]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/dmu_recv.c
contrib/tzdata: import tzdata 2022f
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / dmu_recv.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2019 Datto Inc.
31  * Copyright (c) 2022 Axcient.
32  */
33
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_send.h>
38 #include <sys/dmu_recv.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dbuf.h>
41 #include <sys/dnode.h>
42 #include <sys/zfs_context.h>
43 #include <sys/dmu_objset.h>
44 #include <sys/dmu_traverse.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_dir.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/dsl_synctask.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/zap.h>
52 #include <sys/zvol.h>
53 #include <sys/zio_checksum.h>
54 #include <sys/zfs_znode.h>
55 #include <zfs_fletcher.h>
56 #include <sys/avl.h>
57 #include <sys/ddt.h>
58 #include <sys/zfs_onexit.h>
59 #include <sys/dsl_destroy.h>
60 #include <sys/blkptr.h>
61 #include <sys/dsl_bookmark.h>
62 #include <sys/zfeature.h>
63 #include <sys/bqueue.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68 #include <sys/zfs_file.h>
69
70 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
71 static uint_t zfs_recv_queue_ff = 20;
72 static uint_t zfs_recv_write_batch_size = 1024 * 1024;
73 static int zfs_recv_best_effort_corrective = 0;
74
75 static const void *const dmu_recv_tag = "dmu_recv_tag";
76 const char *const recv_clone_name = "%recv";
77
78 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
79     void *buf);
80
81 struct receive_record_arg {
82         dmu_replay_record_t header;
83         void *payload; /* Pointer to a buffer containing the payload */
84         /*
85          * If the record is a WRITE or SPILL, pointer to the abd containing the
86          * payload.
87          */
88         abd_t *abd;
89         int payload_size;
90         uint64_t bytes_read; /* bytes read from stream when record created */
91         boolean_t eos_marker; /* Marks the end of the stream */
92         bqueue_node_t node;
93 };
94
95 struct receive_writer_arg {
96         objset_t *os;
97         boolean_t byteswap;
98         bqueue_t q;
99
100         /*
101          * These three members are used to signal to the main thread when
102          * we're done.
103          */
104         kmutex_t mutex;
105         kcondvar_t cv;
106         boolean_t done;
107
108         int err;
109         const char *tofs;
110         boolean_t heal;
111         boolean_t resumable;
112         boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
113         boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
114         boolean_t full;  /* this is a full send stream */
115         uint64_t last_object;
116         uint64_t last_offset;
117         uint64_t max_object; /* highest object ID referenced in stream */
118         uint64_t bytes_read; /* bytes read when current record created */
119
120         list_t write_batch;
121
122         /* Encryption parameters for the last received DRR_OBJECT_RANGE */
123         boolean_t or_crypt_params_present;
124         uint64_t or_firstobj;
125         uint64_t or_numslots;
126         uint8_t or_salt[ZIO_DATA_SALT_LEN];
127         uint8_t or_iv[ZIO_DATA_IV_LEN];
128         uint8_t or_mac[ZIO_DATA_MAC_LEN];
129         boolean_t or_byteorder;
130         zio_t *heal_pio;
131 };
132
133 typedef struct dmu_recv_begin_arg {
134         const char *drba_origin;
135         dmu_recv_cookie_t *drba_cookie;
136         cred_t *drba_cred;
137         proc_t *drba_proc;
138         dsl_crypto_params_t *drba_dcp;
139 } dmu_recv_begin_arg_t;
140
141 static void
142 byteswap_record(dmu_replay_record_t *drr)
143 {
144 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
145 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
146         drr->drr_type = BSWAP_32(drr->drr_type);
147         drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
148
149         switch (drr->drr_type) {
150         case DRR_BEGIN:
151                 DO64(drr_begin.drr_magic);
152                 DO64(drr_begin.drr_versioninfo);
153                 DO64(drr_begin.drr_creation_time);
154                 DO32(drr_begin.drr_type);
155                 DO32(drr_begin.drr_flags);
156                 DO64(drr_begin.drr_toguid);
157                 DO64(drr_begin.drr_fromguid);
158                 break;
159         case DRR_OBJECT:
160                 DO64(drr_object.drr_object);
161                 DO32(drr_object.drr_type);
162                 DO32(drr_object.drr_bonustype);
163                 DO32(drr_object.drr_blksz);
164                 DO32(drr_object.drr_bonuslen);
165                 DO32(drr_object.drr_raw_bonuslen);
166                 DO64(drr_object.drr_toguid);
167                 DO64(drr_object.drr_maxblkid);
168                 break;
169         case DRR_FREEOBJECTS:
170                 DO64(drr_freeobjects.drr_firstobj);
171                 DO64(drr_freeobjects.drr_numobjs);
