]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/dmu_recv.c
ssh: update to OpenSSH v8.9p1
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / dmu_recv.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  */
31
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_recv.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zvol.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zfs_znode.h>
52 #include <zfs_fletcher.h>
53 #include <sys/avl.h>
54 #include <sys/ddt.h>
55 #include <sys/zfs_onexit.h>
56 #include <sys/dsl_destroy.h>
57 #include <sys/blkptr.h>
58 #include <sys/dsl_bookmark.h>
59 #include <sys/zfeature.h>
60 #include <sys/bqueue.h>
61 #include <sys/objlist.h>
62 #ifdef _KERNEL
63 #include <sys/zfs_vfsops.h>
64 #endif
65 #include <sys/zfs_file.h>
66
67 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
68 static int zfs_recv_queue_ff = 20;
69 static int zfs_recv_write_batch_size = 1024 * 1024;
70
71 static void *const dmu_recv_tag = "dmu_recv_tag";
72 const char *const recv_clone_name = "%recv";
73
74 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
75     void *buf);
76
77 struct receive_record_arg {
78         dmu_replay_record_t header;
79         void *payload; /* Pointer to a buffer containing the payload */
80         /*
81          * If the record is a WRITE or SPILL, pointer to the abd containing the
82          * payload.
83          */
84         abd_t *abd;
85         int payload_size;
86         uint64_t bytes_read; /* bytes read from stream when record created */
87         boolean_t eos_marker; /* Marks the end of the stream */
88         bqueue_node_t node;
89 };
90
91 struct receive_writer_arg {
92         objset_t *os;
93         boolean_t byteswap;
94         bqueue_t q;
95
96         /*
97          * These three members are used to signal to the main thread when
98          * we're done.
99          */
100         kmutex_t mutex;
101         kcondvar_t cv;
102         boolean_t done;
103
104         int err;
105         boolean_t resumable;
106         boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
107         boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
108         boolean_t full;  /* this is a full send stream */
109         uint64_t last_object;
110         uint64_t last_offset;
111         uint64_t max_object; /* highest object ID referenced in stream */
112         uint64_t bytes_read; /* bytes read when current record created */
113
114         list_t write_batch;
115
116         /* Encryption parameters for the last received DRR_OBJECT_RANGE */
117         boolean_t or_crypt_params_present;
118         uint64_t or_firstobj;
119         uint64_t or_numslots;
120         uint8_t or_salt[ZIO_DATA_SALT_LEN];
121         uint8_t or_iv[ZIO_DATA_IV_LEN];
122         uint8_t or_mac[ZIO_DATA_MAC_LEN];
123         boolean_t or_byteorder;
124 };
125
126 typedef struct dmu_recv_begin_arg {
127         const char *drba_origin;
128         dmu_recv_cookie_t *drba_cookie;
129         cred_t *drba_cred;
130         proc_t *drba_proc;
131         dsl_crypto_params_t *drba_dcp;
132 } dmu_recv_begin_arg_t;
133
134 static void
135 byteswap_record(dmu_replay_record_t *drr)
136 {
137 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
138 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
139         drr->drr_type = BSWAP_32(drr->drr_type);
140         drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
141
142         switch (drr->drr_type) {
143         case DRR_BEGIN:
144                 DO64(drr_begin.drr_magic);
145                 DO64(drr_begin.drr_versioninfo);
146                 DO64(drr_begin.drr_creation_time);
147                 DO32(drr_begin.drr_type);
148                 DO32(drr_begin.drr_flags);
149                 DO64(drr_begin.drr_toguid);
150                 DO64(drr_begin.drr_fromguid);
151                 break;
152         case DRR_OBJECT:
153                 DO64(drr_object.drr_object);
154                 DO32(drr_object.drr_type);
155                 DO32(drr_object.drr_bonustype);
156                 DO32(drr_object.drr_blksz);
157                 DO32(drr_object.drr_bonuslen);
158                 DO32(drr_object.drr_raw_bonuslen);
159                 DO64(drr_object.drr_toguid);
160                 DO64(drr_object.drr_maxblkid);
161                 break;
162         case DRR_FREEOBJECTS:
163                 DO64(drr_freeobjects.drr_firstobj);
164                 DO64(drr_freeobjects.drr_numobjs);
165                 DO64(drr_freeobjects.drr_toguid);
166                 break;
167         case DRR_WRITE:
168                 DO64(drr_write.drr_object);
169                 DO32(drr_write.drr_type);
170                 DO64(drr_write.drr_offset);
171                 DO64(drr_write.drr_logical_size);
172                 DO64(drr_write.drr_toguid);
173                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
174                 DO64(drr_write.drr_key.ddk_prop);
175                 DO64(drr_write.drr_compressed_size);
176                 break;
177         case DRR_WRITE_EMBEDDED:
178                 DO64(drr_write_embedded.drr_object);
179                 DO64(drr_write_embedded.drr_offset);
180                 DO64(drr_write_embedded.drr_length);
181                 DO64(drr_write_embedded.drr_toguid);
182                 DO32(drr_write_embedded.drr_lsize);
183                 DO32(drr_write_embedded.drr_psize);
184                 break;
185         case DRR_FREE:
186                 DO64(drr_free.drr_object);
187                 DO64(drr_free.drr_offset);
188                 DO64(drr_free.drr_length);
189                 DO64(drr_free.drr_toguid);
190                 break;
191         case DRR_SPILL:
192                 DO64(drr_spill.drr_object);
193                 DO64(drr_spill.drr_length);
194                 DO64(drr_spill.drr_toguid);
195                 DO64(drr_spill.drr_compressed_size);
196                 DO32(drr_spill.drr_type);
197                 break;
198         case DRR_OBJECT_RANGE:
199                 DO64(drr_object_range.drr_firstobj);
200                 DO64(drr_object_range.drr_numslots);
201                 DO64(drr_object_range.drr_toguid);
202                 break;
203         case DRR_REDACT:
204                 DO64(drr_redact.drr_object);
205                 DO64(drr_redact.drr_offset);
206                 DO64(drr_redact.drr_length);
207                 DO64(drr_redact.drr_toguid);
208                 break;
209         case DRR_END:
210                 DO64(drr_end.drr_toguid);
211                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
212                 break;
213         default:
214                 break;
215         }
216
217         if (drr->drr_type != DRR_BEGIN) {
218                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
219         }
220
221 #undef DO64
222 #undef DO32
223 }
224
225 static boolean_t
226 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
227 {
228         for (int i = 0; i < num_snaps; i++) {
229                 if (snaps[i] == guid)
230                         return (B_TRUE);
231         }
232         return (B_FALSE);
233 }
234
235 /*
236  * Check that the new stream we're trying to receive is redacted with respect to
237  * a subset of the snapshots that the origin was redacted with respect to.  For
238  * the reasons behind this, see the man page on redacted zfs sends and receives.
239  */
240 static boolean_t
241 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
242     uint64_t *redact_snaps, uint64_t num_redact_snaps)
243 {
244         /*
245          * Short circuit the comparison; if we are redacted with respect to
246          * more snapshots than the origin, we can't be redacted with respect
247          * to a subset.
248          */
249         if (num_redact_snaps > origin_num_snaps) {
250                 return (B_FALSE);
251         }
252
253         for (int i = 0; i < num_redact_snaps; i++) {
254                 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
255                     redact_snaps[i])) {
256                         return (B_FALSE);
257                 }
258         }
259         return (B_TRUE);
260 }
261
262 static boolean_t
263 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
264 {
265         uint64_t *origin_snaps;
266         uint64_t origin_num_snaps;
267         dmu_recv_cookie_t *drc = drba->drba_cookie;
268         struct drr_begin *drrb = drc->drc_drrb;
269         int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
270         int err = 0;
271         boolean_t ret = B_TRUE;
272         uint64_t *redact_snaps;
273         uint_t numredactsnaps;
274
275         /*
276          * If this is a full send stream, we're safe no matter what.
277          */
278         if (drrb->drr_fromguid == 0)
279                 return (ret);
280
281         VERIFY(dsl_dataset_get_uint64_array_feature(origin,
282             SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
283
284         if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
285             BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
286             0) {
287                 /*
288                  * If the send stream was sent from the redaction bookmark or
289                  * the redacted version of the dataset, then we're safe.  Verify
290                  * that this is from the a compatible redaction bookmark or
291                  * redacted dataset.
292                  */
293                 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
294                     redact_snaps, numredactsnaps)) {
295                         err = EINVAL;
296                 }
297         } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
298                 /*
299                  * If the stream is redacted, it must be redacted with respect
300                  * to a subset of what the origin is redacted with respect to.
301                  * See case number 2 in the zfs man page section on redacted zfs
302                  * send.
303                  */
304                 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
305                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
306
307                 if (err != 0 || !compatible_redact_snaps(origin_snaps,
308                     origin_num_snaps, redact_snaps, numredactsnaps)) {
309                         err = EINVAL;
310                 }
311         } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
312             drrb->drr_toguid)) {
313                 /*
314                  * If the stream isn't redacted but the origin is, this must be
315                  * one of the snapshots the origin is redacted with respect to.
316                  * See case number 1 in the zfs man page section on redacted zfs
317                  * send.
318                  */
319                 err = EINVAL;
320         }
321
322         if (err != 0)
323                 ret = B_FALSE;
324         return (ret);
325 }
326
327 /*
328  * If we previously received a stream with --large-block, we don't support
329  * receiving an incremental on top of it without --large-block.  This avoids
330  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
331  * records.
332  */
333 static int
334 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
335 {
336         if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
337             !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
338                 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
339         return (0);
340 }
341
342 static int
343 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
344     uint64_t fromguid, uint64_t featureflags)
345 {
346         uint64_t val;
347         uint64_t children;
348         int error;
349         dsl_pool_t *dp = ds->ds_dir->dd_pool;
350         boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
351         boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
352         boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
353
354         /* Temporary clone name must not exist. */
355         error = zap_lookup(dp->dp_meta_objset,
356             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
357             8, 1, &val);
358         if (error != ENOENT)
359                 return (error == 0 ? SET_ERROR(EBUSY) : error);
360
361         /* Resume state must not be set. */
362         if (dsl_dataset_has_resume_receive_state(ds))
363                 return (SET_ERROR(EBUSY));
364
365         /* New snapshot name must not exist. */
366         error = zap_lookup(dp->dp_meta_objset,
367             dsl_dataset_phys(ds)->ds_snapnames_zapobj,
368             drba->drba_cookie->drc_tosnap, 8, 1, &val);
369         if (error != ENOENT)
370                 return (error == 0 ? SET_ERROR(EEXIST) : error);
371
372         /* Must not have children if receiving a ZVOL. */
373         error = zap_count(dp->dp_meta_objset,
374             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
375         if (error != 0)
376                 return (error);
377         if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
378             children > 0)
379                 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
380
381         /*
382          * Check snapshot limit before receiving. We'll recheck again at the
383          * end, but might as well abort before receiving if we're already over
384          * the limit.
385          *
386          * Note that we do not check the file system limit with
387          * dsl_dir_fscount_check because the temporary %clones don't count
388          * against that limit.
389          */
390         error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
391             NULL, drba->drba_cred, drba->drba_proc);
392         if (error != 0)
393                 return (error);
394
395         if (fromguid != 0) {
396                 dsl_dataset_t *snap;
397                 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
398
399                 /* Can't perform a raw receive on top of a non-raw receive */
400                 if (!encrypted && raw)
401                         return (SET_ERROR(EINVAL));
402
403                 /* Encryption is incompatible with embedded data */
404                 if (encrypted && embed)
405                         return (SET_ERROR(EINVAL));
406
407                 /* Find snapshot in this dir that matches fromguid. */
408                 while (obj != 0) {
409                         error = dsl_dataset_hold_obj(dp, obj, FTAG,
410                             &snap);
411                         if (error != 0)
412                                 return (SET_ERROR(ENODEV));
413                         if (snap->ds_dir != ds->ds_dir) {
414                                 dsl_dataset_rele(snap, FTAG);
415                                 return (SET_ERROR(ENODEV));
416                         }
417                         if (dsl_dataset_phys(snap)->ds_guid == fromguid)
418                                 break;
419                         obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
420                         dsl_dataset_rele(snap, FTAG);
421                 }
422                 if (obj == 0)
423                         return (SET_ERROR(ENODEV));
424
425                 if (drba->drba_cookie->drc_force) {
426                         drba->drba_cookie->drc_fromsnapobj = obj;
427                 } else {
428                         /*
429                          * If we are not forcing, there must be no
430                          * changes since fromsnap. Raw sends have an
431                          * additional constraint that requires that
432                          * no "noop" snapshots exist between fromsnap
433                          * and tosnap for the IVset checking code to
434                          * work properly.
435                          */
436                         if (dsl_dataset_modified_since_snap(ds, snap) ||
437                             (raw &&
438                             dsl_dataset_phys(ds)->ds_prev_snap_obj !=
439                             snap->ds_object)) {
440                                 dsl_dataset_rele(snap, FTAG);
441                                 return (SET_ERROR(ETXTBSY));
442                         }
443                         drba->drba_cookie->drc_fromsnapobj =
444                             ds->ds_prev->ds_object;
445                 }
446
447                 if (dsl_dataset_feature_is_active(snap,
448                     SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
449                     snap)) {
450                         dsl_dataset_rele(snap, FTAG);
451                         return (SET_ERROR(EINVAL));
452                 }
453
454                 error = recv_check_large_blocks(snap, featureflags);
455                 if (error != 0) {
456                         dsl_dataset_rele(snap, FTAG);
457                         return (error);
458                 }
459
460                 dsl_dataset_rele(snap, FTAG);
461         } else {
462                 /* if full, then must be forced */
463                 if (!drba->drba_cookie->drc_force)
464                         return (SET_ERROR(EEXIST));
465
466                 /*
467                  * We don't support using zfs recv -F to blow away
468                  * encrypted filesystems. This would require the
469                  * dsl dir to point to the old encryption key and
470                  * the new one at the same time during the receive.
