with --large-block, we don't support
336  * receiving an incremental on top of it without --large-block.  This avoids
337  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
338  * records.
339  */
340 static int
341 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
342 {
343         if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
344             !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
345                 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
346         return (0);
347 }
348
349 static int
350 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
351     uint64_t fromguid, uint64_t featureflags)
352 {
353         uint64_t obj;
354         uint64_t children;
355         int error;
356         dsl_dataset_t *snap;
357         dsl_pool_t *dp = ds->ds_dir->dd_pool;
358         boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
359         boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
360         boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
361
362         /* Temporary clone name must not exist. */
363         error = zap_lookup(dp->dp_meta_objset,
364             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
365             8, 1, &obj);
366         if (error != ENOENT)
367                 return (error == 0 ? SET_ERROR(EBUSY) : error);
368
369         /* Resume state must not be set. */
370         if (dsl_dataset_has_resume_receive_state(ds))
371                 return (SET_ERROR(EBUSY));
372
373         /* New snapshot name must not exist if we're not healing it. */
374         error = zap_lookup(dp->dp_meta_objset,
375             dsl_dataset_phys(ds)->ds_snapnames_zapobj,
376             drba->drba_cookie->drc_tosnap, 8, 1, &obj);
377         if (drba->drba_cookie->drc_heal) {
378                 if (error != 0)
379                         return (error);
380         } else if (error != ENOENT) {
381                 return (error == 0 ? SET_ERROR(EEXIST) : error);
382         }
383
384         /* Must not have children if receiving a ZVOL. */
385         error = zap_count(dp->dp_meta_objset,
386             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
387         if (error != 0)
388                 return (error);
389         if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
390             children > 0)
391                 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
392
393         /*
394          * Check snapshot limit before receiving. We'll recheck again at the
395          * end, but might as well abort before receiving if we're already over
396          * the limit.
397          *
398          * Note that we do not check the file system limit with
399          * dsl_dir_fscount_check because the temporary %clones don't count
400          * against that limit.
401          */
402         error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
403             NULL, drba->drba_cred, drba->drba_proc);
404         if (error != 0)
405                 return (error);
406
407         if (drba->drba_cookie->drc_heal) {
408                 /* Encryption is incompatible with embedded data. */
409                 if (encrypted && embed)
410                         return (SET_ERROR(EINVAL));
411
412                 /* Healing is not supported when in 'force' mode. */
413                 if (drba->drba_cookie->drc_force)
414                         return (SET_ERROR(EINVAL));
415
416                 /* Must have keys loaded if doing encrypted non-raw recv. */
417                 if (encrypted && !raw) {
418                         if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
419                             NULL, NULL) != 0)
420                                 return (SET_ERROR(EACCES));
421                 }
422
423                 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
424                 if (error != 0)
425                         return (error);
426
427                 /*
428                  * When not doing best effort corrective recv healing can only
429                  * be done if the send stream is for the same snapshot as the
430                  * one we are trying to heal.
431                  */
432                 if (zfs_recv_best_effort_corrective == 0 &&
433                     drba->drba_cookie->drc_drrb->drr_toguid !=
434                     dsl_dataset_phys(snap)->ds_guid) {
435                         dsl_dataset_rele(snap, FTAG);
436                         return (SET_ERROR(ENOTSUP));
437                 }
438                 dsl_dataset_rele(snap, FTAG);
439         } else if (fromguid != 0) {
440                 /* Sanity check the incremental recv */
441                 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
442
443                 /* Can't perform a raw receive on top of a non-raw receive */
444                 if (!encrypted && raw)
445                         return (SET_ERROR(EINVAL));
446
447                 /* Encryption is incompatible with embedded data */
448                 if (encrypted && embed)
449                         return (SET_ERROR(EINVAL));
450
451                 /* Find snapshot in this dir that matches fromguid. */
452                 while (obj != 0) {
453                         error = dsl_dataset_hold_obj(dp, obj, FTAG,
454                             &snap);
455                         if (error != 0)
456                                 return (SET_ERROR(ENODEV));
457                         if (snap->ds_dir != ds->ds_dir) {
458                                 dsl_dataset_rele(snap, FTAG);
459                                 return (SET_ERROR(ENODEV));
460                         }
461                         if (dsl_dataset_phys(snap)->ds_guid == fromguid)
462                                 break;
463                         obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
464                         dsl_dataset_rele(snap, FTAG);
465                 }
466                 if (obj == 0)
467                         return (SET_ERROR(ENODEV));
468
469                 if (drba->drba_cookie->drc_force) {
470                         drba->drba_cookie->drc_fromsnapobj = obj;
471                 } else {
472                         /*
473                          * If we are not forcing, there must be no
474                          * changes since fromsnap. Raw sends have an
475                          * additional constraint that requires that
476                          * no "noop" snapshots exist between fromsnap
477                          * and tosnap for the IVset checking code to
478                          * work properly.
479                          */
480                         if (dsl_dataset_modified_since_snap(ds, snap) ||
481                             (raw &&
482                             dsl_dataset_phys(ds)->ds_prev_snap_obj !=
483                             snap->ds_object)) {
484                                 dsl_dataset_rele(snap, FTAG);
485                                 return (SET_ERROR(ETXTBSY));
486                         }
487                         drba->drba_cookie->drc_fromsnapobj =
488                             ds->ds_prev->ds_object;
489                 }
490
491                 if (dsl_dataset_feature_is_active(snap,
492                     SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
493                     snap)) {
494                         dsl_dataset_rele(snap, FTAG);
495                         return (SET_ERROR(EINVAL));
496                 }
497
498                 error = recv_check_large_blocks(snap, featureflags);
499                 if (error != 0) {
500                         dsl_dataset_rele(snap, FTAG);
501                         return (error);
502                 }
503
504                 dsl_dataset_rele(snap, FTAG);
505         } else {
506                 /* If full and not healing then must be forced. */
507                 if (!drba->drba_cookie->drc_force)
508                         return (SET_ERROR(EEXIST));
509
510                 /*
511                  * We don't support using zfs recv -F to blow away
512                  * encrypted filesystems. This would require the
513                  * dsl dir to point to the old encryption key and
514                  * the new one at the same time during the receive.
515                  */
516                 if ((!encrypted && raw) || encrypted)
517                         return (SET_ERROR(EINVAL));
518
519                 /*
520                  * Perform the same encryption checks we would if
521                  * we were creating a new dataset from scratch.
522                  */
523                 if (!raw) {
524                         boolean_t will_encrypt;
525
526                         error = dmu_objset_create_crypt_check(
527                             ds->ds_dir->dd_parent, drba->drba_dcp,
528                             &will_encrypt);
529                         if (error != 0)
530                                 return (error);
531
532                         if (will_encrypt && embed)
533                                 return (SET_ERROR(EINVAL));
534                 }
535         }
536
537         return (0);
538 }
539
540 /*
541  * Check that any feature flags used in the data stream we're receiving are
542  * supported by the pool we are receiving into.
543  *
544  * Note that some of the features we explicitly check here have additional
545  * (implicit) features they depend on, but those dependencies are enforced
546  * through the zfeature_register() calls declaring the features that we
547  * explicitly check.
548  */
549 static int
550 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
551 {
552         /*
553          * Check if there are any unsupported feature flags.
554          */
555         if (!DMU_STREAM_SUPPORTED(featureflags)) {
556                 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
557         }
558
559         /* Verify pool version supports SA if SA_SPILL feature set */
560         if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
561             spa_version(spa) < SPA_VERSION_SA)
562                 return (SET_ERROR(ENOTSUP));
563
564         /*
565          * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
566          * and large_dnodes in the stream can only be used if those pool
567          * features are enabled because we don't attempt to decompress /
568          * un-embed / un-mooch / split up the blocks / dnodes during the
569          * receive process.
570          */
571         if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
572             !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
573                 return (SET_ERROR(ENOTSUP));
574         if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
575             !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
576                 return (SET_ERROR(ENOTSUP));
577         if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
578             !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
579                 return (SET_ERROR(ENOTSUP));
580         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
581             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
582                 return (SET_ERROR(ENOTSUP));
583         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
584             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
585                 return (SET_ERROR(ENOTSUP));
586
587         /*
588          * Receiving redacted streams requires that redacted datasets are
589          * enabled.
590          */
591         if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
592             !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
593                 return (SET_ERROR(ENOTSUP));
594
595         return (0);
596 }
597
598 static int
599 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
600 {
601         dmu_recv_begin_arg_t *drba = arg;
602         dsl_pool_t *dp = dmu_tx_pool(tx);
603         struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
604         uint64_t fromguid = drrb->drr_fromguid;
605         int flags = drrb->drr_flags;
606         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
607         int error;
608         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
609         dsl_dataset_t *ds;
610         const char *tofs = drba->drba_cookie->drc_tofs;
611
612         /* already checked */
613         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
614         ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
615
616         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
617             DMU_COMPOUNDSTREAM ||
618             drrb->drr_type >= DMU_OST_NUMTYPES ||
619             ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
620                 return (SET_ERROR(EINVAL));
621
622         error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
623         if (error != 0)
624                 return (error);
625
626         /* Resumable receives require extensible datasets */
627         if (drba->drba_cookie->drc_resumable &&
628             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
629                 return (SET_ERROR(ENOTSUP));
630
631         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
632                 /* raw receives require the encryption feature */
633                 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
634                         return (SET_ERROR(ENOTSUP));
635
636                 /* embedded data is incompatible with encryption and raw recv */
637                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
638                         return (SET_ERROR(EINVAL));
639
640                 /* raw receives require spill block allocation flag */
641                 if (!(flags & DRR_FLAG_SPILL_BLOCK))
642                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
643         } else {
644                 /*
645                  * We support unencrypted datasets below encrypted ones now,
646                  * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
647                  * with a dataset we may encrypt.
648                  */
649                 if (drba->drba_dcp != NULL &&
650                     drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
651                         dsflags |= DS_HOLD_FLAG_DECRYPT;
652                 }
653         }
654
655         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
656         if (error == 0) {
657                 /* target fs already exists; recv into temp clone */
658
659                 /* Can't recv a clone into an existing fs */
660                 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
661                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
662                         return (SET_ERROR(EINVAL));
663                 }
664
665                 error = recv_begin_check_existing_impl(drba, ds, fromguid,
666                     featureflags);
667                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
668         } else if (error == ENOENT) {
669                 /* target fs does not exist; must be a full backup or clone */
670                 char buf[ZFS_MAX_DATASET_NAME_LEN];
671                 objset_t *os;
672
673                 /* healing recv must be done "into" an existing snapshot */
674                 if (drba->drba_cookie->drc_heal == B_TRUE)
675                         return (SET_ERROR(ENOTSUP));
676
677                 /*
678                  * If it's a non-clone incremental, we are missing the
679                  * target fs, so fail the recv.
680                  */
681                 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
682                     drba->drba_origin))
683                         return (SET_ERROR(ENOENT));
684
685                 /*
686                  * If we're receiving a full send as a clone, and it doesn't
687                  * contain all the necessary free records and freeobject
688                  * records, reject it.
689                  */
690                 if (fromguid == 0 && drba->drba_origin != NULL &&
691                     !(flags & DRR_FLAG_FREERECORDS))
692                         return (SET_ERROR(EINVAL));
693
694                 /* Open the parent of tofs */
695                 ASSERT3U(strlen(tofs), <, sizeof (buf));
696                 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
697                 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
698                 if (error != 0)
699                         return (error);
700
701                 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
702                     drba->drba_origin == NULL) {
703                         boolean_t will_encrypt;
704
705                         /*
706                          * Check that we aren't breaking any encryption rules
707                          * and that we have all the parameters we need to
708                          * create an encrypted dataset if necessary. If we are
709                          * making an encrypted dataset the stream can't have
710                          * embedded data.
711                          */
712                         error = dmu_objset_create_crypt_check(ds->ds_dir,
713                             drba->drba_dcp, &will_encrypt);
714                         if (error != 0) {
715                                 dsl_dataset_rele(ds, FTAG);
716                                 return (error);
717                         }
718
719                         if (will_encrypt &&
720                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
721                                 dsl_dataset_rele(ds, FTAG);
722                                 return (SET_ERROR(EINVAL));
723                         }
724                 }
725
726                 /*
727                  * Check filesystem and snapshot limits before receiving. We'll
728                  * recheck snapshot limits again at the end (we create the
729                  * filesystems and increment those counts during begin_sync).
730                  */
731                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
732                     ZFS_PROP_FILESYSTEM_LIMIT, NULL,
733                     drba->drba_cred, drba->drba_proc);
734                 if (error != 0) {
735                         dsl_dataset_rele(ds, FTAG);
736                         return (error);
737                 }
738
739                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
740                     ZFS_PROP_SNAPSHOT_LIMIT, NULL,
741                     drba->drba_cred, drba->drba_proc);
742                 if (error != 0) {
743                         dsl_dataset_rele(ds, FTAG);
744                         return (error);
745                 }
746
747                 /* can't recv below anything but filesystems (eg. no ZVOLs) */
748                 error = dmu_objset_from_ds(ds, &os);
749                 if (error != 0) {
750                         dsl_dataset_rele(ds, FTAG);
751                         return (error);
752                 }
753                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
754                         dsl_dataset_rele(ds, FTAG);
755                         return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
756                 }
757
758                 if (drba->drba_origin != NULL) {
759                         dsl_dataset_t *origin;
760                         error = dsl_dataset_hold_flags(dp, drba->drba_origin,
761                             dsflags, FTAG, &origin);
762                         if (error != 0) {
763                                 dsl_dataset_rele(ds, FTAG);
764                                 return (error);
765                         }
766                         if (!origin->ds_is_snapshot) {
767                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
768                                 dsl_dataset_rele(ds, FTAG);
769                                 return (SET_ERROR(EINVAL));
770                         }
771                         if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
772                             fromguid != 0) {
773                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
774                                 dsl_dataset_rele(ds, FTAG);
775                                 return (SET_ERROR(ENODEV));
776                         }
777
778                         if (origin->ds_dir->dd_crypto_obj != 0 &&
779                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
780                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
781                                 dsl_dataset_rele(ds, FTAG);
782                                 return (SET_ERROR(EINVAL));
783                         }
784
785                         /*
786                          * If the origin is redacted we need to verify that this
787                          * send stream can safely be received on top of the
788                          * origin.