172                 DO64(drr_freeobjects.drr_toguid);
173                 break;
174         case DRR_WRITE:
175                 DO64(drr_write.drr_object);
176                 DO32(drr_write.drr_type);
177                 DO64(drr_write.drr_offset);
178                 DO64(drr_write.drr_logical_size);
179                 DO64(drr_write.drr_toguid);
180                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
181                 DO64(drr_write.drr_key.ddk_prop);
182                 DO64(drr_write.drr_compressed_size);
183                 break;
184         case DRR_WRITE_EMBEDDED:
185                 DO64(drr_write_embedded.drr_object);
186                 DO64(drr_write_embedded.drr_offset);
187                 DO64(drr_write_embedded.drr_length);
188                 DO64(drr_write_embedded.drr_toguid);
189                 DO32(drr_write_embedded.drr_lsize);
190                 DO32(drr_write_embedded.drr_psize);
191                 break;
192         case DRR_FREE:
193                 DO64(drr_free.drr_object);
194                 DO64(drr_free.drr_offset);
195                 DO64(drr_free.drr_length);
196                 DO64(drr_free.drr_toguid);
197                 break;
198         case DRR_SPILL:
199                 DO64(drr_spill.drr_object);
200                 DO64(drr_spill.drr_length);
201                 DO64(drr_spill.drr_toguid);
202                 DO64(drr_spill.drr_compressed_size);
203                 DO32(drr_spill.drr_type);
204                 break;
205         case DRR_OBJECT_RANGE:
206                 DO64(drr_object_range.drr_firstobj);
207                 DO64(drr_object_range.drr_numslots);
208                 DO64(drr_object_range.drr_toguid);
209                 break;
210         case DRR_REDACT:
211                 DO64(drr_redact.drr_object);
212                 DO64(drr_redact.drr_offset);
213                 DO64(drr_redact.drr_length);
214                 DO64(drr_redact.drr_toguid);
215                 break;
216         case DRR_END:
217                 DO64(drr_end.drr_toguid);
218                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
219                 break;
220         default:
221                 break;
222         }
223
224         if (drr->drr_type != DRR_BEGIN) {
225                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
226         }
227
228 #undef DO64
229 #undef DO32
230 }
231
232 static boolean_t
233 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
234 {
235         for (int i = 0; i < num_snaps; i++) {
236                 if (snaps[i] == guid)
237                         return (B_TRUE);
238         }
239         return (B_FALSE);
240 }
241
242 /*
243  * Check that the new stream we're trying to receive is redacted with respect to
244  * a subset of the snapshots that the origin was redacted with respect to.  For
245  * the reasons behind this, see the man page on redacted zfs sends and receives.
246  */
247 static boolean_t
248 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
249     uint64_t *redact_snaps, uint64_t num_redact_snaps)
250 {
251         /*
252          * Short circuit the comparison; if we are redacted with respect to
253          * more snapshots than the origin, we can't be redacted with respect
254          * to a subset.
255          */
256         if (num_redact_snaps > origin_num_snaps) {
257                 return (B_FALSE);
258         }
259
260         for (int i = 0; i < num_redact_snaps; i++) {
261                 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
262                     redact_snaps[i])) {
263                         return (B_FALSE);
264                 }
265         }
266         return (B_TRUE);
267 }
268
269 static boolean_t
270 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
271 {
272         uint64_t *origin_snaps;
273         uint64_t origin_num_snaps;
274         dmu_recv_cookie_t *drc = drba->drba_cookie;
275         struct drr_begin *drrb = drc->drc_drrb;
276         int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
277         int err = 0;
278         boolean_t ret = B_TRUE;
279         uint64_t *redact_snaps;
280         uint_t numredactsnaps;
281
282         /*
283          * If this is a full send stream, we're safe no matter what.
284          */
285         if (drrb->drr_fromguid == 0)
286                 return (ret);
287
288         VERIFY(dsl_dataset_get_uint64_array_feature(origin,
289             SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
290
291         if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
292             BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
293             0) {
294                 /*
295                  * If the send stream was sent from the redaction bookmark or
296                  * the redacted version of the dataset, then we're safe.  Verify
297                  * that this is from the a compatible redaction bookmark or
298                  * redacted dataset.