471                  */
472                 if ((!encrypted && raw) || encrypted)
473                         return (SET_ERROR(EINVAL));
474
475                 /*
476                  * Perform the same encryption checks we would if
477                  * we were creating a new dataset from scratch.
478                  */
479                 if (!raw) {
480                         boolean_t will_encrypt;
481
482                         error = dmu_objset_create_crypt_check(
483                             ds->ds_dir->dd_parent, drba->drba_dcp,
484                             &will_encrypt);
485                         if (error != 0)
486                                 return (error);
487
488                         if (will_encrypt && embed)
489                                 return (SET_ERROR(EINVAL));
490                 }
491         }
492
493         return (0);
494 }
495
496 /*
497  * Check that any feature flags used in the data stream we're receiving are
498  * supported by the pool we are receiving into.
499  *
500  * Note that some of the features we explicitly check here have additional
501  * (implicit) features they depend on, but those dependencies are enforced
502  * through the zfeature_register() calls declaring the features that we
503  * explicitly check.
504  */
505 static int
506 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
507 {
508         /*
509          * Check if there are any unsupported feature flags.
510          */
511         if (!DMU_STREAM_SUPPORTED(featureflags)) {
512                 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
513         }
514
515         /* Verify pool version supports SA if SA_SPILL feature set */
516         if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
517             spa_version(spa) < SPA_VERSION_SA)
518                 return (SET_ERROR(ENOTSUP));
519
520         /*
521          * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
522          * and large_dnodes in the stream can only be used if those pool
523          * features are enabled because we don't attempt to decompress /
524          * un-embed / un-mooch / split up the blocks / dnodes during the
525          * receive process.
526          */
527         if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
528             !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
529                 return (SET_ERROR(ENOTSUP));
530         if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
531             !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
532                 return (SET_ERROR(ENOTSUP));
533         if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
534             !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
535                 return (SET_ERROR(ENOTSUP));
536         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
537             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
538                 return (SET_ERROR(ENOTSUP));
539         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
540             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
541                 return (SET_ERROR(ENOTSUP));
542
543         /*
544          * Receiving redacted streams requires that redacted datasets are
545          * enabled.
546          */
547         if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
548             !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
549                 return (SET_ERROR(ENOTSUP));
550
551         return (0);
552 }
553
554 static int
555 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
556 {
557         dmu_recv_begin_arg_t *drba = arg;
558         dsl_pool_t *dp = dmu_tx_pool(tx);
559         struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
560         uint64_t fromguid = drrb->drr_fromguid;
561         int flags = drrb->drr_flags;
562         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
563         int error;
564         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
565         dsl_dataset_t *ds;
566         const char *tofs = drba->drba_cookie->drc_tofs;
567
568         /* already checked */
569         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
570         ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
571
572         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
573             DMU_COMPOUNDSTREAM ||
574             drrb->drr_type >= DMU_OST_NUMTYPES ||
575             ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
576                 return (SET_ERROR(EINVAL));
577
578         error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
579         if (error != 0)
580                 return (error);
581
582         /* Resumable receives require extensible datasets */
583         if (drba->drba_cookie->drc_resumable &&
584             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
585                 return (SET_ERROR(ENOTSUP));
586
587         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
588                 /* raw receives require the encryption feature */
589                 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
590                         return (SET_ERROR(ENOTSUP));
591
592                 /* embedded data is incompatible with encryption and raw recv */
593                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
594                         return (SET_ERROR(EINVAL));
595
596                 /* raw receives require spill block allocation flag */
597                 if (!(flags & DRR_FLAG_SPILL_BLOCK))
598                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
599         } else {
600                 /*
601                  * We support unencrypted datasets below encrypted ones now,
602                  * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
603                  * with a dataset we may encrypt.
604                  */
605                 if (drba->drba_dcp != NULL &&
606                     drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
607                         dsflags |= DS_HOLD_FLAG_DECRYPT;
608                 }
609         }
610
611         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
612         if (error == 0) {
613                 /* target fs already exists; recv into temp clone */
614
615                 /* Can't recv a clone into an existing fs */
616                 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
617                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
618                         return (SET_ERROR(EINVAL));
619                 }
620
621                 error = recv_begin_check_existing_impl(drba, ds, fromguid,
622                     featureflags);
623                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
624         } else if (error == ENOENT) {
625                 /* target fs does not exist; must be a full backup or clone */
626                 char buf[ZFS_MAX_DATASET_NAME_LEN];
627                 objset_t *os;
628
629                 /*
630                  * If it's a non-clone incremental, we are missing the
631                  * target fs, so fail the recv.
632                  */
633                 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
634                     drba->drba_origin))
635                         return (SET_ERROR(ENOENT));
636
637                 /*
638                  * If we're receiving a full send as a clone, and it doesn't
639                  * contain all the necessary free records and freeobject
640                  * records, reject it.
641                  */
642                 if (fromguid == 0 && drba->drba_origin != NULL &&
643                     !(flags & DRR_FLAG_FREERECORDS))
644                         return (SET_ERROR(EINVAL));
645
646                 /* Open the parent of tofs */
647                 ASSERT3U(strlen(tofs), <, sizeof (buf));
648                 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
649                 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
650                 if (error != 0)
651                         return (error);
652
653                 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
654                     drba->drba_origin == NULL) {
655                         boolean_t will_encrypt;
656
657                         /*
658                          * Check that we aren't breaking any encryption rules
659                          * and that we have all the parameters we need to
660                          * create an encrypted dataset if necessary. If we are
661                          * making an encrypted dataset the stream can't have
662                          * embedded data.
663                          */
664                         error = dmu_objset_create_crypt_check(ds->ds_dir,
665                             drba->drba_dcp, &will_encrypt);
666                         if (error != 0) {
667                                 dsl_dataset_rele(ds, FTAG);
668                                 return (error);
669                         }
670
671                         if (will_encrypt &&
672                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
673                                 dsl_dataset_rele(ds, FTAG);
674                                 return (SET_ERROR(EINVAL));
675                         }
676                 }
677
678                 /*
679                  * Check filesystem and snapshot limits before receiving. We'll
680                  * recheck snapshot limits again at the end (we create the
681                  * filesystems and increment those counts during begin_sync).
682                  */
683                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
684                     ZFS_PROP_FILESYSTEM_LIMIT, NULL,
685                     drba->drba_cred, drba->drba_proc);
686                 if (error != 0) {
687                         dsl_dataset_rele(ds, FTAG);
688                         return (error);
689                 }
690
691                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
692                     ZFS_PROP_SNAPSHOT_LIMIT, NULL,
693                     drba->drba_cred, drba->drba_proc);
694                 if (error != 0) {
695                         dsl_dataset_rele(ds, FTAG);
696                         return (error);
697                 }
698
699                 /* can't recv below anything but filesystems (eg. no ZVOLs) */
700                 error = dmu_objset_from_ds(ds, &os);
701                 if (error != 0) {
702                         dsl_dataset_rele(ds, FTAG);
703                         return (error);
704                 }
705                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
706                         dsl_dataset_rele(ds, FTAG);
707                         return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
708                 }
709
710                 if (drba->drba_origin != NULL) {
711                         dsl_dataset_t *origin;
712                         error = dsl_dataset_hold_flags(dp, drba->drba_origin,
713                             dsflags, FTAG, &origin);
714                         if (error != 0) {
715                                 dsl_dataset_rele(ds, FTAG);
716                                 return (error);
717                         }
718                         if (!origin->ds_is_snapshot) {
719                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
720                                 dsl_dataset_rele(ds, FTAG);
721                                 return (SET_ERROR(EINVAL));
722                         }
723                         if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
724                             fromguid != 0) {
725                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
726                                 dsl_dataset_rele(ds, FTAG);
727                                 return (SET_ERROR(ENODEV));
728                         }
729
730                         if (origin->ds_dir->dd_crypto_obj != 0 &&
731                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
732                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
733                                 dsl_dataset_rele(ds, FTAG);
734                                 return (SET_ERROR(EINVAL));
735                         }
736
737                         /*
738                          * If the origin is redacted we need to verify that this
739                          * send stream can safely be received on top of the
740                          * origin.
741                          */
742                         if (dsl_dataset_feature_is_active(origin,
743                             SPA_FEATURE_REDACTED_DATASETS)) {
744                                 if (!redact_check(drba, origin)) {
745                                         dsl_dataset_rele_flags(origin, dsflags,
746                                             FTAG);
747                                         dsl_dataset_rele_flags(ds, dsflags,
748                                             FTAG);
749                                         return (SET_ERROR(EINVAL));
750                                 }
751                         }
752
753                         error = recv_check_large_blocks(ds, featureflags);
754                         if (error != 0) {
755                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
756                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
757                                 return (error);
758                         }
759
760                         dsl_dataset_rele_flags(origin, dsflags, FTAG);
761                 }
762
763                 dsl_dataset_rele(ds, FTAG);
764                 error = 0;
765         }
766         return (error);
767 }
768
769 static void
770 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
771 {
772         dmu_recv_begin_arg_t *drba = arg;
773         dsl_pool_t *dp = dmu_tx_pool(tx);
774         objset_t *mos = dp->dp_meta_objset;
775         dmu_recv_cookie_t *drc = drba->drba_cookie;
776         struct drr_begin *drrb = drc->drc_drrb;
777         const char *tofs = drc->drc_tofs;
778         uint64_t featureflags = drc->drc_featureflags;
779         dsl_dataset_t *ds, *newds;
780         objset_t *os;
781         uint64_t dsobj;
782         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
783         int error;
784         uint64_t crflags = 0;
785         dsl_crypto_params_t dummy_dcp = { 0 };
786         dsl_crypto_params_t *dcp = drba->drba_dcp;
787
788         if (drrb->drr_flags & DRR_FLAG_CI_DATA)
789                 crflags |= DS_FLAG_CI_DATASET;
790
791         if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
792                 dsflags |= DS_HOLD_FLAG_DECRYPT;
793
794         /*
795          * Raw, non-incremental recvs always use a dummy dcp with
796          * the raw cmd set. Raw incremental recvs do not use a dcp
797          * since the encryption parameters are already set in stone.
798          */
799         if (dcp == NULL && drrb->drr_fromguid == 0 &&
800             drba->drba_origin == NULL) {
801                 ASSERT3P(dcp, ==, NULL);
802                 dcp = &dummy_dcp;
803
804                 if (featureflags & DMU_BACKUP_FEATURE_RAW)
805                         dcp->cp_cmd = DCP_CMD_RAW_RECV;
806         }
807
808         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
809         if (error == 0) {
810                 /* create temporary clone */
811                 dsl_dataset_t *snap = NULL;
812
813                 if (drba->drba_cookie->drc_fromsnapobj != 0) {
814                         VERIFY0(dsl_dataset_hold_obj(dp,
815                             drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
816                         ASSERT3P(dcp, ==, NULL);
817                 }
818                 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
819                     snap, crflags, drba->drba_cred, dcp, tx);
820                 if (drba->drba_cookie->drc_fromsnapobj != 0)
821                         dsl_dataset_rele(snap, FTAG);
822                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
823         } else {
824                 dsl_dir_t *dd;
825                 const char *tail;
826                 dsl_dataset_t *origin = NULL;
827
828                 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
829
830                 if (drba->drba_origin != NULL) {
831                         VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
832                             FTAG, &origin));
833                         ASSERT3P(dcp, ==, NULL);
834                 }
835
836                 /* Create new dataset. */
837                 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
838                     origin, crflags, drba->drba_cred, dcp, tx);
839                 if (origin != NULL)
840                         dsl_dataset_rele(origin, FTAG);
841                 dsl_dir_rele(dd, FTAG);
842                 drc->drc_newfs = B_TRUE;
843         }
844         VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
845             &newds));
846         if (dsl_dataset_feature_is_active(newds,
847             SPA_FEATURE_REDACTED_DATASETS)) {
848                 /*
849                  * If the origin dataset is redacted, the child will be redacted
850                  * when we create it.  We clear the new dataset's
851                  * redaction info; if it should be redacted, we'll fill
852                  * in its information later.
853                  */
854                 dsl_dataset_deactivate_feature(newds,
855                     SPA_FEATURE_REDACTED_DATASETS, tx);
856         }
857         VERIFY0(dmu_objset_from_ds(newds, &os));
858
859         if (drc->drc_resumable) {
860                 dsl_dataset_zapify(newds, tx);
861                 if (drrb->drr_fromguid != 0) {
862                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
863                             8, 1, &drrb->drr_fromguid, tx));
864                 }
865                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
866                     8, 1, &drrb->drr_toguid, tx));
867                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
868                     1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
869                 uint64_t one = 1;
870                 uint64_t zero = 0;
871                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
872                     8, 1, &one, tx));
873                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
874                     8, 1, &zero, tx));
875                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
876                     8, 1, &zero, tx));
877                 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
878                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
879                             8, 1, &one, tx));
880                 }
881                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
882                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
883                             8, 1, &one, tx));
884                 }
885                 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
886                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
887                             8, 1, &one, tx));
888                 }
889                 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
890                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
891                             8, 1, &one, tx));
892                 }
893
894                 uint64_t *redact_snaps;
895                 uint_t numredactsnaps;
896                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
897                     BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
898                     &numredactsnaps) == 0) {
899                         VERIFY0(zap_add(mos, dsobj,
900                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
901                             sizeof (*redact_snaps), numredactsnaps,
902                             redact_snaps, tx));
903                 }
904         }
905
906         /*
907          * Usually the os->os_encrypted value is tied to the presence of a
908          * DSL Crypto Key object in the dd. However, that will not be received
909          * until dmu_recv_stream(), so we set the value manually for now.
