]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/dmu_recv.c
zfs: merge openzfs/zfs@03e9caaec
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / dmu_recv.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2019 Datto Inc.
31  * Copyright (c) 2022 Axcient.
32  */
33
34 #include <sys/arc.h>
35 #include <sys/spa_impl.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dmu_send.h>
39 #include <sys/dmu_recv.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dbuf.h>
42 #include <sys/dnode.h>
43 #include <sys/zfs_context.h>
44 #include <sys/dmu_objset.h>
45 #include <sys/dmu_traverse.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_pool.h>
50 #include <sys/dsl_synctask.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/zap.h>
53 #include <sys/zvol.h>
54 #include <sys/zio_checksum.h>
55 #include <sys/zfs_znode.h>
56 #include <zfs_fletcher.h>
57 #include <sys/avl.h>
58 #include <sys/ddt.h>
59 #include <sys/zfs_onexit.h>
60 #include <sys/dsl_destroy.h>
61 #include <sys/blkptr.h>
62 #include <sys/dsl_bookmark.h>
63 #include <sys/zfeature.h>
64 #include <sys/bqueue.h>
65 #include <sys/objlist.h>
66 #ifdef _KERNEL
67 #include <sys/zfs_vfsops.h>
68 #endif
69 #include <sys/zfs_file.h>
70
71 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
72 static uint_t zfs_recv_queue_ff = 20;
73 static uint_t zfs_recv_write_batch_size = 1024 * 1024;
74 static int zfs_recv_best_effort_corrective = 0;
75
76 static const void *const dmu_recv_tag = "dmu_recv_tag";
77 const char *const recv_clone_name = "%recv";
78
79 typedef enum {
80         ORNS_NO,
81         ORNS_YES,
82         ORNS_MAYBE
83 } or_need_sync_t;
84
85 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
86     void *buf);
87
88 struct receive_record_arg {
89         dmu_replay_record_t header;
90         void *payload; /* Pointer to a buffer containing the payload */
91         /*
92          * If the record is a WRITE or SPILL, pointer to the abd containing the
93          * payload.
94          */
95         abd_t *abd;
96         int payload_size;
97         uint64_t bytes_read; /* bytes read from stream when record created */
98         boolean_t eos_marker; /* Marks the end of the stream */
99         bqueue_node_t node;
100 };
101
102 struct receive_writer_arg {
103         objset_t *os;
104         boolean_t byteswap;
105         bqueue_t q;
106
107         /*
108          * These three members are used to signal to the main thread when
109          * we're done.
110          */
111         kmutex_t mutex;
112         kcondvar_t cv;
113         boolean_t done;
114
115         int err;
116         const char *tofs;
117         boolean_t heal;
118         boolean_t resumable;
119         boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
120         boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
121         boolean_t full;  /* this is a full send stream */
122         uint64_t last_object;
123         uint64_t last_offset;
124         uint64_t max_object; /* highest object ID referenced in stream */
125         uint64_t bytes_read; /* bytes read when current record created */
126
127         list_t write_batch;
128
129         /* Encryption parameters for the last received DRR_OBJECT_RANGE */
130         boolean_t or_crypt_params_present;
131         uint64_t or_firstobj;
132         uint64_t or_numslots;
133         uint8_t or_salt[ZIO_DATA_SALT_LEN];
134         uint8_t or_iv[ZIO_DATA_IV_LEN];
135         uint8_t or_mac[ZIO_DATA_MAC_LEN];
136         boolean_t or_byteorder;
137         zio_t *heal_pio;
138
139         /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
140         or_need_sync_t or_need_sync;
141 };
142
143 typedef struct dmu_recv_begin_arg {
144         const char *drba_origin;
145         dmu_recv_cookie_t *drba_cookie;
146         cred_t *drba_cred;
147         proc_t *drba_proc;
148         dsl_crypto_params_t *drba_dcp;
149 } dmu_recv_begin_arg_t;
150
151 static void
152 byteswap_record(dmu_replay_record_t *drr)
153 {
154 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
155 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
156         drr->drr_type = BSWAP_32(drr->drr_type);
157         drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
158
159         switch (drr->drr_type) {
160         case DRR_BEGIN:
161                 DO64(drr_begin.drr_magic);
162                 DO64(drr_begin.drr_versioninfo);
163                 DO64(drr_begin.drr_creation_time);
164                 DO32(drr_begin.drr_type);
165                 DO32(drr_begin.drr_flags);
166                 DO64(drr_begin.drr_toguid);
167                 DO64(drr_begin.drr_fromguid);
168                 break;
169         case DRR_OBJECT:
170                 DO64(drr_object.drr_object);
171                 DO32(drr_object.drr_type);
172                 DO32(drr_object.drr_bonustype);
173                 DO32(drr_object.drr_blksz);
174                 DO32(drr_object.drr_bonuslen);
175                 DO32(drr_object.drr_raw_bonuslen);
176                 DO64(drr_object.drr_toguid);
177                 DO64(drr_object.drr_maxblkid);
178                 break;
179         case DRR_FREEOBJECTS:
180                 DO64(drr_freeobjects.drr_firstobj);
181                 DO64(drr_freeobjects.drr_numobjs);
182                 DO64(drr_freeobjects.drr_toguid);
183                 break;
184         case DRR_WRITE:
185                 DO64(drr_write.drr_object);
186                 DO32(drr_write.drr_type);
187                 DO64(drr_write.drr_offset);
188                 DO64(drr_write.drr_logical_size);
189                 DO64(drr_write.drr_toguid);
190                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
191                 DO64(drr_write.drr_key.ddk_prop);
192                 DO64(drr_write.drr_compressed_size);
193                 break;
194         case DRR_WRITE_EMBEDDED:
195                 DO64(drr_write_embedded.drr_object);
196                 DO64(drr_write_embedded.drr_offset);
197                 DO64(drr_write_embedded.drr_length);
198                 DO64(drr_write_embedded.drr_toguid);
199                 DO32(drr_write_embedded.drr_lsize);
200                 DO32(drr_write_embedded.drr_psize);
201                 break;
202         case DRR_FREE:
203                 DO64(drr_free.drr_object);
204                 DO64(drr_free.drr_offset);
205                 DO64(drr_free.drr_length);
206                 DO64(drr_free.drr_toguid);
207                 break;
208         case DRR_SPILL:
209                 DO64(drr_spill.drr_object);
210                 DO64(drr_spill.drr_length);
211                 DO64(drr_spill.drr_toguid);
212                 DO64(drr_spill.drr_compressed_size);
213                 DO32(drr_spill.drr_type);
214                 break;
215         case DRR_OBJECT_RANGE:
216                 DO64(drr_object_range.drr_firstobj);
217                 DO64(drr_object_range.drr_numslots);
218                 DO64(drr_object_range.drr_toguid);
219                 break;
220         case DRR_REDACT:
221                 DO64(drr_redact.drr_object);
222                 DO64(drr_redact.drr_offset);
223                 DO64(drr_redact.drr_length);
224                 DO64(drr_redact.drr_toguid);
225                 break;
226         case DRR_END:
227                 DO64(drr_end.drr_toguid);
228                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
229                 break;
230         default:
231                 break;
232         }
233
234         if (drr->drr_type != DRR_BEGIN) {
235                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
236         }
237
238 #undef DO64
239 #undef DO32
240 }
241
242 static boolean_t
243 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
244 {
245         for (int i = 0; i < num_snaps; i++) {
246                 if (snaps[i] == guid)
247                         return (B_TRUE);
248         }
249         return (B_FALSE);
250 }
251
252 /*
253  * Check that the new stream we're trying to receive is redacted with respect to
254  * a subset of the snapshots that the origin was redacted with respect to.  For
255  * the reasons behind this, see the man page on redacted zfs sends and receives.
256  */
257 static boolean_t
258 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
259     uint64_t *redact_snaps, uint64_t num_redact_snaps)
260 {
261         /*
262          * Short circuit the comparison; if we are redacted with respect to
263          * more snapshots than the origin, we can't be redacted with respect
264          * to a subset.
265          */
266         if (num_redact_snaps > origin_num_snaps) {
267                 return (B_FALSE);
268         }
269
270         for (int i = 0; i < num_redact_snaps; i++) {
271                 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
272                     redact_snaps[i])) {
273                         return (B_FALSE);
274                 }
275         }
276         return (B_TRUE);
277 }
278
279 static boolean_t
280 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
281 {
282         uint64_t *origin_snaps;
283         uint64_t origin_num_snaps;
284         dmu_recv_cookie_t *drc = drba->drba_cookie;
285         struct drr_begin *drrb = drc->drc_drrb;
286         int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
287         int err = 0;
288         boolean_t ret = B_TRUE;
289         uint64_t *redact_snaps;
290         uint_t numredactsnaps;
291
292         /*
293          * If this is a full send stream, we're safe no matter what.
294          */
295         if (drrb->drr_fromguid == 0)
296                 return (ret);
297
298         VERIFY(dsl_dataset_get_uint64_array_feature(origin,
299             SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
300
301         if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
302             BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
303             0) {
304                 /*
305                  * If the send stream was sent from the redaction bookmark or
306                  * the redacted version of the dataset, then we're safe.  Verify
307                  * that this is from the a compatible redaction bookmark or
308                  * redacted dataset.
309                  */
310                 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
311                     redact_snaps, numredactsnaps)) {
312                         err = EINVAL;
313                 }
314         } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
315                 /*
316                  * If the stream is redacted, it must be redacted with respect
317                  * to a subset of what the origin is redacted with respect to.
318                  * See case number 2 in the zfs man page section on redacted zfs
319                  * send.
320                  */
321                 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
322                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
323
324                 if (err != 0 || !compatible_redact_snaps(origin_snaps,
325                     origin_num_snaps, redact_snaps, numredactsnaps)) {
326                         err = EINVAL;
327                 }
328         } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
329             drrb->drr_toguid)) {
330                 /*
331                  * If the stream isn't redacted but the origin is, this must be
332                  * one of the snapshots the origin is redacted with respect to.
333                  * See case number 1 in the zfs man page section on redacted zfs
334                  * send.
335                  */
336                 err = EINVAL;
337         }
338
339         if (err != 0)
340                 ret = B_FALSE;
341         return (ret);
342 }
343
344 /*
345  * If we previously received a stream with --large-block, we don't support
346  * receiving an incremental on top of it without --large-block.  This avoids
347  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
348  * records.
349  */
350 static int
351 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
352 {
353         if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
354             !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
355                 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
356         return (0);
357 }
358
359 static int
360 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
361     uint64_t fromguid, uint64_t featureflags)
362 {
363         uint64_t obj;
364         uint64_t children;
365         int error;
366         dsl_dataset_t *snap;
367         dsl_pool_t *dp = ds->ds_dir->dd_pool;
368         boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
369         boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
370         boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
371
372         /* Temporary clone name must not exist. */
373         error = zap_lookup(dp->dp_meta_objset,
374             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
375             8, 1, &obj);
376         if (error != ENOENT)
377                 return (error == 0 ? SET_ERROR(EBUSY) : error);
378
379         /* Resume state must not be set. */
380         if (dsl_dataset_has_resume_receive_state(ds))
381                 return (SET_ERROR(EBUSY));
382
383         /* New snapshot name must not exist if we're not healing it. */
384         error = zap_lookup(dp->dp_meta_objset,
385             dsl_dataset_phys(ds)->ds_snapnames_zapobj,
386             drba->drba_cookie->drc_tosnap, 8, 1, &obj);
387         if (drba->drba_cookie->drc_heal) {
388                 if (error != 0)
389                         return (error);
390         } else if (error != ENOENT) {
391                 return (error == 0 ? SET_ERROR(EEXIST) : error);
392         }
393
394         /* Must not have children if receiving a ZVOL. */
395         error = zap_count(dp->dp_meta_objset,
396             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
397         if (error != 0)
398                 return (error);
399         if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
400             children > 0)
401                 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
402
403         /*
404          * Check snapshot limit before receiving. We'll recheck again at the
405          * end, but might as well abort before receiving if we're already over
406          * the limit.
407          *
408          * Note that we do not check the file system limit with
409          * dsl_dir_fscount_check because the temporary %clones don't count
410          * against that limit.
411          */
412         error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
413             NULL, drba->drba_cred, drba->drba_proc);
414         if (error != 0)
415                 return (error);
416
417         if (drba->drba_cookie->drc_heal) {
418                 /* Encryption is incompatible with embedded data. */
419                 if (encrypted && embed)
420                         return (SET_ERROR(EINVAL));
421
422                 /* Healing is not supported when in 'force' mode. */
423                 if (drba->drba_cookie->drc_force)
424                         return (SET_ERROR(EINVAL));
425
426                 /* Must have keys loaded if doing encrypted non-raw recv. */
427                 if (encrypted && !raw) {
428                         if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
429                             NULL, NULL) != 0)
430                                 return (SET_ERROR(EACCES));
431                 }
432
433                 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
434                 if (error != 0)
435                         return (error);
436
437                 /*
438                  * When not doing best effort corrective recv healing can only
439                  * be done if the send stream is for the same snapshot as the
440                  * one we are trying to heal.
441                  */
442                 if (zfs_recv_best_effort_corrective == 0 &&
443                     drba->drba_cookie->drc_drrb->drr_toguid !=
444                     dsl_dataset_phys(snap)->ds_guid) {
445                         dsl_dataset_rele(snap, FTAG);
446                         return (SET_ERROR(ENOTSUP));
447                 }
448                 dsl_dataset_rele(snap, FTAG);
449         } else if (fromguid != 0) {
450                 /* Sanity check the incremental recv */
451                 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
452
453                 /* Can't perform a raw receive on top of a non-raw receive */
454                 if (!encrypted && raw)
455                         return (SET_ERROR(EINVAL));
456
457                 /* Encryption is incompatible with embedded data */
458                 if (encrypted && embed)
459                         return (SET_ERROR(EINVAL));
460
461                 /* Find snapshot in this dir that matches fromguid. */
462                 while (obj != 0) {
463                         error = dsl_dataset_hold_obj(dp, obj, FTAG,
464                             &snap);
465                         if (error != 0)
466                                 return (SET_ERROR(ENODEV));
467                         if (snap->ds_dir != ds->ds_dir) {
468                                 dsl_dataset_rele(snap, FTAG);
469                                 return (SET_ERROR(ENODEV));
470                         }
471                         if (dsl_dataset_phys(snap)->ds_guid == fromguid)
472                                 break;
473                         obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
474                         dsl_dataset_rele(snap, FTAG);
475                 }
476                 if (obj == 0)
477                         return (SET_ERROR(ENODEV));
478
479                 if (drba->drba_cookie->drc_force) {
480                         drba->drba_cookie->drc_fromsnapobj = obj;
481                 } else {
482                         /*
483                          * If we are not forcing, there must be no
484                          * changes since fromsnap. Raw sends have an
485                          * additional constraint that requires that
486                          * no "noop" snapshots exist between fromsnap
487                          * and tosnap for the IVset checking code to
488                          * work properly.