789                          */
790                         if (dsl_dataset_feature_is_active(origin,
791                             SPA_FEATURE_REDACTED_DATASETS)) {
792                                 if (!redact_check(drba, origin)) {
793                                         dsl_dataset_rele_flags(origin, dsflags,
794                                             FTAG);
795                                         dsl_dataset_rele_flags(ds, dsflags,
796                                             FTAG);
797                                         return (SET_ERROR(EINVAL));
798                                 }
799                         }
800
801                         error = recv_check_large_blocks(ds, featureflags);
802                         if (error != 0) {
803                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
804                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
805                                 return (error);
806                         }
807
808                         dsl_dataset_rele_flags(origin, dsflags, FTAG);
809                 }
810
811                 dsl_dataset_rele(ds, FTAG);
812                 error = 0;
813         }
814         return (error);
815 }
816
817 static void
818 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
819 {
820         dmu_recv_begin_arg_t *drba = arg;
821         dsl_pool_t *dp = dmu_tx_pool(tx);
822         objset_t *mos = dp->dp_meta_objset;
823         dmu_recv_cookie_t *drc = drba->drba_cookie;
824         struct drr_begin *drrb = drc->drc_drrb;
825         const char *tofs = drc->drc_tofs;
826         uint64_t featureflags = drc->drc_featureflags;
827         dsl_dataset_t *ds, *newds;
828         objset_t *os;
829         uint64_t dsobj;
830         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
831         int error;
832         uint64_t crflags = 0;
833         dsl_crypto_params_t dummy_dcp = { 0 };
834         dsl_crypto_params_t *dcp = drba->drba_dcp;
835
836         if (drrb->drr_flags & DRR_FLAG_CI_DATA)
837                 crflags |= DS_FLAG_CI_DATASET;
838
839         if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
840                 dsflags |= DS_HOLD_FLAG_DECRYPT;
841
842         /*
843          * Raw, non-incremental recvs always use a dummy dcp with
844          * the raw cmd set. Raw incremental recvs do not use a dcp
845          * since the encryption parameters are already set in stone.
846          */
847         if (dcp == NULL && drrb->drr_fromguid == 0 &&
848             drba->drba_origin == NULL) {
849                 ASSERT3P(dcp, ==, NULL);
850                 dcp = &dummy_dcp;
851
852                 if (featureflags & DMU_BACKUP_FEATURE_RAW)
853                         dcp->cp_cmd = DCP_CMD_RAW_RECV;
854         }
855
856         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
857         if (error == 0) {
858                 /* Create temporary clone unless we're doing corrective recv */
859                 dsl_dataset_t *snap = NULL;
860
861                 if (drba->drba_cookie->drc_fromsnapobj != 0) {
862                         VERIFY0(dsl_dataset_hold_obj(dp,
863                             drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
864                         ASSERT3P(dcp, ==, NULL);
865                 }
866                 if (drc->drc_heal) {
867                         /* When healing we want to use the provided snapshot */
868                         VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
869                             &dsobj));
870                 } else {
871                         dsobj = dsl_dataset_create_sync(ds->ds_dir,
872                             recv_clone_name, snap, crflags, drba->drba_cred,
873                             dcp, tx);
874                 }
875                 if (drba->drba_cookie->drc_fromsnapobj != 0)
876                         dsl_dataset_rele(snap, FTAG);
877                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
878         } else {
879                 dsl_dir_t *dd;
880                 const char *tail;
881                 dsl_dataset_t *origin = NULL;
882
883                 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
884
885                 if (drba->drba_origin != NULL) {
886                         VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
887                             FTAG, &origin));
888                         ASSERT3P(dcp, ==, NULL);
889                 }
890
891                 /* Create new dataset. */
892                 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
893                     origin, crflags, drba->drba_cred, dcp, tx);
894                 if (origin != NULL)
895                         dsl_dataset_rele(origin, FTAG);
896                 dsl_dir_rele(dd, FTAG);
897                 drc->drc_newfs = B_TRUE;
898         }
899         VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
900             &newds));
901         if (dsl_dataset_feature_is_active(newds,
902             SPA_FEATURE_REDACTED_DATASETS)) {
903                 /*
904                  * If the origin dataset is redacted, the child will be redacted
905                  * when we create it.  We clear the new dataset's
906                  * redaction info; if it should be redacted, we'll fill
907                  * in its information later.
908                  */
909                 dsl_dataset_deactivate_feature(newds,
910                     SPA_FEATURE_REDACTED_DATASETS, tx);
911         }
912         VERIFY0(dmu_objset_from_ds(newds, &os));
913
914         if (drc->drc_resumable) {
915                 dsl_dataset_zapify(newds, tx);
916                 if (drrb->drr_fromguid != 0) {
917                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
918                             8, 1, &drrb->drr_fromguid, tx));
919                 }
920                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
921                     8, 1, &drrb->drr_toguid, tx));
922                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
923                     1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
924                 uint64_t one = 1;
925                 uint64_t zero = 0;
926                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
927                     8, 1, &one, tx));
928                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
929                     8, 1, &zero, tx));
930                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
931                     8, 1, &zero, tx));
932                 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
933                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
934                             8, 1, &one, tx));
935                 }
936                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
937                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
938                             8, 1, &one, tx));
939                 }
940                 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
941                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
942                             8, 1, &one, tx));
943                 }
944                 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
945                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
946                             8, 1, &one, tx));
947                 }
948
949                 uint64_t *redact_snaps;
950                 uint_t numredactsnaps;
951                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
952                     BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
953                     &numredactsnaps) == 0) {
954                         VERIFY0(zap_add(mos, dsobj,
955                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
956                             sizeof (*redact_snaps), numredactsnaps,
957                             redact_snaps, tx));
958                 }
959         }
960
961         /*
962          * Usually the os->os_encrypted value is tied to the presence of a
963          * DSL Crypto Key object in the dd. However, that will not be received
964          * until dmu_recv_stream(), so we set the value manually for now.
965          */
966         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
967                 os->os_encrypted = B_TRUE;
968                 drba->drba_cookie->drc_raw = B_TRUE;
969         }
970
971         if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
972                 uint64_t *redact_snaps;
973                 uint_t numredactsnaps;
974                 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
975                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
976                 dsl_dataset_activate_redaction(newds, redact_snaps,
977                     numredactsnaps, tx);
978         }
979
980         dmu_buf_will_dirty(newds->ds_dbuf, tx);
981         dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
982
983         /*
984          * If we actually created a non-clone, we need to create the objset
985          * in our new dataset. If this is a raw send we postpone this until
986          * dmu_recv_stream() so that we can allocate the metadnode with the
987          * properties from the DRR_BEGIN payload.
988          */
989         rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
990         if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
991             (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
992             !drc->drc_heal) {
993                 (void) dmu_objset_create_impl(dp->dp_spa,
994                     newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
995         }
996         rrw_exit(&newds->ds_bp_rwlock, FTAG);
997
998         drba->drba_cookie->drc_ds = newds;
999         drba->drba_cookie->drc_os = os;
1000
1001         spa_history_log_internal_ds(newds, "receive", tx, " ");
1002 }
1003
1004 static int
1005 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1006 {
1007         dmu_recv_begin_arg_t *drba = arg;
1008         dmu_recv_cookie_t *drc = drba->drba_cookie;
1009         dsl_pool_t *dp = dmu_tx_pool(tx);
1010         struct drr_begin *drrb = drc->drc_drrb;
1011         int error;
1012         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1013         dsl_dataset_t *ds;
1014         const char *tofs = drc->drc_tofs;
1015
1016         /* already checked */
1017         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1018         ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1019
1020         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1021             DMU_COMPOUNDSTREAM ||
1022             drrb->drr_type >= DMU_OST_NUMTYPES)
1023                 return (SET_ERROR(EINVAL));
1024
1025         /*
1026          * This is mostly a sanity check since we should have already done these
1027          * checks during a previous attempt to receive the data.
1028          */
1029         error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1030             dp->dp_spa);
1031         if (error != 0)
1032                 return (error);
1033
1034         /* 6 extra bytes for /%recv */
1035         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1036
1037         (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1038             tofs, recv_clone_name);
1039
1040         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1041                 /* raw receives require spill block allocation flag */
1042                 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1043                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1044         } else {
1045                 dsflags |= DS_HOLD_FLAG_DECRYPT;
1046         }
1047
1048         if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1049                 /* %recv does not exist; continue in tofs */
1050                 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1051                 if (error != 0)
1052                         return (error);
1053         }
1054
1055         /* check that ds is marked inconsistent */
1056         if (!DS_IS_INCONSISTENT(ds)) {
1057                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1058                 return (SET_ERROR(EINVAL));
1059         }
1060
1061         /* check that there is resuming data, and that the toguid matches */
1062         if (!dsl_dataset_is_zapified(ds)) {
1063                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1064                 return (SET_ERROR(EINVAL));
1065         }
1066         uint64_t val;
1067         error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1068             DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1069         if (error != 0 || drrb->drr_toguid != val) {
1070                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1071                 return (SET_ERROR(EINVAL));
1072         }
1073
1074         /*
1075          * Check if the receive is still running.  If so, it will be owned.
1076          * Note that nothing else can own the dataset (e.g. after the receive
1077          * fails) because it will be marked inconsistent.
1078          */
1079         if (dsl_dataset_has_owner(ds)) {
1080                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1081                 return (SET_ERROR(EBUSY));
1082         }
1083
1084         /* There should not be any snapshots of this fs yet. */
1085         if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1086                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1087                 return (SET_ERROR(EINVAL));
1088         }
1089
1090         /*
1091          * Note: resume point will be checked when we process the first WRITE
1092          * record.
1093          */
1094
1095         /* check that the origin matches */
1096         val = 0;
1097         (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1098             DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1099         if (drrb->drr_fromguid != val) {
1100                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1101                 return (SET_ERROR(EINVAL));
1102         }
1103
1104         if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1105                 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1106
1107         /*
1108          * If we're resuming, and the send is redacted, then the original send
1109          * must have been redacted, and must have been redacted with respect to
1110          * the same snapshots.
1111          */
1112         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1113                 uint64_t num_ds_redact_snaps;
1114                 uint64_t *ds_redact_snaps;
1115
1116                 uint_t num_stream_redact_snaps;
1117                 uint64_t *stream_redact_snaps;
1118
1119                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1120                     BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1121                     &num_stream_redact_snaps) != 0) {
1122                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1123                         return (SET_ERROR(EINVAL));
1124                 }
1125
1126                 if (!dsl_dataset_get_uint64_array_feature(ds,
1127                     SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1128                     &ds_redact_snaps)) {
1129                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1130                         return (SET_ERROR(EINVAL));
1131                 }
1132
1133                 for (int i = 0; i < num_ds_redact_snaps; i++) {
1134                         if (!redact_snaps_contains(ds_redact_snaps,
1135                             num_ds_redact_snaps, stream_redact_snaps[i])) {
1136                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1137                                 return (SET_ERROR(EINVAL));
1138                         }
1139                 }
1140         }
1141
1142         error = recv_check_large_blocks(ds, drc->drc_featureflags);
1143         if (error != 0) {
1144                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1145                 return (error);
1146         }
1147
1148         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1149         return (0);
1150 }
1151
1152 static void
1153 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1154 {
1155         dmu_recv_begin_arg_t *drba = arg;
1156         dsl_pool_t *dp = dmu_tx_pool(tx);
1157         const char *tofs = drba->drba_cookie->drc_tofs;
1158         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1159         dsl_dataset_t *ds;
1160         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1161         /* 6 extra bytes for /%recv */
1162         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1163
1164         (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1165             recv_clone_name);
1166
1167         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1168                 drba->drba_cookie->drc_raw = B_TRUE;
1169         } else {
1170                 dsflags |= DS_HOLD_FLAG_DECRYPT;
1171         }
1172
1173         if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1174             != 0) {
1175                 /* %recv does not exist; continue in tofs */
1176                 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1177                     &ds));
1178                 drba->drba_cookie->drc_newfs = B_TRUE;
1179         }
1180
1181         ASSERT(DS_IS_INCONSISTENT(ds));
1182         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1183         ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1184             drba->drba_cookie->drc_raw);
1185         rrw_exit(&ds->ds_bp_rwlock, FTAG);
1186
1187         drba->drba_cookie->drc_ds = ds;
1188         VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1189         drba->drba_cookie->drc_should_save = B_TRUE;
1190
1191         spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1192 }
1193
1194 /*
1195  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1196  * succeeds; otherwise we will leak the holds on the datasets.