910          */
911         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
912                 os->os_encrypted = B_TRUE;
913                 drba->drba_cookie->drc_raw = B_TRUE;
914         }
915
916         if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
917                 uint64_t *redact_snaps;
918                 uint_t numredactsnaps;
919                 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
920                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
921                 dsl_dataset_activate_redaction(newds, redact_snaps,
922                     numredactsnaps, tx);
923         }
924
925         dmu_buf_will_dirty(newds->ds_dbuf, tx);
926         dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
927
928         /*
929          * If we actually created a non-clone, we need to create the objset
930          * in our new dataset. If this is a raw send we postpone this until
931          * dmu_recv_stream() so that we can allocate the metadnode with the
932          * properties from the DRR_BEGIN payload.
933          */
934         rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
935         if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
936             (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
937                 (void) dmu_objset_create_impl(dp->dp_spa,
938                     newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
939         }
940         rrw_exit(&newds->ds_bp_rwlock, FTAG);
941
942         drba->drba_cookie->drc_ds = newds;
943         drba->drba_cookie->drc_os = os;
944
945         spa_history_log_internal_ds(newds, "receive", tx, " ");
946 }
947
948 static int
949 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
950 {
951         dmu_recv_begin_arg_t *drba = arg;
952         dmu_recv_cookie_t *drc = drba->drba_cookie;
953         dsl_pool_t *dp = dmu_tx_pool(tx);
954         struct drr_begin *drrb = drc->drc_drrb;
955         int error;
956         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
957         dsl_dataset_t *ds;
958         const char *tofs = drc->drc_tofs;
959
960         /* already checked */
961         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
962         ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
963
964         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
965             DMU_COMPOUNDSTREAM ||
966             drrb->drr_type >= DMU_OST_NUMTYPES)
967                 return (SET_ERROR(EINVAL));
968
969         /*
970          * This is mostly a sanity check since we should have already done these
971          * checks during a previous attempt to receive the data.
972          */
973         error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
974             dp->dp_spa);
975         if (error != 0)
976                 return (error);
977
978         /* 6 extra bytes for /%recv */
979         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
980
981         (void) snprintf(recvname, sizeof (recvname), "%s/%s",
982             tofs, recv_clone_name);
983
984         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
985                 /* raw receives require spill block allocation flag */
986                 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
987                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
988         } else {
989                 dsflags |= DS_HOLD_FLAG_DECRYPT;
990         }
991
992         if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
993                 /* %recv does not exist; continue in tofs */
994                 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
995                 if (error != 0)
996                         return (error);
997         }
998
999         /* check that ds is marked inconsistent */
1000         if (!DS_IS_INCONSISTENT(ds)) {
1001                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1002                 return (SET_ERROR(EINVAL));
1003         }
1004
1005         /* check that there is resuming data, and that the toguid matches */
1006         if (!dsl_dataset_is_zapified(ds)) {
1007                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1008                 return (SET_ERROR(EINVAL));
1009         }
1010         uint64_t val;
1011         error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1012             DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1013         if (error != 0 || drrb->drr_toguid != val) {
1014                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1015                 return (SET_ERROR(EINVAL));
1016         }
1017
1018         /*
1019          * Check if the receive is still running.  If so, it will be owned.
1020          * Note that nothing else can own the dataset (e.g. after the receive
1021          * fails) because it will be marked inconsistent.
1022          */
1023         if (dsl_dataset_has_owner(ds)) {
1024                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1025                 return (SET_ERROR(EBUSY));
1026         }
1027
1028         /* There should not be any snapshots of this fs yet. */
1029         if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1030                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1031                 return (SET_ERROR(EINVAL));
1032         }
1033
1034         /*
1035          * Note: resume point will be checked when we process the first WRITE
1036          * record.
1037          */
1038
1039         /* check that the origin matches */
1040         val = 0;
1041         (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1042             DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1043         if (drrb->drr_fromguid != val) {
1044                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1045                 return (SET_ERROR(EINVAL));
1046         }
1047
1048         if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1049                 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1050
1051         /*
1052          * If we're resuming, and the send is redacted, then the original send
1053          * must have been redacted, and must have been redacted with respect to
1054          * the same snapshots.
1055          */
1056         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1057                 uint64_t num_ds_redact_snaps;
1058                 uint64_t *ds_redact_snaps;
1059
1060                 uint_t num_stream_redact_snaps;
1061                 uint64_t *stream_redact_snaps;
1062
1063                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1064                     BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1065                     &num_stream_redact_snaps) != 0) {
1066                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1067                         return (SET_ERROR(EINVAL));
1068                 }
1069
1070                 if (!dsl_dataset_get_uint64_array_feature(ds,
1071                     SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1072                     &ds_redact_snaps)) {
1073                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1074                         return (SET_ERROR(EINVAL));
1075                 }
1076
1077                 for (int i = 0; i < num_ds_redact_snaps; i++) {
1078                         if (!redact_snaps_contains(ds_redact_snaps,
1079                             num_ds_redact_snaps, stream_redact_snaps[i])) {
1080                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1081                                 return (SET_ERROR(EINVAL));
1082                         }
1083                 }
1084         }
1085
1086         error = recv_check_large_blocks(ds, drc->drc_featureflags);
1087         if (error != 0) {
1088                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1089                 return (error);
1090         }
1091
1092         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1093         return (0);
1094 }
1095
1096 static void
1097 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1098 {
1099         dmu_recv_begin_arg_t *drba = arg;
1100         dsl_pool_t *dp = dmu_tx_pool(tx);
1101         const char *tofs = drba->drba_cookie->drc_tofs;
1102         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1103         dsl_dataset_t *ds;
1104         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1105         /* 6 extra bytes for /%recv */
1106         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1107
1108         (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1109             recv_clone_name);
1110
1111         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1112                 drba->drba_cookie->drc_raw = B_TRUE;
1113         } else {
1114                 dsflags |= DS_HOLD_FLAG_DECRYPT;
1115         }
1116
1117         if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1118             != 0) {
1119                 /* %recv does not exist; continue in tofs */
1120                 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1121                     &ds));
1122                 drba->drba_cookie->drc_newfs = B_TRUE;
1123         }
1124
1125         ASSERT(DS_IS_INCONSISTENT(ds));
1126         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1127         ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1128             drba->drba_cookie->drc_raw);
1129         rrw_exit(&ds->ds_bp_rwlock, FTAG);
1130
1131         drba->drba_cookie->drc_ds = ds;
1132         VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1133         drba->drba_cookie->drc_should_save = B_TRUE;
1134
1135         spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1136 }
1137
1138 /*
1139  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1140  * succeeds; otherwise we will leak the holds on the datasets.
1141  */
1142 int
1143 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1144     boolean_t force, boolean_t resumable, nvlist_t *localprops,
1145     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1146     zfs_file_t *fp, offset_t *voffp)
1147 {
1148         dmu_recv_begin_arg_t drba = { 0 };
1149         int err;
1150
1151         memset(drc, 0, sizeof (dmu_recv_cookie_t));
1152         drc->drc_drr_begin = drr_begin;
1153         drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1154         drc->drc_tosnap = tosnap;
1155         drc->drc_tofs = tofs;
1156         drc->drc_force = force;
1157         drc->drc_resumable = resumable;
1158         drc->drc_cred = CRED();
1159         drc->drc_proc = curproc;
1160         drc->drc_clone = (origin != NULL);
1161
1162         if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1163                 drc->drc_byteswap = B_TRUE;
1164                 (void) fletcher_4_incremental_byteswap(drr_begin,
1165                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1166                 byteswap_record(drr_begin);
1167         } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1168                 (void) fletcher_4_incremental_native(drr_begin,
1169                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1170         } else {
1171                 return (SET_ERROR(EINVAL));
1172         }
1173
1174         drc->drc_fp = fp;
1175         drc->drc_voff = *voffp;
1176         drc->drc_featureflags =
1177             DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1178
1179         uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1180         void *payload = NULL;
1181         if (payloadlen != 0)
1182                 payload = kmem_alloc(payloadlen, KM_SLEEP);
1183
1184         err = receive_read_payload_and_next_header(drc, payloadlen,
1185             payload);
1186         if (err != 0) {
1187                 kmem_free(payload, payloadlen);
1188                 return (err);
1189         }
1190         if (payloadlen != 0) {
1191                 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1192                     KM_SLEEP);
1193                 kmem_free(payload, payloadlen);
1194                 if (err != 0) {
1195                         kmem_free(drc->drc_next_rrd,
1196                             sizeof (*drc->drc_next_rrd));
1197                         return (err);
1198                 }
1199         }
1200
1201         if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1202                 drc->drc_spill = B_TRUE;
1203
1204         drba.drba_origin = origin;
1205         drba.drba_cookie = drc;
1206         drba.drba_cred = CRED();
1207         drba.drba_proc = curproc;
1208
1209         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1210                 err = dsl_sync_task(tofs,
1211                     dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1212                     &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1213         } else {
1214                 /*
1215                  * For non-raw, non-incremental, non-resuming receives the
1216                  * user can specify encryption parameters on the command line
1217                  * with "zfs recv -o". For these receives we create a dcp and
1218                  * pass it to the sync task. Creating the dcp will implicitly
1219                  * remove the encryption params from the localprops nvlist,
1220                  * which avoids errors when trying to set these normally
1221                  * read-only properties. Any other kind of receive that
1222                  * attempts to set these properties will fail as a result.
1223                  */
1224                 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1225                     DMU_BACKUP_FEATURE_RAW) == 0 &&
1226                     origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1227                         err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1228                             localprops, hidden_args, &drba.drba_dcp);
1229                 }
1230
1231                 if (err == 0) {
1232                         err = dsl_sync_task(tofs,
1233                             dmu_recv_begin_check, dmu_recv_begin_sync,
1234                             &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1235                         dsl_crypto_params_free(drba.drba_dcp, !!err);
1236                 }
1237         }
1238
1239         if (err != 0) {
1240                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1241                 nvlist_free(drc->drc_begin_nvl);
1242         }
1243         return (err);
1244 }
1245
1246 static int
1247 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1248 {
1249         int done = 0;
1250
1251         /*
1252          * The code doesn't rely on this (lengths being multiples of 8).  See
1253          * comment in dump_bytes.
1254          */
1255         ASSERT(len % 8 == 0 ||
1256             (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1257
1258         while (done < len) {
1259                 ssize_t resid;
1260                 zfs_file_t *fp = drc->drc_fp;
1261                 int err = zfs_file_read(fp, (char *)buf + done,
1262                     len - done, &resid);
1263                 if (resid == len - done) {
1264                         /*
1265                          * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1266                          * that the receive was interrupted and can
1267                          * potentially be resumed.
1268                          */
1269                         err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1270                 }
1271                 drc->drc_voff += len - done - resid;
1272                 done = len - resid;
1273                 if (err != 0)
1274                         return (err);
1275         }
1276
1277         drc->drc_bytes_read += len;
1278
1279         ASSERT3U(done, ==, len);
1280         return (0);
1281 }
1282
1283 static inline uint8_t
1284 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1285 {
1286         if (bonus_type == DMU_OT_SA) {
1287                 return (1);
1288         } else {
1289                 return (1 +
1290                     ((DN_OLD_MAX_BONUSLEN -
1291                     MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1292         }
1293 }
1294
1295 static void
1296 save_resume_state(struct receive_writer_arg *rwa,
1297     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1298 {
1299         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1300
1301         if (!rwa->resumable)
1302                 return;
1303
1304         /*
1305          * We use ds_resume_bytes[] != 0 to indicate that we need to
1306          * update this on disk, so it must not be 0.
1307          */
1308         ASSERT(rwa->bytes_read != 0);
1309
1310         /*
1311          * We only resume from write records, which have a valid
1312          * (non-meta-dnode) object number.
1313          */
1314         ASSERT(object != 0);
1315
1316         /*
1317          * For resuming to work correctly, we must receive records in order,
1318          * sorted by object,offset.  This is checked by the callers, but
1319          * assert it here for good measure.
1320          */
1321         ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1322         ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1323             offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1324         ASSERT3U(rwa->bytes_read, >=,
1325             rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1326
1327         rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1328         rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1329         rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1330 }
1331
1332 static int
1333 receive_object_is_same_generation(objset_t *os, uint64_t object,
1334     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1335     const void *new_bonus, boolean_t *samegenp)
1336 {
1337         zfs_file_info_t zoi;
1338         int err;
1339
1340         dmu_buf_t *old_bonus_dbuf;
1341         err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1342         if (err != 0)
1343                 return (err);
1344         err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1345             &zoi);
1346         dmu_buf_rele(old_bonus_dbuf, FTAG);
1347         if (err != 0)
1348                 return (err);
1349         uint64_t old_gen = zoi.zfi_generation;
1350
1351         err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1352         if (err != 0)
1353                 return (err);
1354         uint64_t new_gen = zoi.zfi_generation;
1355
1356         *samegenp = (old_gen == new_gen);
1357         return (0);
1358 }
1359
1360 static int
1361 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1362     const struct drr_object *drro, const dmu_object_info_t *doi,
1363     const void *bonus_data,
1364     uint64_t *object_to_hold, uint32_t *new_blksz)
1365 {
1366         uint32_t indblksz = drro->drr_indblkshift ?