489                          */
490                         if (dsl_dataset_modified_since_snap(ds, snap) ||
491                             (raw &&
492                             dsl_dataset_phys(ds)->ds_prev_snap_obj !=
493                             snap->ds_object)) {
494                                 dsl_dataset_rele(snap, FTAG);
495                                 return (SET_ERROR(ETXTBSY));
496                         }
497                         drba->drba_cookie->drc_fromsnapobj =
498                             ds->ds_prev->ds_object;
499                 }
500
501                 if (dsl_dataset_feature_is_active(snap,
502                     SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
503                     snap)) {
504                         dsl_dataset_rele(snap, FTAG);
505                         return (SET_ERROR(EINVAL));
506                 }
507
508                 error = recv_check_large_blocks(snap, featureflags);
509                 if (error != 0) {
510                         dsl_dataset_rele(snap, FTAG);
511                         return (error);
512                 }
513
514                 dsl_dataset_rele(snap, FTAG);
515         } else {
516                 /* If full and not healing then must be forced. */
517                 if (!drba->drba_cookie->drc_force)
518                         return (SET_ERROR(EEXIST));
519
520                 /*
521                  * We don't support using zfs recv -F to blow away
522                  * encrypted filesystems. This would require the
523                  * dsl dir to point to the old encryption key and
524                  * the new one at the same time during the receive.
525                  */
526                 if ((!encrypted && raw) || encrypted)
527                         return (SET_ERROR(EINVAL));
528
529                 /*
530                  * Perform the same encryption checks we would if
531                  * we were creating a new dataset from scratch.
532                  */
533                 if (!raw) {
534                         boolean_t will_encrypt;
535
536                         error = dmu_objset_create_crypt_check(
537                             ds->ds_dir->dd_parent, drba->drba_dcp,
538                             &will_encrypt);
539                         if (error != 0)
540                                 return (error);
541
542                         if (will_encrypt && embed)
543                                 return (SET_ERROR(EINVAL));
544                 }
545         }
546
547         return (0);
548 }
549
550 /*
551  * Check that any feature flags used in the data stream we're receiving are
552  * supported by the pool we are receiving into.
553  *
554  * Note that some of the features we explicitly check here have additional
555  * (implicit) features they depend on, but those dependencies are enforced
556  * through the zfeature_register() calls declaring the features that we
557  * explicitly check.
558  */
559 static int
560 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
561 {
562         /*
563          * Check if there are any unsupported feature flags.
564          */
565         if (!DMU_STREAM_SUPPORTED(featureflags)) {
566                 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
567         }
568
569         /* Verify pool version supports SA if SA_SPILL feature set */
570         if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
571             spa_version(spa) < SPA_VERSION_SA)
572                 return (SET_ERROR(ENOTSUP));
573
574         /*
575          * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
576          * and large_dnodes in the stream can only be used if those pool
577          * features are enabled because we don't attempt to decompress /
578          * un-embed / un-mooch / split up the blocks / dnodes during the
579          * receive process.
580          */
581         if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
582             !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
583                 return (SET_ERROR(ENOTSUP));
584         if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
585             !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
586                 return (SET_ERROR(ENOTSUP));
587         if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
588             !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
589                 return (SET_ERROR(ENOTSUP));
590         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
591             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
592                 return (SET_ERROR(ENOTSUP));
593         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
594             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
595                 return (SET_ERROR(ENOTSUP));
596
597         /*
598          * Receiving redacted streams requires that redacted datasets are
599          * enabled.
600          */
601         if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
602             !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
603                 return (SET_ERROR(ENOTSUP));
604
605         return (0);
606 }
607
608 static int
609 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
610 {
611         dmu_recv_begin_arg_t *drba = arg;
612         dsl_pool_t *dp = dmu_tx_pool(tx);
613         struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
614         uint64_t fromguid = drrb->drr_fromguid;
615         int flags = drrb->drr_flags;
616         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
617         int error;
618         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
619         dsl_dataset_t *ds;
620         const char *tofs = drba->drba_cookie->drc_tofs;
621
622         /* already checked */
623         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
624         ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
625
626         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
627             DMU_COMPOUNDSTREAM ||
628             drrb->drr_type >= DMU_OST_NUMTYPES ||
629             ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
630                 return (SET_ERROR(EINVAL));
631
632         error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
633         if (error != 0)
634                 return (error);
635
636         /* Resumable receives require extensible datasets */
637         if (drba->drba_cookie->drc_resumable &&
638             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
639                 return (SET_ERROR(ENOTSUP));
640
641         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
642                 /* raw receives require the encryption feature */
643                 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
644                         return (SET_ERROR(ENOTSUP));
645
646                 /* embedded data is incompatible with encryption and raw recv */
647                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
648                         return (SET_ERROR(EINVAL));
649
650                 /* raw receives require spill block allocation flag */
651                 if (!(flags & DRR_FLAG_SPILL_BLOCK))
652                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
653         } else {
654                 /*
655                  * We support unencrypted datasets below encrypted ones now,
656                  * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
657                  * with a dataset we may encrypt.
658                  */
659                 if (drba->drba_dcp == NULL ||
660                     drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
661                         dsflags |= DS_HOLD_FLAG_DECRYPT;
662                 }
663         }
664
665         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
666         if (error == 0) {
667                 /* target fs already exists; recv into temp clone */
668
669                 /* Can't recv a clone into an existing fs */
670                 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
671                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
672                         return (SET_ERROR(EINVAL));
673                 }
674
675                 error = recv_begin_check_existing_impl(drba, ds, fromguid,
676                     featureflags);
677                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
678         } else if (error == ENOENT) {
679                 /* target fs does not exist; must be a full backup or clone */
680                 char buf[ZFS_MAX_DATASET_NAME_LEN];
681                 objset_t *os;
682
683                 /* healing recv must be done "into" an existing snapshot */
684                 if (drba->drba_cookie->drc_heal == B_TRUE)
685                         return (SET_ERROR(ENOTSUP));
686
687                 /*
688                  * If it's a non-clone incremental, we are missing the
689                  * target fs, so fail the recv.
690                  */
691                 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
692                     drba->drba_origin))
693                         return (SET_ERROR(ENOENT));
694
695                 /*
696                  * If we're receiving a full send as a clone, and it doesn't
697                  * contain all the necessary free records and freeobject
698                  * records, reject it.
699                  */
700                 if (fromguid == 0 && drba->drba_origin != NULL &&
701                     !(flags & DRR_FLAG_FREERECORDS))
702                         return (SET_ERROR(EINVAL));
703
704                 /* Open the parent of tofs */
705                 ASSERT3U(strlen(tofs), <, sizeof (buf));
706                 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
707                 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
708                 if (error != 0)
709                         return (error);
710
711                 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
712                     drba->drba_origin == NULL) {
713                         boolean_t will_encrypt;
714
715                         /*
716                          * Check that we aren't breaking any encryption rules
717                          * and that we have all the parameters we need to
718                          * create an encrypted dataset if necessary. If we are
719                          * making an encrypted dataset the stream can't have
720                          * embedded data.
721                          */
722                         error = dmu_objset_create_crypt_check(ds->ds_dir,
723                             drba->drba_dcp, &will_encrypt);
724                         if (error != 0) {
725                                 dsl_dataset_rele(ds, FTAG);
726                                 return (error);
727                         }
728
729                         if (will_encrypt &&
730                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
731                                 dsl_dataset_rele(ds, FTAG);
732                                 return (SET_ERROR(EINVAL));
733                         }
734                 }
735
736                 /*
737                  * Check filesystem and snapshot limits before receiving. We'll
738                  * recheck snapshot limits again at the end (we create the
739                  * filesystems and increment those counts during begin_sync).
740                  */
741                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
742                     ZFS_PROP_FILESYSTEM_LIMIT, NULL,
743                     drba->drba_cred, drba->drba_proc);
744                 if (error != 0) {
745                         dsl_dataset_rele(ds, FTAG);
746                         return (error);
747                 }
748
749                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
750                     ZFS_PROP_SNAPSHOT_LIMIT, NULL,
751                     drba->drba_cred, drba->drba_proc);
752                 if (error != 0) {
753                         dsl_dataset_rele(ds, FTAG);
754                         return (error);
755                 }
756
757                 /* can't recv below anything but filesystems (eg. no ZVOLs) */
758                 error = dmu_objset_from_ds(ds, &os);
759                 if (error != 0) {
760                         dsl_dataset_rele(ds, FTAG);
761                         return (error);
762                 }
763                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
764                         dsl_dataset_rele(ds, FTAG);
765                         return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
766                 }
767
768                 if (drba->drba_origin != NULL) {
769                         dsl_dataset_t *origin;
770                         error = dsl_dataset_hold_flags(dp, drba->drba_origin,
771                             dsflags, FTAG, &origin);
772                         if (error != 0) {
773                                 dsl_dataset_rele(ds, FTAG);
774                                 return (error);
775                         }
776                         if (!origin->ds_is_snapshot) {
777                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
778                                 dsl_dataset_rele(ds, FTAG);
779                                 return (SET_ERROR(EINVAL));
780                         }
781                         if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
782                             fromguid != 0) {
783                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
784                                 dsl_dataset_rele(ds, FTAG);
785                                 return (SET_ERROR(ENODEV));
786                         }
787
788                         if (origin->ds_dir->dd_crypto_obj != 0 &&
789                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
790                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
791                                 dsl_dataset_rele(ds, FTAG);
792                                 return (SET_ERROR(EINVAL));
793                         }
794
795                         /*
796                          * If the origin is redacted we need to verify that this
797                          * send stream can safely be received on top of the
798                          * origin.
799                          */
800                         if (dsl_dataset_feature_is_active(origin,
801                             SPA_FEATURE_REDACTED_DATASETS)) {
802                                 if (!redact_check(drba, origin)) {
803                                         dsl_dataset_rele_flags(origin, dsflags,
804                                             FTAG);
805                                         dsl_dataset_rele_flags(ds, dsflags,
806                                             FTAG);
807                                         return (SET_ERROR(EINVAL));
808                                 }
809                         }
810
811                         error = recv_check_large_blocks(ds, featureflags);
812                         if (error != 0) {
813                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
814                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
815                                 return (error);
816                         }
817
818                         dsl_dataset_rele_flags(origin, dsflags, FTAG);
819                 }
820
821                 dsl_dataset_rele(ds, FTAG);
822                 error = 0;
823         }
824         return (error);
825 }
826
827 static void
828 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
829 {
830         dmu_recv_begin_arg_t *drba = arg;
831         dsl_pool_t *dp = dmu_tx_pool(tx);
832         objset_t *mos = dp->dp_meta_objset;
833         dmu_recv_cookie_t *drc = drba->drba_cookie;
834         struct drr_begin *drrb = drc->drc_drrb;
835         const char *tofs = drc->drc_tofs;
836         uint64_t featureflags = drc->drc_featureflags;
837         dsl_dataset_t *ds, *newds;
838         objset_t *os;
839         uint64_t dsobj;
840         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
841         int error;
842         uint64_t crflags = 0;
843         dsl_crypto_params_t dummy_dcp = { 0 };
844         dsl_crypto_params_t *dcp = drba->drba_dcp;
845
846         if (drrb->drr_flags & DRR_FLAG_CI_DATA)
847                 crflags |= DS_FLAG_CI_DATASET;
848
849         if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
850                 dsflags |= DS_HOLD_FLAG_DECRYPT;
851
852         /*
853          * Raw, non-incremental recvs always use a dummy dcp with
854          * the raw cmd set. Raw incremental recvs do not use a dcp
855          * since the encryption parameters are already set in stone.
856          */
857         if (dcp == NULL && drrb->drr_fromguid == 0 &&
858             drba->drba_origin == NULL) {
859                 ASSERT3P(dcp, ==, NULL);
860                 dcp = &dummy_dcp;
861
862                 if (featureflags & DMU_BACKUP_FEATURE_RAW)
863                         dcp->cp_cmd = DCP_CMD_RAW_RECV;
864         }
865
866         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
867         if (error == 0) {
868                 /* Create temporary clone unless we're doing corrective recv */
869                 dsl_dataset_t *snap = NULL;
870
871                 if (drba->drba_cookie->drc_fromsnapobj != 0) {
872                         VERIFY0(dsl_dataset_hold_obj(dp,
873                             drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
874                         ASSERT3P(dcp, ==, NULL);
875                 }
876                 if (drc->drc_heal) {
877                         /* When healing we want to use the provided snapshot */
878                         VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
879                             &dsobj));
880                 } else {
881                         dsobj = dsl_dataset_create_sync(ds->ds_dir,
882                             recv_clone_name, snap, crflags, drba->drba_cred,
883                             dcp, tx);
884                 }
885                 if (drba->drba_cookie->drc_fromsnapobj != 0)
886                         dsl_dataset_rele(snap, FTAG);
887                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
888         } else {
889                 dsl_dir_t *dd;
890                 const char *tail;
891                 dsl_dataset_t *origin = NULL;
892
893                 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
894
895                 if (drba->drba_origin != NULL) {
896                         VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
897                             FTAG, &origin));
898                         ASSERT3P(dcp, ==, NULL);
899                 }
900
901                 /* Create new dataset. */
902                 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
903                     origin, crflags, drba->drba_cred, dcp, tx);
904                 if (origin != NULL)
905                         dsl_dataset_rele(origin, FTAG);
906                 dsl_dir_rele(dd, FTAG);
907                 drc->drc_newfs = B_TRUE;
908         }
909         VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
910             &newds));
911         if (dsl_dataset_feature_is_active(newds,
912             SPA_FEATURE_REDACTED_DATASETS)) {
913                 /*
914                  * If the origin dataset is redacted, the child will be redacted
915                  * when we create it.  We clear the new dataset's
916                  * redaction info; if it should be redacted, we'll fill
917                  * in its information later.
918                  */
919                 dsl_dataset_deactivate_feature(newds,
920                     SPA_FEATURE_REDACTED_DATASETS, tx);
921         }
922         VERIFY0(dmu_objset_from_ds(newds, &os));
923
924         if (drc->drc_resumable) {
925                 dsl_dataset_zapify(newds, tx);
926                 if (drrb->drr_fromguid != 0) {
927                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
928                             8, 1, &drrb->drr_fromguid, tx));
929                 }
930                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
931                     8, 1, &drrb->drr_toguid, tx));
932                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
933                     1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
934                 uint64_t one = 1;
935                 uint64_t zero = 0;
936                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
937                     8, 1, &one, tx));
938                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
939                     8, 1, &zero, tx));
940                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
941                     8, 1, &zero, tx));
942                 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
943                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
944                             8, 1, &one, tx));
945                 }
946                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
947                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
948                             8, 1, &one, tx));
949                 }
950                 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
951                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
952                             8, 1, &one, tx));
953                 }
954                 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
955                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
956                             8, 1, &one, tx));
957                 }
958
959                 uint64_t *redact_snaps;
960                 uint_t numredactsnaps;
961                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
962                     BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
963                     &numredactsnaps) == 0) {
964                         VERIFY0(zap_add(mos, dsobj,
965                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
966                             sizeof (*redact_snaps), numredactsnaps,
967                             redact_snaps, tx));
968                 }
969         }
970
971         /*
972          * Usually the os->os_encrypted value is tied to the presence of a
973          * DSL Crypto Key object in the dd. However, that will not be received
974          * until dmu_recv_stream(), so we set the value manually for now.