1197  */
1198 int
1199 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1200     boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops,
1201     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1202     zfs_file_t *fp, offset_t *voffp)
1203 {
1204         dmu_recv_begin_arg_t drba = { 0 };
1205         int err;
1206
1207         memset(drc, 0, sizeof (dmu_recv_cookie_t));
1208         drc->drc_drr_begin = drr_begin;
1209         drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1210         drc->drc_tosnap = tosnap;
1211         drc->drc_tofs = tofs;
1212         drc->drc_force = force;
1213         drc->drc_heal = heal;
1214         drc->drc_resumable = resumable;
1215         drc->drc_cred = CRED();
1216         drc->drc_proc = curproc;
1217         drc->drc_clone = (origin != NULL);
1218
1219         if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1220                 drc->drc_byteswap = B_TRUE;
1221                 (void) fletcher_4_incremental_byteswap(drr_begin,
1222                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1223                 byteswap_record(drr_begin);
1224         } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1225                 (void) fletcher_4_incremental_native(drr_begin,
1226                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1227         } else {
1228                 return (SET_ERROR(EINVAL));
1229         }
1230
1231         drc->drc_fp = fp;
1232         drc->drc_voff = *voffp;
1233         drc->drc_featureflags =
1234             DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1235
1236         uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1237         void *payload = NULL;
1238         if (payloadlen != 0)
1239                 payload = kmem_alloc(payloadlen, KM_SLEEP);
1240
1241         err = receive_read_payload_and_next_header(drc, payloadlen,
1242             payload);
1243         if (err != 0) {
1244                 kmem_free(payload, payloadlen);
1245                 return (err);
1246         }
1247         if (payloadlen != 0) {
1248                 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1249                     KM_SLEEP);
1250                 kmem_free(payload, payloadlen);
1251                 if (err != 0) {
1252                         kmem_free(drc->drc_next_rrd,
1253                             sizeof (*drc->drc_next_rrd));
1254                         return (err);
1255                 }
1256         }
1257
1258         if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1259                 drc->drc_spill = B_TRUE;
1260
1261         drba.drba_origin = origin;
1262         drba.drba_cookie = drc;
1263         drba.drba_cred = CRED();
1264         drba.drba_proc = curproc;
1265
1266         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1267                 err = dsl_sync_task(tofs,
1268                     dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1269                     &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1270         } else {
1271                 /*
1272                  * For non-raw, non-incremental, non-resuming receives the
1273                  * user can specify encryption parameters on the command line
1274                  * with "zfs recv -o". For these receives we create a dcp and
1275                  * pass it to the sync task. Creating the dcp will implicitly
1276                  * remove the encryption params from the localprops nvlist,
1277                  * which avoids errors when trying to set these normally
1278                  * read-only properties. Any other kind of receive that
1279                  * attempts to set these properties will fail as a result.
1280                  */
1281                 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1282                     DMU_BACKUP_FEATURE_RAW) == 0 &&
1283                     origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1284                         err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1285                             localprops, hidden_args, &drba.drba_dcp);
1286                 }
1287
1288                 if (err == 0) {
1289                         err = dsl_sync_task(tofs,
1290                             dmu_recv_begin_check, dmu_recv_begin_sync,
1291                             &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1292                         dsl_crypto_params_free(drba.drba_dcp, !!err);
1293                 }
1294         }
1295
1296         if (err != 0) {
1297                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1298                 nvlist_free(drc->drc_begin_nvl);
1299         }
1300         return (err);
1301 }
1302
1303 /*
1304  * Holds data need for corrective recv callback
1305  */
1306 typedef struct cr_cb_data {
1307         uint64_t size;
1308         zbookmark_phys_t zb;
1309         spa_t *spa;
1310 } cr_cb_data_t;
1311
1312 static void
1313 corrective_read_done(zio_t *zio)
1314 {
1315         cr_cb_data_t *data = zio->io_private;
1316         /* Corruption corrected; update error log if needed */
1317         if (zio->io_error == 0)
1318                 spa_remove_error(data->spa, &data->zb);
1319         kmem_free(data, sizeof (cr_cb_data_t));
1320         abd_free(zio->io_abd);
1321 }
1322
1323 /*
1324  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1325  */
1326 static int
1327 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1328     struct receive_record_arg *rrd, blkptr_t *bp)
1329 {
1330         int err;
1331         zio_t *io;
1332         zbookmark_phys_t zb;
1333         dnode_t *dn;
1334         abd_t *abd = rrd->abd;
1335         zio_cksum_t bp_cksum = bp->blk_cksum;
1336         enum zio_flag flags = ZIO_FLAG_SPECULATIVE |
1337             ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL;
1338
1339         if (rwa->raw)
1340                 flags |= ZIO_FLAG_RAW;
1341
1342         err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1343         if (err != 0)
1344                 return (err);
1345         SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1346             dbuf_whichblock(dn, 0, drrw->drr_offset));
1347         dnode_rele(dn, FTAG);
1348
1349         if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1350                 /* Decompress the stream data */
1351                 abd_t *dabd = abd_alloc_linear(
1352                     drrw->drr_logical_size, B_FALSE);
1353                 err = zio_decompress_data(drrw->drr_compressiontype,
1354                     abd, abd_to_buf(dabd), abd_get_size(abd),
1355                     abd_get_size(dabd), NULL);
1356
1357                 if (err != 0) {
1358                         abd_free(dabd);
1359                         return (err);
1360                 }
1361                 /* Swap in the newly decompressed data into the abd */
1362                 abd_free(abd);
1363                 abd = dabd;
1364         }
1365
1366         if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1367                 /* Recompress the data */
1368                 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1369                     B_FALSE);
1370                 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1371                     abd, abd_to_buf(cabd), abd_get_size(abd),
1372                     rwa->os->os_complevel);
1373                 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1374                 /* Swap in newly compressed data into the abd */
1375                 abd_free(abd);
1376                 abd = cabd;
1377                 flags |= ZIO_FLAG_RAW_COMPRESS;
1378         }
1379
1380         /*
1381          * The stream is not encrypted but the data on-disk is.
1382          * We need to re-encrypt the buf using the same
1383          * encryption type, salt, iv, and mac that was used to encrypt
1384          * the block previosly.
1385          */
1386         if (!rwa->raw && BP_USES_CRYPT(bp)) {
1387                 dsl_dataset_t *ds;
1388                 dsl_crypto_key_t *dck = NULL;
1389                 uint8_t salt[ZIO_DATA_SALT_LEN];
1390                 uint8_t iv[ZIO_DATA_IV_LEN];
1391                 uint8_t mac[ZIO_DATA_MAC_LEN];
1392                 boolean_t no_crypt = B_FALSE;
1393                 dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1394                 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1395
1396                 zio_crypt_decode_params_bp(bp, salt, iv);
1397                 zio_crypt_decode_mac_bp(bp, mac);
1398
1399                 dsl_pool_config_enter(dp, FTAG);
1400                 err = dsl_dataset_hold_flags(dp, rwa->tofs,
1401                     DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1402                 if (err != 0) {
1403                         dsl_pool_config_exit(dp, FTAG);
1404                         abd_free(eabd);
1405                         return (SET_ERROR(EACCES));
1406                 }
1407
1408                 /* Look up the key from the spa's keystore */
1409                 err = spa_keystore_lookup_key(rwa->os->os_spa,
1410                     zb.zb_objset, FTAG, &dck);
1411                 if (err != 0) {
1412                         dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1413                             FTAG);
1414                         dsl_pool_config_exit(dp, FTAG);
1415                         abd_free(eabd);
1416                         return (SET_ERROR(EACCES));
1417                 }
1418
1419                 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1420                     BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1421                     mac, abd_get_size(abd), abd, eabd, &no_crypt);
1422
1423                 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1424                 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1425                 dsl_pool_config_exit(dp, FTAG);
1426
1427                 ASSERT0(no_crypt);
1428                 if (err != 0) {
1429                         abd_free(eabd);
1430                         return (err);
1431                 }
1432                 /* Swap in the newly encrypted data into the abd */
1433                 abd_free(abd);
1434                 abd = eabd;
1435
1436                 /*
1437                  * We want to prevent zio_rewrite() from trying to
1438                  * encrypt the data again
1439                  */
1440                 flags |= ZIO_FLAG_RAW_ENCRYPT;
1441         }
1442         rrd->abd = abd;
1443
1444         io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd,
1445             BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb);
1446
1447         ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1448             abd_get_size(abd) == BP_GET_PSIZE(bp));
1449
1450         /* compute new bp checksum value and make sure it matches the old one */
1451         zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1452         if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1453                 zio_destroy(io);
1454                 if (zfs_recv_best_effort_corrective != 0)
1455                         return (0);
1456                 return (SET_ERROR(ECKSUM));
1457         }
1458
1459         /* Correct the corruption in place */
1460         err = zio_wait(io);
1461         if (err == 0) {
1462                 cr_cb_data_t *cb_data =
1463                     kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1464                 cb_data->spa = rwa->os->os_spa;
1465                 cb_data->size = drrw->drr_logical_size;
1466                 cb_data->zb = zb;
1467                 /* Test if healing worked by re-reading the bp */
1468                 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1469                     abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1470                     drrw->drr_logical_size, corrective_read_done,
1471                     cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1472         }
1473         if (err != 0 && zfs_recv_best_effort_corrective != 0)
1474                 err = 0;
1475
1476         return (err);
1477 }
1478
1479 static int
1480 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1481 {
1482         int done = 0;
1483
1484         /*
1485          * The code doesn't rely on this (lengths being multiples of 8).  See
1486          * comment in dump_bytes.
1487          */
1488         ASSERT(len % 8 == 0 ||
1489             (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1490
1491         while (done < len) {
1492                 ssize_t resid;
1493                 zfs_file_t *fp = drc->drc_fp;
1494                 int err = zfs_file_read(fp, (char *)buf + done,
1495                     len - done, &resid);
1496                 if (resid == len - done) {
1497                         /*
1498                          * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1499                          * that the receive was interrupted and can
1500                          * potentially be resumed.
1501                          */
1502                         err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1503                 }
1504                 drc->drc_voff += len - done - resid;
1505                 done = len - resid;
1506                 if (err != 0)
1507                         return (err);
1508         }
1509
1510         drc->drc_bytes_read += len;
1511
1512         ASSERT3U(done, ==, len);
1513         return (0);
1514 }
1515
1516 static inline uint8_t
1517 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1518 {
1519         if (bonus_type == DMU_OT_SA) {
1520                 return (1);
1521         } else {
1522                 return (1 +
1523                     ((DN_OLD_MAX_BONUSLEN -
1524                     MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1525         }
1526 }
1527
1528 static void
1529 save_resume_state(struct receive_writer_arg *rwa,
1530     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1531 {
1532         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1533
1534         if (!rwa->resumable)
1535                 return;
1536
1537         /*
1538          * We use ds_resume_bytes[] != 0 to indicate that we need to
1539          * update this on disk, so it must not be 0.
1540          */
1541         ASSERT(rwa->bytes_read != 0);
1542
1543         /*
1544          * We only resume from write records, which have a valid
1545          * (non-meta-dnode) object number.
1546          */
1547         ASSERT(object != 0);
1548
1549         /*
1550          * For resuming to work correctly, we must receive records in order,
1551          * sorted by object,offset.  This is checked by the callers, but
1552          * assert it here for good measure.
1553          */
1554         ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1555         ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1556             offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1557         ASSERT3U(rwa->bytes_read, >=,
1558             rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1559
1560         rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1561         rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1562         rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1563 }
1564
1565 static int
1566 receive_object_is_same_generation(objset_t *os, uint64_t object,
1567     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1568     const void *new_bonus, boolean_t *samegenp)
1569 {
1570         zfs_file_info_t zoi;
1571         int err;
1572
1573         dmu_buf_t *old_bonus_dbuf;
1574         err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1575         if (err != 0)
1576                 return (err);
1577         err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1578             &zoi);
1579         dmu_buf_rele(old_bonus_dbuf, FTAG);
1580         if (err != 0)
1581                 return (err);
1582         uint64_t old_gen = zoi.zfi_generation;
1583
1584         err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1585         if (err != 0)
1586                 return (err);
1587         uint64_t new_gen = zoi.zfi_generation;
1588
1589         *samegenp = (old_gen == new_gen);
1590         return (0);
1591 }
1592
1593 static int
1594 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1595     const struct drr_object *drro, const dmu_object_info_t *doi,
1596     const void *bonus_data,
1597     uint64_t *object_to_hold, uint32_t *new_blksz)
1598 {
1599         uint32_t indblksz = drro->drr_indblkshift ?
1600             1ULL << drro->drr_indblkshift : 0;
1601         int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1602             drro->drr_bonuslen);
1603         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1604             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1605         boolean_t do_free_range = B_FALSE;
1606         int err;
1607
1608         *object_to_hold = drro->drr_object;
1609
1610         /* nblkptr should be bounded by the bonus size and type */
1611         if (rwa->raw && nblkptr != drro->drr_nblkptr)
1612                 return (SET_ERROR(EINVAL));
1613
1614         /*
1615          * After the previous send stream, the sending system may
1616          * have freed this object, and then happened to re-allocate
1617          * this object number in a later txg. In this case, we are
1618          * receiving a different logical file, and the block size may
1619          * appear to be different.  i.e. we may have a different
1620          * block size for this object than what the send stream says.
1621          * In this case we need to remove the object's contents,
1622          * so that its structure can be changed and then its contents
1623          * entirely replaced by subsequent WRITE records.
1624          *
1625          * If this is a -L (--large-block) incremental stream, and
1626          * the previous stream was not -L, the block size may appear
1627          * to increase.  i.e. we may have a smaller block size for
1628          * this object than what the send stream says.  In this case
1629          * we need to keep the object's contents and block size
1630          * intact, so that we don't lose parts of the object's
1631          * contents that are not changed by this incremental send
1632          * stream.
1633          *
1634          * We can distinguish between the two above cases by using
1635          * the ZPL's generation number (see
1636          * receive_object_is_same_generation()).  However, we only
1637          * want to rely on the generation number when absolutely
1638          * necessary, because with raw receives, the generation is
1639          * encrypted.  We also want to minimize dependence on the
1640          * ZPL, so that other types of datasets can also be received
1641          * (e.g. ZVOLs, although note that ZVOLS currently do not
1642          * reallocate their objects or change their structure).
1643          * Therefore, we check a number of different cases where we
1644          * know it is safe to discard the object's contents, before
1645          * using the ZPL's generation number to make the above
1646          * distinction.