1367             1ULL << drro->drr_indblkshift : 0;
1368         int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1369             drro->drr_bonuslen);
1370         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1371             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1372         boolean_t do_free_range = B_FALSE;
1373         int err;
1374
1375         *object_to_hold = drro->drr_object;
1376
1377         /* nblkptr should be bounded by the bonus size and type */
1378         if (rwa->raw && nblkptr != drro->drr_nblkptr)
1379                 return (SET_ERROR(EINVAL));
1380
1381         /*
1382          * After the previous send stream, the sending system may
1383          * have freed this object, and then happened to re-allocate
1384          * this object number in a later txg. In this case, we are
1385          * receiving a different logical file, and the block size may
1386          * appear to be different.  i.e. we may have a different
1387          * block size for this object than what the send stream says.
1388          * In this case we need to remove the object's contents,
1389          * so that its structure can be changed and then its contents
1390          * entirely replaced by subsequent WRITE records.
1391          *
1392          * If this is a -L (--large-block) incremental stream, and
1393          * the previous stream was not -L, the block size may appear
1394          * to increase.  i.e. we may have a smaller block size for
1395          * this object than what the send stream says.  In this case
1396          * we need to keep the object's contents and block size
1397          * intact, so that we don't lose parts of the object's
1398          * contents that are not changed by this incremental send
1399          * stream.
1400          *
1401          * We can distinguish between the two above cases by using
1402          * the ZPL's generation number (see
1403          * receive_object_is_same_generation()).  However, we only
1404          * want to rely on the generation number when absolutely
1405          * necessary, because with raw receives, the generation is
1406          * encrypted.  We also want to minimize dependence on the
1407          * ZPL, so that other types of datasets can also be received
1408          * (e.g. ZVOLs, although note that ZVOLS currently do not
1409          * reallocate their objects or change their structure).
1410          * Therefore, we check a number of different cases where we
1411          * know it is safe to discard the object's contents, before
1412          * using the ZPL's generation number to make the above
1413          * distinction.
1414          */
1415         if (drro->drr_blksz != doi->doi_data_block_size) {
1416                 if (rwa->raw) {
1417                         /*
1418                          * RAW streams always have large blocks, so
1419                          * we are sure that the data is not needed
1420                          * due to changing --large-block to be on.
1421                          * Which is fortunate since the bonus buffer
1422                          * (which contains the ZPL generation) is
1423                          * encrypted, and the key might not be
1424                          * loaded.
1425                          */
1426                         do_free_range = B_TRUE;
1427                 } else if (rwa->full) {
1428                         /*
1429                          * This is a full send stream, so it always
1430                          * replaces what we have.  Even if the
1431                          * generation numbers happen to match, this
1432                          * can not actually be the same logical file.
1433                          * This is relevant when receiving a full
1434                          * send as a clone.
1435                          */
1436                         do_free_range = B_TRUE;
1437                 } else if (drro->drr_type !=
1438                     DMU_OT_PLAIN_FILE_CONTENTS ||
1439                     doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1440                         /*
1441                          * PLAIN_FILE_CONTENTS are the only type of
1442                          * objects that have ever been stored with
1443                          * large blocks, so we don't need the special
1444                          * logic below.  ZAP blocks can shrink (when
1445                          * there's only one block), so we don't want
1446                          * to hit the error below about block size
1447                          * only increasing.
1448                          */
1449                         do_free_range = B_TRUE;
1450                 } else if (doi->doi_max_offset <=
1451                     doi->doi_data_block_size) {
1452                         /*
1453                          * There is only one block.  We can free it,
1454                          * because its contents will be replaced by a
1455                          * WRITE record.  This can not be the no-L ->
1456                          * -L case, because the no-L case would have
1457                          * resulted in multiple blocks.  If we
1458                          * supported -L -> no-L, it would not be safe
1459                          * to free the file's contents.  Fortunately,
1460                          * that is not allowed (see
1461                          * recv_check_large_blocks()).
1462                          */
1463                         do_free_range = B_TRUE;
1464                 } else {
1465                         boolean_t is_same_gen;
1466                         err = receive_object_is_same_generation(rwa->os,
1467                             drro->drr_object, doi->doi_bonus_type,
1468                             drro->drr_bonustype, bonus_data, &is_same_gen);
1469                         if (err != 0)
1470                                 return (SET_ERROR(EINVAL));
1471
1472                         if (is_same_gen) {
1473                                 /*
1474                                  * This is the same logical file, and
1475                                  * the block size must be increasing.
1476                                  * It could only decrease if
1477                                  * --large-block was changed to be
1478                                  * off, which is checked in
1479                                  * recv_check_large_blocks().
1480                                  */
1481                                 if (drro->drr_blksz <=
1482                                     doi->doi_data_block_size)
1483                                         return (SET_ERROR(EINVAL));
1484                                 /*
1485                                  * We keep the existing blocksize and
1486                                  * contents.
1487                                  */
1488                                 *new_blksz =
1489                                     doi->doi_data_block_size;
1490                         } else {
1491                                 do_free_range = B_TRUE;
1492                         }
1493                 }
1494         }
1495
1496         /* nblkptr can only decrease if the object was reallocated */
1497         if (nblkptr < doi->doi_nblkptr)
1498                 do_free_range = B_TRUE;
1499
1500         /* number of slots can only change on reallocation */
1501         if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1502                 do_free_range = B_TRUE;
1503
1504         /*
1505          * For raw sends we also check a few other fields to
1506          * ensure we are preserving the objset structure exactly
1507          * as it was on the receive side:
1508          *     - A changed indirect block size
1509          *     - A smaller nlevels
1510          */
1511         if (rwa->raw) {
1512                 if (indblksz != doi->doi_metadata_block_size)
1513                         do_free_range = B_TRUE;
1514                 if (drro->drr_nlevels < doi->doi_indirection)
1515                         do_free_range = B_TRUE;
1516         }
1517
1518         if (do_free_range) {
1519                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1520                     0, DMU_OBJECT_END);
1521                 if (err != 0)
1522                         return (SET_ERROR(EINVAL));
1523         }
1524
1525         /*
1526          * The dmu does not currently support decreasing nlevels
1527          * or changing the number of dnode slots on an object. For
1528          * non-raw sends, this does not matter and the new object
1529          * can just use the previous one's nlevels. For raw sends,
1530          * however, the structure of the received dnode (including
1531          * nlevels and dnode slots) must match that of the send
1532          * side. Therefore, instead of using dmu_object_reclaim(),
1533          * we must free the object completely and call
1534          * dmu_object_claim_dnsize() instead.
1535          */
1536         if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1537             dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1538                 err = dmu_free_long_object(rwa->os, drro->drr_object);
1539                 if (err != 0)
1540                         return (SET_ERROR(EINVAL));
1541
1542                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1543                 *object_to_hold = DMU_NEW_OBJECT;
1544         }
1545
1546         /*
1547          * For raw receives, free everything beyond the new incoming
1548          * maxblkid. Normally this would be done with a DRR_FREE
1549          * record that would come after this DRR_OBJECT record is
1550          * processed. However, for raw receives we manually set the
1551          * maxblkid from the drr_maxblkid and so we must first free
1552          * everything above that blkid to ensure the DMU is always
1553          * consistent with itself. We will never free the first block
1554          * of the object here because a maxblkid of 0 could indicate
1555          * an object with a single block or one with no blocks. This
1556          * free may be skipped when dmu_free_long_range() was called
1557          * above since it covers the entire object's contents.
1558          */
1559         if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1560                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1561                     (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1562                     DMU_OBJECT_END);
1563                 if (err != 0)
1564                         return (SET_ERROR(EINVAL));
1565         }
1566         return (0);
1567 }
1568
1569 noinline static int
1570 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1571     void *data)
1572 {
1573         dmu_object_info_t doi;
1574         dmu_tx_t *tx;
1575         int err;
1576         uint32_t new_blksz = drro->drr_blksz;
1577         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1578             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1579
1580         if (drro->drr_type == DMU_OT_NONE ||
1581             !DMU_OT_IS_VALID(drro->drr_type) ||
1582             !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1583             drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1584             drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1585             P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1586             drro->drr_blksz < SPA_MINBLOCKSIZE ||
1587             drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1588             drro->drr_bonuslen >
1589             DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1590             dn_slots >
1591             (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1592                 return (SET_ERROR(EINVAL));
1593         }
1594
1595         if (rwa->raw) {
1596                 /*
1597                  * We should have received a DRR_OBJECT_RANGE record
1598                  * containing this block and stored it in rwa.
1599                  */
1600                 if (drro->drr_object < rwa->or_firstobj ||
1601                     drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1602                     drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1603                     drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1604                     drro->drr_nlevels > DN_MAX_LEVELS ||
1605                     drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1606                     DN_SLOTS_TO_BONUSLEN(dn_slots) <
1607                     drro->drr_raw_bonuslen)
1608                         return (SET_ERROR(EINVAL));
1609         } else {
1610                 /*
1611                  * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1612                  * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1613                  */
1614                 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1615                     (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1616                         return (SET_ERROR(EINVAL));
1617                 }
1618
1619                 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1620                     drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1621                         return (SET_ERROR(EINVAL));
1622                 }
1623         }
1624
1625         err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1626
1627         if (err != 0 && err != ENOENT && err != EEXIST)
1628                 return (SET_ERROR(EINVAL));
1629
1630         if (drro->drr_object > rwa->max_object)
1631                 rwa->max_object = drro->drr_object;
1632
1633         /*
1634          * If we are losing blkptrs or changing the block size this must
1635          * be a new file instance.  We must clear out the previous file
1636          * contents before we can change this type of metadata in the dnode.
1637          * Raw receives will also check that the indirect structure of the
1638          * dnode hasn't changed.
1639          */
1640         uint64_t object_to_hold;
1641         if (err == 0) {
1642                 err = receive_handle_existing_object(rwa, drro, &doi, data,
1643                     &object_to_hold, &new_blksz);
1644         } else if (err == EEXIST) {
1645                 /*
1646                  * The object requested is currently an interior slot of a
1647                  * multi-slot dnode. This will be resolved when the next txg
1648                  * is synced out, since the send stream will have told us
1649                  * to free this slot when we freed the associated dnode
1650                  * earlier in the stream.
1651                  */
1652                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1653
1654                 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1655                         return (SET_ERROR(EINVAL));
1656
1657                 /* object was freed and we are about to allocate a new one */
1658                 object_to_hold = DMU_NEW_OBJECT;
1659         } else {
1660                 /* object is free and we are about to allocate a new one */
1661                 object_to_hold = DMU_NEW_OBJECT;
1662         }
1663
1664         /*
1665          * If this is a multi-slot dnode there is a chance that this
1666          * object will expand into a slot that is already used by
1667          * another object from the previous snapshot. We must free
1668          * these objects before we attempt to allocate the new dnode.
1669          */
1670         if (dn_slots > 1) {
1671                 boolean_t need_sync = B_FALSE;
1672
1673                 for (uint64_t slot = drro->drr_object + 1;
1674                     slot < drro->drr_object + dn_slots;
1675                     slot++) {
1676                         dmu_object_info_t slot_doi;
1677
1678                         err = dmu_object_info(rwa->os, slot, &slot_doi);
1679                         if (err == ENOENT || err == EEXIST)
1680                                 continue;
1681                         else if (err != 0)
1682                                 return (err);
1683
1684                         err = dmu_free_long_object(rwa->os, slot);
1685                         if (err != 0)
1686                                 return (err);
1687
1688                         need_sync = B_TRUE;
1689                 }
1690
1691                 if (need_sync)
1692                         txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1693         }
1694
1695         tx = dmu_tx_create(rwa->os);
1696         dmu_tx_hold_bonus(tx, object_to_hold);
1697         dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1698         err = dmu_tx_assign(tx, TXG_WAIT);
1699         if (err != 0) {
1700                 dmu_tx_abort(tx);
1701                 return (err);
1702         }
1703
1704         if (object_to_hold == DMU_NEW_OBJECT) {
1705                 /* Currently free, wants to be allocated */
1706                 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1707                     drro->drr_type, new_blksz,
1708                     drro->drr_bonustype, drro->drr_bonuslen,
1709                     dn_slots << DNODE_SHIFT, tx);
1710         } else if (drro->drr_type != doi.doi_type ||
1711             new_blksz != doi.doi_data_block_size ||
1712             drro->drr_bonustype != doi.doi_bonus_type ||
1713             drro->drr_bonuslen != doi.doi_bonus_size) {
1714                 /* Currently allocated, but with different properties */
1715                 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1716                     drro->drr_type, new_blksz,
1717                     drro->drr_bonustype, drro->drr_bonuslen,
1718                     dn_slots << DNODE_SHIFT, rwa->spill ?
1719                     DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1720         } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1721                 /*
1722                  * Currently allocated, the existing version of this object
1723                  * may reference a spill block that is no longer allocated
1724                  * at the source and needs to be freed.
1725                  */
1726                 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1727         }
1728
1729         if (err != 0) {
1730                 dmu_tx_commit(tx);
1731                 return (SET_ERROR(EINVAL));
1732         }
1733
1734         if (rwa->or_crypt_params_present) {
1735                 /*
1736                  * Set the crypt params for the buffer associated with this
1737                  * range of dnodes.  This causes the blkptr_t to have the
1738                  * same crypt params (byteorder, salt, iv, mac) as on the
1739                  * sending side.