975          */
976         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
977                 os->os_encrypted = B_TRUE;
978                 drba->drba_cookie->drc_raw = B_TRUE;
979         }
980
981         if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
982                 uint64_t *redact_snaps;
983                 uint_t numredactsnaps;
984                 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
985                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
986                 dsl_dataset_activate_redaction(newds, redact_snaps,
987                     numredactsnaps, tx);
988         }
989
990         dmu_buf_will_dirty(newds->ds_dbuf, tx);
991         dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
992
993         /*
994          * If we actually created a non-clone, we need to create the objset
995          * in our new dataset. If this is a raw send we postpone this until
996          * dmu_recv_stream() so that we can allocate the metadnode with the
997          * properties from the DRR_BEGIN payload.
998          */
999         rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1000         if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
1001             (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1002             !drc->drc_heal) {
1003                 (void) dmu_objset_create_impl(dp->dp_spa,
1004                     newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1005         }
1006         rrw_exit(&newds->ds_bp_rwlock, FTAG);
1007
1008         drba->drba_cookie->drc_ds = newds;
1009         drba->drba_cookie->drc_os = os;
1010
1011         spa_history_log_internal_ds(newds, "receive", tx, " ");
1012 }
1013
1014 static int
1015 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1016 {
1017         dmu_recv_begin_arg_t *drba = arg;
1018         dmu_recv_cookie_t *drc = drba->drba_cookie;
1019         dsl_pool_t *dp = dmu_tx_pool(tx);
1020         struct drr_begin *drrb = drc->drc_drrb;
1021         int error;
1022         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1023         dsl_dataset_t *ds;
1024         const char *tofs = drc->drc_tofs;
1025
1026         /* already checked */
1027         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1028         ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1029
1030         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1031             DMU_COMPOUNDSTREAM ||
1032             drrb->drr_type >= DMU_OST_NUMTYPES)
1033                 return (SET_ERROR(EINVAL));
1034
1035         /*
1036          * This is mostly a sanity check since we should have already done these
1037          * checks during a previous attempt to receive the data.
1038          */
1039         error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1040             dp->dp_spa);
1041         if (error != 0)
1042                 return (error);
1043
1044         /* 6 extra bytes for /%recv */
1045         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1046
1047         (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1048             tofs, recv_clone_name);
1049
1050         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1051                 /* raw receives require spill block allocation flag */
1052                 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1053                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1054         } else {
1055                 dsflags |= DS_HOLD_FLAG_DECRYPT;
1056         }
1057
1058         boolean_t recvexist = B_TRUE;
1059         if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1060                 /* %recv does not exist; continue in tofs */
1061                 recvexist = B_FALSE;
1062                 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1063                 if (error != 0)
1064                         return (error);
1065         }
1066
1067         /*
1068          * Resume of full/newfs recv on existing dataset should be done with
1069          * force flag
1070          */
1071         if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1072                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1073                 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1074         }
1075
1076         /* check that ds is marked inconsistent */
1077         if (!DS_IS_INCONSISTENT(ds)) {
1078                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1079                 return (SET_ERROR(EINVAL));
1080         }
1081
1082         /* check that there is resuming data, and that the toguid matches */
1083         if (!dsl_dataset_is_zapified(ds)) {
1084                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1085                 return (SET_ERROR(EINVAL));
1086         }
1087         uint64_t val;
1088         error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1089             DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1090         if (error != 0 || drrb->drr_toguid != val) {
1091                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1092                 return (SET_ERROR(EINVAL));
1093         }
1094
1095         /*
1096          * Check if the receive is still running.  If so, it will be owned.
1097          * Note that nothing else can own the dataset (e.g. after the receive
1098          * fails) because it will be marked inconsistent.
1099          */
1100         if (dsl_dataset_has_owner(ds)) {
1101                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1102                 return (SET_ERROR(EBUSY));
1103         }
1104
1105         /* There should not be any snapshots of this fs yet. */
1106         if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1107                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1108                 return (SET_ERROR(EINVAL));
1109         }
1110
1111         /*
1112          * Note: resume point will be checked when we process the first WRITE
1113          * record.
1114          */
1115
1116         /* check that the origin matches */
1117         val = 0;
1118         (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1119             DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1120         if (drrb->drr_fromguid != val) {
1121                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1122                 return (SET_ERROR(EINVAL));
1123         }
1124
1125         if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1126                 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1127
1128         /*
1129          * If we're resuming, and the send is redacted, then the original send
1130          * must have been redacted, and must have been redacted with respect to
1131          * the same snapshots.
1132          */
1133         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1134                 uint64_t num_ds_redact_snaps;
1135                 uint64_t *ds_redact_snaps;
1136
1137                 uint_t num_stream_redact_snaps;
1138                 uint64_t *stream_redact_snaps;
1139
1140                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1141                     BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1142                     &num_stream_redact_snaps) != 0) {
1143                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1144                         return (SET_ERROR(EINVAL));
1145                 }
1146
1147                 if (!dsl_dataset_get_uint64_array_feature(ds,
1148                     SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1149                     &ds_redact_snaps)) {
1150                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1151                         return (SET_ERROR(EINVAL));
1152                 }
1153
1154                 for (int i = 0; i < num_ds_redact_snaps; i++) {
1155                         if (!redact_snaps_contains(ds_redact_snaps,
1156                             num_ds_redact_snaps, stream_redact_snaps[i])) {
1157                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1158                                 return (SET_ERROR(EINVAL));
1159                         }
1160                 }
1161         }
1162
1163         error = recv_check_large_blocks(ds, drc->drc_featureflags);
1164         if (error != 0) {
1165                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1166                 return (error);
1167         }
1168
1169         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1170         return (0);
1171 }
1172
1173 static void
1174 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1175 {
1176         dmu_recv_begin_arg_t *drba = arg;
1177         dsl_pool_t *dp = dmu_tx_pool(tx);
1178         const char *tofs = drba->drba_cookie->drc_tofs;
1179         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1180         dsl_dataset_t *ds;
1181         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1182         /* 6 extra bytes for /%recv */
1183         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1184
1185         (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1186             recv_clone_name);
1187
1188         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1189                 drba->drba_cookie->drc_raw = B_TRUE;
1190         } else {
1191                 dsflags |= DS_HOLD_FLAG_DECRYPT;
1192         }
1193
1194         if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1195             != 0) {
1196                 /* %recv does not exist; continue in tofs */
1197                 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1198                     &ds));
1199                 drba->drba_cookie->drc_newfs = B_TRUE;
1200         }
1201
1202         ASSERT(DS_IS_INCONSISTENT(ds));
1203         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1204         ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1205             drba->drba_cookie->drc_raw);
1206         rrw_exit(&ds->ds_bp_rwlock, FTAG);
1207
1208         drba->drba_cookie->drc_ds = ds;
1209         VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1210         drba->drba_cookie->drc_should_save = B_TRUE;
1211
1212         spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1213 }
1214
1215 /*
1216  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1217  * succeeds; otherwise we will leak the holds on the datasets.
1218  */
1219 int
1220 dmu_recv_begin(const char *tofs, const char *tosnap,
1221     dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal,
1222     boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args,
1223     const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp,
1224     offset_t *voffp)
1225 {
1226         dmu_recv_begin_arg_t drba = { 0 };
1227         int err = 0;
1228
1229         memset(drc, 0, sizeof (dmu_recv_cookie_t));
1230         drc->drc_drr_begin = drr_begin;
1231         drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1232         drc->drc_tosnap = tosnap;
1233         drc->drc_tofs = tofs;
1234         drc->drc_force = force;
1235         drc->drc_heal = heal;
1236         drc->drc_resumable = resumable;
1237         drc->drc_cred = CRED();
1238         drc->drc_proc = curproc;
1239         drc->drc_clone = (origin != NULL);
1240
1241         if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1242                 drc->drc_byteswap = B_TRUE;
1243                 (void) fletcher_4_incremental_byteswap(drr_begin,
1244                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1245                 byteswap_record(drr_begin);
1246         } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1247                 (void) fletcher_4_incremental_native(drr_begin,
1248                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1249         } else {
1250                 return (SET_ERROR(EINVAL));
1251         }
1252
1253         drc->drc_fp = fp;
1254         drc->drc_voff = *voffp;
1255         drc->drc_featureflags =
1256             DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1257
1258         uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1259
1260         /*
1261          * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1262          * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1263          * upper limit. Systems with less than 1GB of RAM will see a lower
1264          * limit from `arc_all_memory() / 4`.
1265          */
1266         if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
1267                 return (E2BIG);
1268
1269
1270         if (payloadlen != 0) {
1271                 void *payload = vmem_alloc(payloadlen, KM_SLEEP);
1272                 /*
1273                  * For compatibility with recursive send streams, we don't do
1274                  * this here if the stream could be part of a package. Instead,
1275                  * we'll do it in dmu_recv_stream. If we pull the next header
1276                  * too early, and it's the END record, we break the `recv_skip`
1277                  * logic.
1278                  */
1279
1280                 err = receive_read_payload_and_next_header(drc, payloadlen,
1281                     payload);
1282                 if (err != 0) {
1283                         vmem_free(payload, payloadlen);
1284                         return (err);
1285                 }
1286                 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1287                     KM_SLEEP);
1288                 vmem_free(payload, payloadlen);
1289                 if (err != 0) {
1290                         kmem_free(drc->drc_next_rrd,
1291                             sizeof (*drc->drc_next_rrd));
1292                         return (err);
1293                 }
1294         }
1295
1296         if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1297                 drc->drc_spill = B_TRUE;
1298
1299         drba.drba_origin = origin;
1300         drba.drba_cookie = drc;
1301         drba.drba_cred = CRED();
1302         drba.drba_proc = curproc;
1303
1304         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1305                 err = dsl_sync_task(tofs,
1306                     dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1307                     &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1308         } else {
1309                 /*
1310                  * For non-raw, non-incremental, non-resuming receives the
1311                  * user can specify encryption parameters on the command line
1312                  * with "zfs recv -o". For these receives we create a dcp and
1313                  * pass it to the sync task. Creating the dcp will implicitly
1314                  * remove the encryption params from the localprops nvlist,
1315                  * which avoids errors when trying to set these normally
1316                  * read-only properties. Any other kind of receive that
1317                  * attempts to set these properties will fail as a result.
1318                  */
1319                 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1320                     DMU_BACKUP_FEATURE_RAW) == 0 &&
1321                     origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1322                         err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1323                             localprops, hidden_args, &drba.drba_dcp);
1324                 }
1325
1326                 if (err == 0) {
1327                         err = dsl_sync_task(tofs,
1328                             dmu_recv_begin_check, dmu_recv_begin_sync,
1329                             &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1330                         dsl_crypto_params_free(drba.drba_dcp, !!err);
1331                 }
1332         }
1333
1334         if (err != 0) {
1335                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1336                 nvlist_free(drc->drc_begin_nvl);
1337         }
1338         return (err);
1339 }
1340
1341 /*
1342  * Holds data need for corrective recv callback
1343  */
1344 typedef struct cr_cb_data {
1345         uint64_t size;
1346         zbookmark_phys_t zb;
1347         spa_t *spa;
1348 } cr_cb_data_t;
1349
1350 static void
1351 corrective_read_done(zio_t *zio)
1352 {
1353         cr_cb_data_t *data = zio->io_private;
1354         /* Corruption corrected; update error log if needed */
1355         if (zio->io_error == 0)
1356                 spa_remove_error(data->spa, &data->zb, &zio->io_bp->blk_birth);
1357         kmem_free(data, sizeof (cr_cb_data_t));
1358         abd_free(zio->io_abd);
1359 }
1360
1361 /*
1362  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1363  */
1364 static int
1365 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1366     struct receive_record_arg *rrd, blkptr_t *bp)
1367 {
1368         int err;
1369         zio_t *io;
1370         zbookmark_phys_t zb;
1371         dnode_t *dn;
1372         abd_t *abd = rrd->abd;
1373         zio_cksum_t bp_cksum = bp->blk_cksum;
1374         zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY |
1375             ZIO_FLAG_CANFAIL;
1376
1377         if (rwa->raw)
1378                 flags |= ZIO_FLAG_RAW;
1379
1380         err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1381         if (err != 0)
1382                 return (err);
1383         SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1384             dbuf_whichblock(dn, 0, drrw->drr_offset));
1385         dnode_rele(dn, FTAG);
1386
1387         if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1388                 /* Decompress the stream data */
1389                 abd_t *dabd = abd_alloc_linear(
1390                     drrw->drr_logical_size, B_FALSE);
1391                 err = zio_decompress_data(drrw->drr_compressiontype,
1392                     abd, abd_to_buf(dabd), abd_get_size(abd),
1393                     abd_get_size(dabd), NULL);
1394
1395                 if (err != 0) {
1396                         abd_free(dabd);
1397                         return (err);
1398                 }
1399                 /* Swap in the newly decompressed data into the abd */
1400                 abd_free(abd);
1401                 abd = dabd;
1402         }
1403
1404         if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1405                 /* Recompress the data */
1406                 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1407                     B_FALSE);
1408                 void *buf = abd_to_buf(cabd);
1409                 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1410                     abd, &buf, abd_get_size(abd),
1411                     rwa->os->os_complevel);
1412                 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1413                 /* Swap in newly compressed data into the abd */
1414                 abd_free(abd);
1415                 abd = cabd;
1416                 flags |= ZIO_FLAG_RAW_COMPRESS;
1417         }
1418
1419         /*
1420          * The stream is not encrypted but the data on-disk is.
1421          * We need to re-encrypt the buf using the same
1422          * encryption type, salt, iv, and mac that was used to encrypt
1423          * the block previosly.
1424          */
1425         if (!rwa->raw && BP_USES_CRYPT(bp)) {
1426                 dsl_dataset_t *ds;
1427                 dsl_crypto_key_t *dck = NULL;
1428                 uint8_t salt[ZIO_DATA_SALT_LEN];
1429                 uint8_t iv[ZIO_DATA_IV_LEN];
1430                 uint8_t mac[ZIO_DATA_MAC_LEN];
1431                 boolean_t no_crypt = B_FALSE;
1432                 dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1433                 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1434
1435                 zio_crypt_decode_params_bp(bp, salt, iv);
1436                 zio_crypt_decode_mac_bp(bp, mac);
1437
1438                 dsl_pool_config_enter(dp, FTAG);
1439                 err = dsl_dataset_hold_flags(dp, rwa->tofs,
1440                     DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1441                 if (err != 0) {
1442                         dsl_pool_config_exit(dp, FTAG);
1443                         abd_free(eabd);
1444                         return (SET_ERROR(EACCES));
1445                 }
1446
1447                 /* Look up the key from the spa's keystore */
1448                 err = spa_keystore_lookup_key(rwa->os->os_spa,
1449                     zb.zb_objset, FTAG, &dck);
1450                 if (err != 0) {
1451                         dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1452                             FTAG);
1453                         dsl_pool_config_exit(dp, FTAG);
1454                         abd_free(eabd);
1455                         return (SET_ERROR(EACCES));
1456                 }
1457
1458                 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1459                     BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1460                     mac, abd_get_size(abd), abd, eabd, &no_crypt);
1461
1462                 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1463                 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1464                 dsl_pool_config_exit(dp, FTAG);
1465
1466                 ASSERT0(no_crypt);
1467                 if (err != 0) {
1468                         abd_free(eabd);
1469                         return (err);
1470                 }
1471                 /* Swap in the newly encrypted data into the abd */
1472                 abd_free(abd);
1473                 abd = eabd;
1474
1475                 /*
1476                  * We want to prevent zio_rewrite() from trying to
1477                  * encrypt the data again
1478                  */
1479                 flags |= ZIO_FLAG_RAW_ENCRYPT;
1480         }
1481         rrd->abd = abd;
1482
1483         io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd,
1484             BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb);
1485
1486         ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1487             abd_get_size(abd) == BP_GET_PSIZE(bp));
1488
1489         /* compute new bp checksum value and make sure it matches the old one */
1490         zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1491         if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1492                 zio_destroy(io);
1493                 if (zfs_recv_best_effort_corrective != 0)
1494                         return (0);
1495                 return (SET_ERROR(ECKSUM));
1496         }
1497
1498         /* Correct the corruption in place */
1499         err = zio_wait(io);
1500         if (err == 0) {
1501                 cr_cb_data_t *cb_data =
1502                     kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1503                 cb_data->spa = rwa->os->os_spa;
1504                 cb_data->size = drrw->drr_logical_size;
1505                 cb_data->zb = zb;
1506                 /* Test if healing worked by re-reading the bp */
1507                 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1508                     abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1509                     drrw->drr_logical_size, corrective_read_done,
1510                     cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1511         }
1512         if (err != 0 && zfs_recv_best_effort_corrective != 0)
1513                 err = 0;
1514
1515         return (err);
1516 }
1517
1518 static int
1519 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1520 {
1521         int done = 0;
1522
1523         /*
1524          * The code doesn't rely on this (lengths being multiples of 8).  See
1525          * comment in dump_bytes.