299                  */
300                 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
301                     redact_snaps, numredactsnaps)) {
302                         err = EINVAL;
303                 }
304         } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
305                 /*
306                  * If the stream is redacted, it must be redacted with respect
307                  * to a subset of what the origin is redacted with respect to.
308                  * See case number 2 in the zfs man page section on redacted zfs
309                  * send.
310                  */
311                 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
312                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
313
314                 if (err != 0 || !compatible_redact_snaps(origin_snaps,
315                     origin_num_snaps, redact_snaps, numredactsnaps)) {
316                         err = EINVAL;
317                 }
318         } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
319             drrb->drr_toguid)) {
320                 /*
321                  * If the stream isn't redacted but the origin is, this must be
322                  * one of the snapshots the origin is redacted with respect to.
323                  * See case number 1 in the zfs man page section on redacted zfs
324                  * send.
325                  */
326                 err = EINVAL;
327         }
328
329         if (err != 0)
330                 ret = B_FALSE;
331         return (ret);
332 }
333
334 /*
335  * If we previously received a stream with --large-block, we don't support
336  * receiving an incremental on top of it without --large-block.  This avoids
337  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
338  * records.
339  */
340 static int
341 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
342 {
343         if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
344             !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
345                 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
346         return (0);
347 }
348
349 static int
350 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
351     uint64_t fromguid, uint64_t featureflags)
352 {
353         uint64_t obj;
354         uint64_t children;
355         int error;
356         dsl_dataset_t *snap;
357         dsl_pool_t *dp = ds->ds_dir->dd_pool;
358         boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
359         boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
360         boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
361
362         /* Temporary clone name must not exist. */
363         error = zap_lookup(dp->dp_meta_objset,
364             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
365             8, 1, &obj);
366         if (error != ENOENT)
367                 return (error == 0 ? SET_ERROR(EBUSY) : error);
368
369         /* Resume state must not be set. */
370         if (dsl_dataset_has_resume_receive_state(ds))
371                 return (SET_ERROR(EBUSY));
372
373         /* New snapshot name must not exist if we're not healing it. */
374         error = zap_lookup(dp->dp_meta_objset,
375             dsl_dataset_phys(ds)->ds_snapnames_zapobj,
376             drba->drba_cookie->drc_tosnap, 8, 1, &obj);
377         if (drba->drba_cookie->drc_heal) {
378                 if (error != 0)
379                         return (error);
380         } else if (error != ENOENT) {
381                 return (error == 0 ? SET_ERROR(EEXIST) : error);
382         }
383
384         /* Must not have children if receiving a ZVOL. */
385         error = zap_count(dp->dp_meta_objset,
386             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
387         if (error != 0)
388                 return (error);
389         if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
390             children > 0)
391                 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
392
393         /*
394          * Check snapshot limit before receiving. We'll recheck again at the
395          * end, but might as well abort before receiving if we're already over
396          * the limit.
397          *
398          * Note that we do not check the file system limit with
399          * dsl_dir_fscount_check because the temporary %clones don't count
400          * against that limit.
401          */
402         error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
403             NULL, drba->drba_cred, drba->drba_proc);
404         if (error != 0)
405                 return (error);
406
407         if (drba->drba_cookie->drc_heal) {
408                 /* Encryption is incompatible with embedded data. */
409                 if (encrypted && embed)
410                         return (SET_ERROR(EINVAL));
411
412                 /* Healing is not supported when in 'force' mode. */
413                 if (drba->drba_cookie->drc_force)
414                         return (SET_ERROR(EINVAL));
415
416                 /* Must have keys loaded if doing encrypted non-raw recv. */
417                 if (encrypted && !raw) {
418                         if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
419                             NULL, NULL) != 0)
420                                 return (SET_ERROR(EACCES));
421                 }
422
423                 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
424                 if (error != 0)
425                         return (error);
426
427                 /*
428                  * When not doing best effort corrective recv healing can only
429                  * be done if the send stream is for the same snapshot as the
430                  * one we are trying to heal.