1740                  *
1741                  * Since we are committing this tx now, it is possible for
1742                  * the dnode block to end up on-disk with the incorrect MAC,
1743                  * if subsequent objects in this block are received in a
1744                  * different txg.  However, since the dataset is marked as
1745                  * inconsistent, no code paths will do a non-raw read (or
1746                  * decrypt the block / verify the MAC). The receive code and
1747                  * scrub code can safely do raw reads and verify the
1748                  * checksum.  They don't need to verify the MAC.
1749                  */
1750                 dmu_buf_t *db = NULL;
1751                 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1752
1753                 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1754                     offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1755                 if (err != 0) {
1756                         dmu_tx_commit(tx);
1757                         return (SET_ERROR(EINVAL));
1758                 }
1759
1760                 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1761                     rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1762
1763                 dmu_buf_rele(db, FTAG);
1764
1765                 rwa->or_crypt_params_present = B_FALSE;
1766         }
1767
1768         dmu_object_set_checksum(rwa->os, drro->drr_object,
1769             drro->drr_checksumtype, tx);
1770         dmu_object_set_compress(rwa->os, drro->drr_object,
1771             drro->drr_compress, tx);
1772
1773         /* handle more restrictive dnode structuring for raw recvs */
1774         if (rwa->raw) {
1775                 /*
1776                  * Set the indirect block size, block shift, nlevels.
1777                  * This will not fail because we ensured all of the
1778                  * blocks were freed earlier if this is a new object.
1779                  * For non-new objects block size and indirect block
1780                  * shift cannot change and nlevels can only increase.
1781                  */
1782                 ASSERT3U(new_blksz, ==, drro->drr_blksz);
1783                 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1784                     drro->drr_blksz, drro->drr_indblkshift, tx));
1785                 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1786                     drro->drr_nlevels, tx));
1787
1788                 /*
1789                  * Set the maxblkid. This will always succeed because
1790                  * we freed all blocks beyond the new maxblkid above.
1791                  */
1792                 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1793                     drro->drr_maxblkid, tx));
1794         }
1795
1796         if (data != NULL) {
1797                 dmu_buf_t *db;
1798                 dnode_t *dn;
1799                 uint32_t flags = DMU_READ_NO_PREFETCH;
1800
1801                 if (rwa->raw)
1802                         flags |= DMU_READ_NO_DECRYPT;
1803
1804                 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1805                 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1806
1807                 dmu_buf_will_dirty(db, tx);
1808
1809                 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1810                 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1811
1812                 /*
1813                  * Raw bonus buffers have their byteorder determined by the
1814                  * DRR_OBJECT_RANGE record.
1815                  */
1816                 if (rwa->byteswap && !rwa->raw) {
1817                         dmu_object_byteswap_t byteswap =
1818                             DMU_OT_BYTESWAP(drro->drr_bonustype);
1819                         dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1820                             DRR_OBJECT_PAYLOAD_SIZE(drro));
1821                 }
1822                 dmu_buf_rele(db, FTAG);
1823                 dnode_rele(dn, FTAG);
1824         }
1825         dmu_tx_commit(tx);
1826
1827         return (0);
1828 }
1829
1830 noinline static int
1831 receive_freeobjects(struct receive_writer_arg *rwa,
1832     struct drr_freeobjects *drrfo)
1833 {
1834         uint64_t obj;
1835         int next_err = 0;
1836
1837         if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1838                 return (SET_ERROR(EINVAL));
1839
1840         for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
1841             obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
1842             obj < DN_MAX_OBJECT && next_err == 0;
1843             next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1844                 dmu_object_info_t doi;
1845                 int err;
1846
1847                 err = dmu_object_info(rwa->os, obj, &doi);
1848                 if (err == ENOENT)
1849                         continue;
1850                 else if (err != 0)
1851                         return (err);
1852
1853                 err = dmu_free_long_object(rwa->os, obj);
1854
1855                 if (err != 0)
1856                         return (err);
1857         }
1858         if (next_err != ESRCH)
1859                 return (next_err);
1860         return (0);
1861 }
1862
1863 /*
1864  * Note: if this fails, the caller will clean up any records left on the
1865  * rwa->write_batch list.
1866  */
1867 static int
1868 flush_write_batch_impl(struct receive_writer_arg *rwa)
1869 {
1870         dnode_t *dn;
1871         int err;
1872
1873         if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
1874                 return (SET_ERROR(EINVAL));
1875
1876         struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
1877         struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
1878
1879         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
1880         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
1881
1882         ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
1883         ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
1884
1885         dmu_tx_t *tx = dmu_tx_create(rwa->os);
1886         dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
1887             last_drrw->drr_offset - first_drrw->drr_offset +
1888             last_drrw->drr_logical_size);
1889         err = dmu_tx_assign(tx, TXG_WAIT);
1890         if (err != 0) {
1891                 dmu_tx_abort(tx);
1892                 dnode_rele(dn, FTAG);
1893                 return (err);
1894         }
1895
1896         struct receive_record_arg *rrd;
1897         while ((rrd = list_head(&rwa->write_batch)) != NULL) {
1898                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
1899                 abd_t *abd = rrd->abd;
1900
1901                 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
1902
1903                 if (drrw->drr_logical_size != dn->dn_datablksz) {
1904                         /*
1905                          * The WRITE record is larger than the object's block
1906                          * size.  We must be receiving an incremental
1907                          * large-block stream into a dataset that previously did
1908                          * a non-large-block receive.  Lightweight writes must
1909                          * be exactly one block, so we need to decompress the
1910                          * data (if compressed) and do a normal dmu_write().
1911                          */
1912                         ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
1913                         if (DRR_WRITE_COMPRESSED(drrw)) {
1914                                 abd_t *decomp_abd =
1915                                     abd_alloc_linear(drrw->drr_logical_size,
1916                                     B_FALSE);
1917
1918                                 err = zio_decompress_data(
1919                                     drrw->drr_compressiontype,
1920                                     abd, abd_to_buf(decomp_abd),
1921                                     abd_get_size(abd),
1922                                     abd_get_size(decomp_abd), NULL);
1923
1924                                 if (err == 0) {
1925                                         dmu_write_by_dnode(dn,
1926                                             drrw->drr_offset,
1927                                             drrw->drr_logical_size,
1928                                             abd_to_buf(decomp_abd), tx);
1929                                 }
1930                                 abd_free(decomp_abd);
1931                         } else {
1932                                 dmu_write_by_dnode(dn,
1933                                     drrw->drr_offset,
1934                                     drrw->drr_logical_size,
1935                                     abd_to_buf(abd), tx);
1936                         }
1937                         if (err == 0)
1938                                 abd_free(abd);
1939                 } else {
1940                         zio_prop_t zp;
1941                         dmu_write_policy(rwa->os, dn, 0, 0, &zp);
1942
1943                         enum zio_flag zio_flags = 0;
1944
1945                         if (rwa->raw) {
1946                                 zp.zp_encrypt = B_TRUE;
1947                                 zp.zp_compress = drrw->drr_compressiontype;
1948                                 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
1949                                     !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
1950                                     rwa->byteswap;
1951                                 memcpy(zp.zp_salt, drrw->drr_salt,
1952                                     ZIO_DATA_SALT_LEN);
1953                                 memcpy(zp.zp_iv, drrw->drr_iv,
1954                                     ZIO_DATA_IV_LEN);
1955                                 memcpy(zp.zp_mac, drrw->drr_mac,
1956                                     ZIO_DATA_MAC_LEN);
1957                                 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
1958                                         zp.zp_nopwrite = B_FALSE;
1959                                         zp.zp_copies = MIN(zp.zp_copies,
1960                                             SPA_DVAS_PER_BP - 1);
1961                                 }
1962                                 zio_flags |= ZIO_FLAG_RAW;
1963                         } else if (DRR_WRITE_COMPRESSED(drrw)) {
1964                                 ASSERT3U(drrw->drr_compressed_size, >, 0);
1965                                 ASSERT3U(drrw->drr_logical_size, >=,
1966                                     drrw->drr_compressed_size);
1967                                 zp.zp_compress = drrw->drr_compressiontype;
1968                                 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
1969                         } else if (rwa->byteswap) {
1970                                 /*
1971                                  * Note: compressed blocks never need to be
1972                                  * byteswapped, because WRITE records for
1973                                  * metadata blocks are never compressed. The
1974                                  * exception is raw streams, which are written
1975                                  * in the original byteorder, and the byteorder
1976                                  * bit is preserved in the BP by setting
1977                                  * zp_byteorder above.
1978                                  */
1979                                 dmu_object_byteswap_t byteswap =
1980                                     DMU_OT_BYTESWAP(drrw->drr_type);
1981                                 dmu_ot_byteswap[byteswap].ob_func(
1982                                     abd_to_buf(abd),
1983                                     DRR_WRITE_PAYLOAD_SIZE(drrw));
1984                         }
1985
1986                         /*
1987                          * Since this data can't be read until the receive
1988                          * completes, we can do a "lightweight" write for
1989                          * improved performance.
1990                          */
1991                         err = dmu_lightweight_write_by_dnode(dn,
1992                             drrw->drr_offset, abd, &zp, zio_flags, tx);
1993                 }
1994
1995                 if (err != 0) {
1996                         /*
1997                          * This rrd is left on the list, so the caller will
1998                          * free it (and the abd).
1999                          */
2000                         break;
2001                 }
2002
2003                 /*
2004                  * Note: If the receive fails, we want the resume stream to
2005                  * start with the same record that we last successfully
2006                  * received (as opposed to the next record), so that we can
2007                  * verify that we are resuming from the correct location.
2008                  */
2009                 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2010
2011                 list_remove(&rwa->write_batch, rrd);
2012                 kmem_free(rrd, sizeof (*rrd));
2013         }
2014
2015         dmu_tx_commit(tx);
2016         dnode_rele(dn, FTAG);
2017         return (err);
2018 }
2019
2020 noinline static int
2021 flush_write_batch(struct receive_writer_arg *rwa)
2022 {
2023         if (list_is_empty(&rwa->write_batch))
2024                 return (0);
2025         int err = rwa->err;
2026         if (err == 0)
2027                 err = flush_write_batch_impl(rwa);
2028         if (err != 0) {
2029                 struct receive_record_arg *rrd;
2030                 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2031                         abd_free(rrd->abd);
2032                         kmem_free(rrd, sizeof (*rrd));
2033                 }
2034         }
2035         ASSERT(list_is_empty(&rwa->write_batch));
2036         return (err);
2037 }
2038
2039 noinline static int
2040 receive_process_write_record(struct receive_writer_arg *rwa,
2041     struct receive_record_arg *rrd)
2042 {
2043         int err = 0;
2044
2045         ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2046         struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2047
2048         if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2049             !DMU_OT_IS_VALID(drrw->drr_type))
2050                 return (SET_ERROR(EINVAL));
2051
2052         /*
2053          * For resuming to work, records must be in increasing order
2054          * by (object, offset).
2055          */
2056         if (drrw->drr_object < rwa->last_object ||
2057             (drrw->drr_object == rwa->last_object &&
2058             drrw->drr_offset < rwa->last_offset)) {
2059                 return (SET_ERROR(EINVAL));
2060         }
2061
2062         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2063         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2064         uint64_t batch_size =
2065             MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2066         if (first_rrd != NULL &&
2067             (drrw->drr_object != first_drrw->drr_object ||
2068             drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2069                 err = flush_write_batch(rwa);
2070                 if (err != 0)
2071                         return (err);
2072         }
2073
2074         rwa->last_object = drrw->drr_object;
2075         rwa->last_offset = drrw->drr_offset;
2076
2077         if (rwa->last_object > rwa->max_object)
2078                 rwa->max_object = rwa->last_object;
2079
2080         list_insert_tail(&rwa->write_batch, rrd);
2081         /*
2082          * Return EAGAIN to indicate that we will use this rrd again,
2083          * so the caller should not free it
2084          */
2085         return (EAGAIN);
2086 }
2087
2088 static int
2089 receive_write_embedded(struct receive_writer_arg *rwa,
2090     struct drr_write_embedded *drrwe, void *data)
2091 {
2092         dmu_tx_t *tx;
2093         int err;
2094
2095         if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2096                 return (SET_ERROR(EINVAL));
2097
2098         if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2099                 return (SET_ERROR(EINVAL));
2100
2101         if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2102                 return (SET_ERROR(EINVAL));
2103         if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2104                 return (SET_ERROR(EINVAL));
2105         if (rwa->raw)
2106                 return (SET_ERROR(EINVAL));
2107
2108         if (drrwe->drr_object > rwa->max_object)
2109                 rwa->max_object = drrwe->drr_object;
2110
2111         tx = dmu_tx_create(rwa->os);
2112
2113         dmu_tx_hold_write(tx, drrwe->drr_object,
2114             drrwe->drr_offset, drrwe->drr_length);
2115         err = dmu_tx_assign(tx, TXG_WAIT);
2116         if (err != 0) {
2117                 dmu_tx_abort(tx);
2118                 return (err);
2119         }
2120
2121         dmu_write_embedded(rwa->os, drrwe->drr_object,
2122             drrwe->drr_offset, data, drrwe->drr_etype,
2123             drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2124             rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2125
2126         /* See comment in restore_write. */
2127         save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2128         dmu_tx_commit(tx);
2129         return (0);
2130 }
2131
2132 static int
2133 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2134     abd_t *abd)
2135 {
2136         dmu_buf_t *db, *db_spill;
2137         int err;
2138
2139         if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2140             drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2141                 return (SET_ERROR(EINVAL));
2142
2143         /*
2144          * This is an unmodified spill block which was added to the stream
2145          * to resolve an issue with incorrectly removing spill blocks.  It
2146          * should be ignored by current versions of the code which support
2147          * the DRR_FLAG_SPILL_BLOCK flag.