1526          */
1527         ASSERT(len % 8 == 0 ||
1528             (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1529
1530         while (done < len) {
1531                 ssize_t resid = len - done;
1532                 zfs_file_t *fp = drc->drc_fp;
1533                 int err = zfs_file_read(fp, (char *)buf + done,
1534                     len - done, &resid);
1535                 if (err == 0 && resid == len - done) {
1536                         /*
1537                          * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1538                          * that the receive was interrupted and can
1539                          * potentially be resumed.
1540                          */
1541                         err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1542                 }
1543                 drc->drc_voff += len - done - resid;
1544                 done = len - resid;
1545                 if (err != 0)
1546                         return (err);
1547         }
1548
1549         drc->drc_bytes_read += len;
1550
1551         ASSERT3U(done, ==, len);
1552         return (0);
1553 }
1554
1555 static inline uint8_t
1556 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1557 {
1558         if (bonus_type == DMU_OT_SA) {
1559                 return (1);
1560         } else {
1561                 return (1 +
1562                     ((DN_OLD_MAX_BONUSLEN -
1563                     MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1564         }
1565 }
1566
1567 static void
1568 save_resume_state(struct receive_writer_arg *rwa,
1569     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1570 {
1571         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1572
1573         if (!rwa->resumable)
1574                 return;
1575
1576         /*
1577          * We use ds_resume_bytes[] != 0 to indicate that we need to
1578          * update this on disk, so it must not be 0.
1579          */
1580         ASSERT(rwa->bytes_read != 0);
1581
1582         /*
1583          * We only resume from write records, which have a valid
1584          * (non-meta-dnode) object number.
1585          */
1586         ASSERT(object != 0);
1587
1588         /*
1589          * For resuming to work correctly, we must receive records in order,
1590          * sorted by object,offset.  This is checked by the callers, but
1591          * assert it here for good measure.
1592          */
1593         ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1594         ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1595             offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1596         ASSERT3U(rwa->bytes_read, >=,
1597             rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1598
1599         rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1600         rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1601         rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1602 }
1603
1604 static int
1605 receive_object_is_same_generation(objset_t *os, uint64_t object,
1606     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1607     const void *new_bonus, boolean_t *samegenp)
1608 {
1609         zfs_file_info_t zoi;
1610         int err;
1611
1612         dmu_buf_t *old_bonus_dbuf;
1613         err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1614         if (err != 0)
1615                 return (err);
1616         err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1617             &zoi);
1618         dmu_buf_rele(old_bonus_dbuf, FTAG);
1619         if (err != 0)
1620                 return (err);
1621         uint64_t old_gen = zoi.zfi_generation;
1622
1623         err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1624         if (err != 0)
1625                 return (err);
1626         uint64_t new_gen = zoi.zfi_generation;
1627
1628         *samegenp = (old_gen == new_gen);
1629         return (0);
1630 }
1631
1632 static int
1633 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1634     const struct drr_object *drro, const dmu_object_info_t *doi,
1635     const void *bonus_data,
1636     uint64_t *object_to_hold, uint32_t *new_blksz)
1637 {
1638         uint32_t indblksz = drro->drr_indblkshift ?
1639             1ULL << drro->drr_indblkshift : 0;
1640         int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1641             drro->drr_bonuslen);
1642         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1643             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1644         boolean_t do_free_range = B_FALSE;
1645         int err;
1646
1647         *object_to_hold = drro->drr_object;
1648
1649         /* nblkptr should be bounded by the bonus size and type */
1650         if (rwa->raw && nblkptr != drro->drr_nblkptr)
1651                 return (SET_ERROR(EINVAL));
1652
1653         /*
1654          * After the previous send stream, the sending system may
1655          * have freed this object, and then happened to re-allocate
1656          * this object number in a later txg. In this case, we are
1657          * receiving a different logical file, and the block size may
1658          * appear to be different.  i.e. we may have a different
1659          * block size for this object than what the send stream says.
1660          * In this case we need to remove the object's contents,
1661          * so that its structure can be changed and then its contents
1662          * entirely replaced by subsequent WRITE records.
1663          *
1664          * If this is a -L (--large-block) incremental stream, and
1665          * the previous stream was not -L, the block size may appear
1666          * to increase.  i.e. we may have a smaller block size for
1667          * this object than what the send stream says.  In this case
1668          * we need to keep the object's contents and block size
1669          * intact, so that we don't lose parts of the object's
1670          * contents that are not changed by this incremental send
1671          * stream.
1672          *
1673          * We can distinguish between the two above cases by using
1674          * the ZPL's generation number (see
1675          * receive_object_is_same_generation()).  However, we only
1676          * want to rely on the generation number when absolutely
1677          * necessary, because with raw receives, the generation is
1678          * encrypted.  We also want to minimize dependence on the
1679          * ZPL, so that other types of datasets can also be received
1680          * (e.g. ZVOLs, although note that ZVOLS currently do not
1681          * reallocate their objects or change their structure).
1682          * Therefore, we check a number of different cases where we
1683          * know it is safe to discard the object's contents, before
1684          * using the ZPL's generation number to make the above
1685          * distinction.
1686          */
1687         if (drro->drr_blksz != doi->doi_data_block_size) {
1688                 if (rwa->raw) {
1689                         /*
1690                          * RAW streams always have large blocks, so
1691                          * we are sure that the data is not needed
1692                          * due to changing --large-block to be on.
1693                          * Which is fortunate since the bonus buffer
1694                          * (which contains the ZPL generation) is
1695                          * encrypted, and the key might not be
1696                          * loaded.
1697                          */
1698                         do_free_range = B_TRUE;
1699                 } else if (rwa->full) {
1700                         /*
1701                          * This is a full send stream, so it always
1702                          * replaces what we have.  Even if the
1703                          * generation numbers happen to match, this
1704                          * can not actually be the same logical file.
1705                          * This is relevant when receiving a full
1706                          * send as a clone.
1707                          */
1708                         do_free_range = B_TRUE;
1709                 } else if (drro->drr_type !=
1710                     DMU_OT_PLAIN_FILE_CONTENTS ||
1711                     doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1712                         /*
1713                          * PLAIN_FILE_CONTENTS are the only type of
1714                          * objects that have ever been stored with
1715                          * large blocks, so we don't need the special
1716                          * logic below.  ZAP blocks can shrink (when
1717                          * there's only one block), so we don't want
1718                          * to hit the error below about block size
1719                          * only increasing.
1720                          */
1721                         do_free_range = B_TRUE;
1722                 } else if (doi->doi_max_offset <=
1723                     doi->doi_data_block_size) {
1724                         /*
1725                          * There is only one block.  We can free it,
1726                          * because its contents will be replaced by a
1727                          * WRITE record.  This can not be the no-L ->
1728                          * -L case, because the no-L case would have
1729                          * resulted in multiple blocks.  If we
1730                          * supported -L -> no-L, it would not be safe
1731                          * to free the file's contents.  Fortunately,
1732                          * that is not allowed (see
1733                          * recv_check_large_blocks()).
1734                          */
1735                         do_free_range = B_TRUE;
1736                 } else {
1737                         boolean_t is_same_gen;
1738                         err = receive_object_is_same_generation(rwa->os,
1739                             drro->drr_object, doi->doi_bonus_type,
1740                             drro->drr_bonustype, bonus_data, &is_same_gen);
1741                         if (err != 0)
1742                                 return (SET_ERROR(EINVAL));
1743
1744                         if (is_same_gen) {
1745                                 /*
1746                                  * This is the same logical file, and
1747                                  * the block size must be increasing.
1748                                  * It could only decrease if
1749                                  * --large-block was changed to be
1750                                  * off, which is checked in
1751                                  * recv_check_large_blocks().
1752                                  */
1753                                 if (drro->drr_blksz <=
1754                                     doi->doi_data_block_size)
1755                                         return (SET_ERROR(EINVAL));
1756                                 /*
1757                                  * We keep the existing blocksize and
1758                                  * contents.
1759                                  */
1760                                 *new_blksz =
1761                                     doi->doi_data_block_size;
1762                         } else {
1763                                 do_free_range = B_TRUE;
1764                         }
1765                 }
1766         }
1767
1768         /* nblkptr can only decrease if the object was reallocated */
1769         if (nblkptr < doi->doi_nblkptr)
1770                 do_free_range = B_TRUE;
1771
1772         /* number of slots can only change on reallocation */
1773         if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1774                 do_free_range = B_TRUE;
1775
1776         /*
1777          * For raw sends we also check a few other fields to
1778          * ensure we are preserving the objset structure exactly
1779          * as it was on the receive side:
1780          *     - A changed indirect block size
1781          *     - A smaller nlevels
1782          */
1783         if (rwa->raw) {
1784                 if (indblksz != doi->doi_metadata_block_size)
1785                         do_free_range = B_TRUE;
1786                 if (drro->drr_nlevels < doi->doi_indirection)
1787                         do_free_range = B_TRUE;
1788         }
1789
1790         if (do_free_range) {
1791                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1792                     0, DMU_OBJECT_END);
1793                 if (err != 0)
1794                         return (SET_ERROR(EINVAL));
1795         }
1796
1797         /*
1798          * The dmu does not currently support decreasing nlevels or changing
1799          * indirect block size if there is already one, same as changing the
1800          * number of of dnode slots on an object.  For non-raw sends this
1801          * does not matter and the new object can just use the previous one's
1802          * parameters.  For raw sends, however, the structure of the received
1803          * dnode (including indirects and dnode slots) must match that of the
1804          * send side.  Therefore, instead of using dmu_object_reclaim(), we
1805          * must free the object completely and call dmu_object_claim_dnsize()
1806          * instead.
1807          */
1808         if ((rwa->raw && ((doi->doi_indirection > 1 &&
1809             indblksz != doi->doi_metadata_block_size) ||
1810             drro->drr_nlevels < doi->doi_indirection)) ||
1811             dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1812                 err = dmu_free_long_object(rwa->os, drro->drr_object);
1813                 if (err != 0)
1814                         return (SET_ERROR(EINVAL));
1815
1816                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1817                 *object_to_hold = DMU_NEW_OBJECT;
1818         }
1819
1820         /*
1821          * For raw receives, free everything beyond the new incoming
1822          * maxblkid. Normally this would be done with a DRR_FREE
1823          * record that would come after this DRR_OBJECT record is
1824          * processed. However, for raw receives we manually set the
1825          * maxblkid from the drr_maxblkid and so we must first free
1826          * everything above that blkid to ensure the DMU is always
1827          * consistent with itself. We will never free the first block
1828          * of the object here because a maxblkid of 0 could indicate
1829          * an object with a single block or one with no blocks. This
1830          * free may be skipped when dmu_free_long_range() was called
1831          * above since it covers the entire object's contents.
1832          */
1833         if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1834                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1835                     (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1836                     DMU_OBJECT_END);
1837                 if (err != 0)
1838                         return (SET_ERROR(EINVAL));
1839         }
1840         return (0);
1841 }
1842
1843 noinline static int
1844 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1845     void *data)
1846 {
1847         dmu_object_info_t doi;
1848         dmu_tx_t *tx;
1849         int err;
1850         uint32_t new_blksz = drro->drr_blksz;
1851         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1852             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1853
1854         if (drro->drr_type == DMU_OT_NONE ||
1855             !DMU_OT_IS_VALID(drro->drr_type) ||
1856             !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1857             drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1858             drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1859             P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1860             drro->drr_blksz < SPA_MINBLOCKSIZE ||
1861             drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1862             drro->drr_bonuslen >
1863             DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1864             dn_slots >
1865             (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1866                 return (SET_ERROR(EINVAL));
1867         }
1868
1869         if (rwa->raw) {
1870                 /*
1871                  * We should have received a DRR_OBJECT_RANGE record
1872                  * containing this block and stored it in rwa.
1873                  */
1874                 if (drro->drr_object < rwa->or_firstobj ||
1875                     drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1876                     drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1877                     drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1878                     drro->drr_nlevels > DN_MAX_LEVELS ||
1879                     drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1880                     DN_SLOTS_TO_BONUSLEN(dn_slots) <
1881                     drro->drr_raw_bonuslen)
1882                         return (SET_ERROR(EINVAL));
1883         } else {
1884                 /*
1885                  * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1886                  * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1887                  */
1888                 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1889                     (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1890                         return (SET_ERROR(EINVAL));
1891                 }
1892
1893                 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1894                     drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1895                         return (SET_ERROR(EINVAL));
1896                 }
1897         }
1898
1899         err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1900
1901         if (err != 0 && err != ENOENT && err != EEXIST)
1902                 return (SET_ERROR(EINVAL));
1903
1904         if (drro->drr_object > rwa->max_object)
1905                 rwa->max_object = drro->drr_object;
1906
1907         /*
1908          * If we are losing blkptrs or changing the block size this must
1909          * be a new file instance.  We must clear out the previous file
1910          * contents before we can change this type of metadata in the dnode.
1911          * Raw receives will also check that the indirect structure of the
1912          * dnode hasn't changed.
1913          */
1914         uint64_t object_to_hold;
1915         if (err == 0) {
1916                 err = receive_handle_existing_object(rwa, drro, &doi, data,
1917                     &object_to_hold, &new_blksz);
1918                 if (err != 0)
1919                         return (err);
1920         } else if (err == EEXIST) {
1921                 /*
1922                  * The object requested is currently an interior slot of a
1923                  * multi-slot dnode. This will be resolved when the next txg
1924                  * is synced out, since the send stream will have told us
1925                  * to free this slot when we freed the associated dnode
1926                  * earlier in the stream.
1927                  */
1928                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1929
1930                 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1931                         return (SET_ERROR(EINVAL));
1932
1933                 /* object was freed and we are about to allocate a new one */
1934                 object_to_hold = DMU_NEW_OBJECT;
1935         } else {
1936                 /*
1937                  * If the only record in this range so far was DRR_FREEOBJECTS
1938                  * with at least one actually freed object, it's possible that
1939                  * the block will now be converted to a hole. We need to wait
1940                  * for the txg to sync to prevent races.