431                  */
432                 if (zfs_recv_best_effort_corrective == 0 &&
433                     drba->drba_cookie->drc_drrb->drr_toguid !=
434                     dsl_dataset_phys(snap)->ds_guid) {
435                         dsl_dataset_rele(snap, FTAG);
436                         return (SET_ERROR(ENOTSUP));
437                 }
438                 dsl_dataset_rele(snap, FTAG);
439         } else if (fromguid != 0) {
440                 /* Sanity check the incremental recv */
441                 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
442
443                 /* Can't perform a raw receive on top of a non-raw receive */
444                 if (!encrypted && raw)
445                         return (SET_ERROR(EINVAL));
446
447                 /* Encryption is incompatible with embedded data */
448                 if (encrypted && embed)
449                         return (SET_ERROR(EINVAL));
450
451                 /* Find snapshot in this dir that matches fromguid. */
452                 while (obj != 0) {
453                         error = dsl_dataset_hold_obj(dp, obj, FTAG,
454                             &snap);
455                         if (error != 0)
456                                 return (SET_ERROR(ENODEV));
457                         if (snap->ds_dir != ds->ds_dir) {
458                                 dsl_dataset_rele(snap, FTAG);
459                                 return (SET_ERROR(ENODEV));
460                         }
461                         if (dsl_dataset_phys(snap)->ds_guid == fromguid)
462                                 break;
463                         obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
464                         dsl_dataset_rele(snap, FTAG);
465                 }
466                 if (obj == 0)
467                         return (SET_ERROR(ENODEV));
468
469                 if (drba->drba_cookie->drc_force) {
470                         drba->drba_cookie->drc_fromsnapobj = obj;
471                 } else {
472                         /*
473                          * If we are not forcing, there must be no
474                          * changes since fromsnap. Raw sends have an
475                          * additional constraint that requires that
476                          * no "noop" snapshots exist between fromsnap
477                          * and tosnap for the IVset checking code to
478                          * work properly.
479                          */
480                         if (dsl_dataset_modified_since_snap(ds, snap) ||
481                             (raw &&
482                             dsl_dataset_phys(ds)->ds_prev_snap_obj !=
483                             snap->ds_object)) {
484                                 dsl_dataset_rele(snap, FTAG);
485                                 return (SET_ERROR(ETXTBSY));
486                         }
487                         drba->drba_cookie->drc_fromsnapobj =
488                             ds->ds_prev->ds_object;
489                 }
490
491                 if (dsl_dataset_feature_is_active(snap,
492                     SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
493                     snap)) {
494                         dsl_dataset_rele(snap, FTAG);
495                         return (SET_ERROR(EINVAL));
496                 }
497
498                 error = recv_check_large_blocks(snap, featureflags);
499                 if (error != 0) {
500                         dsl_dataset_rele(snap, FTAG);
501                         return (error);
502                 }
503
504                 dsl_dataset_rele(snap, FTAG);
505         } else {
506                 /* If full and not healing then must be forced. */
507                 if (!drba->drba_cookie->drc_force)
508                         return (SET_ERROR(EEXIST));
509
510                 /*
511                  * We don't support using zfs recv -F to blow away
512                  * encrypted filesystems. This would require the
513                  * dsl dir to point to the old encryption key and
514                  * the new one at the same time during the receive.
515                  */
516                 if ((!encrypted && raw) || encrypted)
517                         return (SET_ERROR(EINVAL));
518
519                 /*
520                  * Perform the same encryption checks we would if
521                  * we were creating a new dataset from scratch.
522                  */
523                 if (!raw) {
524                         boolean_t will_encrypt;
525
526                         error = dmu_objset_create_crypt_check(
527                             ds->ds_dir->dd_parent, drba->drba_dcp,
528                             &will_encrypt);
529                         if (error != 0)
530                                 return (error);
531
532                         if (will_encrypt && embed)
533                                 return (SET_ERROR(EINVAL));
534                 }
535         }
536
537         return (0);
538 }
539
540 /*
541  * Check that any feature flags used in the data stream we're receiving are
542  * supported by the pool we are receiving into.
543  *
544  * Note that some of the features we explicitly check here have additional
545  * (implicit) features they depend on, but those dependencies are enforced
546  * through the zfeature_register() calls declaring the features that we
547  * explicitly check.
548  */
549 static int
550 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
551 {
552         /*
553          * Check if there are any unsupported feature flags.
554          */
555         if (!DMU_STREAM_SUPPORTED(featureflags)) {
556                 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
557         }
558
559         /* Verify pool version supports SA if SA_SPILL feature set */
560         if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
561             spa_version(spa) < SPA_VERSION_SA)
562                 return (SET_ERROR(ENOTSUP));
563
564         /*
565          * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
566          * and large_dnodes in the stream can only be used if those pool
567          * features are enabled because we don't attempt to decompress /
568          * un-embed / un-mooch / split up the blocks / dnodes during the
569          * receive process.