1647          */
1648         if (drro->drr_blksz != doi->doi_data_block_size) {
1649                 if (rwa->raw) {
1650                         /*
1651                          * RAW streams always have large blocks, so
1652                          * we are sure that the data is not needed
1653                          * due to changing --large-block to be on.
1654                          * Which is fortunate since the bonus buffer
1655                          * (which contains the ZPL generation) is
1656                          * encrypted, and the key might not be
1657                          * loaded.
1658                          */
1659                         do_free_range = B_TRUE;
1660                 } else if (rwa->full) {
1661                         /*
1662                          * This is a full send stream, so it always
1663                          * replaces what we have.  Even if the
1664                          * generation numbers happen to match, this
1665                          * can not actually be the same logical file.
1666                          * This is relevant when receiving a full
1667                          * send as a clone.
1668                          */
1669                         do_free_range = B_TRUE;
1670                 } else if (drro->drr_type !=
1671                     DMU_OT_PLAIN_FILE_CONTENTS ||
1672                     doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1673                         /*
1674                          * PLAIN_FILE_CONTENTS are the only type of
1675                          * objects that have ever been stored with
1676                          * large blocks, so we don't need the special
1677                          * logic below.  ZAP blocks can shrink (when
1678                          * there's only one block), so we don't want
1679                          * to hit the error below about block size
1680                          * only increasing.
1681                          */
1682                         do_free_range = B_TRUE;
1683                 } else if (doi->doi_max_offset <=
1684                     doi->doi_data_block_size) {
1685                         /*
1686                          * There is only one block.  We can free it,
1687                          * because its contents will be replaced by a
1688                          * WRITE record.  This can not be the no-L ->
1689                          * -L case, because the no-L case would have
1690                          * resulted in multiple blocks.  If we
1691                          * supported -L -> no-L, it would not be safe
1692                          * to free the file's contents.  Fortunately,
1693                          * that is not allowed (see
1694                          * recv_check_large_blocks()).
1695                          */
1696                         do_free_range = B_TRUE;
1697                 } else {
1698                         boolean_t is_same_gen;
1699                         err = receive_object_is_same_generation(rwa->os,
1700                             drro->drr_object, doi->doi_bonus_type,
1701                             drro->drr_bonustype, bonus_data, &is_same_gen);
1702                         if (err != 0)
1703                                 return (SET_ERROR(EINVAL));
1704
1705                         if (is_same_gen) {
1706                                 /*
1707                                  * This is the same logical file, and
1708                                  * the block size must be increasing.
1709                                  * It could only decrease if
1710                                  * --large-block was changed to be
1711                                  * off, which is checked in
1712                                  * recv_check_large_blocks().
1713                                  */
1714                                 if (drro->drr_blksz <=
1715                                     doi->doi_data_block_size)
1716                                         return (SET_ERROR(EINVAL));
1717                                 /*
1718                                  * We keep the existing blocksize and
1719                                  * contents.
1720                                  */
1721                                 *new_blksz =
1722                                     doi->doi_data_block_size;
1723                         } else {
1724                                 do_free_range = B_TRUE;
1725                         }
1726                 }
1727         }
1728
1729         /* nblkptr can only decrease if the object was reallocated */
1730         if (nblkptr < doi->doi_nblkptr)
1731                 do_free_range = B_TRUE;
1732
1733         /* number of slots can only change on reallocation */
1734         if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1735                 do_free_range = B_TRUE;
1736
1737         /*
1738          * For raw sends we also check a few other fields to
1739          * ensure we are preserving the objset structure exactly
1740          * as it was on the receive side:
1741          *     - A changed indirect block size
1742          *     - A smaller nlevels
1743          */
1744         if (rwa->raw) {
1745                 if (indblksz != doi->doi_metadata_block_size)
1746                         do_free_range = B_TRUE;
1747                 if (drro->drr_nlevels < doi->doi_indirection)
1748                         do_free_range = B_TRUE;
1749         }
1750
1751         if (do_free_range) {
1752                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1753                     0, DMU_OBJECT_END);
1754                 if (err != 0)
1755                         return (SET_ERROR(EINVAL));
1756         }
1757
1758         /*
1759          * The dmu does not currently support decreasing nlevels
1760          * or changing the number of dnode slots on an object. For
1761          * non-raw sends, this does not matter and the new object
1762          * can just use the previous one's nlevels. For raw sends,
1763          * however, the structure of the received dnode (including
1764          * nlevels and dnode slots) must match that of the send
1765          * side. Therefore, instead of using dmu_object_reclaim(),
1766          * we must free the object completely and call
1767          * dmu_object_claim_dnsize() instead.
1768          */
1769         if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1770             dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1771                 err = dmu_free_long_object(rwa->os, drro->drr_object);
1772                 if (err != 0)
1773                         return (SET_ERROR(EINVAL));
1774
1775                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1776                 *object_to_hold = DMU_NEW_OBJECT;
1777         }
1778
1779         /*
1780          * For raw receives, free everything beyond the new incoming
1781          * maxblkid. Normally this would be done with a DRR_FREE
1782          * record that would come after this DRR_OBJECT record is
1783          * processed. However, for raw receives we manually set the
1784          * maxblkid from the drr_maxblkid and so we must first free
1785          * everything above that blkid to ensure the DMU is always
1786          * consistent with itself. We will never free the first block
1787          * of the object here because a maxblkid of 0 could indicate
1788          * an object with a single block or one with no blocks. This
1789          * free may be skipped when dmu_free_long_range() was called
1790          * above since it covers the entire object's contents.
1791          */
1792         if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1793                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1794                     (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1795                     DMU_OBJECT_END);
1796                 if (err != 0)
1797                         return (SET_ERROR(EINVAL));
1798         }
1799         return (0);
1800 }
1801
1802 noinline static int
1803 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1804     void *data)
1805 {
1806         dmu_object_info_t doi;
1807         dmu_tx_t *tx;
1808         int err;
1809         uint32_t new_blksz = drro->drr_blksz;
1810         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1811             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1812
1813         if (drro->drr_type == DMU_OT_NONE ||
1814             !DMU_OT_IS_VALID(drro->drr_type) ||
1815             !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1816             drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1817             drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1818             P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1819             drro->drr_blksz < SPA_MINBLOCKSIZE ||
1820             drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1821             drro->drr_bonuslen >
1822             DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1823             dn_slots >
1824             (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1825                 return (SET_ERROR(EINVAL));
1826         }
1827
1828         if (rwa->raw) {
1829                 /*
1830                  * We should have received a DRR_OBJECT_RANGE record
1831                  * containing this block and stored it in rwa.
1832                  */
1833                 if (drro->drr_object < rwa->or_firstobj ||
1834                     drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1835                     drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1836                     drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1837                     drro->drr_nlevels > DN_MAX_LEVELS ||
1838                     drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1839                     DN_SLOTS_TO_BONUSLEN(dn_slots) <
1840                     drro->drr_raw_bonuslen)
1841                         return (SET_ERROR(EINVAL));
1842         } else {
1843                 /*
1844                  * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1845                  * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1846                  */
1847                 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1848                     (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1849                         return (SET_ERROR(EINVAL));
1850                 }
1851
1852                 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1853                     drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1854                         return (SET_ERROR(EINVAL));
1855                 }
1856         }
1857
1858         err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1859
1860         if (err != 0 && err != ENOENT && err != EEXIST)
1861                 return (SET_ERROR(EINVAL));
1862
1863         if (drro->drr_object > rwa->max_object)
1864                 rwa->max_object = drro->drr_object;
1865
1866         /*
1867          * If we are losing blkptrs or changing the block size this must
1868          * be a new file instance.  We must clear out the previous file
1869          * contents before we can change this type of metadata in the dnode.
1870          * Raw receives will also check that the indirect structure of the
1871          * dnode hasn't changed.
1872          */
1873         uint64_t object_to_hold;
1874         if (err == 0) {
1875                 err = receive_handle_existing_object(rwa, drro, &doi, data,
1876                     &object_to_hold, &new_blksz);
1877         } else if (err == EEXIST) {
1878                 /*
1879                  * The object requested is currently an interior slot of a
1880                  * multi-slot dnode. This will be resolved when the next txg
1881                  * is synced out, since the send stream will have told us
1882                  * to free this slot when we freed the associated dnode
1883                  * earlier in the stream.
1884                  */
1885                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1886
1887                 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1888                         return (SET_ERROR(EINVAL));
1889
1890                 /* object was freed and we are about to allocate a new one */
1891                 object_to_hold = DMU_NEW_OBJECT;
1892         } else {
1893                 /* object is free and we are about to allocate a new one */
1894                 object_to_hold = DMU_NEW_OBJECT;
1895         }
1896
1897         /*
1898          * If this is a multi-slot dnode there is a chance that this
1899          * object will expand into a slot that is already used by
1900          * another object from the previous snapshot. We must free
1901          * these objects before we attempt to allocate the new dnode.
1902          */
1903         if (dn_slots > 1) {
1904                 boolean_t need_sync = B_FALSE;
1905
1906                 for (uint64_t slot = drro->drr_object + 1;
1907                     slot < drro->drr_object + dn_slots;
1908                     slot++) {
1909                         dmu_object_info_t slot_doi;
1910
1911                         err = dmu_object_info(rwa->os, slot, &slot_doi);
1912                         if (err == ENOENT || err == EEXIST)
1913                                 continue;
1914                         else if (err != 0)
1915                                 return (err);
1916
1917                         err = dmu_free_long_object(rwa->os, slot);
1918                         if (err != 0)
1919                                 return (err);
1920
1921                         need_sync = B_TRUE;
1922                 }
1923
1924                 if (need_sync)
1925                         txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1926         }
1927
1928         tx = dmu_tx_create(rwa->os);
1929         dmu_tx_hold_bonus(tx, object_to_hold);
1930         dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1931         err = dmu_tx_assign(tx, TXG_WAIT);
1932         if (err != 0) {
1933                 dmu_tx_abort(tx);
1934                 return (err);
1935         }
1936
1937         if (object_to_hold == DMU_NEW_OBJECT) {
1938                 /* Currently free, wants to be allocated */
1939                 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1940                     drro->drr_type, new_blksz,
1941                     drro->drr_bonustype, drro->drr_bonuslen,
1942                     dn_slots << DNODE_SHIFT, tx);
1943         } else if (drro->drr_type != doi.doi_type ||
1944             new_blksz != doi.doi_data_block_size ||
1945             drro->drr_bonustype != doi.doi_bonus_type ||
1946             drro->drr_bonuslen != doi.doi_bonus_size) {
1947                 /* Currently allocated, but with different properties */
1948                 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1949                     drro->drr_type, new_blksz,
1950                     drro->drr_bonustype, drro->drr_bonuslen,
1951                     dn_slots << DNODE_SHIFT, rwa->spill ?
1952                     DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1953         } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1954                 /*
1955                  * Currently allocated, the existing version of this object
1956                  * may reference a spill block that is no longer allocated
1957                  * at the source and needs to be freed.
1958                  */
1959                 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1960         }
1961
1962         if (err != 0) {
1963                 dmu_tx_commit(tx);
1964                 return (SET_ERROR(EINVAL));
1965         }
1966
1967         if (rwa->or_crypt_params_present) {
1968                 /*
1969                  * Set the crypt params for the buffer associated with this
1970                  * range of dnodes.  This causes the blkptr_t to have the
1971                  * same crypt params (byteorder, salt, iv, mac) as on the
1972                  * sending side.
1973                  *
1974                  * Since we are committing this tx now, it is possible for
1975                  * the dnode block to end up on-disk with the incorrect MAC,
1976                  * if subsequent objects in this block are received in a
1977                  * different txg.  However, since the dataset is marked as
1978                  * inconsistent, no code paths will do a non-raw read (or
1979                  * decrypt the block / verify the MAC). The receive code and
1980                  * scrub code can safely do raw reads and verify the
1981                  * checksum.  They don't need to verify the MAC.
1982                  */
1983                 dmu_buf_t *db = NULL;
1984                 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1985
1986                 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1987                     offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1988                 if (err != 0) {
1989                         dmu_tx_commit(tx);
1990                         return (SET_ERROR(EINVAL));
1991                 }
1992
1993                 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1994                     rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1995
1996                 dmu_buf_rele(db, FTAG);
1997
1998                 rwa->or_crypt_params_present = B_FALSE;
1999         }
2000
2001         dmu_object_set_checksum(rwa->os, drro->drr_object,
2002             drro->drr_checksumtype, tx);
2003         dmu_object_set_compress(rwa->os, drro->drr_object,
2004             drro->drr_compress, tx);
2005
2006         /* handle more restrictive dnode structuring for raw recvs */
2007         if (rwa->raw) {
2008                 /*
2009                  * Set the indirect block size, block shift, nlevels.
2010                  * This will not fail because we ensured all of the
2011                  * blocks were freed earlier if this is a new object.
2012                  * For non-new objects block size and indirect block
2013                  * shift cannot change and nlevels can only increase.
2014                  */
2015                 ASSERT3U(new_blksz, ==, drro->drr_blksz);
2016                 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2017                     drro->drr_blksz, drro->drr_indblkshift, tx));
2018                 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2019                     drro->drr_nlevels, tx));
2020
2021                 /*
2022                  * Set the maxblkid. This will always succeed because
2023                  * we freed all blocks beyond the new maxblkid above.
2024                  */
2025                 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2026                     drro->drr_maxblkid, tx));
2027         }
2028
2029         if (data != NULL) {
2030                 dmu_buf_t *db;
2031                 dnode_t *dn;
2032                 uint32_t flags = DMU_READ_NO_PREFETCH;
2033
2034                 if (rwa->raw)
2035                         flags |= DMU_READ_NO_DECRYPT;
2036
2037                 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2038                 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2039
2040                 dmu_buf_will_dirty(db, tx);
2041
2042                 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2043                 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2044
2045                 /*
2046                  * Raw bonus buffers have their byteorder determined by the
2047                  * DRR_OBJECT_RANGE record.