1941                  */
1942                 if (rwa->or_need_sync == ORNS_YES)
1943                         txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1944
1945                 /* object is free and we are about to allocate a new one */
1946                 object_to_hold = DMU_NEW_OBJECT;
1947         }
1948
1949         /* Only relevant for the first object in the range */
1950         rwa->or_need_sync = ORNS_NO;
1951
1952         /*
1953          * If this is a multi-slot dnode there is a chance that this
1954          * object will expand into a slot that is already used by
1955          * another object from the previous snapshot. We must free
1956          * these objects before we attempt to allocate the new dnode.
1957          */
1958         if (dn_slots > 1) {
1959                 boolean_t need_sync = B_FALSE;
1960
1961                 for (uint64_t slot = drro->drr_object + 1;
1962                     slot < drro->drr_object + dn_slots;
1963                     slot++) {
1964                         dmu_object_info_t slot_doi;
1965
1966                         err = dmu_object_info(rwa->os, slot, &slot_doi);
1967                         if (err == ENOENT || err == EEXIST)
1968                                 continue;
1969                         else if (err != 0)
1970                                 return (err);
1971
1972                         err = dmu_free_long_object(rwa->os, slot);
1973                         if (err != 0)
1974                                 return (err);
1975
1976                         need_sync = B_TRUE;
1977                 }
1978
1979                 if (need_sync)
1980                         txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1981         }
1982
1983         tx = dmu_tx_create(rwa->os);
1984         dmu_tx_hold_bonus(tx, object_to_hold);
1985         dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1986         err = dmu_tx_assign(tx, TXG_WAIT);
1987         if (err != 0) {
1988                 dmu_tx_abort(tx);
1989                 return (err);
1990         }
1991
1992         if (object_to_hold == DMU_NEW_OBJECT) {
1993                 /* Currently free, wants to be allocated */
1994                 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1995                     drro->drr_type, new_blksz,
1996                     drro->drr_bonustype, drro->drr_bonuslen,
1997                     dn_slots << DNODE_SHIFT, tx);
1998         } else if (drro->drr_type != doi.doi_type ||
1999             new_blksz != doi.doi_data_block_size ||
2000             drro->drr_bonustype != doi.doi_bonus_type ||
2001             drro->drr_bonuslen != doi.doi_bonus_size) {
2002                 /* Currently allocated, but with different properties */
2003                 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
2004                     drro->drr_type, new_blksz,
2005                     drro->drr_bonustype, drro->drr_bonuslen,
2006                     dn_slots << DNODE_SHIFT, rwa->spill ?
2007                     DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
2008         } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
2009                 /*
2010                  * Currently allocated, the existing version of this object
2011                  * may reference a spill block that is no longer allocated
2012                  * at the source and needs to be freed.
2013                  */
2014                 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
2015         }
2016
2017         if (err != 0) {
2018                 dmu_tx_commit(tx);
2019                 return (SET_ERROR(EINVAL));
2020         }
2021
2022         if (rwa->or_crypt_params_present) {
2023                 /*
2024                  * Set the crypt params for the buffer associated with this
2025                  * range of dnodes.  This causes the blkptr_t to have the
2026                  * same crypt params (byteorder, salt, iv, mac) as on the
2027                  * sending side.
2028                  *
2029                  * Since we are committing this tx now, it is possible for
2030                  * the dnode block to end up on-disk with the incorrect MAC,
2031                  * if subsequent objects in this block are received in a
2032                  * different txg.  However, since the dataset is marked as
2033                  * inconsistent, no code paths will do a non-raw read (or
2034                  * decrypt the block / verify the MAC). The receive code and
2035                  * scrub code can safely do raw reads and verify the
2036                  * checksum.  They don't need to verify the MAC.
2037                  */
2038                 dmu_buf_t *db = NULL;
2039                 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2040
2041                 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2042                     offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2043                 if (err != 0) {
2044                         dmu_tx_commit(tx);
2045                         return (SET_ERROR(EINVAL));
2046                 }
2047
2048                 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2049                     rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2050
2051                 dmu_buf_rele(db, FTAG);
2052
2053                 rwa->or_crypt_params_present = B_FALSE;
2054         }
2055
2056         dmu_object_set_checksum(rwa->os, drro->drr_object,
2057             drro->drr_checksumtype, tx);
2058         dmu_object_set_compress(rwa->os, drro->drr_object,
2059             drro->drr_compress, tx);
2060
2061         /* handle more restrictive dnode structuring for raw recvs */
2062         if (rwa->raw) {
2063                 /*
2064                  * Set the indirect block size, block shift, nlevels.
2065                  * This will not fail because we ensured all of the
2066                  * blocks were freed earlier if this is a new object.
2067                  * For non-new objects block size and indirect block
2068                  * shift cannot change and nlevels can only increase.
2069                  */
2070                 ASSERT3U(new_blksz, ==, drro->drr_blksz);
2071                 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2072                     drro->drr_blksz, drro->drr_indblkshift, tx));
2073                 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2074                     drro->drr_nlevels, tx));
2075
2076                 /*
2077                  * Set the maxblkid. This will always succeed because
2078                  * we freed all blocks beyond the new maxblkid above.
2079                  */
2080                 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2081                     drro->drr_maxblkid, tx));
2082         }
2083
2084         if (data != NULL) {
2085                 dmu_buf_t *db;
2086                 dnode_t *dn;
2087                 uint32_t flags = DMU_READ_NO_PREFETCH;
2088
2089                 if (rwa->raw)
2090                         flags |= DMU_READ_NO_DECRYPT;
2091
2092                 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2093                 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2094
2095                 dmu_buf_will_dirty(db, tx);
2096
2097                 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2098                 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2099
2100                 /*
2101                  * Raw bonus buffers have their byteorder determined by the
2102                  * DRR_OBJECT_RANGE record.
2103                  */
2104                 if (rwa->byteswap && !rwa->raw) {
2105                         dmu_object_byteswap_t byteswap =
2106                             DMU_OT_BYTESWAP(drro->drr_bonustype);
2107                         dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2108                             DRR_OBJECT_PAYLOAD_SIZE(drro));
2109                 }
2110                 dmu_buf_rele(db, FTAG);
2111                 dnode_rele(dn, FTAG);
2112         }
2113         dmu_tx_commit(tx);
2114
2115         return (0);
2116 }
2117
2118 noinline static int
2119 receive_freeobjects(struct receive_writer_arg *rwa,
2120     struct drr_freeobjects *drrfo)
2121 {
2122         uint64_t obj;
2123         int next_err = 0;
2124
2125         if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2126                 return (SET_ERROR(EINVAL));
2127
2128         for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2129             obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2130             obj < DN_MAX_OBJECT && next_err == 0;
2131             next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2132                 dmu_object_info_t doi;
2133                 int err;
2134
2135                 err = dmu_object_info(rwa->os, obj, &doi);
2136                 if (err == ENOENT)
2137                         continue;
2138                 else if (err != 0)
2139                         return (err);
2140
2141                 err = dmu_free_long_object(rwa->os, obj);
2142
2143                 if (err != 0)
2144                         return (err);
2145
2146                 if (rwa->or_need_sync == ORNS_MAYBE)
2147                         rwa->or_need_sync = ORNS_YES;
2148         }
2149         if (next_err != ESRCH)
2150                 return (next_err);
2151         return (0);
2152 }
2153
2154 /*
2155  * Note: if this fails, the caller will clean up any records left on the
2156  * rwa->write_batch list.
2157  */
2158 static int
2159 flush_write_batch_impl(struct receive_writer_arg *rwa)
2160 {
2161         dnode_t *dn;
2162         int err;
2163
2164         if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2165                 return (SET_ERROR(EINVAL));
2166
2167         struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2168         struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2169
2170         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2171         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2172
2173         ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2174         ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2175
2176         dmu_tx_t *tx = dmu_tx_create(rwa->os);
2177         dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2178             last_drrw->drr_offset - first_drrw->drr_offset +
2179             last_drrw->drr_logical_size);
2180         err = dmu_tx_assign(tx, TXG_WAIT);
2181         if (err != 0) {
2182                 dmu_tx_abort(tx);
2183                 dnode_rele(dn, FTAG);
2184                 return (err);
2185         }
2186
2187         struct receive_record_arg *rrd;
2188         while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2189                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2190                 abd_t *abd = rrd->abd;
2191
2192                 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2193
2194                 if (drrw->drr_logical_size != dn->dn_datablksz) {
2195                         /*
2196                          * The WRITE record is larger than the object's block
2197                          * size.  We must be receiving an incremental
2198                          * large-block stream into a dataset that previously did
2199                          * a non-large-block receive.  Lightweight writes must
2200                          * be exactly one block, so we need to decompress the
2201                          * data (if compressed) and do a normal dmu_write().
2202                          */
2203                         ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2204                         if (DRR_WRITE_COMPRESSED(drrw)) {
2205                                 abd_t *decomp_abd =
2206                                     abd_alloc_linear(drrw->drr_logical_size,
2207                                     B_FALSE);
2208
2209                                 err = zio_decompress_data(
2210                                     drrw->drr_compressiontype,
2211                                     abd, abd_to_buf(decomp_abd),
2212                                     abd_get_size(abd),
2213                                     abd_get_size(decomp_abd), NULL);
2214
2215                                 if (err == 0) {
2216                                         dmu_write_by_dnode(dn,
2217                                             drrw->drr_offset,
2218                                             drrw->drr_logical_size,
2219                                             abd_to_buf(decomp_abd), tx);
2220                                 }
2221                                 abd_free(decomp_abd);
2222                         } else {
2223                                 dmu_write_by_dnode(dn,
2224                                     drrw->drr_offset,
2225                                     drrw->drr_logical_size,
2226                                     abd_to_buf(abd), tx);
2227                         }
2228                         if (err == 0)
2229                                 abd_free(abd);
2230                 } else {
2231                         zio_prop_t zp = {0};
2232                         dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2233
2234                         zio_flag_t zio_flags = 0;
2235
2236                         if (rwa->raw) {
2237                                 zp.zp_encrypt = B_TRUE;
2238                                 zp.zp_compress = drrw->drr_compressiontype;
2239                                 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2240                                     !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2241                                     rwa->byteswap;
2242                                 memcpy(zp.zp_salt, drrw->drr_salt,
2243                                     ZIO_DATA_SALT_LEN);
2244                                 memcpy(zp.zp_iv, drrw->drr_iv,
2245                                     ZIO_DATA_IV_LEN);
2246                                 memcpy(zp.zp_mac, drrw->drr_mac,
2247                                     ZIO_DATA_MAC_LEN);
2248                                 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2249                                         zp.zp_nopwrite = B_FALSE;
2250                                         zp.zp_copies = MIN(zp.zp_copies,
2251                                             SPA_DVAS_PER_BP - 1);
2252                                 }
2253                                 zio_flags |= ZIO_FLAG_RAW;
2254                         } else if (DRR_WRITE_COMPRESSED(drrw)) {
2255                                 ASSERT3U(drrw->drr_compressed_size, >, 0);
2256                                 ASSERT3U(drrw->drr_logical_size, >=,
2257                                     drrw->drr_compressed_size);
2258                                 zp.zp_compress = drrw->drr_compressiontype;
2259                                 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2260                         } else if (rwa->byteswap) {
2261                                 /*
2262                                  * Note: compressed blocks never need to be
2263                                  * byteswapped, because WRITE records for
2264                                  * metadata blocks are never compressed. The
2265                                  * exception is raw streams, which are written
2266                                  * in the original byteorder, and the byteorder
2267                                  * bit is preserved in the BP by setting
2268                                  * zp_byteorder above.
2269                                  */
2270                                 dmu_object_byteswap_t byteswap =
2271                                     DMU_OT_BYTESWAP(drrw->drr_type);
2272                                 dmu_ot_byteswap[byteswap].ob_func(
2273                                     abd_to_buf(abd),
2274                                     DRR_WRITE_PAYLOAD_SIZE(drrw));
2275                         }
2276
2277                         /*
2278                          * Since this data can't be read until the receive
2279                          * completes, we can do a "lightweight" write for
2280                          * improved performance.
2281                          */
2282                         err = dmu_lightweight_write_by_dnode(dn,
2283                             drrw->drr_offset, abd, &zp, zio_flags, tx);
2284                 }
2285
2286                 if (err != 0) {
2287                         /*
2288                          * This rrd is left on the list, so the caller will
2289                          * free it (and the abd).
2290                          */
2291                         break;
2292                 }
2293
2294                 /*
2295                  * Note: If the receive fails, we want the resume stream to
2296                  * start with the same record that we last successfully
2297                  * received (as opposed to the next record), so that we can
2298                  * verify that we are resuming from the correct location.
2299                  */
2300                 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2301
2302                 list_remove(&rwa->write_batch, rrd);
2303                 kmem_free(rrd, sizeof (*rrd));
2304         }
2305
2306         dmu_tx_commit(tx);
2307         dnode_rele(dn, FTAG);
2308         return (err);
2309 }
2310
2311 noinline static int
2312 flush_write_batch(struct receive_writer_arg *rwa)
2313 {
2314         if (list_is_empty(&rwa->write_batch))
2315                 return (0);
2316         int err = rwa->err;
2317         if (err == 0)
2318                 err = flush_write_batch_impl(rwa);
2319         if (err != 0) {
2320                 struct receive_record_arg *rrd;
2321                 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2322                         abd_free(rrd->abd);
2323                         kmem_free(rrd, sizeof (*rrd));
2324                 }
2325         }
2326         ASSERT(list_is_empty(&rwa->write_batch));
2327         return (err);
2328 }
2329
2330 noinline static int
2331 receive_process_write_record(struct receive_writer_arg *rwa,
2332     struct receive_record_arg *rrd)
2333 {
2334         int err = 0;
2335
2336         ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2337         struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2338
2339         if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2340             !DMU_OT_IS_VALID(drrw->drr_type))
2341                 return (SET_ERROR(EINVAL));
2342
2343         if (rwa->heal) {
2344                 blkptr_t *bp;
2345                 dmu_buf_t *dbp;
2346                 dnode_t *dn;
2347                 int flags = DB_RF_CANFAIL;
2348
2349                 if (rwa->raw)
2350                         flags |= DB_RF_NO_DECRYPT;
2351
2352                 if (rwa->byteswap) {
2353                         dmu_object_byteswap_t byteswap =
2354                             DMU_OT_BYTESWAP(drrw->drr_type);
2355                         dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2356                             DRR_WRITE_PAYLOAD_SIZE(drrw));
2357                 }
2358
2359                 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2360                     drrw->drr_offset, FTAG, &dbp);
2361                 if (err != 0)
2362                         return (err);
2363
2364                 /* Try to read the object to see if it needs healing */
2365                 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2366                 /*
2367                  * We only try to heal when dbuf_read() returns a ECKSUMs.
2368                  * Other errors (even EIO) get returned to caller.
2369                  * EIO indicates that the device is not present/accessible,
2370                  * so writing to it will likely fail.
2371                  * If the block is healthy, we don't want to overwrite it
2372                  * unnecessarily.