570          */
571         if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
572             !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
573                 return (SET_ERROR(ENOTSUP));
574         if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
575             !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
576                 return (SET_ERROR(ENOTSUP));
577         if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
578             !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
579                 return (SET_ERROR(ENOTSUP));
580         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
581             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
582                 return (SET_ERROR(ENOTSUP));
583         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
584             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
585                 return (SET_ERROR(ENOTSUP));
586
587         /*
588          * Receiving redacted streams requires that redacted datasets are
589          * enabled.
590          */
591         if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
592             !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
593                 return (SET_ERROR(ENOTSUP));
594
595         return (0);
596 }
597
598 static int
599 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
600 {
601         dmu_recv_begin_arg_t *drba = arg;
602         dsl_pool_t *dp = dmu_tx_pool(tx);
603         struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
604         uint64_t fromguid = drrb->drr_fromguid;
605         int flags = drrb->drr_flags;
606         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
607         int error;
608         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
609         dsl_dataset_t *ds;
610         const char *tofs = drba->drba_cookie->drc_tofs;
611
612         /* already checked */
613         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
614         ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
615
616         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
617             DMU_COMPOUNDSTREAM ||
618             drrb->drr_type >= DMU_OST_NUMTYPES ||
619             ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
620                 return (SET_ERROR(EINVAL));
621
622         error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
623         if (error != 0)
624                 return (error);
625
626         /* Resumable receives require extensible datasets */
627         if (drba->drba_cookie->drc_resumable &&
628             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
629                 return (SET_ERROR(ENOTSUP));
630
631         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
632                 /* raw receives require the encryption feature */
633                 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
634                         return (SET_ERROR(ENOTSUP));
635
636                 /* embedded data is incompatible with encryption and raw recv */
637                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
638                         return (SET_ERROR(EINVAL));
639
640                 /* raw receives require spill block allocation flag */
641                 if (!(flags & DRR_FLAG_SPILL_BLOCK))
642                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
643         } else {
644                 /*
645                  * We support unencrypted datasets below encrypted ones now,
646                  * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
647                  * with a dataset we may encrypt.
648                  */
649                 if (drba->drba_dcp != NULL &&
650                     drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
651                         dsflags |= DS_HOLD_FLAG_DECRYPT;
652                 }
653         }
654
655         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
656         if (error == 0) {
657                 /* target fs already exists; recv into temp clone */
658
659                 /* Can't recv a clone into an existing fs */
660                 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
661                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
662                         return (SET_ERROR(EINVAL));
663                 }
664
665                 error = recv_begin_check_existing_impl(drba, ds, fromguid,
666                     featureflags);
667                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
668         } else if (error == ENOENT) {
669                 /* target fs does not exist; must be a full backup or clone */
670                 char buf[ZFS_MAX_DATASET_NAME_LEN];
671                 objset_t *os;
672
673                 /* healing recv must be done "into" an existing snapshot */
674                 if (drba->drba_cookie->drc_heal == B_TRUE)
675                         return (SET_ERROR(ENOTSUP));
676
677                 /*
678                  * If it's a non-clone incremental, we are missing the
679                  * target fs, so fail the recv.
680                  */
681                 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
682                     drba->drba_origin))
683                         return (SET_ERROR(ENOENT));
684
685                 /*
686                  * If we're receiving a full send as a clone, and it doesn't
687                  * contain all the necessary free records and freeobject
688                  * records, reject it.
689                  */
690                 if (fromguid == 0 && drba->drba_origin != NULL &&
691                     !(flags & DRR_FLAG_FREERECORDS))
692                         return (SET_ERROR(EINVAL));
693
694                 /* Open the parent of tofs */
695                 ASSERT3U(strlen(tofs), <, sizeof (buf));
696                 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
697                 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
698                 if (error != 0)
699                         return (error);
700
701                 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
702                     drba->drba_origin == NULL) {
703                         boolean_t will_encrypt;
704
705                         /*
706                          * Check that we aren't breaking any encryption rules
707                          * and that we have all the parameters we need to
708                          * create an encrypted dataset if necessary. If we are
709                          * making an encrypted dataset the stream can't have
710                          * embedded data.
711                          */
712                         error = dmu_objset_create_crypt_check(ds->ds_dir,
713                             drba->drba_dcp, &will_encrypt);
714                         if (error != 0) {
715                                 dsl_dataset_rele(ds, FTAG);
716                                 return (error);
717                         }
718
719                         if (will_encrypt &&
720                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
721                                 dsl_dataset_rele(ds, FTAG);
722                                 return (SET_ERROR(EINVAL));
723                         }
724                 }
725
726                 /*
727                  * Check filesystem and snapshot limits before receiving. We'll
728                  * recheck snapshot limits again at the end (we create the
729                  * filesystems and increment those counts during begin_sync).