2048                  */
2049                 if (rwa->byteswap && !rwa->raw) {
2050                         dmu_object_byteswap_t byteswap =
2051                             DMU_OT_BYTESWAP(drro->drr_bonustype);
2052                         dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2053                             DRR_OBJECT_PAYLOAD_SIZE(drro));
2054                 }
2055                 dmu_buf_rele(db, FTAG);
2056                 dnode_rele(dn, FTAG);
2057         }
2058         dmu_tx_commit(tx);
2059
2060         return (0);
2061 }
2062
2063 noinline static int
2064 receive_freeobjects(struct receive_writer_arg *rwa,
2065     struct drr_freeobjects *drrfo)
2066 {
2067         uint64_t obj;
2068         int next_err = 0;
2069
2070         if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2071                 return (SET_ERROR(EINVAL));
2072
2073         for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2074             obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2075             obj < DN_MAX_OBJECT && next_err == 0;
2076             next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2077                 dmu_object_info_t doi;
2078                 int err;
2079
2080                 err = dmu_object_info(rwa->os, obj, &doi);
2081                 if (err == ENOENT)
2082                         continue;
2083                 else if (err != 0)
2084                         return (err);
2085
2086                 err = dmu_free_long_object(rwa->os, obj);
2087
2088                 if (err != 0)
2089                         return (err);
2090         }
2091         if (next_err != ESRCH)
2092                 return (next_err);
2093         return (0);
2094 }
2095
2096 /*
2097  * Note: if this fails, the caller will clean up any records left on the
2098  * rwa->write_batch list.
2099  */
2100 static int
2101 flush_write_batch_impl(struct receive_writer_arg *rwa)
2102 {
2103         dnode_t *dn;
2104         int err;
2105
2106         if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2107                 return (SET_ERROR(EINVAL));
2108
2109         struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2110         struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2111
2112         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2113         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2114
2115         ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2116         ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2117
2118         dmu_tx_t *tx = dmu_tx_create(rwa->os);
2119         dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2120             last_drrw->drr_offset - first_drrw->drr_offset +
2121             last_drrw->drr_logical_size);
2122         err = dmu_tx_assign(tx, TXG_WAIT);
2123         if (err != 0) {
2124                 dmu_tx_abort(tx);
2125                 dnode_rele(dn, FTAG);
2126                 return (err);
2127         }
2128
2129         struct receive_record_arg *rrd;
2130         while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2131                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2132                 abd_t *abd = rrd->abd;
2133
2134                 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2135
2136                 if (drrw->drr_logical_size != dn->dn_datablksz) {
2137                         /*
2138                          * The WRITE record is larger than the object's block
2139                          * size.  We must be receiving an incremental
2140                          * large-block stream into a dataset that previously did
2141                          * a non-large-block receive.  Lightweight writes must
2142                          * be exactly one block, so we need to decompress the
2143                          * data (if compressed) and do a normal dmu_write().
2144                          */
2145                         ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2146                         if (DRR_WRITE_COMPRESSED(drrw)) {
2147                                 abd_t *decomp_abd =
2148                                     abd_alloc_linear(drrw->drr_logical_size,
2149                                     B_FALSE);
2150
2151                                 err = zio_decompress_data(
2152                                     drrw->drr_compressiontype,
2153                                     abd, abd_to_buf(decomp_abd),
2154                                     abd_get_size(abd),
2155                                     abd_get_size(decomp_abd), NULL);
2156
2157                                 if (err == 0) {
2158                                         dmu_write_by_dnode(dn,
2159                                             drrw->drr_offset,
2160                                             drrw->drr_logical_size,
2161                                             abd_to_buf(decomp_abd), tx);
2162                                 }
2163                                 abd_free(decomp_abd);
2164                         } else {
2165                                 dmu_write_by_dnode(dn,
2166                                     drrw->drr_offset,
2167                                     drrw->drr_logical_size,
2168                                     abd_to_buf(abd), tx);
2169                         }
2170                         if (err == 0)
2171                                 abd_free(abd);
2172                 } else {
2173                         zio_prop_t zp;
2174                         dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2175
2176                         enum zio_flag zio_flags = 0;
2177
2178                         if (rwa->raw) {
2179                                 zp.zp_encrypt = B_TRUE;
2180                                 zp.zp_compress = drrw->drr_compressiontype;
2181                                 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2182                                     !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2183                                     rwa->byteswap;
2184                                 memcpy(zp.zp_salt, drrw->drr_salt,
2185                                     ZIO_DATA_SALT_LEN);
2186                                 memcpy(zp.zp_iv, drrw->drr_iv,
2187                                     ZIO_DATA_IV_LEN);
2188                                 memcpy(zp.zp_mac, drrw->drr_mac,
2189                                     ZIO_DATA_MAC_LEN);
2190                                 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2191                                         zp.zp_nopwrite = B_FALSE;
2192                                         zp.zp_copies = MIN(zp.zp_copies,
2193                                             SPA_DVAS_PER_BP - 1);
2194                                 }
2195                                 zio_flags |= ZIO_FLAG_RAW;
2196                         } else if (DRR_WRITE_COMPRESSED(drrw)) {
2197                                 ASSERT3U(drrw->drr_compressed_size, >, 0);
2198                                 ASSERT3U(drrw->drr_logical_size, >=,
2199                                     drrw->drr_compressed_size);
2200                                 zp.zp_compress = drrw->drr_compressiontype;
2201                                 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2202                         } else if (rwa->byteswap) {
2203                                 /*
2204                                  * Note: compressed blocks never need to be
2205                                  * byteswapped, because WRITE records for
2206                                  * metadata blocks are never compressed. The
2207                                  * exception is raw streams, which are written
2208                                  * in the original byteorder, and the byteorder
2209                                  * bit is preserved in the BP by setting
2210                                  * zp_byteorder above.
2211                                  */
2212                                 dmu_object_byteswap_t byteswap =
2213                                     DMU_OT_BYTESWAP(drrw->drr_type);
2214                                 dmu_ot_byteswap[byteswap].ob_func(
2215                                     abd_to_buf(abd),
2216                                     DRR_WRITE_PAYLOAD_SIZE(drrw));
2217                         }
2218
2219                         /*
2220                          * Since this data can't be read until the receive
2221                          * completes, we can do a "lightweight" write for
2222                          * improved performance.
2223                          */
2224                         err = dmu_lightweight_write_by_dnode(dn,
2225                             drrw->drr_offset, abd, &zp, zio_flags, tx);
2226                 }
2227
2228                 if (err != 0) {
2229                         /*
2230                          * This rrd is left on the list, so the caller will
2231                          * free it (and the abd).
2232                          */
2233                         break;
2234                 }
2235
2236                 /*
2237                  * Note: If the receive fails, we want the resume stream to
2238                  * start with the same record that we last successfully
2239                  * received (as opposed to the next record), so that we can
2240                  * verify that we are resuming from the correct location.
2241                  */
2242                 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2243
2244                 list_remove(&rwa->write_batch, rrd);
2245                 kmem_free(rrd, sizeof (*rrd));
2246         }
2247
2248         dmu_tx_commit(tx);
2249         dnode_rele(dn, FTAG);
2250         return (err);
2251 }
2252
2253 noinline static int
2254 flush_write_batch(struct receive_writer_arg *rwa)
2255 {
2256         if (list_is_empty(&rwa->write_batch))
2257                 return (0);
2258         int err = rwa->err;
2259         if (err == 0)
2260                 err = flush_write_batch_impl(rwa);
2261         if (err != 0) {
2262                 struct receive_record_arg *rrd;
2263                 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2264                         abd_free(rrd->abd);
2265                         kmem_free(rrd, sizeof (*rrd));
2266                 }
2267         }
2268         ASSERT(list_is_empty(&rwa->write_batch));
2269         return (err);
2270 }
2271
2272 noinline static int
2273 receive_process_write_record(struct receive_writer_arg *rwa,
2274     struct receive_record_arg *rrd)
2275 {
2276         int err = 0;
2277
2278         ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2279         struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2280
2281         if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2282             !DMU_OT_IS_VALID(drrw->drr_type))
2283                 return (SET_ERROR(EINVAL));
2284
2285         if (rwa->heal) {
2286                 blkptr_t *bp;
2287                 dmu_buf_t *dbp;
2288                 dnode_t *dn;
2289                 int flags = DB_RF_CANFAIL;
2290
2291                 if (rwa->raw)
2292                         flags |= DB_RF_NO_DECRYPT;
2293
2294                 if (rwa->byteswap) {
2295                         dmu_object_byteswap_t byteswap =
2296                             DMU_OT_BYTESWAP(drrw->drr_type);
2297                         dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2298                             DRR_WRITE_PAYLOAD_SIZE(drrw));
2299                 }
2300
2301                 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2302                     drrw->drr_offset, FTAG, &dbp);
2303                 if (err != 0)
2304                         return (err);
2305
2306                 /* Try to read the object to see if it needs healing */
2307                 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2308                 /*
2309                  * We only try to heal when dbuf_read() returns a ECKSUMs.
2310                  * Other errors (even EIO) get returned to caller.
2311                  * EIO indicates that the device is not present/accessible,
2312                  * so writing to it will likely fail.
2313                  * If the block is healthy, we don't want to overwrite it
2314                  * unnecessarily.
2315                  */
2316                 if (err != ECKSUM) {
2317                         dmu_buf_rele(dbp, FTAG);
2318                         return (err);
2319                 }
2320                 dn = dmu_buf_dnode_enter(dbp);
2321                 /* Make sure the on-disk block and recv record sizes match */
2322                 if (drrw->drr_logical_size !=
2323                     dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) {
2324                         err = ENOTSUP;
2325                         dmu_buf_dnode_exit(dbp);
2326                         dmu_buf_rele(dbp, FTAG);
2327                         return (err);
2328                 }
2329                 /* Get the block pointer for the corrupted block */
2330                 bp = dmu_buf_get_blkptr(dbp);
2331                 err = do_corrective_recv(rwa, drrw, rrd, bp);
2332                 dmu_buf_dnode_exit(dbp);
2333                 dmu_buf_rele(dbp, FTAG);
2334                 return (err);
2335         }
2336
2337         /*
2338          * For resuming to work, records must be in increasing order
2339          * by (object, offset).
2340          */
2341         if (drrw->drr_object < rwa->last_object ||
2342             (drrw->drr_object == rwa->last_object &&
2343             drrw->drr_offset < rwa->last_offset)) {
2344                 return (SET_ERROR(EINVAL));
2345         }
2346
2347         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2348         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2349         uint64_t batch_size =
2350             MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2351         if (first_rrd != NULL &&
2352             (drrw->drr_object != first_drrw->drr_object ||
2353             drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2354                 err = flush_write_batch(rwa);
2355                 if (err != 0)
2356                         return (err);
2357         }
2358
2359         rwa->last_object = drrw->drr_object;
2360         rwa->last_offset = drrw->drr_offset;
2361
2362         if (rwa->last_object > rwa->max_object)
2363                 rwa->max_object = rwa->last_object;
2364
2365         list_insert_tail(&rwa->write_batch, rrd);
2366         /*
2367          * Return EAGAIN to indicate that we will use this rrd again,
2368          * so the caller should not free it
2369          */
2370         return (EAGAIN);
2371 }
2372
2373 static int
2374 receive_write_embedded(struct receive_writer_arg *rwa,
2375     struct drr_write_embedded *drrwe, void *data)
2376 {
2377         dmu_tx_t *tx;
2378         int err;
2379
2380         if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2381                 return (SET_ERROR(EINVAL));
2382
2383         if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2384                 return (SET_ERROR(EINVAL));
2385
2386         if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2387                 return (SET_ERROR(EINVAL));
2388         if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2389                 return (SET_ERROR(EINVAL));
2390         if (rwa->raw)
2391                 return (SET_ERROR(EINVAL));
2392
2393         if (drrwe->drr_object > rwa->max_object)
2394                 rwa->max_object = drrwe->drr_object;
2395
2396         tx = dmu_tx_create(rwa->os);
2397
2398         dmu_tx_hold_write(tx, drrwe->drr_object,
2399             drrwe->drr_offset, drrwe->drr_length);
2400         err = dmu_tx_assign(tx, TXG_WAIT);
2401         if (err != 0) {
2402                 dmu_tx_abort(tx);
2403                 return (err);
2404         }
2405
2406         dmu_write_embedded(rwa->os, drrwe->drr_object,
2407             drrwe->drr_offset, data, drrwe->drr_etype,
2408             drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2409             rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2410
2411         /* See comment in restore_write. */
2412         save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2413         dmu_tx_commit(tx);
2414         return (0);
2415 }
2416
2417 static int
2418 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2419     abd_t *abd)
2420 {
2421         dmu_buf_t *db, *db_spill;
2422         int err;
2423
2424         if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2425             drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2426                 return (SET_ERROR(EINVAL));
2427
2428         /*
2429          * This is an unmodified spill block which was added to the stream
2430          * to resolve an issue with incorrectly removing spill blocks.  It
2431          * should be ignored by current versions of the code which support
2432          * the DRR_FLAG_SPILL_BLOCK flag.