2373                  */
2374                 if (err != ECKSUM) {
2375                         dmu_buf_rele(dbp, FTAG);
2376                         return (err);
2377                 }
2378                 dn = dmu_buf_dnode_enter(dbp);
2379                 /* Make sure the on-disk block and recv record sizes match */
2380                 if (drrw->drr_logical_size !=
2381                     dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) {
2382                         err = ENOTSUP;
2383                         dmu_buf_dnode_exit(dbp);
2384                         dmu_buf_rele(dbp, FTAG);
2385                         return (err);
2386                 }
2387                 /* Get the block pointer for the corrupted block */
2388                 bp = dmu_buf_get_blkptr(dbp);
2389                 err = do_corrective_recv(rwa, drrw, rrd, bp);
2390                 dmu_buf_dnode_exit(dbp);
2391                 dmu_buf_rele(dbp, FTAG);
2392                 return (err);
2393         }
2394
2395         /*
2396          * For resuming to work, records must be in increasing order
2397          * by (object, offset).
2398          */
2399         if (drrw->drr_object < rwa->last_object ||
2400             (drrw->drr_object == rwa->last_object &&
2401             drrw->drr_offset < rwa->last_offset)) {
2402                 return (SET_ERROR(EINVAL));
2403         }
2404
2405         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2406         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2407         uint64_t batch_size =
2408             MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2409         if (first_rrd != NULL &&
2410             (drrw->drr_object != first_drrw->drr_object ||
2411             drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2412                 err = flush_write_batch(rwa);
2413                 if (err != 0)
2414                         return (err);
2415         }
2416
2417         rwa->last_object = drrw->drr_object;
2418         rwa->last_offset = drrw->drr_offset;
2419
2420         if (rwa->last_object > rwa->max_object)
2421                 rwa->max_object = rwa->last_object;
2422
2423         list_insert_tail(&rwa->write_batch, rrd);
2424         /*
2425          * Return EAGAIN to indicate that we will use this rrd again,
2426          * so the caller should not free it
2427          */
2428         return (EAGAIN);
2429 }
2430
2431 static int
2432 receive_write_embedded(struct receive_writer_arg *rwa,
2433     struct drr_write_embedded *drrwe, void *data)
2434 {
2435         dmu_tx_t *tx;
2436         int err;
2437
2438         if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2439                 return (SET_ERROR(EINVAL));
2440
2441         if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2442                 return (SET_ERROR(EINVAL));
2443
2444         if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2445                 return (SET_ERROR(EINVAL));
2446         if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2447                 return (SET_ERROR(EINVAL));
2448         if (rwa->raw)
2449                 return (SET_ERROR(EINVAL));
2450
2451         if (drrwe->drr_object > rwa->max_object)
2452                 rwa->max_object = drrwe->drr_object;
2453
2454         tx = dmu_tx_create(rwa->os);
2455
2456         dmu_tx_hold_write(tx, drrwe->drr_object,
2457             drrwe->drr_offset, drrwe->drr_length);
2458         err = dmu_tx_assign(tx, TXG_WAIT);
2459         if (err != 0) {
2460                 dmu_tx_abort(tx);
2461                 return (err);
2462         }
2463
2464         dmu_write_embedded(rwa->os, drrwe->drr_object,
2465             drrwe->drr_offset, data, drrwe->drr_etype,
2466             drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2467             rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2468
2469         /* See comment in restore_write. */
2470         save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2471         dmu_tx_commit(tx);
2472         return (0);
2473 }
2474
2475 static int
2476 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2477     abd_t *abd)
2478 {
2479         dmu_buf_t *db, *db_spill;
2480         int err;
2481
2482         if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2483             drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2484                 return (SET_ERROR(EINVAL));
2485
2486         /*
2487          * This is an unmodified spill block which was added to the stream
2488          * to resolve an issue with incorrectly removing spill blocks.  It
2489          * should be ignored by current versions of the code which support
2490          * the DRR_FLAG_SPILL_BLOCK flag.
2491          */
2492         if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2493                 abd_free(abd);
2494                 return (0);
2495         }
2496
2497         if (rwa->raw) {
2498                 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2499                     drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2500                     drrs->drr_compressed_size == 0)
2501                         return (SET_ERROR(EINVAL));
2502         }
2503
2504         if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2505                 return (SET_ERROR(EINVAL));
2506
2507         if (drrs->drr_object > rwa->max_object)
2508                 rwa->max_object = drrs->drr_object;
2509
2510         VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2511         if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2512             &db_spill)) != 0) {
2513                 dmu_buf_rele(db, FTAG);
2514                 return (err);
2515         }
2516
2517         dmu_tx_t *tx = dmu_tx_create(rwa->os);
2518
2519         dmu_tx_hold_spill(tx, db->db_object);
2520
2521         err = dmu_tx_assign(tx, TXG_WAIT);
2522         if (err != 0) {
2523                 dmu_buf_rele(db, FTAG);
2524                 dmu_buf_rele(db_spill, FTAG);
2525                 dmu_tx_abort(tx);
2526                 return (err);
2527         }
2528
2529         /*
2530          * Spill blocks may both grow and shrink.  When a change in size
2531          * occurs any existing dbuf must be updated to match the logical
2532          * size of the provided arc_buf_t.
2533          */
2534         if (db_spill->db_size != drrs->drr_length) {
2535                 dmu_buf_will_fill(db_spill, tx);
2536                 VERIFY0(dbuf_spill_set_blksz(db_spill,
2537                     drrs->drr_length, tx));
2538         }
2539
2540         arc_buf_t *abuf;
2541         if (rwa->raw) {
2542                 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2543                     !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2544                     rwa->byteswap;
2545
2546                 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2547                     drrs->drr_object, byteorder, drrs->drr_salt,
2548                     drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2549                     drrs->drr_compressed_size, drrs->drr_length,
2550                     drrs->drr_compressiontype, 0);
2551         } else {
2552                 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2553                     DMU_OT_IS_METADATA(drrs->drr_type),
2554                     drrs->drr_length);
2555                 if (rwa->byteswap) {
2556                         dmu_object_byteswap_t byteswap =
2557                             DMU_OT_BYTESWAP(drrs->drr_type);
2558                         dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2559                             DRR_SPILL_PAYLOAD_SIZE(drrs));
2560                 }
2561         }
2562
2563         memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2564         abd_free(abd);
2565         dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2566
2567         dmu_buf_rele(db, FTAG);
2568         dmu_buf_rele(db_spill, FTAG);
2569
2570         dmu_tx_commit(tx);
2571         return (0);
2572 }
2573
2574 noinline static int
2575 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2576 {
2577         int err;
2578
2579         if (drrf->drr_length != -1ULL &&
2580             drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2581                 return (SET_ERROR(EINVAL));
2582
2583         if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2584                 return (SET_ERROR(EINVAL));
2585
2586         if (drrf->drr_object > rwa->max_object)
2587                 rwa->max_object = drrf->drr_object;
2588
2589         err = dmu_free_long_range(rwa->os, drrf->drr_object,
2590             drrf->drr_offset, drrf->drr_length);
2591
2592         return (err);
2593 }
2594
2595 static int
2596 receive_object_range(struct receive_writer_arg *rwa,
2597     struct drr_object_range *drror)
2598 {
2599         /*
2600          * By default, we assume this block is in our native format
2601          * (ZFS_HOST_BYTEORDER). We then take into account whether
2602          * the send stream is byteswapped (rwa->byteswap). Finally,
2603          * we need to byteswap again if this particular block was
2604          * in non-native format on the send side.
2605          */
2606         boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2607             !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2608
2609         /*
2610          * Since dnode block sizes are constant, we should not need to worry
2611          * about making sure that the dnode block size is the same on the
2612          * sending and receiving sides for the time being. For non-raw sends,
2613          * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2614          * record at all). Raw sends require this record type because the
2615          * encryption parameters are used to protect an entire block of bonus
2616          * buffers. If the size of dnode blocks ever becomes variable,
2617          * handling will need to be added to ensure that dnode block sizes
2618          * match on the sending and receiving side.
2619          */
2620         if (drror->drr_numslots != DNODES_PER_BLOCK ||
2621             P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2622             !rwa->raw)
2623                 return (SET_ERROR(EINVAL));
2624
2625         if (drror->drr_firstobj > rwa->max_object)
2626                 rwa->max_object = drror->drr_firstobj;
2627
2628         /*
2629          * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2630          * so that the block of dnodes is not written out when it's empty,
2631          * and converted to a HOLE BP.
2632          */
2633         rwa->or_crypt_params_present = B_TRUE;
2634         rwa->or_firstobj = drror->drr_firstobj;
2635         rwa->or_numslots = drror->drr_numslots;
2636         memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2637         memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2638         memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2639         rwa->or_byteorder = byteorder;
2640
2641         rwa->or_need_sync = ORNS_MAYBE;
2642
2643         return (0);
2644 }
2645
2646 /*
2647  * Until we have the ability to redact large ranges of data efficiently, we
2648  * process these records as frees.
2649  */
2650 noinline static int
2651 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2652 {
2653         struct drr_free drrf = {0};
2654         drrf.drr_length = drrr->drr_length;
2655         drrf.drr_object = drrr->drr_object;
2656         drrf.drr_offset = drrr->drr_offset;
2657         drrf.drr_toguid = drrr->drr_toguid;
2658         return (receive_free(rwa, &drrf));
2659 }
2660
2661 /* used to destroy the drc_ds on error */
2662 static void
2663 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2664 {
2665         dsl_dataset_t *ds = drc->drc_ds;
2666         ds_hold_flags_t dsflags;
2667
2668         dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2669         /*
2670          * Wait for the txg sync before cleaning up the receive. For
2671          * resumable receives, this ensures that our resume state has
2672          * been written out to disk. For raw receives, this ensures
2673          * that the user accounting code will not attempt to do anything
2674          * after we stopped receiving the dataset.
2675          */
2676         txg_wait_synced(ds->ds_dir->dd_pool, 0);
2677         ds->ds_objset->os_raw_receive = B_FALSE;
2678
2679         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2680         if (drc->drc_resumable && drc->drc_should_save &&
2681             !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2682                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2683                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2684         } else {
2685                 char name[ZFS_MAX_DATASET_NAME_LEN];
2686                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2687                 dsl_dataset_name(ds, name);
2688                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2689                 if (!drc->drc_heal)
2690                         (void) dsl_destroy_head(name);
2691         }
2692 }
2693
2694 static void
2695 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2696 {
2697         if (drc->drc_byteswap) {
2698                 (void) fletcher_4_incremental_byteswap(buf, len,
2699                     &drc->drc_cksum);
2700         } else {
2701                 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2702         }
2703 }
2704
2705 /*
2706  * Read the payload into a buffer of size len, and update the current record's
2707  * payload field.
2708  * Allocate drc->drc_next_rrd and read the next record's header into
2709  * drc->drc_next_rrd->header.
2710  * Verify checksum of payload and next record.
2711  */
2712 static int
2713 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2714 {
2715         int err;
2716
2717         if (len != 0) {
2718                 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2719                 err = receive_read(drc, len, buf);
2720                 if (err != 0)
2721                         return (err);
2722                 receive_cksum(drc, len, buf);
2723
2724                 /* note: rrd is NULL when reading the begin record's payload */
2725                 if (drc->drc_rrd != NULL) {
2726                         drc->drc_rrd->payload = buf;
2727                         drc->drc_rrd->payload_size = len;
2728                         drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2729                 }
2730         } else {
2731                 ASSERT3P(buf, ==, NULL);
2732         }
2733
2734         drc->drc_prev_cksum = drc->drc_cksum;
2735
2736         drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2737         err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2738             &drc->drc_next_rrd->header);
2739         drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2740
2741         if (err != 0) {
2742                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2743                 drc->drc_next_rrd = NULL;
2744                 return (err);
2745         }
2746         if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2747                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2748                 drc->drc_next_rrd = NULL;
2749                 return (SET_ERROR(EINVAL));
2750         }
2751
2752         /*
2753          * Note: checksum is of everything up to but not including the
2754          * checksum itself.
2755          */
2756         ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2757             ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2758         receive_cksum(drc,
2759             offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2760             &drc->drc_next_rrd->header);
2761
2762         zio_cksum_t cksum_orig =
2763             drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2764         zio_cksum_t *cksump =
2765             &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2766
2767         if (drc->drc_byteswap)
2768                 byteswap_record(&drc->drc_next_rrd->header);
2769
2770         if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2771             !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2772                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2773                 drc->drc_next_rrd = NULL;
2774                 return (SET_ERROR(ECKSUM));
2775         }
2776
2777         receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2778
2779         return (0);
2780 }
2781
2782 /*
2783  * Issue the prefetch reads for any necessary indirect blocks.
2784  *
2785  * We use the object ignore list to tell us whether or not to issue prefetches
2786  * for a given object.  We do this for both correctness (in case the blocksize
2787  * of an object has changed) and performance (if the object doesn't exist, don't
2788  * needlessly try to issue prefetches).  We also trim the list as we go through
2789  * the stream to prevent it from growing to an unbounded size.
2790  *
2791  * The object numbers within will always be in sorted order, and any write
2792  * records we see will also be in sorted order, but they're not sorted with
2793  * respect to each other (i.e. we can get several object records before
2794  * receiving each object's write records).  As a result, once we've reached a
2795  * given object number, we can safely remove any reference to lower object
2796  * numbers in the ignore list. In practice, we receive up to 32 object records
2797  * before receiving write records, so the list can have up to 32 nodes in it.
2798  */
2799 static void
2800 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2801     uint64_t length)
2802 {
2803         if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2804                 dmu_prefetch(drc->drc_os, object, 1, offset, length,
2805                     ZIO_PRIORITY_SYNC_READ);
2806         }
2807 }
2808
2809 /*
2810  * Read records off the stream, issuing any necessary prefetches.
2811  */
2812 static int
2813 receive_read_record(dmu_recv_cookie_t *drc)
2814 {
2815         int err;
2816
2817         switch (drc->drc_rrd->header.drr_type) {
2818         case DRR_OBJECT:
2819         {
2820                 struct drr_object *drro =
2821                     &drc->drc_rrd->header.drr_u.drr_object;
2822                 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2823                 void *buf = NULL;
2824                 dmu_object_info_t doi;
2825
2826                 if (size != 0)
2827                         buf = kmem_zalloc(size, KM_SLEEP);
2828
2829                 err = receive_read_payload_and_next_header(drc, size, buf);
2830                 if (err != 0) {
2831                         kmem_free(buf, size);
2832                         return (err);
2833                 }
2834                 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2835                 /*
2836                  * See receive_read_prefetch for an explanation why we're
2837                  * storing this object in the ignore_obj_list.
2838                  */
2839                 if (err == ENOENT || err == EEXIST ||
2840                     (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2841                         objlist_insert(drc->drc_ignore_objlist,
2842                             drro->drr_object);
2843                         err = 0;
2844                 }
2845                 return (err);
2846         }
2847         case DRR_FREEOBJECTS:
2848         {
2849                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2850                 return (err);
2851         }
2852         case DRR_WRITE:
2853         {
2854                 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2855                 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2856                 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2857                 err = receive_read_payload_and_next_header(drc, size,
2858                     abd_to_buf(abd));
2859                 if (err != 0) {
2860                         abd_free(abd);
2861                         return (err);
2862                 }
2863                 drc->drc_rrd->abd = abd;
2864                 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2865                     drrw->drr_logical_size);
2866                 return (err);
2867         }
2868         case DRR_WRITE_EMBEDDED:
2869         {
2870                 struct drr_write_embedded *drrwe =
2871                     &drc->drc_rrd->header.drr_u.drr_write_embedded;
2872                 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2873                 void *buf = kmem_zalloc(size, KM_SLEEP);
2874
2875                 err = receive_read_payload_and_next_header(drc, size, buf);
2876                 if (err != 0) {
2877                         kmem_free(buf, size);
2878                         return (err);
2879                 }
2880
2881                 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2882                     drrwe->drr_length);
2883                 return (err);
2884         }
2885         case DRR_FREE:
2886         case DRR_REDACT:
2887         {
2888                 /*
2889                  * It might be beneficial to prefetch indirect blocks here, but
2890                  * we don't really have the data to decide for sure.