730                  */
731                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
732                     ZFS_PROP_FILESYSTEM_LIMIT, NULL,
733                     drba->drba_cred, drba->drba_proc);
734                 if (error != 0) {
735                         dsl_dataset_rele(ds, FTAG);
736                         return (error);
737                 }
738
739                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
740                     ZFS_PROP_SNAPSHOT_LIMIT, NULL,
741                     drba->drba_cred, drba->drba_proc);
742                 if (error != 0) {
743                         dsl_dataset_rele(ds, FTAG);
744                         return (error);
745                 }
746
747                 /* can't recv below anything but filesystems (eg. no ZVOLs) */
748                 error = dmu_objset_from_ds(ds, &os);
749                 if (error != 0) {
750                         dsl_dataset_rele(ds, FTAG);
751                         return (error);
752                 }
753                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
754                         dsl_dataset_rele(ds, FTAG);
755                         return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
756                 }
757
758                 if (drba->drba_origin != NULL) {
759                         dsl_dataset_t *origin;
760                         error = dsl_dataset_hold_flags(dp, drba->drba_origin,
761                             dsflags, FTAG, &origin);
762                         if (error != 0) {
763                                 dsl_dataset_rele(ds, FTAG);
764                                 return (error);
765                         }
766                         if (!origin->ds_is_snapshot) {
767                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
768                                 dsl_dataset_rele(ds, FTAG);
769                                 return (SET_ERROR(EINVAL));
770                         }
771                         if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
772                             fromguid != 0) {
773                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
774                                 dsl_dataset_rele(ds, FTAG);
775                                 return (SET_ERROR(ENODEV));
776                         }
777
778                         if (origin->ds_dir->dd_crypto_obj != 0 &&
779                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
780                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
781                                 dsl_dataset_rele(ds, FTAG);
782                                 return (SET_ERROR(EINVAL));
783                         }
784
785                         /*
786                          * If the origin is redacted we need to verify that this
787                          * send stream can safely be received on top of the
788                          * origin.
789                          */
790                         if (dsl_dataset_feature_is_active(origin,
791                             SPA_FEATURE_REDACTED_DATASETS)) {
792                                 if (!redact_check(drba, origin)) {
793                                         dsl_dataset_rele_flags(origin, dsflags,
794                                             FTAG);
795                                         dsl_dataset_rele_flags(ds, dsflags,
796                                             FTAG);
797                                         return (SET_ERROR(EINVAL));
798                                 }
799                         }
800
801                         error = recv_check_large_blocks(ds, featureflags);
802                         if (error != 0) {
803                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
804                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
805                                 return (error);
806                         }
807
808                         dsl_dataset_rele_flags(origin, dsflags, FTAG);
809                 }
810
811                 dsl_dataset_rele(ds, FTAG);
812                 error = 0;
813         }
814         return (error);
815 }
816
817 static void
818 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
819 {
820         dmu_recv_begin_arg_t *drba = arg;
821         dsl_pool_t *dp = dmu_tx_pool(tx);
822         objset_t *mos = dp->dp_meta_objset;
823         dmu_recv_cookie_t *drc = drba->drba_cookie;
824         struct drr_begin *drrb = drc->drc_drrb;
825         const char *tofs = drc->drc_tofs;
826         uint64_t featureflags = drc->drc_featureflags;
827         dsl_dataset_t *ds, *newds;
828         objset_t *os;
829         uint64_t dsobj;
830         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
831         int error;
832         uint64_t crflags = 0;
833         dsl_crypto_params_t dummy_dcp = { 0 };
834         dsl_crypto_params_t *dcp = drba->drba_dcp;
835
836         if (drrb->drr_flags & DRR_FLAG_CI_DATA)
837                 crflags |= DS_FLAG_CI_DATASET;
838
839         if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
840                 dsflags |= DS_HOLD_FLAG_DECRYPT;
841
842         /*
843          * Raw, non-incremental recvs always use a dummy dcp with
844          * the raw cmd set. Raw incremental recvs do not use a dcp
845          * since the encryption parameters are already set in stone.