2148          */
2149         if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2150                 abd_free(abd);
2151                 return (0);
2152         }
2153
2154         if (rwa->raw) {
2155                 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2156                     drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2157                     drrs->drr_compressed_size == 0)
2158                         return (SET_ERROR(EINVAL));
2159         }
2160
2161         if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2162                 return (SET_ERROR(EINVAL));
2163
2164         if (drrs->drr_object > rwa->max_object)
2165                 rwa->max_object = drrs->drr_object;
2166
2167         VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2168         if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2169             &db_spill)) != 0) {
2170                 dmu_buf_rele(db, FTAG);
2171                 return (err);
2172         }
2173
2174         dmu_tx_t *tx = dmu_tx_create(rwa->os);
2175
2176         dmu_tx_hold_spill(tx, db->db_object);
2177
2178         err = dmu_tx_assign(tx, TXG_WAIT);
2179         if (err != 0) {
2180                 dmu_buf_rele(db, FTAG);
2181                 dmu_buf_rele(db_spill, FTAG);
2182                 dmu_tx_abort(tx);
2183                 return (err);
2184         }
2185
2186         /*
2187          * Spill blocks may both grow and shrink.  When a change in size
2188          * occurs any existing dbuf must be updated to match the logical
2189          * size of the provided arc_buf_t.
2190          */
2191         if (db_spill->db_size != drrs->drr_length) {
2192                 dmu_buf_will_fill(db_spill, tx);
2193                 VERIFY0(dbuf_spill_set_blksz(db_spill,
2194                     drrs->drr_length, tx));
2195         }
2196
2197         arc_buf_t *abuf;
2198         if (rwa->raw) {
2199                 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2200                     !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2201                     rwa->byteswap;
2202
2203                 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2204                     drrs->drr_object, byteorder, drrs->drr_salt,
2205                     drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2206                     drrs->drr_compressed_size, drrs->drr_length,
2207                     drrs->drr_compressiontype, 0);
2208         } else {
2209                 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2210                     DMU_OT_IS_METADATA(drrs->drr_type),
2211                     drrs->drr_length);
2212                 if (rwa->byteswap) {
2213                         dmu_object_byteswap_t byteswap =
2214                             DMU_OT_BYTESWAP(drrs->drr_type);
2215                         dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2216                             DRR_SPILL_PAYLOAD_SIZE(drrs));
2217                 }
2218         }
2219
2220         memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2221         abd_free(abd);
2222         dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2223
2224         dmu_buf_rele(db, FTAG);
2225         dmu_buf_rele(db_spill, FTAG);
2226
2227         dmu_tx_commit(tx);
2228         return (0);
2229 }
2230
2231 noinline static int
2232 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2233 {
2234         int err;
2235
2236         if (drrf->drr_length != -1ULL &&
2237             drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2238                 return (SET_ERROR(EINVAL));
2239
2240         if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2241                 return (SET_ERROR(EINVAL));
2242
2243         if (drrf->drr_object > rwa->max_object)
2244                 rwa->max_object = drrf->drr_object;
2245
2246         err = dmu_free_long_range(rwa->os, drrf->drr_object,
2247             drrf->drr_offset, drrf->drr_length);
2248
2249         return (err);
2250 }
2251
2252 static int
2253 receive_object_range(struct receive_writer_arg *rwa,
2254     struct drr_object_range *drror)
2255 {
2256         /*
2257          * By default, we assume this block is in our native format
2258          * (ZFS_HOST_BYTEORDER). We then take into account whether
2259          * the send stream is byteswapped (rwa->byteswap). Finally,
2260          * we need to byteswap again if this particular block was
2261          * in non-native format on the send side.
2262          */
2263         boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2264             !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2265
2266         /*
2267          * Since dnode block sizes are constant, we should not need to worry
2268          * about making sure that the dnode block size is the same on the
2269          * sending and receiving sides for the time being. For non-raw sends,
2270          * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2271          * record at all). Raw sends require this record type because the
2272          * encryption parameters are used to protect an entire block of bonus
2273          * buffers. If the size of dnode blocks ever becomes variable,
2274          * handling will need to be added to ensure that dnode block sizes
2275          * match on the sending and receiving side.
2276          */
2277         if (drror->drr_numslots != DNODES_PER_BLOCK ||
2278             P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2279             !rwa->raw)
2280                 return (SET_ERROR(EINVAL));
2281
2282         if (drror->drr_firstobj > rwa->max_object)
2283                 rwa->max_object = drror->drr_firstobj;
2284
2285         /*
2286          * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2287          * so that the block of dnodes is not written out when it's empty,
2288          * and converted to a HOLE BP.
2289          */
2290         rwa->or_crypt_params_present = B_TRUE;
2291         rwa->or_firstobj = drror->drr_firstobj;
2292         rwa->or_numslots = drror->drr_numslots;
2293         memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2294         memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2295         memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2296         rwa->or_byteorder = byteorder;
2297
2298         return (0);
2299 }
2300
2301 /*
2302  * Until we have the ability to redact large ranges of data efficiently, we
2303  * process these records as frees.
2304  */
2305 noinline static int
2306 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2307 {
2308         struct drr_free drrf = {0};
2309         drrf.drr_length = drrr->drr_length;
2310         drrf.drr_object = drrr->drr_object;
2311         drrf.drr_offset = drrr->drr_offset;
2312         drrf.drr_toguid = drrr->drr_toguid;
2313         return (receive_free(rwa, &drrf));
2314 }
2315
2316 /* used to destroy the drc_ds on error */
2317 static void
2318 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2319 {
2320         dsl_dataset_t *ds = drc->drc_ds;
2321         ds_hold_flags_t dsflags;
2322
2323         dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2324         /*
2325          * Wait for the txg sync before cleaning up the receive. For
2326          * resumable receives, this ensures that our resume state has
2327          * been written out to disk. For raw receives, this ensures
2328          * that the user accounting code will not attempt to do anything
2329          * after we stopped receiving the dataset.
2330          */
2331         txg_wait_synced(ds->ds_dir->dd_pool, 0);
2332         ds->ds_objset->os_raw_receive = B_FALSE;
2333
2334         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2335         if (drc->drc_resumable && drc->drc_should_save &&
2336             !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2337                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2338                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2339         } else {
2340                 char name[ZFS_MAX_DATASET_NAME_LEN];
2341                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2342                 dsl_dataset_name(ds, name);
2343                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2344                 (void) dsl_destroy_head(name);
2345         }
2346 }
2347
2348 static void
2349 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2350 {
2351         if (drc->drc_byteswap) {
2352                 (void) fletcher_4_incremental_byteswap(buf, len,
2353                     &drc->drc_cksum);
2354         } else {
2355                 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2356         }
2357 }
2358
2359 /*
2360  * Read the payload into a buffer of size len, and update the current record's
2361  * payload field.
2362  * Allocate drc->drc_next_rrd and read the next record's header into
2363  * drc->drc_next_rrd->header.
2364  * Verify checksum of payload and next record.
2365  */
2366 static int
2367 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2368 {
2369         int err;
2370
2371         if (len != 0) {
2372                 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2373                 err = receive_read(drc, len, buf);
2374                 if (err != 0)
2375                         return (err);
2376                 receive_cksum(drc, len, buf);
2377
2378                 /* note: rrd is NULL when reading the begin record's payload */
2379                 if (drc->drc_rrd != NULL) {
2380                         drc->drc_rrd->payload = buf;
2381                         drc->drc_rrd->payload_size = len;
2382                         drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2383                 }
2384         } else {
2385                 ASSERT3P(buf, ==, NULL);
2386         }
2387
2388         drc->drc_prev_cksum = drc->drc_cksum;
2389
2390         drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2391         err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2392             &drc->drc_next_rrd->header);
2393         drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2394
2395         if (err != 0) {
2396                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2397                 drc->drc_next_rrd = NULL;
2398                 return (err);
2399         }
2400         if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2401                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2402                 drc->drc_next_rrd = NULL;
2403                 return (SET_ERROR(EINVAL));
2404         }
2405
2406         /*
2407          * Note: checksum is of everything up to but not including the
2408          * checksum itself.
2409          */
2410         ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2411             ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2412         receive_cksum(drc,
2413             offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2414             &drc->drc_next_rrd->header);
2415
2416         zio_cksum_t cksum_orig =
2417             drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2418         zio_cksum_t *cksump =
2419             &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2420
2421         if (drc->drc_byteswap)
2422                 byteswap_record(&drc->drc_next_rrd->header);
2423
2424         if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2425             !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2426                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2427                 drc->drc_next_rrd = NULL;
2428                 return (SET_ERROR(ECKSUM));
2429         }
2430
2431         receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2432
2433         return (0);
2434 }
2435
2436 /*
2437  * Issue the prefetch reads for any necessary indirect blocks.
2438  *
2439  * We use the object ignore list to tell us whether or not to issue prefetches
2440  * for a given object.  We do this for both correctness (in case the blocksize
2441  * of an object has changed) and performance (if the object doesn't exist, don't
2442  * needlessly try to issue prefetches).  We also trim the list as we go through
2443  * the stream to prevent it from growing to an unbounded size.
2444  *
2445  * The object numbers within will always be in sorted order, and any write
2446  * records we see will also be in sorted order, but they're not sorted with
2447  * respect to each other (i.e. we can get several object records before
2448  * receiving each object's write records).  As a result, once we've reached a
2449  * given object number, we can safely remove any reference to lower object
2450  * numbers in the ignore list. In practice, we receive up to 32 object records
2451  * before receiving write records, so the list can have up to 32 nodes in it.
2452  */
2453 static void
2454 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2455     uint64_t length)
2456 {
2457         if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2458                 dmu_prefetch(drc->drc_os, object, 1, offset, length,
2459                     ZIO_PRIORITY_SYNC_READ);
2460         }
2461 }
2462
2463 /*
2464  * Read records off the stream, issuing any necessary prefetches.
2465  */
2466 static int
2467 receive_read_record(dmu_recv_cookie_t *drc)
2468 {
2469         int err;
2470
2471         switch (drc->drc_rrd->header.drr_type) {
2472         case DRR_OBJECT:
2473         {
2474                 struct drr_object *drro =
2475                     &drc->drc_rrd->header.drr_u.drr_object;
2476                 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2477                 void *buf = NULL;
2478                 dmu_object_info_t doi;
2479
2480                 if (size != 0)
2481                         buf = kmem_zalloc(size, KM_SLEEP);
2482
2483                 err = receive_read_payload_and_next_header(drc, size, buf);
2484                 if (err != 0) {
2485                         kmem_free(buf, size);
2486                         return (err);
2487                 }
2488                 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2489                 /*
2490                  * See receive_read_prefetch for an explanation why we're
2491                  * storing this object in the ignore_obj_list.
2492                  */
2493                 if (err == ENOENT || err == EEXIST ||
2494                     (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2495                         objlist_insert(drc->drc_ignore_objlist,
2496                             drro->drr_object);
2497                         err = 0;
2498                 }
2499                 return (err);
2500         }
2501         case DRR_FREEOBJECTS:
2502         {
2503                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2504                 return (err);
2505         }
2506         case DRR_WRITE:
2507         {
2508                 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2509                 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2510                 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2511                 err = receive_read_payload_and_next_header(drc, size,
2512                     abd_to_buf(abd));
2513                 if (err != 0) {
2514                         abd_free(abd);
2515                         return (err);
2516                 }
2517                 drc->drc_rrd->abd = abd;
2518                 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2519                     drrw->drr_logical_size);
2520                 return (err);
2521         }
2522         case DRR_WRITE_EMBEDDED:
2523         {
2524                 struct drr_write_embedded *drrwe =
2525                     &drc->drc_rrd->header.drr_u.drr_write_embedded;
2526                 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2527                 void *buf = kmem_zalloc(size, KM_SLEEP);
2528
2529                 err = receive_read_payload_and_next_header(drc, size, buf);
2530                 if (err != 0) {
2531                         kmem_free(buf, size);
2532                         return (err);
2533                 }
2534
2535                 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2536                     drrwe->drr_length);
2537                 return (err);
2538         }
2539         case DRR_FREE:
2540         case DRR_REDACT:
2541         {
2542                 /*
2543                  * It might be beneficial to prefetch indirect blocks here, but
2544                  * we don't really have the data to decide for sure.