2891                  */
2892                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2893                 return (err);
2894         }
2895         case DRR_END:
2896         {
2897                 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2898                 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2899                     drre->drr_checksum))
2900                         return (SET_ERROR(ECKSUM));
2901                 return (0);
2902         }
2903         case DRR_SPILL:
2904         {
2905                 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2906                 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2907                 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2908                 err = receive_read_payload_and_next_header(drc, size,
2909                     abd_to_buf(abd));
2910                 if (err != 0)
2911                         abd_free(abd);
2912                 else
2913                         drc->drc_rrd->abd = abd;
2914                 return (err);
2915         }
2916         case DRR_OBJECT_RANGE:
2917         {
2918                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2919                 return (err);
2920
2921         }
2922         default:
2923                 return (SET_ERROR(EINVAL));
2924         }
2925 }
2926
2927
2928
2929 static void
2930 dprintf_drr(struct receive_record_arg *rrd, int err)
2931 {
2932 #ifdef ZFS_DEBUG
2933         switch (rrd->header.drr_type) {
2934         case DRR_OBJECT:
2935         {
2936                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2937                 dprintf("drr_type = OBJECT obj = %llu type = %u "
2938                     "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2939                     "compress = %u dn_slots = %u err = %d\n",
2940                     (u_longlong_t)drro->drr_object, drro->drr_type,
2941                     drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2942                     drro->drr_checksumtype, drro->drr_compress,
2943                     drro->drr_dn_slots, err);
2944                 break;
2945         }
2946         case DRR_FREEOBJECTS:
2947         {
2948                 struct drr_freeobjects *drrfo =
2949                     &rrd->header.drr_u.drr_freeobjects;
2950                 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2951                     "numobjs = %llu err = %d\n",
2952                     (u_longlong_t)drrfo->drr_firstobj,
2953                     (u_longlong_t)drrfo->drr_numobjs, err);
2954                 break;
2955         }
2956         case DRR_WRITE:
2957         {
2958                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2959                 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2960                     "lsize = %llu cksumtype = %u flags = %u "
2961                     "compress = %u psize = %llu err = %d\n",
2962                     (u_longlong_t)drrw->drr_object, drrw->drr_type,
2963                     (u_longlong_t)drrw->drr_offset,
2964                     (u_longlong_t)drrw->drr_logical_size,
2965                     drrw->drr_checksumtype, drrw->drr_flags,
2966                     drrw->drr_compressiontype,
2967                     (u_longlong_t)drrw->drr_compressed_size, err);
2968                 break;
2969         }
2970         case DRR_WRITE_BYREF:
2971         {
2972                 struct drr_write_byref *drrwbr =
2973                     &rrd->header.drr_u.drr_write_byref;
2974                 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2975                     "length = %llu toguid = %llx refguid = %llx "
2976                     "refobject = %llu refoffset = %llu cksumtype = %u "
2977                     "flags = %u err = %d\n",
2978                     (u_longlong_t)drrwbr->drr_object,
2979                     (u_longlong_t)drrwbr->drr_offset,
2980                     (u_longlong_t)drrwbr->drr_length,
2981                     (u_longlong_t)drrwbr->drr_toguid,
2982                     (u_longlong_t)drrwbr->drr_refguid,
2983                     (u_longlong_t)drrwbr->drr_refobject,
2984                     (u_longlong_t)drrwbr->drr_refoffset,
2985                     drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2986                 break;
2987         }
2988         case DRR_WRITE_EMBEDDED:
2989         {
2990                 struct drr_write_embedded *drrwe =
2991                     &rrd->header.drr_u.drr_write_embedded;
2992                 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2993                     "length = %llu compress = %u etype = %u lsize = %u "
2994                     "psize = %u err = %d\n",
2995                     (u_longlong_t)drrwe->drr_object,
2996                     (u_longlong_t)drrwe->drr_offset,
2997                     (u_longlong_t)drrwe->drr_length,
2998                     drrwe->drr_compression, drrwe->drr_etype,
2999                     drrwe->drr_lsize, drrwe->drr_psize, err);
3000                 break;
3001         }
3002         case DRR_FREE:
3003         {
3004                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3005                 dprintf("drr_type = FREE obj = %llu offset = %llu "
3006                     "length = %lld err = %d\n",
3007                     (u_longlong_t)drrf->drr_object,
3008                     (u_longlong_t)drrf->drr_offset,
3009                     (longlong_t)drrf->drr_length,
3010                     err);
3011                 break;
3012         }
3013         case DRR_SPILL:
3014         {
3015                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3016                 dprintf("drr_type = SPILL obj = %llu length = %llu "
3017                     "err = %d\n", (u_longlong_t)drrs->drr_object,
3018                     (u_longlong_t)drrs->drr_length, err);
3019                 break;
3020         }
3021         case DRR_OBJECT_RANGE:
3022         {
3023                 struct drr_object_range *drror =
3024                     &rrd->header.drr_u.drr_object_range;
3025                 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3026                     "numslots = %llu flags = %u err = %d\n",
3027                     (u_longlong_t)drror->drr_firstobj,
3028                     (u_longlong_t)drror->drr_numslots,
3029                     drror->drr_flags, err);
3030                 break;
3031         }
3032         default:
3033                 return;
3034         }
3035 #endif
3036 }
3037
3038 /*
3039  * Commit the records to the pool.
3040  */
3041 static int
3042 receive_process_record(struct receive_writer_arg *rwa,
3043     struct receive_record_arg *rrd)
3044 {
3045         int err;
3046
3047         /* Processing in order, therefore bytes_read should be increasing. */
3048         ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3049         rwa->bytes_read = rrd->bytes_read;
3050
3051         /* We can only heal write records; other ones get ignored */
3052         if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3053                 if (rrd->abd != NULL) {
3054                         abd_free(rrd->abd);
3055                         rrd->abd = NULL;
3056                 } else if (rrd->payload != NULL) {
3057                         kmem_free(rrd->payload, rrd->payload_size);
3058                         rrd->payload = NULL;
3059                 }
3060                 return (0);
3061         }
3062
3063         if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3064                 err = flush_write_batch(rwa);
3065                 if (err != 0) {
3066                         if (rrd->abd != NULL) {
3067                                 abd_free(rrd->abd);
3068                                 rrd->abd = NULL;
3069                                 rrd->payload = NULL;
3070                         } else if (rrd->payload != NULL) {
3071                                 kmem_free(rrd->payload, rrd->payload_size);
3072                                 rrd->payload = NULL;
3073                         }
3074
3075                         return (err);
3076                 }
3077         }
3078
3079         switch (rrd->header.drr_type) {
3080         case DRR_OBJECT:
3081         {
3082                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
3083                 err = receive_object(rwa, drro, rrd->payload);
3084                 kmem_free(rrd->payload, rrd->payload_size);
3085                 rrd->payload = NULL;
3086                 break;
3087         }
3088         case DRR_FREEOBJECTS:
3089         {
3090                 struct drr_freeobjects *drrfo =
3091                     &rrd->header.drr_u.drr_freeobjects;
3092                 err = receive_freeobjects(rwa, drrfo);
3093                 break;
3094         }
3095         case DRR_WRITE:
3096         {
3097                 err = receive_process_write_record(rwa, rrd);
3098                 if (rwa->heal) {
3099                         /*
3100                          * If healing - always free the abd after processing
3101                          */
3102                         abd_free(rrd->abd);
3103                         rrd->abd = NULL;
3104                 } else if (err != EAGAIN) {
3105                         /*
3106                          * On success, a non-healing
3107                          * receive_process_write_record() returns
3108                          * EAGAIN to indicate that we do not want to free
3109                          * the rrd or arc_buf.
3110                          */
3111                         ASSERT(err != 0);
3112                         abd_free(rrd->abd);
3113                         rrd->abd = NULL;
3114                 }
3115                 break;
3116         }
3117         case DRR_WRITE_EMBEDDED:
3118         {
3119                 struct drr_write_embedded *drrwe =
3120                     &rrd->header.drr_u.drr_write_embedded;
3121                 err = receive_write_embedded(rwa, drrwe, rrd->payload);
3122                 kmem_free(rrd->payload, rrd->payload_size);
3123                 rrd->payload = NULL;
3124                 break;
3125         }
3126         case DRR_FREE:
3127         {
3128                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3129                 err = receive_free(rwa, drrf);
3130                 break;
3131         }
3132         case DRR_SPILL:
3133         {
3134                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3135                 err = receive_spill(rwa, drrs, rrd->abd);
3136                 if (err != 0)
3137                         abd_free(rrd->abd);
3138                 rrd->abd = NULL;
3139                 rrd->payload = NULL;
3140                 break;
3141         }
3142         case DRR_OBJECT_RANGE:
3143         {
3144                 struct drr_object_range *drror =
3145                     &rrd->header.drr_u.drr_object_range;
3146                 err = receive_object_range(rwa, drror);
3147                 break;
3148         }
3149         case DRR_REDACT:
3150         {
3151                 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3152                 err = receive_redact(rwa, drrr);
3153                 break;
3154         }
3155         default:
3156                 err = (SET_ERROR(EINVAL));
3157         }
3158
3159         if (err != 0)
3160                 dprintf_drr(rrd, err);
3161
3162         return (err);
3163 }
3164
3165 /*
3166  * dmu_recv_stream's worker thread; pull records off the queue, and then call
3167  * receive_process_record  When we're done, signal the main thread and exit.
3168  */
3169 static __attribute__((noreturn)) void
3170 receive_writer_thread(void *arg)
3171 {
3172         struct receive_writer_arg *rwa = arg;
3173         struct receive_record_arg *rrd;
3174         fstrans_cookie_t cookie = spl_fstrans_mark();
3175
3176         for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3177             rrd = bqueue_dequeue(&rwa->q)) {
3178                 /*
3179                  * If there's an error, the main thread will stop putting things
3180                  * on the queue, but we need to clear everything in it before we
3181                  * can exit.
3182                  */
3183                 int err = 0;
3184                 if (rwa->err == 0) {
3185                         err = receive_process_record(rwa, rrd);
3186                 } else if (rrd->abd != NULL) {
3187                         abd_free(rrd->abd);
3188                         rrd->abd = NULL;
3189                         rrd->payload = NULL;
3190                 } else if (rrd->payload != NULL) {
3191                         kmem_free(rrd->payload, rrd->payload_size);
3192                         rrd->payload = NULL;
3193                 }
3194                 /*
3195                  * EAGAIN indicates that this record has been saved (on
3196                  * raw->write_batch), and will be used again, so we don't
3197                  * free it.
3198                  * When healing data we always need to free the record.
3199                  */
3200                 if (err != EAGAIN || rwa->heal) {
3201                         if (rwa->err == 0)
3202                                 rwa->err = err;
3203                         kmem_free(rrd, sizeof (*rrd));
3204                 }
3205         }
3206         kmem_free(rrd, sizeof (*rrd));
3207
3208         if (rwa->heal) {
3209                 zio_wait(rwa->heal_pio);
3210         } else {
3211                 int err = flush_write_batch(rwa);
3212                 if (rwa->err == 0)
3213                         rwa->err = err;
3214         }
3215         mutex_enter(&rwa->mutex);
3216         rwa->done = B_TRUE;
3217         cv_signal(&rwa->cv);
3218         mutex_exit(&rwa->mutex);
3219         spl_fstrans_unmark(cookie);
3220         thread_exit();
3221 }
3222
3223 static int
3224 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3225 {
3226         uint64_t val;
3227         objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3228         uint64_t dsobj = dmu_objset_id(drc->drc_os);
3229         uint64_t resume_obj, resume_off;
3230
3231         if (nvlist_lookup_uint64(begin_nvl,
3232             "resume_object", &resume_obj) != 0 ||
3233             nvlist_lookup_uint64(begin_nvl,
3234             "resume_offset", &resume_off) != 0) {
3235                 return (SET_ERROR(EINVAL));
3236         }
3237         VERIFY0(zap_lookup(mos, dsobj,
3238             DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3239         if (resume_obj != val)
3240                 return (SET_ERROR(EINVAL));
3241         VERIFY0(zap_lookup(mos, dsobj,
3242             DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3243         if (resume_off != val)
3244                 return (SET_ERROR(EINVAL));
3245
3246         return (0);
3247 }
3248
3249 /*
3250  * Read in the stream's records, one by one, and apply them to the pool.  There
3251  * are two threads involved; the thread that calls this function will spin up a
3252  * worker thread, read the records off the stream one by one, and issue
3253  * prefetches for any necessary indirect blocks.  It will then push the records
3254  * onto an internal blocking queue.  The worker thread will pull the records off
3255  * the queue, and actually write the data into the DMU.  This way, the worker
3256  * thread doesn't have to wait for reads to complete, since everything it needs
3257  * (the indirect blocks) will be prefetched.
3258  *
3259  * NB: callers *must* call dmu_recv_end() if this succeeds.
3260  */
3261 int
3262 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3263 {
3264         int err = 0;
3265         struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3266
3267         if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3268                 uint64_t bytes = 0;
3269                 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3270                     drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3271                     sizeof (bytes), 1, &bytes);
3272                 drc->drc_bytes_read += bytes;
3273         }
3274
3275         drc->drc_ignore_objlist = objlist_create();
3276
3277         /* these were verified in dmu_recv_begin */
3278         ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3279             DMU_SUBSTREAM);
3280         ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3281
3282         ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3283         ASSERT0(drc->drc_os->os_encrypted &&
3284             (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3285
3286         /* handle DSL encryption key payload */
3287         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3288                 nvlist_t *keynvl = NULL;
3289
3290                 ASSERT(drc->drc_os->os_encrypted);
3291                 ASSERT(drc->drc_raw);
3292
3293                 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3294                     &keynvl);
3295                 if (err != 0)
3296                         goto out;
3297
3298                 if (!drc->drc_heal) {
3299                         /*
3300                          * If this is a new dataset we set the key immediately.
3301                          * Otherwise we don't want to change the key until we
3302                          * are sure the rest of the receive succeeded so we
3303                          * stash the keynvl away until then.
3304                          */
3305                         err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3306                             drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3307                             drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3308                         if (err != 0)
3309                                 goto out;
3310                 }
3311
3312                 /* see comment in dmu_recv_end_sync() */
3313                 drc->drc_ivset_guid = 0;
3314                 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3315                     &drc->drc_ivset_guid);
3316
3317                 if (!drc->drc_newfs)
3318                         drc->drc_keynvl = fnvlist_dup(keynvl);
3319         }
3320
3321         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3322                 err = resume_check(drc, drc->drc_begin_nvl);
3323                 if (err != 0)
3324                         goto out;
3325         }
3326
3327         /*
3328          * For compatibility with recursive send streams, we do this here,
3329          * rather than in dmu_recv_begin. If we pull the next header too
3330          * early, and it's the END record, we break the `recv_skip` logic.