846          */
847         if (dcp == NULL && drrb->drr_fromguid == 0 &&
848             drba->drba_origin == NULL) {
849                 ASSERT3P(dcp, ==, NULL);
850                 dcp = &dummy_dcp;
851
852                 if (featureflags & DMU_BACKUP_FEATURE_RAW)
853                         dcp->cp_cmd = DCP_CMD_RAW_RECV;
854         }
855
856         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
857         if (error == 0) {
858                 /* Create temporary clone unless we're doing corrective recv */
859                 dsl_dataset_t *snap = NULL;
860
861                 if (drba->drba_cookie->drc_fromsnapobj != 0) {
862                         VERIFY0(dsl_dataset_hold_obj(dp,
863                             drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
864                         ASSERT3P(dcp, ==, NULL);
865                 }
866                 if (drc->drc_heal) {
867                         /* When healing we want to use the provided snapshot */
868                         VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
869                             &dsobj));
870                 } else {
871                         dsobj = dsl_dataset_create_sync(ds->ds_dir,
872                             recv_clone_name, snap, crflags, drba->drba_cred,
873                             dcp, tx);
874                 }
875                 if (drba->drba_cookie->drc_fromsnapobj != 0)
876                         dsl_dataset_rele(snap, FTAG);
877                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
878         } else {
879                 dsl_dir_t *dd;
880                 const char *tail;
881                 dsl_dataset_t *origin = NULL;
882
883                 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
884
885                 if (drba->drba_origin != NULL) {
886                         VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
887                             FTAG, &origin));
888                         ASSERT3P(dcp, ==, NULL);
889                 }
890
891                 /* Create new dataset. */
892                 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
893                     origin, crflags, drba->drba_cred, dcp, tx);
894                 if (origin != NULL)
895                         dsl_dataset_rele(origin, FTAG);
896                 dsl_dir_rele(dd, FTAG);
897                 drc->drc_newfs = B_TRUE;
898         }
899         VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
900             &newds));
901         if (dsl_dataset_feature_is_active(newds,
902             SPA_FEATURE_REDACTED_DATASETS)) {
903                 /*
904                  * If the origin dataset is redacted, the child will be redacted
905                  * when we create it.  We clear the new dataset's
906                  * redaction info; if it should be redacted, we'll fill
907                  * in its information later.
908                  */
909                 dsl_dataset_deactivate_feature(newds,
910                     SPA_FEATURE_REDACTED_DATASETS, tx);
911         }
912         VERIFY0(dmu_objset_from_ds(newds, &os));
913
914         if (drc->drc_resumable) {
915                 dsl_dataset_zapify(newds, tx);
916                 if (drrb->drr_fromguid != 0) {
917                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
918                             8, 1, &drrb->drr_fromguid, tx));
919                 }
920                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
921                     8, 1, &drrb->drr_toguid, tx));
922                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
923                     1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
924                 uint64_t one = 1;
925                 uint64_t zero = 0;
926                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
927                     8, 1, &one, tx));
928                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
929                     8, 1, &zero, tx));
930                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
931                     8, 1, &zero, tx));
932                 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
933                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
934                             8, 1, &one, tx));
935                 }
936                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
937                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
938                             8, 1, &one, tx));
939                 }
940                 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
941                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
942                             8, 1, &one, tx));
943                 }
944                 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
945                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
946                             8, 1, &one, tx));
947                 }
948
949                 uint64_t *redact_snaps;
950                 uint_t numredactsnaps;
951                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
952                     BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
953                     &numredactsnaps) == 0) {
954                         VERIFY0(zap_add(mos, dsobj,
955                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
956                             sizeof (*redact_snaps), numredactsnaps,
957                             redact_snaps, tx));
958                 }
959         }
960
961         /*
962          * Usually the os->os_encrypted value is tied to the presence of a
963          * DSL Crypto Key object in the dd. However, that will not be received
964          * until dmu_recv_stream(), so we set the value manually for now.
965          */
966         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
967                 os->os_encrypted = B_TRUE;
968                 drba->drba_cookie->drc_raw = B_TRUE;
969         }
970
971         if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
972                 uint64_t *redact_snaps;
973                 uint_t numredactsnaps;
974                 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
975                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
976                 dsl_dataset_activate_redaction(newds, redact_snaps,
977                     numredactsnaps, tx);
978         }
979
980         dmu_buf_will_dirty(newds->ds_dbuf, tx);
981         dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
982
983         /*
984          * If we actually created a non-clone, we need to create the objset
985          * in our new dataset. If this is a raw send we postpone this until
986          * dmu_recv_stream() so that we can allocate the metadnode with the
987          * properties from the DRR_BEGIN payload.