2545                  */
2546                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2547                 return (err);
2548         }
2549         case DRR_END:
2550         {
2551                 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2552                 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2553                     drre->drr_checksum))
2554                         return (SET_ERROR(ECKSUM));
2555                 return (0);
2556         }
2557         case DRR_SPILL:
2558         {
2559                 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2560                 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2561                 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2562                 err = receive_read_payload_and_next_header(drc, size,
2563                     abd_to_buf(abd));
2564                 if (err != 0)
2565                         abd_free(abd);
2566                 else
2567                         drc->drc_rrd->abd = abd;
2568                 return (err);
2569         }
2570         case DRR_OBJECT_RANGE:
2571         {
2572                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2573                 return (err);
2574
2575         }
2576         default:
2577                 return (SET_ERROR(EINVAL));
2578         }
2579 }
2580
2581
2582
2583 static void
2584 dprintf_drr(struct receive_record_arg *rrd, int err)
2585 {
2586 #ifdef ZFS_DEBUG
2587         switch (rrd->header.drr_type) {
2588         case DRR_OBJECT:
2589         {
2590                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2591                 dprintf("drr_type = OBJECT obj = %llu type = %u "
2592                     "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2593                     "compress = %u dn_slots = %u err = %d\n",
2594                     (u_longlong_t)drro->drr_object, drro->drr_type,
2595                     drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2596                     drro->drr_checksumtype, drro->drr_compress,
2597                     drro->drr_dn_slots, err);
2598                 break;
2599         }
2600         case DRR_FREEOBJECTS:
2601         {
2602                 struct drr_freeobjects *drrfo =
2603                     &rrd->header.drr_u.drr_freeobjects;
2604                 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2605                     "numobjs = %llu err = %d\n",
2606                     (u_longlong_t)drrfo->drr_firstobj,
2607                     (u_longlong_t)drrfo->drr_numobjs, err);
2608                 break;
2609         }
2610         case DRR_WRITE:
2611         {
2612                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2613                 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2614                     "lsize = %llu cksumtype = %u flags = %u "
2615                     "compress = %u psize = %llu err = %d\n",
2616                     (u_longlong_t)drrw->drr_object, drrw->drr_type,
2617                     (u_longlong_t)drrw->drr_offset,
2618                     (u_longlong_t)drrw->drr_logical_size,
2619                     drrw->drr_checksumtype, drrw->drr_flags,
2620                     drrw->drr_compressiontype,
2621                     (u_longlong_t)drrw->drr_compressed_size, err);
2622                 break;
2623         }
2624         case DRR_WRITE_BYREF:
2625         {
2626                 struct drr_write_byref *drrwbr =
2627                     &rrd->header.drr_u.drr_write_byref;
2628                 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2629                     "length = %llu toguid = %llx refguid = %llx "
2630                     "refobject = %llu refoffset = %llu cksumtype = %u "
2631                     "flags = %u err = %d\n",
2632                     (u_longlong_t)drrwbr->drr_object,
2633                     (u_longlong_t)drrwbr->drr_offset,
2634                     (u_longlong_t)drrwbr->drr_length,
2635                     (u_longlong_t)drrwbr->drr_toguid,
2636                     (u_longlong_t)drrwbr->drr_refguid,
2637                     (u_longlong_t)drrwbr->drr_refobject,
2638                     (u_longlong_t)drrwbr->drr_refoffset,
2639                     drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2640                 break;
2641         }
2642         case DRR_WRITE_EMBEDDED:
2643         {
2644                 struct drr_write_embedded *drrwe =
2645                     &rrd->header.drr_u.drr_write_embedded;
2646                 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2647                     "length = %llu compress = %u etype = %u lsize = %u "
2648                     "psize = %u err = %d\n",
2649                     (u_longlong_t)drrwe->drr_object,
2650                     (u_longlong_t)drrwe->drr_offset,
2651                     (u_longlong_t)drrwe->drr_length,
2652                     drrwe->drr_compression, drrwe->drr_etype,
2653                     drrwe->drr_lsize, drrwe->drr_psize, err);
2654                 break;
2655         }
2656         case DRR_FREE:
2657         {
2658                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2659                 dprintf("drr_type = FREE obj = %llu offset = %llu "
2660                     "length = %lld err = %d\n",
2661                     (u_longlong_t)drrf->drr_object,
2662                     (u_longlong_t)drrf->drr_offset,
2663                     (longlong_t)drrf->drr_length,
2664                     err);
2665                 break;
2666         }
2667         case DRR_SPILL:
2668         {
2669                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2670                 dprintf("drr_type = SPILL obj = %llu length = %llu "
2671                     "err = %d\n", (u_longlong_t)drrs->drr_object,
2672                     (u_longlong_t)drrs->drr_length, err);
2673                 break;
2674         }
2675         case DRR_OBJECT_RANGE:
2676         {
2677                 struct drr_object_range *drror =
2678                     &rrd->header.drr_u.drr_object_range;
2679                 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2680                     "numslots = %llu flags = %u err = %d\n",
2681                     (u_longlong_t)drror->drr_firstobj,
2682                     (u_longlong_t)drror->drr_numslots,
2683                     drror->drr_flags, err);
2684                 break;
2685         }
2686         default:
2687                 return;
2688         }
2689 #endif
2690 }
2691
2692 /*
2693  * Commit the records to the pool.
2694  */
2695 static int
2696 receive_process_record(struct receive_writer_arg *rwa,
2697     struct receive_record_arg *rrd)
2698 {
2699         int err;
2700
2701         /* Processing in order, therefore bytes_read should be increasing. */
2702         ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2703         rwa->bytes_read = rrd->bytes_read;
2704
2705         if (rrd->header.drr_type != DRR_WRITE) {
2706                 err = flush_write_batch(rwa);
2707                 if (err != 0) {
2708                         if (rrd->abd != NULL) {
2709                                 abd_free(rrd->abd);
2710                                 rrd->abd = NULL;
2711                                 rrd->payload = NULL;
2712                         } else if (rrd->payload != NULL) {
2713                                 kmem_free(rrd->payload, rrd->payload_size);
2714                                 rrd->payload = NULL;
2715                         }
2716
2717                         return (err);
2718                 }
2719         }
2720
2721         switch (rrd->header.drr_type) {
2722         case DRR_OBJECT:
2723         {
2724                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2725                 err = receive_object(rwa, drro, rrd->payload);
2726                 kmem_free(rrd->payload, rrd->payload_size);
2727                 rrd->payload = NULL;
2728                 break;
2729         }
2730         case DRR_FREEOBJECTS:
2731         {
2732                 struct drr_freeobjects *drrfo =
2733                     &rrd->header.drr_u.drr_freeobjects;
2734                 err = receive_freeobjects(rwa, drrfo);
2735                 break;
2736         }
2737         case DRR_WRITE:
2738         {
2739                 err = receive_process_write_record(rwa, rrd);
2740                 if (err != EAGAIN) {
2741                         /*
2742                          * On success, receive_process_write_record() returns
2743                          * EAGAIN to indicate that we do not want to free
2744                          * the rrd or arc_buf.
2745                          */
2746                         ASSERT(err != 0);
2747                         abd_free(rrd->abd);
2748                         rrd->abd = NULL;
2749                 }
2750                 break;
2751         }
2752         case DRR_WRITE_EMBEDDED:
2753         {
2754                 struct drr_write_embedded *drrwe =
2755                     &rrd->header.drr_u.drr_write_embedded;
2756                 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2757                 kmem_free(rrd->payload, rrd->payload_size);
2758                 rrd->payload = NULL;
2759                 break;
2760         }
2761         case DRR_FREE:
2762         {
2763                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2764                 err = receive_free(rwa, drrf);
2765                 break;
2766         }
2767         case DRR_SPILL:
2768         {
2769                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2770                 err = receive_spill(rwa, drrs, rrd->abd);
2771                 if (err != 0)
2772                         abd_free(rrd->abd);
2773                 rrd->abd = NULL;
2774                 rrd->payload = NULL;
2775                 break;
2776         }
2777         case DRR_OBJECT_RANGE:
2778         {
2779                 struct drr_object_range *drror =
2780                     &rrd->header.drr_u.drr_object_range;
2781                 err = receive_object_range(rwa, drror);
2782                 break;
2783         }
2784         case DRR_REDACT:
2785         {
2786                 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
2787                 err = receive_redact(rwa, drrr);
2788                 break;
2789         }
2790         default:
2791                 err = (SET_ERROR(EINVAL));
2792         }
2793
2794         if (err != 0)
2795                 dprintf_drr(rrd, err);
2796
2797         return (err);
2798 }
2799
2800 /*
2801  * dmu_recv_stream's worker thread; pull records off the queue, and then call
2802  * receive_process_record  When we're done, signal the main thread and exit.
2803  */
2804 static __attribute__((noreturn)) void
2805 receive_writer_thread(void *arg)
2806 {
2807         struct receive_writer_arg *rwa = arg;
2808         struct receive_record_arg *rrd;
2809         fstrans_cookie_t cookie = spl_fstrans_mark();
2810
2811         for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2812             rrd = bqueue_dequeue(&rwa->q)) {
2813                 /*
2814                  * If there's an error, the main thread will stop putting things
2815                  * on the queue, but we need to clear everything in it before we
2816                  * can exit.
2817                  */
2818                 int err = 0;
2819                 if (rwa->err == 0) {
2820                         err = receive_process_record(rwa, rrd);
2821                 } else if (rrd->abd != NULL) {
2822                         abd_free(rrd->abd);
2823                         rrd->abd = NULL;
2824                         rrd->payload = NULL;
2825                 } else if (rrd->payload != NULL) {
2826                         kmem_free(rrd->payload, rrd->payload_size);
2827                         rrd->payload = NULL;
2828                 }
2829                 /*
2830                  * EAGAIN indicates that this record has been saved (on
2831                  * raw->write_batch), and will be used again, so we don't
2832                  * free it.
2833                  */
2834                 if (err != EAGAIN) {
2835                         if (rwa->err == 0)
2836                                 rwa->err = err;
2837                         kmem_free(rrd, sizeof (*rrd));
2838                 }
2839         }
2840         kmem_free(rrd, sizeof (*rrd));
2841
2842         int err = flush_write_batch(rwa);
2843         if (rwa->err == 0)
2844                 rwa->err = err;
2845
2846         mutex_enter(&rwa->mutex);
2847         rwa->done = B_TRUE;
2848         cv_signal(&rwa->cv);
2849         mutex_exit(&rwa->mutex);
2850         spl_fstrans_unmark(cookie);
2851         thread_exit();
2852 }
2853
2854 static int
2855 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
2856 {
2857         uint64_t val;
2858         objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
2859         uint64_t dsobj = dmu_objset_id(drc->drc_os);
2860         uint64_t resume_obj, resume_off;
2861
2862         if (nvlist_lookup_uint64(begin_nvl,
2863             "resume_object", &resume_obj) != 0 ||
2864             nvlist_lookup_uint64(begin_nvl,
2865             "resume_offset", &resume_off) != 0) {
2866                 return (SET_ERROR(EINVAL));
2867         }
2868         VERIFY0(zap_lookup(mos, dsobj,
2869             DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2870         if (resume_obj != val)
2871                 return (SET_ERROR(EINVAL));
2872         VERIFY0(zap_lookup(mos, dsobj,
2873             DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2874         if (resume_off != val)
2875                 return (SET_ERROR(EINVAL));
2876
2877         return (0);
2878 }
2879
2880 /*
2881  * Read in the stream's records, one by one, and apply them to the pool.  There
2882  * are two threads involved; the thread that calls this function will spin up a
2883  * worker thread, read the records off the stream one by one, and issue
2884  * prefetches for any necessary indirect blocks.  It will then push the records
2885  * onto an internal blocking queue.  The worker thread will pull the records off
2886  * the queue, and actually write the data into the DMU.  This way, the worker
2887  * thread doesn't have to wait for reads to complete, since everything it needs
2888  * (the indirect blocks) will be prefetched.
2889  *
2890  * NB: callers *must* call dmu_recv_end() if this succeeds.
2891  */
2892 int
2893 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
2894 {
2895         int err = 0;
2896         struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
2897
2898         if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
2899                 uint64_t bytes = 0;
2900                 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2901                     drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2902                     sizeof (bytes), 1, &bytes);
2903                 drc->drc_bytes_read += bytes;
2904         }
2905
2906         drc->drc_ignore_objlist = objlist_create();
2907
2908         /* these were verified in dmu_recv_begin */
2909         ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2910             DMU_SUBSTREAM);
2911         ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2912
2913         ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2914         ASSERT0(drc->drc_os->os_encrypted &&
2915             (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
2916
2917         /* handle DSL encryption key payload */
2918         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
2919                 nvlist_t *keynvl = NULL;
2920
2921                 ASSERT(drc->drc_os->os_encrypted);
2922                 ASSERT(drc->drc_raw);
2923
2924                 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
2925                     &keynvl);
2926                 if (err != 0)
2927                         goto out;
2928
2929                 /*
2930                  * If this is a new dataset we set the key immediately.
2931                  * Otherwise we don't want to change the key until we
2932                  * are sure the rest of the receive succeeded so we stash
2933                  * the keynvl away until then.
2934                  */
2935                 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
2936                     drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2937                     drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
2938                 if (err != 0)
2939                         goto out;
2940
2941                 /* see comment in dmu_recv_end_sync() */
2942                 drc->drc_ivset_guid = 0;
2943                 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2944                     &drc->drc_ivset_guid);
2945
2946                 if (!drc->drc_newfs)
2947                         drc->drc_keynvl = fnvlist_dup(keynvl);
2948         }
2949
2950         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2951                 err = resume_check(drc, drc->drc_begin_nvl);
2952                 if (err != 0)
2953                         goto out;
2954         }
2955
2956         /*
2957          * If we failed before this point we will clean up any new resume
2958          * state that was created. Now that we've gotten past the initial
2959          * checks we are ok to retain that resume state.
2960          */
2961         drc->drc_should_save = B_TRUE;
2962
2963         (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
2964             MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2965             offsetof(struct receive_record_arg, node));
2966         cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
2967         mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
2968         rwa->os = drc->drc_os;
2969         rwa->byteswap = drc->drc_byteswap;
2970         rwa->resumable = drc->drc_resumable;
2971         rwa->raw = drc->drc_raw;
2972         rwa->spill = drc->drc_spill;
2973         rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
2974         rwa->os->os_raw_receive = drc->drc_raw;
2975         list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
2976             offsetof(struct receive_record_arg, node.bqn_node));
2977
2978         (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
2979             TS_RUN, minclsyspri);
2980         /*
2981          * We're reading rwa->err without locks, which is safe since we are the
2982          * only reader, and the worker thread is the only writer.  It's ok if we
2983          * miss a write for an iteration or two of the loop, since the writer
2984          * thread will keep freeing records we send it until we send it an eos
2985          * marker.