3331          */
3332         if (drc->drc_drr_begin->drr_payloadlen == 0) {
3333                 err = receive_read_payload_and_next_header(drc, 0, NULL);
3334                 if (err != 0)
3335                         goto out;
3336         }
3337
3338         /*
3339          * If we failed before this point we will clean up any new resume
3340          * state that was created. Now that we've gotten past the initial
3341          * checks we are ok to retain that resume state.
3342          */
3343         drc->drc_should_save = B_TRUE;
3344
3345         (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3346             MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3347             offsetof(struct receive_record_arg, node));
3348         cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3349         mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3350         rwa->os = drc->drc_os;
3351         rwa->byteswap = drc->drc_byteswap;
3352         rwa->heal = drc->drc_heal;
3353         rwa->tofs = drc->drc_tofs;
3354         rwa->resumable = drc->drc_resumable;
3355         rwa->raw = drc->drc_raw;
3356         rwa->spill = drc->drc_spill;
3357         rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3358         rwa->os->os_raw_receive = drc->drc_raw;
3359         if (drc->drc_heal) {
3360                 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3361                     ZIO_FLAG_GODFATHER);
3362         }
3363         list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3364             offsetof(struct receive_record_arg, node.bqn_node));
3365
3366         (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3367             TS_RUN, minclsyspri);
3368         /*
3369          * We're reading rwa->err without locks, which is safe since we are the
3370          * only reader, and the worker thread is the only writer.  It's ok if we
3371          * miss a write for an iteration or two of the loop, since the writer
3372          * thread will keep freeing records we send it until we send it an eos
3373          * marker.
3374          *
3375          * We can leave this loop in 3 ways:  First, if rwa->err is
3376          * non-zero.  In that case, the writer thread will free the rrd we just
3377          * pushed.  Second, if  we're interrupted; in that case, either it's the
3378          * first loop and drc->drc_rrd was never allocated, or it's later, and
3379          * drc->drc_rrd has been handed off to the writer thread who will free
3380          * it.  Finally, if receive_read_record fails or we're at the end of the
3381          * stream, then we free drc->drc_rrd and exit.
3382          */
3383         while (rwa->err == 0) {
3384                 if (issig(JUSTLOOKING) && issig(FORREAL)) {
3385                         err = SET_ERROR(EINTR);
3386                         break;
3387                 }
3388
3389                 ASSERT3P(drc->drc_rrd, ==, NULL);
3390                 drc->drc_rrd = drc->drc_next_rrd;
3391                 drc->drc_next_rrd = NULL;
3392                 /* Allocates and loads header into drc->drc_next_rrd */
3393                 err = receive_read_record(drc);
3394
3395                 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3396                         kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3397                         drc->drc_rrd = NULL;
3398                         break;
3399                 }
3400
3401                 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3402                     sizeof (struct receive_record_arg) +
3403                     drc->drc_rrd->payload_size);
3404                 drc->drc_rrd = NULL;
3405         }
3406
3407         ASSERT3P(drc->drc_rrd, ==, NULL);
3408         drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3409         drc->drc_rrd->eos_marker = B_TRUE;
3410         bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3411
3412         mutex_enter(&rwa->mutex);
3413         while (!rwa->done) {
3414                 /*
3415                  * We need to use cv_wait_sig() so that any process that may
3416                  * be sleeping here can still fork.
3417                  */
3418                 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3419         }
3420         mutex_exit(&rwa->mutex);
3421
3422         /*
3423          * If we are receiving a full stream as a clone, all object IDs which
3424          * are greater than the maximum ID referenced in the stream are
3425          * by definition unused and must be freed.
3426          */
3427         if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3428                 uint64_t obj = rwa->max_object + 1;
3429                 int free_err = 0;
3430                 int next_err = 0;
3431
3432                 while (next_err == 0) {
3433                         free_err = dmu_free_long_object(rwa->os, obj);
3434                         if (free_err != 0 && free_err != ENOENT)
3435                                 break;
3436
3437                         next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3438                 }
3439
3440                 if (err == 0) {
3441                         if (free_err != 0 && free_err != ENOENT)
3442                                 err = free_err;
3443                         else if (next_err != ESRCH)
3444                                 err = next_err;
3445                 }
3446         }
3447
3448         cv_destroy(&rwa->cv);
3449         mutex_destroy(&rwa->mutex);
3450         bqueue_destroy(&rwa->q);
3451         list_destroy(&rwa->write_batch);
3452         if (err == 0)
3453                 err = rwa->err;
3454
3455 out:
3456         /*
3457          * If we hit an error before we started the receive_writer_thread
3458          * we need to clean up the next_rrd we create by processing the
3459          * DRR_BEGIN record.
3460          */
3461         if (drc->drc_next_rrd != NULL)
3462                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3463
3464         /*
3465          * The objset will be invalidated by dmu_recv_end() when we do
3466          * dsl_dataset_clone_swap_sync_impl().
3467          */
3468         drc->drc_os = NULL;
3469
3470         kmem_free(rwa, sizeof (*rwa));
3471         nvlist_free(drc->drc_begin_nvl);
3472
3473         if (err != 0) {
3474                 /*
3475                  * Clean up references. If receive is not resumable,
3476                  * destroy what we created, so we don't leave it in
3477                  * the inconsistent state.
3478                  */
3479                 dmu_recv_cleanup_ds(drc);
3480                 nvlist_free(drc->drc_keynvl);
3481         }
3482
3483         objlist_destroy(drc->drc_ignore_objlist);
3484         drc->drc_ignore_objlist = NULL;
3485         *voffp = drc->drc_voff;
3486         return (err);
3487 }
3488
3489 static int
3490 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3491 {
3492         dmu_recv_cookie_t *drc = arg;
3493         dsl_pool_t *dp = dmu_tx_pool(tx);
3494         int error;
3495
3496         ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3497
3498         if (drc->drc_heal) {
3499                 error = 0;
3500         } else if (!drc->drc_newfs) {
3501                 dsl_dataset_t *origin_head;
3502
3503                 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3504                 if (error != 0)
3505                         return (error);
3506                 if (drc->drc_force) {
3507                         /*
3508                          * We will destroy any snapshots in tofs (i.e. before
3509                          * origin_head) that are after the origin (which is
3510                          * the snap before drc_ds, because drc_ds can not
3511                          * have any snaps of its own).
3512                          */
3513                         uint64_t obj;
3514
3515                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3516                         while (obj !=
3517                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3518                                 dsl_dataset_t *snap;
3519                                 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3520                                     &snap);
3521                                 if (error != 0)
3522                                         break;
3523                                 if (snap->ds_dir != origin_head->ds_dir)
3524                                         error = SET_ERROR(EINVAL);
3525                                 if (error == 0)  {
3526                                         error = dsl_destroy_snapshot_check_impl(
3527                                             snap, B_FALSE);
3528                                 }
3529                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3530                                 dsl_dataset_rele(snap, FTAG);
3531                                 if (error != 0)
3532                                         break;
3533                         }
3534                         if (error != 0) {
3535                                 dsl_dataset_rele(origin_head, FTAG);
3536                                 return (error);
3537                         }
3538                 }
3539                 if (drc->drc_keynvl != NULL) {
3540                         error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3541                             drc->drc_keynvl, tx);
3542                         if (error != 0) {
3543                                 dsl_dataset_rele(origin_head, FTAG);
3544                                 return (error);
3545                         }
3546                 }
3547
3548                 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3549                     origin_head, drc->drc_force, drc->drc_owner, tx);
3550                 if (error != 0) {
3551                         dsl_dataset_rele(origin_head, FTAG);
3552                         return (error);
3553                 }
3554                 error = dsl_dataset_snapshot_check_impl(origin_head,
3555                     drc->drc_tosnap, tx, B_TRUE, 1,
3556                     drc->drc_cred, drc->drc_proc);
3557                 dsl_dataset_rele(origin_head, FTAG);
3558                 if (error != 0)
3559                         return (error);
3560
3561                 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3562         } else {
3563                 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3564                     drc->drc_tosnap, tx, B_TRUE, 1,
3565                     drc->drc_cred, drc->drc_proc);
3566         }
3567         return (error);
3568 }
3569
3570 static void
3571 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3572 {
3573         dmu_recv_cookie_t *drc = arg;
3574         dsl_pool_t *dp = dmu_tx_pool(tx);
3575         boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3576         uint64_t newsnapobj = 0;
3577
3578         spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3579             tx, "snap=%s", drc->drc_tosnap);
3580         drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3581
3582         if (drc->drc_heal) {
3583                 if (drc->drc_keynvl != NULL) {
3584                         nvlist_free(drc->drc_keynvl);
3585                         drc->drc_keynvl = NULL;
3586                 }
3587         } else if (!drc->drc_newfs) {
3588                 dsl_dataset_t *origin_head;
3589
3590                 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3591                     &origin_head));
3592
3593                 if (drc->drc_force) {
3594                         /*
3595                          * Destroy any snapshots of drc_tofs (origin_head)
3596                          * after the origin (the snap before drc_ds).
3597                          */
3598                         uint64_t obj;
3599
3600                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3601                         while (obj !=
3602                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3603                                 dsl_dataset_t *snap;
3604                                 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3605                                     &snap));
3606                                 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3607                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3608                                 dsl_destroy_snapshot_sync_impl(snap,
3609                                     B_FALSE, tx);
3610                                 dsl_dataset_rele(snap, FTAG);
3611                         }
3612                 }
3613                 if (drc->drc_keynvl != NULL) {
3614                         dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3615                             drc->drc_keynvl, tx);
3616                         nvlist_free(drc->drc_keynvl);
3617                         drc->drc_keynvl = NULL;
3618                 }
3619
3620                 VERIFY3P(drc->drc_ds->ds_prev, ==,
3621                     origin_head->ds_prev);
3622
3623                 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3624                     origin_head, tx);
3625                 /*
3626                  * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3627                  * so drc_os is no longer valid.
3628                  */
3629                 drc->drc_os = NULL;
3630
3631                 dsl_dataset_snapshot_sync_impl(origin_head,
3632                     drc->drc_tosnap, tx);
3633
3634                 /* set snapshot's creation time and guid */
3635                 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3636                 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3637                     drc->drc_drrb->drr_creation_time;
3638                 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3639                     drc->drc_drrb->drr_toguid;
3640                 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3641                     ~DS_FLAG_INCONSISTENT;
3642
3643                 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3644                 dsl_dataset_phys(origin_head)->ds_flags &=
3645                     ~DS_FLAG_INCONSISTENT;
3646
3647                 newsnapobj =
3648                     dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3649
3650                 dsl_dataset_rele(origin_head, FTAG);
3651                 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3652
3653                 if (drc->drc_owner != NULL)
3654                         VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3655         } else {
3656                 dsl_dataset_t *ds = drc->drc_ds;
3657
3658                 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3659
3660                 /* set snapshot's creation time and guid */
3661                 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3662                 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3663                     drc->drc_drrb->drr_creation_time;
3664                 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3665                     drc->drc_drrb->drr_toguid;
3666                 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3667                     ~DS_FLAG_INCONSISTENT;
3668
3669                 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3670                 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3671                 if (dsl_dataset_has_resume_receive_state(ds)) {
3672                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3673                             DS_FIELD_RESUME_FROMGUID, tx);
3674                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3675                             DS_FIELD_RESUME_OBJECT, tx);
3676                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3677                             DS_FIELD_RESUME_OFFSET, tx);
3678                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3679                             DS_FIELD_RESUME_BYTES, tx);
3680                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3681                             DS_FIELD_RESUME_TOGUID, tx);
3682                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3683                             DS_FIELD_RESUME_TONAME, tx);
3684                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3685                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3686                 }
3687                 newsnapobj =
3688                     dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3689         }
3690
3691         /*
3692          * If this is a raw receive, the crypt_keydata nvlist will include
3693          * a to_ivset_guid for us to set on the new snapshot. This value
3694          * will override the value generated by the snapshot code. However,
3695          * this value may not be present, because older implementations of
3696          * the raw send code did not include this value, and we are still
3697          * allowed to receive them if the zfs_disable_ivset_guid_check
3698          * tunable is set, in which case we will leave the newly-generated
3699          * value.
3700          */
3701         if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3702                 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3703                     DMU_OT_DSL_DATASET, tx);
3704                 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3705                     DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3706                     &drc->drc_ivset_guid, tx));
3707         }
3708
3709         /*
3710          * Release the hold from dmu_recv_begin.  This must be done before
3711          * we return to open context, so that when we free the dataset's dnode
3712          * we can evict its bonus buffer. Since the dataset may be destroyed
3713          * at this point (and therefore won't have a valid pointer to the spa)
3714          * we release the key mapping manually here while we do have a valid
3715          * pointer, if it exists.
3716          */
3717         if (!drc->drc_raw && encrypted) {
3718                 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3719                     drc->drc_ds->ds_object, drc->drc_ds);
3720         }
3721         dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3722         drc->drc_ds = NULL;
3723 }
3724
3725 static int dmu_recv_end_modified_blocks = 3;
3726
3727 static int
3728 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3729 {
3730 #ifdef _KERNEL
3731         /*
3732          * We will be destroying the ds; make sure its origin is unmounted if
3733          * necessary.
3734          */
3735         char name[ZFS_MAX_DATASET_NAME_LEN];
3736         dsl_dataset_name(drc->drc_ds, name);
3737         zfs_destroy_unmount_origin(name);
3738 #endif
3739
3740         return (dsl_sync_task(drc->drc_tofs,
3741             dmu_recv_end_check, dmu_recv_end_sync, drc,
3742             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3743 }
3744
3745 static int
3746 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3747 {
3748         return (dsl_sync_task(drc->drc_tofs,
3749             dmu_recv_end_check, dmu_recv_end_sync, drc,
3750             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3751 }
3752
3753 int
3754 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3755 {
3756         int error;
3757
3758         drc->drc_owner = owner;
3759
3760         if (drc->drc_newfs)
3761                 error = dmu_recv_new_end(drc);
3762         else
3763                 error = dmu_recv_existing_end(drc);
3764
3765         if (error != 0) {
3766                 dmu_recv_cleanup_ds(drc);
3767                 nvlist_free(drc->drc_keynvl);
3768         } else if (!drc->drc_heal) {
3769                 if (drc->drc_newfs) {
3770                         zvol_create_minor(drc->drc_tofs);
3771                 }
3772                 char *snapname = kmem_asprintf("%s@%s",
3773                     drc->drc_tofs, drc->drc_tosnap);
3774                 zvol_create_minor(snapname);
3775                 kmem_strfree(snapname);
3776         }
3777         return (error);
3778 }
3779
3780 /*
3781  * Return TRUE if this objset is currently being received into.
3782  */
3783 boolean_t
3784 dmu_objset_is_receiving(objset_t *os)
3785 {
3786         return (os->os_dsl_dataset != NULL &&
3787             os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3788 }
3789
3790 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3791         "Maximum receive queue length");
3792
3793 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3794         "Receive queue fill fraction");
3795
3796 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3797         "Maximum amount of writes to batch into one transaction");
3798
3799 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3800         "Ignore errors during corrective receive");
3801 /* END CSTYLED */