2433          */
2434         if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2435                 abd_free(abd);
2436                 return (0);
2437         }
2438
2439         if (rwa->raw) {
2440                 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2441                     drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2442                     drrs->drr_compressed_size == 0)
2443                         return (SET_ERROR(EINVAL));
2444         }
2445
2446         if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2447                 return (SET_ERROR(EINVAL));
2448
2449         if (drrs->drr_object > rwa->max_object)
2450                 rwa->max_object = drrs->drr_object;
2451
2452         VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2453         if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2454             &db_spill)) != 0) {
2455                 dmu_buf_rele(db, FTAG);
2456                 return (err);
2457         }
2458
2459         dmu_tx_t *tx = dmu_tx_create(rwa->os);
2460
2461         dmu_tx_hold_spill(tx, db->db_object);
2462
2463         err = dmu_tx_assign(tx, TXG_WAIT);
2464         if (err != 0) {
2465                 dmu_buf_rele(db, FTAG);
2466                 dmu_buf_rele(db_spill, FTAG);
2467                 dmu_tx_abort(tx);
2468                 return (err);
2469         }
2470
2471         /*
2472          * Spill blocks may both grow and shrink.  When a change in size
2473          * occurs any existing dbuf must be updated to match the logical
2474          * size of the provided arc_buf_t.
2475          */
2476         if (db_spill->db_size != drrs->drr_length) {
2477                 dmu_buf_will_fill(db_spill, tx);
2478                 VERIFY0(dbuf_spill_set_blksz(db_spill,
2479                     drrs->drr_length, tx));
2480         }
2481
2482         arc_buf_t *abuf;
2483         if (rwa->raw) {
2484                 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2485                     !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2486                     rwa->byteswap;
2487
2488                 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2489                     drrs->drr_object, byteorder, drrs->drr_salt,
2490                     drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2491                     drrs->drr_compressed_size, drrs->drr_length,
2492                     drrs->drr_compressiontype, 0);
2493         } else {
2494                 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2495                     DMU_OT_IS_METADATA(drrs->drr_type),
2496                     drrs->drr_length);
2497                 if (rwa->byteswap) {
2498                         dmu_object_byteswap_t byteswap =
2499                             DMU_OT_BYTESWAP(drrs->drr_type);
2500                         dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2501                             DRR_SPILL_PAYLOAD_SIZE(drrs));
2502                 }
2503         }
2504
2505         memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2506         abd_free(abd);
2507         dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2508
2509         dmu_buf_rele(db, FTAG);
2510         dmu_buf_rele(db_spill, FTAG);
2511
2512         dmu_tx_commit(tx);
2513         return (0);
2514 }
2515
2516 noinline static int
2517 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2518 {
2519         int err;
2520
2521         if (drrf->drr_length != -1ULL &&
2522             drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2523                 return (SET_ERROR(EINVAL));
2524
2525         if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2526                 return (SET_ERROR(EINVAL));
2527
2528         if (drrf->drr_object > rwa->max_object)
2529                 rwa->max_object = drrf->drr_object;
2530
2531         err = dmu_free_long_range(rwa->os, drrf->drr_object,
2532             drrf->drr_offset, drrf->drr_length);
2533
2534         return (err);
2535 }
2536
2537 static int
2538 receive_object_range(struct receive_writer_arg *rwa,
2539     struct drr_object_range *drror)
2540 {
2541         /*
2542          * By default, we assume this block is in our native format
2543          * (ZFS_HOST_BYTEORDER). We then take into account whether
2544          * the send stream is byteswapped (rwa->byteswap). Finally,
2545          * we need to byteswap again if this particular block was
2546          * in non-native format on the send side.
2547          */
2548         boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2549             !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2550
2551         /*
2552          * Since dnode block sizes are constant, we should not need to worry
2553          * about making sure that the dnode block size is the same on the
2554          * sending and receiving sides for the time being. For non-raw sends,
2555          * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2556          * record at all). Raw sends require this record type because the
2557          * encryption parameters are used to protect an entire block of bonus
2558          * buffers. If the size of dnode blocks ever becomes variable,
2559          * handling will need to be added to ensure that dnode block sizes
2560          * match on the sending and receiving side.
2561          */
2562         if (drror->drr_numslots != DNODES_PER_BLOCK ||
2563             P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2564             !rwa->raw)
2565                 return (SET_ERROR(EINVAL));
2566
2567         if (drror->drr_firstobj > rwa->max_object)
2568                 rwa->max_object = drror->drr_firstobj;
2569
2570         /*
2571          * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2572          * so that the block of dnodes is not written out when it's empty,
2573          * and converted to a HOLE BP.
2574          */
2575         rwa->or_crypt_params_present = B_TRUE;
2576         rwa->or_firstobj = drror->drr_firstobj;
2577         rwa->or_numslots = drror->drr_numslots;
2578         memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2579         memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2580         memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2581         rwa->or_byteorder = byteorder;
2582
2583         return (0);
2584 }
2585
2586 /*
2587  * Until we have the ability to redact large ranges of data efficiently, we
2588  * process these records as frees.
2589  */
2590 noinline static int
2591 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2592 {
2593         struct drr_free drrf = {0};
2594         drrf.drr_length = drrr->drr_length;
2595         drrf.drr_object = drrr->drr_object;
2596         drrf.drr_offset = drrr->drr_offset;
2597         drrf.drr_toguid = drrr->drr_toguid;
2598         return (receive_free(rwa, &drrf));
2599 }
2600
2601 /* used to destroy the drc_ds on error */
2602 static void
2603 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2604 {
2605         dsl_dataset_t *ds = drc->drc_ds;
2606         ds_hold_flags_t dsflags;
2607
2608         dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2609         /*
2610          * Wait for the txg sync before cleaning up the receive. For
2611          * resumable receives, this ensures that our resume state has
2612          * been written out to disk. For raw receives, this ensures
2613          * that the user accounting code will not attempt to do anything
2614          * after we stopped receiving the dataset.
2615          */
2616         txg_wait_synced(ds->ds_dir->dd_pool, 0);
2617         ds->ds_objset->os_raw_receive = B_FALSE;
2618
2619         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2620         if (drc->drc_resumable && drc->drc_should_save &&
2621             !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2622                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2623                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2624         } else {
2625                 char name[ZFS_MAX_DATASET_NAME_LEN];
2626                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2627                 dsl_dataset_name(ds, name);
2628                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2629                 if (!drc->drc_heal)
2630                         (void) dsl_destroy_head(name);
2631         }
2632 }
2633
2634 static void
2635 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2636 {
2637         if (drc->drc_byteswap) {
2638                 (void) fletcher_4_incremental_byteswap(buf, len,
2639                     &drc->drc_cksum);
2640         } else {
2641                 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2642         }
2643 }
2644
2645 /*
2646  * Read the payload into a buffer of size len, and update the current record's
2647  * payload field.
2648  * Allocate drc->drc_next_rrd and read the next record's header into
2649  * drc->drc_next_rrd->header.
2650  * Verify checksum of payload and next record.
2651  */
2652 static int
2653 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2654 {
2655         int err;
2656
2657         if (len != 0) {
2658                 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2659                 err = receive_read(drc, len, buf);
2660                 if (err != 0)
2661                         return (err);
2662                 receive_cksum(drc, len, buf);
2663
2664                 /* note: rrd is NULL when reading the begin record's payload */
2665                 if (drc->drc_rrd != NULL) {
2666                         drc->drc_rrd->payload = buf;
2667                         drc->drc_rrd->payload_size = len;
2668                         drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2669                 }
2670         } else {
2671                 ASSERT3P(buf, ==, NULL);
2672         }
2673
2674         drc->drc_prev_cksum = drc->drc_cksum;
2675
2676         drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2677         err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2678             &drc->drc_next_rrd->header);
2679         drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2680
2681         if (err != 0) {
2682                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2683                 drc->drc_next_rrd = NULL;
2684                 return (err);
2685         }
2686         if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2687                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2688                 drc->drc_next_rrd = NULL;
2689                 return (SET_ERROR(EINVAL));
2690         }
2691
2692         /*
2693          * Note: checksum is of everything up to but not including the
2694          * checksum itself.
2695          */
2696         ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2697             ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2698         receive_cksum(drc,
2699             offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2700             &drc->drc_next_rrd->header);
2701
2702         zio_cksum_t cksum_orig =
2703             drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2704         zio_cksum_t *cksump =
2705             &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2706
2707         if (drc->drc_byteswap)
2708                 byteswap_record(&drc->drc_next_rrd->header);
2709
2710         if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2711             !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2712                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2713                 drc->drc_next_rrd = NULL;
2714                 return (SET_ERROR(ECKSUM));
2715         }
2716
2717         receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2718
2719         return (0);
2720 }
2721
2722 /*
2723  * Issue the prefetch reads for any necessary indirect blocks.
2724  *
2725  * We use the object ignore list to tell us whether or not to issue prefetches
2726  * for a given object.  We do this for both correctness (in case the blocksize
2727  * of an object has changed) and performance (if the object doesn't exist, don't
2728  * needlessly try to issue prefetches).  We also trim the list as we go through
2729  * the stream to prevent it from growing to an unbounded size.
2730  *
2731  * The object numbers within will always be in sorted order, and any write
2732  * records we see will also be in sorted order, but they're not sorted with
2733  * respect to each other (i.e. we can get several object records before
2734  * receiving each object's write records).  As a result, once we've reached a
2735  * given object number, we can safely remove any reference to lower object
2736  * numbers in the ignore list. In practice, we receive up to 32 object records
2737  * before receiving write records, so the list can have up to 32 nodes in it.
2738  */
2739 static void
2740 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2741     uint64_t length)
2742 {
2743         if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2744                 dmu_prefetch(drc->drc_os, object, 1, offset, length,
2745                     ZIO_PRIORITY_SYNC_READ);
2746         }
2747 }
2748
2749 /*
2750  * Read records off the stream, issuing any necessary prefetches.
2751  */
2752 static int
2753 receive_read_record(dmu_recv_cookie_t *drc)
2754 {
2755         int err;
2756
2757         switch (drc->drc_rrd->header.drr_type) {
2758         case DRR_OBJECT:
2759         {
2760                 struct drr_object *drro =
2761                     &drc->drc_rrd->header.drr_u.drr_object;
2762                 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2763                 void *buf = NULL;
2764                 dmu_object_info_t doi;
2765
2766                 if (size != 0)
2767                         buf = kmem_zalloc(size, KM_SLEEP);
2768
2769                 err = receive_read_payload_and_next_header(drc, size, buf);
2770                 if (err != 0) {
2771                         kmem_free(buf, size);
2772                         return (err);
2773                 }
2774                 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2775                 /*
2776                  * See receive_read_prefetch for an explanation why we're
2777                  * storing this object in the ignore_obj_list.
2778                  */
2779                 if (err == ENOENT || err == EEXIST ||
2780                     (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2781                         objlist_insert(drc->drc_ignore_objlist,
2782                             drro->drr_object);
2783                         err = 0;
2784                 }
2785                 return (err);
2786         }
2787         case DRR_FREEOBJECTS:
2788         {
2789                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2790                 return (err);
2791         }
2792         case DRR_WRITE:
2793         {
2794                 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2795                 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2796                 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2797                 err = receive_read_payload_and_next_header(drc, size,
2798                     abd_to_buf(abd));
2799                 if (err != 0) {
2800                         abd_free(abd);
2801                         return (err);
2802                 }
2803                 drc->drc_rrd->abd = abd;
2804                 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2805                     drrw->drr_logical_size);
2806                 return (err);
2807         }
2808         case DRR_WRITE_EMBEDDED:
2809         {
2810                 struct drr_write_embedded *drrwe =
2811                     &drc->drc_rrd->header.drr_u.drr_write_embedded;
2812                 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2813                 void *buf = kmem_zalloc(size, KM_SLEEP);
2814
2815                 err = receive_read_payload_and_next_header(drc, size, buf);
2816                 if (err != 0) {
2817                         kmem_free(buf, size);
2818                         return (err);
2819                 }
2820
2821                 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2822                     drrwe->drr_length);
2823                 return (err);
2824         }
2825         case DRR_FREE:
2826         case DRR_REDACT:
2827         {
2828                 /*
2829                  * It might be beneficial to prefetch indirect blocks here, but
2830                  * we don't really have the data to decide for sure.