2986          *
2987          * We can leave this loop in 3 ways:  First, if rwa->err is
2988          * non-zero.  In that case, the writer thread will free the rrd we just
2989          * pushed.  Second, if  we're interrupted; in that case, either it's the
2990          * first loop and drc->drc_rrd was never allocated, or it's later, and
2991          * drc->drc_rrd has been handed off to the writer thread who will free
2992          * it.  Finally, if receive_read_record fails or we're at the end of the
2993          * stream, then we free drc->drc_rrd and exit.
2994          */
2995         while (rwa->err == 0) {
2996                 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2997                         err = SET_ERROR(EINTR);
2998                         break;
2999                 }
3000
3001                 ASSERT3P(drc->drc_rrd, ==, NULL);
3002                 drc->drc_rrd = drc->drc_next_rrd;
3003                 drc->drc_next_rrd = NULL;
3004                 /* Allocates and loads header into drc->drc_next_rrd */
3005                 err = receive_read_record(drc);
3006
3007                 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3008                         kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3009                         drc->drc_rrd = NULL;
3010                         break;
3011                 }
3012
3013                 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3014                     sizeof (struct receive_record_arg) +
3015                     drc->drc_rrd->payload_size);
3016                 drc->drc_rrd = NULL;
3017         }
3018
3019         ASSERT3P(drc->drc_rrd, ==, NULL);
3020         drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3021         drc->drc_rrd->eos_marker = B_TRUE;
3022         bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3023
3024         mutex_enter(&rwa->mutex);
3025         while (!rwa->done) {
3026                 /*
3027                  * We need to use cv_wait_sig() so that any process that may
3028                  * be sleeping here can still fork.
3029                  */
3030                 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3031         }
3032         mutex_exit(&rwa->mutex);
3033
3034         /*
3035          * If we are receiving a full stream as a clone, all object IDs which
3036          * are greater than the maximum ID referenced in the stream are
3037          * by definition unused and must be freed.
3038          */
3039         if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3040                 uint64_t obj = rwa->max_object + 1;
3041                 int free_err = 0;
3042                 int next_err = 0;
3043
3044                 while (next_err == 0) {
3045                         free_err = dmu_free_long_object(rwa->os, obj);
3046                         if (free_err != 0 && free_err != ENOENT)
3047                                 break;
3048
3049                         next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3050                 }
3051
3052                 if (err == 0) {
3053                         if (free_err != 0 && free_err != ENOENT)
3054                                 err = free_err;
3055                         else if (next_err != ESRCH)
3056                                 err = next_err;
3057                 }
3058         }
3059
3060         cv_destroy(&rwa->cv);
3061         mutex_destroy(&rwa->mutex);
3062         bqueue_destroy(&rwa->q);
3063         list_destroy(&rwa->write_batch);
3064         if (err == 0)
3065                 err = rwa->err;
3066
3067 out:
3068         /*
3069          * If we hit an error before we started the receive_writer_thread
3070          * we need to clean up the next_rrd we create by processing the
3071          * DRR_BEGIN record.
3072          */
3073         if (drc->drc_next_rrd != NULL)
3074                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3075
3076         /*
3077          * The objset will be invalidated by dmu_recv_end() when we do
3078          * dsl_dataset_clone_swap_sync_impl().
3079          */
3080         drc->drc_os = NULL;
3081
3082         kmem_free(rwa, sizeof (*rwa));
3083         nvlist_free(drc->drc_begin_nvl);
3084
3085         if (err != 0) {
3086                 /*
3087                  * Clean up references. If receive is not resumable,
3088                  * destroy what we created, so we don't leave it in
3089                  * the inconsistent state.
3090                  */
3091                 dmu_recv_cleanup_ds(drc);
3092                 nvlist_free(drc->drc_keynvl);
3093         }
3094
3095         objlist_destroy(drc->drc_ignore_objlist);
3096         drc->drc_ignore_objlist = NULL;
3097         *voffp = drc->drc_voff;
3098         return (err);
3099 }
3100
3101 static int
3102 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3103 {
3104         dmu_recv_cookie_t *drc = arg;
3105         dsl_pool_t *dp = dmu_tx_pool(tx);
3106         int error;
3107
3108         ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3109
3110         if (!drc->drc_newfs) {
3111                 dsl_dataset_t *origin_head;
3112
3113                 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3114                 if (error != 0)
3115                         return (error);
3116                 if (drc->drc_force) {
3117                         /*
3118                          * We will destroy any snapshots in tofs (i.e. before
3119                          * origin_head) that are after the origin (which is
3120                          * the snap before drc_ds, because drc_ds can not
3121                          * have any snaps of its own).
3122                          */
3123                         uint64_t obj;
3124
3125                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3126                         while (obj !=
3127                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3128                                 dsl_dataset_t *snap;
3129                                 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3130                                     &snap);
3131                                 if (error != 0)
3132                                         break;
3133                                 if (snap->ds_dir != origin_head->ds_dir)
3134                                         error = SET_ERROR(EINVAL);
3135                                 if (error == 0)  {
3136                                         error = dsl_destroy_snapshot_check_impl(
3137                                             snap, B_FALSE);
3138                                 }
3139                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3140                                 dsl_dataset_rele(snap, FTAG);
3141                                 if (error != 0)
3142                                         break;
3143                         }
3144                         if (error != 0) {
3145                                 dsl_dataset_rele(origin_head, FTAG);
3146                                 return (error);
3147                         }
3148                 }
3149                 if (drc->drc_keynvl != NULL) {
3150                         error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3151                             drc->drc_keynvl, tx);
3152                         if (error != 0) {
3153                                 dsl_dataset_rele(origin_head, FTAG);
3154                                 return (error);
3155                         }
3156                 }
3157
3158                 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3159                     origin_head, drc->drc_force, drc->drc_owner, tx);
3160                 if (error != 0) {
3161                         dsl_dataset_rele(origin_head, FTAG);
3162                         return (error);
3163                 }
3164                 error = dsl_dataset_snapshot_check_impl(origin_head,
3165                     drc->drc_tosnap, tx, B_TRUE, 1,
3166                     drc->drc_cred, drc->drc_proc);
3167                 dsl_dataset_rele(origin_head, FTAG);
3168                 if (error != 0)
3169                         return (error);
3170
3171                 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3172         } else {
3173                 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3174                     drc->drc_tosnap, tx, B_TRUE, 1,
3175                     drc->drc_cred, drc->drc_proc);
3176         }
3177         return (error);
3178 }
3179
3180 static void
3181 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3182 {
3183         dmu_recv_cookie_t *drc = arg;
3184         dsl_pool_t *dp = dmu_tx_pool(tx);
3185         boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3186         uint64_t newsnapobj;
3187
3188         spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3189             tx, "snap=%s", drc->drc_tosnap);
3190         drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3191
3192         if (!drc->drc_newfs) {
3193                 dsl_dataset_t *origin_head;
3194
3195                 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3196                     &origin_head));
3197
3198                 if (drc->drc_force) {
3199                         /*
3200                          * Destroy any snapshots of drc_tofs (origin_head)
3201                          * after the origin (the snap before drc_ds).
3202                          */
3203                         uint64_t obj;
3204
3205                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3206                         while (obj !=
3207                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3208                                 dsl_dataset_t *snap;
3209                                 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3210                                     &snap));
3211                                 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3212                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3213                                 dsl_destroy_snapshot_sync_impl(snap,
3214                                     B_FALSE, tx);
3215                                 dsl_dataset_rele(snap, FTAG);
3216                         }
3217                 }
3218                 if (drc->drc_keynvl != NULL) {
3219                         dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3220                             drc->drc_keynvl, tx);
3221                         nvlist_free(drc->drc_keynvl);
3222                         drc->drc_keynvl = NULL;
3223                 }
3224
3225                 VERIFY3P(drc->drc_ds->ds_prev, ==,
3226                     origin_head->ds_prev);
3227
3228                 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3229                     origin_head, tx);
3230                 /*
3231                  * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3232                  * so drc_os is no longer valid.
3233                  */
3234                 drc->drc_os = NULL;
3235
3236                 dsl_dataset_snapshot_sync_impl(origin_head,
3237                     drc->drc_tosnap, tx);
3238
3239                 /* set snapshot's creation time and guid */
3240                 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3241                 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3242                     drc->drc_drrb->drr_creation_time;
3243                 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3244                     drc->drc_drrb->drr_toguid;
3245                 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3246                     ~DS_FLAG_INCONSISTENT;
3247
3248                 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3249                 dsl_dataset_phys(origin_head)->ds_flags &=
3250                     ~DS_FLAG_INCONSISTENT;
3251
3252                 newsnapobj =
3253                     dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3254
3255                 dsl_dataset_rele(origin_head, FTAG);
3256                 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3257
3258                 if (drc->drc_owner != NULL)
3259                         VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3260         } else {
3261                 dsl_dataset_t *ds = drc->drc_ds;
3262
3263                 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3264
3265                 /* set snapshot's creation time and guid */
3266                 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3267                 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3268                     drc->drc_drrb->drr_creation_time;
3269                 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3270                     drc->drc_drrb->drr_toguid;
3271                 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3272                     ~DS_FLAG_INCONSISTENT;
3273
3274                 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3275                 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3276                 if (dsl_dataset_has_resume_receive_state(ds)) {
3277                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3278                             DS_FIELD_RESUME_FROMGUID, tx);
3279                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3280                             DS_FIELD_RESUME_OBJECT, tx);
3281                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3282                             DS_FIELD_RESUME_OFFSET, tx);
3283                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3284                             DS_FIELD_RESUME_BYTES, tx);
3285                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3286                             DS_FIELD_RESUME_TOGUID, tx);
3287                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3288                             DS_FIELD_RESUME_TONAME, tx);
3289                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3290                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3291                 }
3292                 newsnapobj =
3293                     dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3294         }
3295
3296         /*
3297          * If this is a raw receive, the crypt_keydata nvlist will include
3298          * a to_ivset_guid for us to set on the new snapshot. This value
3299          * will override the value generated by the snapshot code. However,
3300          * this value may not be present, because older implementations of
3301          * the raw send code did not include this value, and we are still
3302          * allowed to receive them if the zfs_disable_ivset_guid_check
3303          * tunable is set, in which case we will leave the newly-generated
3304          * value.
3305          */
3306         if (drc->drc_raw && drc->drc_ivset_guid != 0) {
3307                 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3308                     DMU_OT_DSL_DATASET, tx);
3309                 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3310                     DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3311                     &drc->drc_ivset_guid, tx));
3312         }
3313
3314         /*
3315          * Release the hold from dmu_recv_begin.  This must be done before
3316          * we return to open context, so that when we free the dataset's dnode
3317          * we can evict its bonus buffer. Since the dataset may be destroyed
3318          * at this point (and therefore won't have a valid pointer to the spa)
3319          * we release the key mapping manually here while we do have a valid
3320          * pointer, if it exists.
3321          */
3322         if (!drc->drc_raw && encrypted) {
3323                 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3324                     drc->drc_ds->ds_object, drc->drc_ds);
3325         }
3326         dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3327         drc->drc_ds = NULL;
3328 }
3329
3330 static int dmu_recv_end_modified_blocks = 3;
3331
3332 static int
3333 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3334 {
3335 #ifdef _KERNEL
3336         /*
3337          * We will be destroying the ds; make sure its origin is unmounted if
3338          * necessary.
3339          */
3340         char name[ZFS_MAX_DATASET_NAME_LEN];
3341         dsl_dataset_name(drc->drc_ds, name);
3342         zfs_destroy_unmount_origin(name);
3343 #endif
3344
3345         return (dsl_sync_task(drc->drc_tofs,
3346             dmu_recv_end_check, dmu_recv_end_sync, drc,
3347             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3348 }
3349
3350 static int
3351 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3352 {
3353         return (dsl_sync_task(drc->drc_tofs,
3354             dmu_recv_end_check, dmu_recv_end_sync, drc,
3355             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3356 }
3357
3358 int
3359 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3360 {
3361         int error;
3362
3363         drc->drc_owner = owner;
3364
3365         if (drc->drc_newfs)
3366                 error = dmu_recv_new_end(drc);
3367         else
3368                 error = dmu_recv_existing_end(drc);
3369
3370         if (error != 0) {
3371                 dmu_recv_cleanup_ds(drc);
3372                 nvlist_free(drc->drc_keynvl);
3373         } else {
3374                 if (drc->drc_newfs) {
3375                         zvol_create_minor(drc->drc_tofs);
3376                 }
3377                 char *snapname = kmem_asprintf("%s@%s",
3378                     drc->drc_tofs, drc->drc_tosnap);
3379                 zvol_create_minor(snapname);
3380                 kmem_strfree(snapname);
3381         }
3382         return (error);
3383 }
3384
3385 /*
3386  * Return TRUE if this objset is currently being received into.
3387  */
3388 boolean_t
3389 dmu_objset_is_receiving(objset_t *os)
3390 {
3391         return (os->os_dsl_dataset != NULL &&
3392             os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3393 }
3394
3395 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3396         "Maximum receive queue length");
3397
3398 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3399         "Receive queue fill fraction");
3400
3401 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3402         "Maximum amount of writes to batch into one transaction");