2831                  */
2832                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2833                 return (err);
2834         }
2835         case DRR_END:
2836         {
2837                 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2838                 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2839                     drre->drr_checksum))
2840                         return (SET_ERROR(ECKSUM));
2841                 return (0);
2842         }
2843         case DRR_SPILL:
2844         {
2845                 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2846                 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2847                 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2848                 err = receive_read_payload_and_next_header(drc, size,
2849                     abd_to_buf(abd));
2850                 if (err != 0)
2851                         abd_free(abd);
2852                 else
2853                         drc->drc_rrd->abd = abd;
2854                 return (err);
2855         }
2856         case DRR_OBJECT_RANGE:
2857         {
2858                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2859                 return (err);
2860
2861         }
2862         default:
2863                 return (SET_ERROR(EINVAL));
2864         }
2865 }
2866
2867
2868
2869 static void
2870 dprintf_drr(struct receive_record_arg *rrd, int err)
2871 {
2872 #ifdef ZFS_DEBUG
2873         switch (rrd->header.drr_type) {
2874         case DRR_OBJECT:
2875         {
2876                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2877                 dprintf("drr_type = OBJECT obj = %llu type = %u "
2878                     "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2879                     "compress = %u dn_slots = %u err = %d\n",
2880                     (u_longlong_t)drro->drr_object, drro->drr_type,
2881                     drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2882                     drro->drr_checksumtype, drro->drr_compress,
2883                     drro->drr_dn_slots, err);
2884                 break;
2885         }
2886         case DRR_FREEOBJECTS:
2887         {
2888                 struct drr_freeobjects *drrfo =
2889                     &rrd->header.drr_u.drr_freeobjects;
2890                 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2891                     "numobjs = %llu err = %d\n",
2892                     (u_longlong_t)drrfo->drr_firstobj,
2893                     (u_longlong_t)drrfo->drr_numobjs, err);
2894                 break;
2895         }
2896         case DRR_WRITE:
2897         {
2898                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2899                 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2900                     "lsize = %llu cksumtype = %u flags = %u "
2901                     "compress = %u psize = %llu err = %d\n",
2902                     (u_longlong_t)drrw->drr_object, drrw->drr_type,
2903                     (u_longlong_t)drrw->drr_offset,
2904                     (u_longlong_t)drrw->drr_logical_size,
2905                     drrw->drr_checksumtype, drrw->drr_flags,
2906                     drrw->drr_compressiontype,
2907                     (u_longlong_t)drrw->drr_compressed_size, err);
2908                 break;
2909         }
2910         case DRR_WRITE_BYREF:
2911         {
2912                 struct drr_write_byref *drrwbr =
2913                     &rrd->header.drr_u.drr_write_byref;
2914                 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2915                     "length = %llu toguid = %llx refguid = %llx "
2916                     "refobject = %llu refoffset = %llu cksumtype = %u "
2917                     "flags = %u err = %d\n",
2918                     (u_longlong_t)drrwbr->drr_object,
2919                     (u_longlong_t)drrwbr->drr_offset,
2920                     (u_longlong_t)drrwbr->drr_length,
2921                     (u_longlong_t)drrwbr->drr_toguid,
2922                     (u_longlong_t)drrwbr->drr_refguid,
2923                     (u_longlong_t)drrwbr->drr_refobject,
2924                     (u_longlong_t)drrwbr->drr_refoffset,
2925                     drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2926                 break;
2927         }
2928         case DRR_WRITE_EMBEDDED:
2929         {
2930                 struct drr_write_embedded *drrwe =
2931                     &rrd->header.drr_u.drr_write_embedded;
2932                 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2933                     "length = %llu compress = %u etype = %u lsize = %u "
2934                     "psize = %u err = %d\n",
2935                     (u_longlong_t)drrwe->drr_object,
2936                     (u_longlong_t)drrwe->drr_offset,
2937                     (u_longlong_t)drrwe->drr_length,
2938                     drrwe->drr_compression, drrwe->drr_etype,
2939                     drrwe->drr_lsize, drrwe->drr_psize, err);
2940                 break;
2941         }
2942         case DRR_FREE:
2943         {
2944                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2945                 dprintf("drr_type = FREE obj = %llu offset = %llu "
2946                     "length = %lld err = %d\n",
2947                     (u_longlong_t)drrf->drr_object,
2948                     (u_longlong_t)drrf->drr_offset,
2949                     (longlong_t)drrf->drr_length,
2950                     err);
2951                 break;
2952         }
2953         case DRR_SPILL:
2954         {
2955                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2956                 dprintf("drr_type = SPILL obj = %llu length = %llu "
2957                     "err = %d\n", (u_longlong_t)drrs->drr_object,
2958                     (u_longlong_t)drrs->drr_length, err);
2959                 break;
2960         }
2961         case DRR_OBJECT_RANGE:
2962         {
2963                 struct drr_object_range *drror =
2964                     &rrd->header.drr_u.drr_object_range;
2965                 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2966                     "numslots = %llu flags = %u err = %d\n",
2967                     (u_longlong_t)drror->drr_firstobj,
2968                     (u_longlong_t)drror->drr_numslots,
2969                     drror->drr_flags, err);
2970                 break;
2971         }
2972         default:
2973                 return;
2974         }
2975 #endif
2976 }
2977
2978 /*
2979  * Commit the records to the pool.
2980  */
2981 static int
2982 receive_process_record(struct receive_writer_arg *rwa,
2983     struct receive_record_arg *rrd)
2984 {
2985         int err;
2986
2987         /* Processing in order, therefore bytes_read should be increasing. */
2988         ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2989         rwa->bytes_read = rrd->bytes_read;
2990
2991         /* We can only heal write records; other ones get ignored */
2992         if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
2993                 if (rrd->abd != NULL) {
2994                         abd_free(rrd->abd);
2995                         rrd->abd = NULL;
2996                 } else if (rrd->payload != NULL) {
2997                         kmem_free(rrd->payload, rrd->payload_size);
2998                         rrd->payload = NULL;
2999                 }
3000                 return (0);
3001         }
3002
3003         if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3004                 err = flush_write_batch(rwa);
3005                 if (err != 0) {
3006                         if (rrd->abd != NULL) {
3007                                 abd_free(rrd->abd);
3008                                 rrd->abd = NULL;
3009                                 rrd->payload = NULL;
3010                         } else if (rrd->payload != NULL) {
3011                                 kmem_free(rrd->payload, rrd->payload_size);
3012                                 rrd->payload = NULL;
3013                         }
3014
3015                         return (err);
3016                 }
3017         }
3018
3019         switch (rrd->header.drr_type) {
3020         case DRR_OBJECT:
3021         {
3022                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
3023                 err = receive_object(rwa, drro, rrd->payload);
3024                 kmem_free(rrd->payload, rrd->payload_size);
3025                 rrd->payload = NULL;
3026                 break;
3027         }
3028         case DRR_FREEOBJECTS:
3029         {
3030                 struct drr_freeobjects *drrfo =
3031                     &rrd->header.drr_u.drr_freeobjects;
3032                 err = receive_freeobjects(rwa, drrfo);
3033                 break;
3034         }
3035         case DRR_WRITE:
3036         {
3037                 err = receive_process_write_record(rwa, rrd);
3038                 if (rwa->heal) {
3039                         /*
3040                          * If healing - always free the abd after processing
3041                          */
3042                         abd_free(rrd->abd);
3043                         rrd->abd = NULL;
3044                 } else if (err != EAGAIN) {
3045                         /*
3046                          * On success, a non-healing
3047                          * receive_process_write_record() returns
3048                          * EAGAIN to indicate that we do not want to free
3049                          * the rrd or arc_buf.
3050                          */
3051                         ASSERT(err != 0);
3052                         abd_free(rrd->abd);
3053                         rrd->abd = NULL;
3054                 }
3055                 break;
3056         }
3057         case DRR_WRITE_EMBEDDED:
3058         {
3059                 struct drr_write_embedded *drrwe =
3060                     &rrd->header.drr_u.drr_write_embedded;
3061                 err = receive_write_embedded(rwa, drrwe, rrd->payload);
3062                 kmem_free(rrd->payload, rrd->payload_size);
3063                 rrd->payload = NULL;
3064                 break;
3065         }
3066         case DRR_FREE:
3067         {
3068                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3069                 err = receive_free(rwa, drrf);
3070                 break;
3071         }
3072         case DRR_SPILL:
3073         {
3074                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3075                 err = receive_spill(rwa, drrs, rrd->abd);
3076                 if (err != 0)
3077                         abd_free(rrd->abd);
3078                 rrd->abd = NULL;
3079                 rrd->payload = NULL;
3080                 break;
3081         }
3082         case DRR_OBJECT_RANGE:
3083         {
3084                 struct drr_object_range *drror =
3085                     &rrd->header.drr_u.drr_object_range;
3086                 err = receive_object_range(rwa, drror);
3087                 break;
3088         }
3089         case DRR_REDACT:
3090         {
3091                 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3092                 err = receive_redact(rwa, drrr);
3093                 break;
3094         }
3095         default:
3096                 err = (SET_ERROR(EINVAL));
3097         }
3098
3099         if (err != 0)
3100                 dprintf_drr(rrd, err);
3101
3102         return (err);
3103 }
3104
3105 /*
3106  * dmu_recv_stream's worker thread; pull records off the queue, and then call
3107  * receive_process_record  When we're done, signal the main thread and exit.
3108  */
3109 static __attribute__((noreturn)) void
3110 receive_writer_thread(void *arg)
3111 {
3112         struct receive_writer_arg *rwa = arg;
3113         struct receive_record_arg *rrd;
3114         fstrans_cookie_t cookie = spl_fstrans_mark();
3115
3116         for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3117             rrd = bqueue_dequeue(&rwa->q)) {
3118                 /*
3119                  * If there's an error, the main thread will stop putting things
3120                  * on the queue, but we need to clear everything in it before we
3121                  * can exit.
3122                  */
3123                 int err = 0;
3124                 if (rwa->err == 0) {
3125                         err = receive_process_record(rwa, rrd);
3126                 } else if (rrd->abd != NULL) {
3127                         abd_free(rrd->abd);
3128                         rrd->abd = NULL;
3129                         rrd->payload = NULL;
3130                 } else if (rrd->payload != NULL) {
3131                         kmem_free(rrd->payload, rrd->payload_size);
3132                         rrd->payload = NULL;
3133                 }
3134                 /*
3135                  * EAGAIN indicates that this record has been saved (on
3136                  * raw->write_batch), and will be used again, so we don't
3137                  * free it.
3138                  * When healing data we always need to free the record.
3139                  */
3140                 if (err != EAGAIN || rwa->heal) {
3141                         if (rwa->err == 0)
3142                                 rwa->err = err;
3143                         kmem_free(rrd, sizeof (*rrd));
3144                 }
3145         }
3146         kmem_free(rrd, sizeof (*rrd));
3147
3148         if (rwa->heal) {
3149                 zio_wait(rwa->heal_pio);
3150         } else {
3151                 int err = flush_write_batch(rwa);
3152                 if (rwa->err == 0)
3153                         rwa->err = err;
3154         }
3155         mutex_enter(&rwa->mutex);
3156         rwa->done = B_TRUE;
3157         cv_signal(&rwa->cv);
3158         mutex_exit(&rwa->mutex);
3159         spl_fstrans_unmark(cookie);
3160         thread_exit();
3161 }
3162
3163 static int
3164 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3165 {
3166         uint64_t val;
3167         objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3168         uint64_t dsobj = dmu_objset_id(drc->drc_os);
3169         uint64_t resume_obj, resume_off;
3170
3171         if (nvlist_lookup_uint64(begin_nvl,
3172             "resume_object", &resume_obj) != 0 ||
3173             nvlist_lookup_uint64(begin_nvl,
3174             "resume_offset", &resume_off) != 0) {
3175                 return (SET_ERROR(EINVAL));
3176         }
3177         VERIFY0(zap_lookup(mos, dsobj,
3178             DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3179         if (resume_obj != val)
3180                 return (SET_ERROR(EINVAL));
3181         VERIFY0(zap_lookup(mos, dsobj,
3182             DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3183         if (resume_off != val)
3184                 return (SET_ERROR(EINVAL));
3185
3186         return (0);
3187 }
3188
3189 /*
3190  * Read in the stream's records, one by one, and apply them to the pool.  There
3191  * are two threads involved; the thread that calls this function will spin up a
3192  * worker thread, read the records off the stream one by one, and issue
3193  * prefetches for any necessary indirect blocks.  It will then push the records
3194  * onto an internal blocking queue.  The worker thread will pull the records off
3195  * the queue, and actually write the data into the DMU.  This way, the worker
3196  * thread doesn't have to wait for reads to complete, since everything it needs
3197  * (the indirect blocks) will be prefetched.
3198  *
3199  * NB: callers *must* call dmu_recv_end() if this succeeds.
3200  */
3201 int
3202 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3203 {
3204         int err = 0;
3205         struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3206
3207         if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3208                 uint64_t bytes = 0;
3209                 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3210                     drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3211                     sizeof (bytes), 1, &bytes);
3212                 drc->drc_bytes_read += bytes;
3213         }
3214
3215         drc->drc_ignore_objlist = objlist_create();
3216
3217         /* these were verified in dmu_recv_begin */
3218         ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3219             DMU_SUBSTREAM);
3220         ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3221
3222         ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3223         ASSERT0(drc->drc_os->os_encrypted &&
3224             (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3225
3226         /* handle DSL encryption key payload */
3227         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3228                 nvlist_t *keynvl = NULL;
3229
3230                 ASSERT(drc->drc_os->os_encrypted);
3231                 ASSERT(drc->drc_raw);
3232
3233                 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3234                     &keynvl);
3235                 if (err != 0)
3236                         goto out;
3237
3238                 if (!drc->drc_heal) {
3239                         /*
3240                          * If this is a new dataset we set the key immediately.
3241                          * Otherwise we don't want to change the key until we
3242                          * are sure the rest of the receive succeeded so we
3243                          * stash the keynvl away until then.
3244                          */
3245                         err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3246                             drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3247                             drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3248                         if (err != 0)
3249                                 goto out;
3250                 }
3251
3252                 /* see comment in dmu_recv_end_sync() */
3253                 drc->drc_ivset_guid = 0;
3254                 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3255                     &drc->drc_ivset_guid);
3256
3257                 if (!drc->drc_newfs)
3258                         drc->drc_keynvl = fnvlist_dup(keynvl);
3259         }
3260
3261         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3262                 err = resume_check(drc, drc->drc_begin_nvl);
3263                 if (err != 0)
3264                         goto out;
3265         }
3266
3267         /*
3268          * If we failed before this point we will clean up any new resume
3269          * state that was created. Now that we've gotten past the initial
3270          * checks we are ok to retain that resume state.
3271          */
3272         drc->drc_should_save = B_TRUE;
3273
3274         (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3275             MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3276             offsetof(struct receive_record_arg, node));
3277         cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3278         mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3279         rwa->os = drc->drc_os;
3280         rwa->byteswap = drc->drc_byteswap;
3281         rwa->heal = drc->drc_heal;
3282         rwa->tofs = drc->drc_tofs;
3283         rwa->resumable = drc->drc_resumable;
3284         rwa->raw = drc->drc_raw;
3285         rwa->spill = drc->drc_spill;
3286         rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3287         rwa->os->os_raw_receive = drc->drc_raw;
3288         if (drc->drc_heal) {
3289                 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3290                     ZIO_FLAG_GODFATHER);
3291         }
3292         list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3293             offsetof(struct receive_record_arg, node.bqn_node));
3294
3295         (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3296             TS_RUN, minclsyspri);
3297         /*
3298          * We're reading rwa->err without locks, which is safe since we are the
3299          * only reader, and the worker thread is the only writer.  It's ok if we
3300          * miss a write for an iteration or two of the loop, since the writer
3301          * thread will keep freeing records we send it until we send it an eos
3302          * marker.
3303          *
3304          * We can leave this loop in 3 ways:  First, if rwa->err is
3305          * non-zero.  In that case, the writer thread will free the rrd we just
3306          * pushed.  Second, if  we're interrupted; in that case, either it's the
3307          * first loop and drc->drc_rrd was never allocated, or it's later, and
3308          * drc->drc_rrd has been handed off to the writer thread who will free
3309          * it.  Finally, if receive_read_record fails or we're at the end of the
3310          * stream, then we free drc->drc_rrd and exit.
3311          */
3312         while (rwa->err == 0) {
3313                 if (issig(JUSTLOOKING) && issig(FORREAL)) {
3314                         err = SET_ERROR(EINTR);
3315                         break;
3316                 }
3317
3318                 ASSERT3P(drc->drc_rrd, ==, NULL);
3319                 drc->drc_rrd = drc->drc_next_rrd;
3320                 drc->drc_next_rrd = NULL;
3321                 /* Allocates and loads header into drc->drc_next_rrd */
3322                 err = receive_read_record(drc);
3323
3324                 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3325                         kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3326                         drc->drc_rrd = NULL;
3327                         break;
3328                 }
3329
3330                 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3331                     sizeof (struct receive_record_arg) +
3332                     drc->drc_rrd->payload_size);
3333                 drc->drc_rrd = NULL;
3334         }
3335
3336         ASSERT3P(drc->drc_rrd, ==, NULL);
3337         drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3338         drc->drc_rrd->eos_marker = B_TRUE;
3339         bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3340
3341         mutex_enter(&rwa->mutex);
3342         while (!rwa->done) {
3343                 /*
3344                  * We need to use cv_wait_sig() so that any process that may
3345                  * be sleeping here can still fork.
3346                  */
3347                 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3348         }
3349         mutex_exit(&rwa->mutex);
3350
3351         /*
3352          * If we are receiving a full stream as a clone, all object IDs which
3353          * are greater than the maximum ID referenced in the stream are
3354          * by definition unused and must be freed.
3355          */
3356         if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3357                 uint64_t obj = rwa->max_object + 1;
3358                 int free_err = 0;
3359                 int next_err = 0;
3360
3361                 while (next_err == 0) {
3362                         free_err = dmu_free_long_object(rwa->os, obj);
3363                         if (free_err != 0 && free_err != ENOENT)
3364                                 break;
3365
3366                         next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3367                 }
3368
3369                 if (err == 0) {
3370                         if (free_err != 0 && free_err != ENOENT)
3371                                 err = free_err;
3372                         else if (next_err != ESRCH)
3373                                 err = next_err;
3374                 }
3375         }
3376
3377         cv_destroy(&rwa->cv);
3378         mutex_destroy(&rwa->mutex);
3379         bqueue_destroy(&rwa->q);
3380         list_destroy(&rwa->write_batch);
3381         if (err == 0)
3382                 err = rwa->err;
3383
3384 out:
3385         /*
3386          * If we hit an error before we started the receive_writer_thread
3387          * we need to clean up the next_rrd we create by processing the
3388          * DRR_BEGIN record.
3389          */
3390         if (drc->drc_next_rrd != NULL)
3391                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3392
3393         /*
3394          * The objset will be invalidated by dmu_recv_end() when we do
3395          * dsl_dataset_clone_swap_sync_impl().
3396          */
3397         drc->drc_os = NULL;
3398
3399         kmem_free(rwa, sizeof (*rwa));
3400         nvlist_free(drc->drc_begin_nvl);
3401
3402         if (err != 0) {
3403                 /*
3404                  * Clean up references. If receive is not resumable,
3405                  * destroy what we created, so we don't leave it in
3406                  * the inconsistent state.
3407                  */
3408                 dmu_recv_cleanup_ds(drc);
3409                 nvlist_free(drc->drc_keynvl);
3410         }
3411
3412         objlist_destroy(drc->drc_ignore_objlist);
3413         drc->drc_ignore_objlist = NULL;
3414         *voffp = drc->drc_voff;
3415         return (err);
3416 }
3417
3418 static int
3419 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3420 {
3421         dmu_recv_cookie_t *drc = arg;
3422         dsl_pool_t *dp = dmu_tx_pool(tx);
3423         int error;
3424
3425         ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3426
3427         if (drc->drc_heal) {
3428                 error = 0;
3429         } else if (!drc->drc_newfs) {
3430                 dsl_dataset_t *origin_head;
3431
3432                 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3433                 if (error != 0)
3434                         return (error);
3435                 if (drc->drc_force) {
3436                         /*
3437                          * We will destroy any snapshots in tofs (i.e. before
3438                          * origin_head) that are after the origin (which is
3439                          * the snap before drc_ds, because drc_ds can not
3440                          * have any snaps of its own).
3441                          */
3442                         uint64_t obj;
3443
3444                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3445                         while (obj !=
3446                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3447                                 dsl_dataset_t *snap;
3448                                 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3449                                     &snap);
3450                                 if (error != 0)
3451                                         break;
3452                                 if (snap->ds_dir != origin_head->ds_dir)
3453                                         error = SET_ERROR(EINVAL);
3454                                 if (error == 0)  {
3455                                         error = dsl_destroy_snapshot_check_impl(
3456                                             snap, B_FALSE);
3457                                 }
3458                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3459                                 dsl_dataset_rele(snap, FTAG);
3460                                 if (error != 0)
3461                                         break;
3462                         }
3463                         if (error != 0) {
3464                                 dsl_dataset_rele(origin_head, FTAG);
3465                                 return (error);
3466                         }
3467                 }
3468                 if (drc->drc_keynvl != NULL) {
3469                         error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3470                             drc->drc_keynvl, tx);
3471                         if (error != 0) {
3472                                 dsl_dataset_rele(origin_head, FTAG);
3473                                 return (error);
3474                         }
3475                 }
3476
3477                 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3478                     origin_head, drc->drc_force, drc->drc_owner, tx);
3479                 if (error != 0) {
3480                         dsl_dataset_rele(origin_head, FTAG);
3481                         return (error);
3482                 }
3483                 error = dsl_dataset_snapshot_check_impl(origin_head,
3484                     drc->drc_tosnap, tx, B_TRUE, 1,
3485                     drc->drc_cred, drc->drc_proc);
3486                 dsl_dataset_rele(origin_head, FTAG);
3487                 if (error != 0)
3488                         return (error);
3489
3490                 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3491         } else {
3492                 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3493                     drc->drc_tosnap, tx, B_TRUE, 1,
3494                     drc->drc_cred, drc->drc_proc);
3495         }
3496         return (error);
3497 }
3498
3499 static void
3500 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3501 {
3502         dmu_recv_cookie_t *drc = arg;
3503         dsl_pool_t *dp = dmu_tx_pool(tx);
3504         boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3505         uint64_t newsnapobj = 0;
3506
3507         spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3508             tx, "snap=%s", drc->drc_tosnap);
3509         drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3510
3511         if (drc->drc_heal) {
3512                 if (drc->drc_keynvl != NULL) {
3513                         nvlist_free(drc->drc_keynvl);
3514                         drc->drc_keynvl = NULL;
3515                 }
3516         } else if (!drc->drc_newfs) {
3517                 dsl_dataset_t *origin_head;
3518
3519                 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3520                     &origin_head));
3521
3522                 if (drc->drc_force) {
3523                         /*
3524                          * Destroy any snapshots of drc_tofs (origin_head)
3525                          * after the origin (the snap before drc_ds).
3526                          */
3527                         uint64_t obj;
3528
3529                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3530                         while (obj !=
3531                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3532                                 dsl_dataset_t *snap;
3533                                 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3534                                     &snap));
3535                                 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3536                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3537                                 dsl_destroy_snapshot_sync_impl(snap,
3538                                     B_FALSE, tx);
3539                                 dsl_dataset_rele(snap, FTAG);
3540                         }
3541                 }
3542                 if (drc->drc_keynvl != NULL) {
3543                         dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3544                             drc->drc_keynvl, tx);
3545                         nvlist_free(drc->drc_keynvl);
3546                         drc->drc_keynvl = NULL;
3547                 }
3548
3549                 VERIFY3P(drc->drc_ds->ds_prev, ==,
3550                     origin_head->ds_prev);
3551
3552                 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3553                     origin_head, tx);
3554                 /*
3555                  * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3556                  * so drc_os is no longer valid.
3557                  */
3558                 drc->drc_os = NULL;
3559
3560                 dsl_dataset_snapshot_sync_impl(origin_head,
3561                     drc->drc_tosnap, tx);
3562
3563                 /* set snapshot's creation time and guid */
3564                 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3565                 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3566                     drc->drc_drrb->drr_creation_time;
3567                 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3568                     drc->drc_drrb->drr_toguid;
3569                 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3570                     ~DS_FLAG_INCONSISTENT;
3571
3572                 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3573                 dsl_dataset_phys(origin_head)->ds_flags &=
3574                     ~DS_FLAG_INCONSISTENT;
3575
3576                 newsnapobj =
3577                     dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3578
3579                 dsl_dataset_rele(origin_head, FTAG);
3580                 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3581
3582                 if (drc->drc_owner != NULL)
3583                         VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3584         } else {
3585                 dsl_dataset_t *ds = drc->drc_ds;
3586
3587                 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3588
3589                 /* set snapshot's creation time and guid */
3590                 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3591                 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3592                     drc->drc_drrb->drr_creation_time;
3593                 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3594                     drc->drc_drrb->drr_toguid;
3595                 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3596                     ~DS_FLAG_INCONSISTENT;
3597
3598                 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3599                 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3600                 if (dsl_dataset_has_resume_receive_state(ds)) {
3601                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3602                             DS_FIELD_RESUME_FROMGUID, tx);
3603                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3604                             DS_FIELD_RESUME_OBJECT, tx);
3605                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3606                             DS_FIELD_RESUME_OFFSET, tx);
3607                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3608                             DS_FIELD_RESUME_BYTES, tx);
3609                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3610                             DS_FIELD_RESUME_TOGUID, tx);
3611                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3612                             DS_FIELD_RESUME_TONAME, tx);
3613                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3614                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3615                 }
3616                 newsnapobj =
3617                     dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3618         }
3619
3620         /*
3621          * If this is a raw receive, the crypt_keydata nvlist will include
3622          * a to_ivset_guid for us to set on the new snapshot. This value
3623          * will override the value generated by the snapshot code. However,
3624          * this value may not be present, because older implementations of
3625          * the raw send code did not include this value, and we are still
3626          * allowed to receive them if the zfs_disable_ivset_guid_check
3627          * tunable is set, in which case we will leave the newly-generated
3628          * value.
3629          */
3630         if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3631                 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3632                     DMU_OT_DSL_DATASET, tx);
3633                 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3634                     DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3635                     &drc->drc_ivset_guid, tx));
3636         }
3637
3638         /*
3639          * Release the hold from dmu_recv_begin.  This must be done before
3640          * we return to open context, so that when we free the dataset's dnode
3641          * we can evict its bonus buffer. Since the dataset may be destroyed
3642          * at this point (and therefore won't have a valid pointer to the spa)
3643          * we release the key mapping manually here while we do have a valid
3644          * pointer, if it exists.
3645          */
3646         if (!drc->drc_raw && encrypted) {
3647                 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3648                     drc->drc_ds->ds_object, drc->drc_ds);
3649         }
3650         dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3651         drc->drc_ds = NULL;
3652 }
3653
3654 static int dmu_recv_end_modified_blocks = 3;
3655
3656 static int
3657 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3658 {
3659 #ifdef _KERNEL
3660         /*
3661          * We will be destroying the ds; make sure its origin is unmounted if
3662          * necessary.
3663          */
3664         char name[ZFS_MAX_DATASET_NAME_LEN];
3665         dsl_dataset_name(drc->drc_ds, name);
3666         zfs_destroy_unmount_origin(name);
3667 #endif
3668
3669         return (dsl_sync_task(drc->drc_tofs,
3670             dmu_recv_end_check, dmu_recv_end_sync, drc,
3671             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3672 }
3673
3674 static int
3675 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3676 {
3677         return (dsl_sync_task(drc->drc_tofs,
3678             dmu_recv_end_check, dmu_recv_end_sync, drc,
3679             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3680 }
3681
3682 int
3683 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3684 {
3685         int error;
3686
3687         drc->drc_owner = owner;
3688
3689         if (drc->drc_newfs)
3690                 error = dmu_recv_new_end(drc);
3691         else
3692                 error = dmu_recv_existing_end(drc);
3693
3694         if (error != 0) {
3695                 dmu_recv_cleanup_ds(drc);
3696                 nvlist_free(drc->drc_keynvl);
3697         } else if (!drc->drc_heal) {
3698                 if (drc->drc_newfs) {
3699                         zvol_create_minor(drc->drc_tofs);
3700                 }
3701                 char *snapname = kmem_asprintf("%s@%s",
3702                     drc->drc_tofs, drc->drc_tosnap);
3703                 zvol_create_minor(snapname);
3704                 kmem_strfree(snapname);
3705         }
3706         return (error);
3707 }
3708
3709 /*
3710  * Return TRUE if this objset is currently being received into.
3711  */
3712 boolean_t
3713 dmu_objset_is_receiving(objset_t *os)
3714 {
3715         return (os->os_dsl_dataset != NULL &&
3716             os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3717 }
3718
3719 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3720         "Maximum receive queue length");
3721
3722 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3723         "Receive queue fill fraction");
3724
3725 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3726         "Maximum amount of writes to batch into one transaction");
3727
3728 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3729         "Ignore errors during corrective receive");
3730 /* END CSTYLED */