988          */
989         rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
990         if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
991             (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
992             !drc->drc_heal) {
993                 (void) dmu_objset_create_impl(dp->dp_spa,
994                     newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
995         }
996         rrw_exit(&newds->ds_bp_rwlock, FTAG);
997
998         drba->drba_cookie->drc_ds = newds;
999         drba->drba_cookie->drc_os = os;
1000
1001         spa_history_log_internal_ds(newds, "receive", tx, " ");
1002 }
1003
1004 static int
1005 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1006 {
1007         dmu_recv_begin_arg_t *drba = arg;
1008         dmu_recv_cookie_t *drc = drba->drba_cookie;
1009         dsl_pool_t *dp = dmu_tx_pool(tx);
1010         struct drr_begin *drrb = drc->drc_drrb;
1011         int error;
1012         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1013         dsl_dataset_t *ds;
1014         const char *tofs = drc->drc_tofs;
1015
1016         /* already checked */
1017         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1018         ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1019
1020         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1021             DMU_COMPOUNDSTREAM ||
1022             drrb->drr_type >= DMU_OST_NUMTYPES)
1023                 return (SET_ERROR(EINVAL));
1024
1025         /*
1026          * This is mostly a sanity check since we should have already done these
1027          * checks during a previous attempt to receive the data.
1028          */
1029         error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1030             dp->dp_spa);
1031         if (error != 0)
1032                 return (error);
1033
1034         /* 6 extra bytes for /%recv */
1035         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1036
1037         (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1038             tofs, recv_clone_name);
1039
1040         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1041                 /* raw receives require spill block allocation flag */
1042                 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1043                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1044         } else {
1045                 dsflags |= DS_HOLD_FLAG_DECRYPT;
1046         }
1047
1048         boolean_t recvexist = B_TRUE;
1049         if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1050                 /* %recv does not exist; continue in tofs */
1051                 recvexist = B_FALSE;
1052                 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1053                 if (error != 0)
1054                         return (error);
1055         }
1056
1057         /*
1058          * Resume of full/newfs recv on existing dataset should be done with
1059          * force flag
1060          */
1061         if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1062                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1063                 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1064         }
1065
1066         /* check that ds is marked inconsistent */
1067         if (!DS_IS_INCONSISTENT(ds)) {
1068                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1069                 return (SET_ERROR(EINVAL));
1070         }
1071
1072         /* check that there is resuming data, and that the toguid matches */
1073         if (!dsl_dataset_is_zapified(ds)) {
1074                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1075                 return (SET_ERROR(EINVAL));
1076         }
1077         uint64_t val;
1078         error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1079             DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1080         if (error != 0 || drrb->drr_toguid != val) {
1081                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1082                 return (SET_ERROR(EINVAL));
1083         }
1084
1085         /*
1086          * Check if the receive is still running.  If so, it will be owned.
1087          * Note that nothing else can own the dataset (e.g. after the receive
1088          * fails) because it will be marked inconsistent.
1089          */
1090         if (dsl_dataset_has_owner(ds)) {
1091                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1092                 return (SET_ERROR(EBUSY));
1093         }
1094
1095         /* There should not be any snapshots of this fs yet. */
1096         if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1097                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1098                 return (SET_ERROR(EINVAL));
1099         }
1100
1101         /*
1102          * Note: resume point will be checked when we process the first WRITE
1103          * record.
1104          */
1105
1106         /* check that the origin matches */
1107         val = 0;
1108         (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1109             DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1110         if (drrb->drr_fromguid != val) {
1111                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1112                 return (SET_ERROR(EINVAL));
1113         }
1114
1115         if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1116                 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1117
1118         /*
1119          * If we're resuming, and the send is redacted, then the original send
1120          * must have been redacted, and must have been redacted with respect to
1121          * the same snapshots.
1122          */
1123         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1124                 uint64_t num_ds_redact_snaps;
1125                 uint64_t *ds_redact_snaps;
1126
1127                 uint_t num_stream_redact_snaps;
1128                 uint64_t *stream_redact_snaps;
1129
1130                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1131                     BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1132                     &num_stream_redact_snaps) != 0) {
1133                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1134                         return (SET_ERROR(EINVAL));
1135                 }
1136
1137                 if (!dsl_dataset_get_uint64_array_feature(ds,
1138                     SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1139                     &ds_redact_snaps)) {
1140                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1141                         return (SET_ERROR(EINVAL));
1142                 }
1143
1144                 for (int i = 0; i < num_ds_redact_snaps; i++) {
1145                         if (!redact_snaps_contains(ds_redact_snaps,
1146                             num_ds_redact_snaps, stream_redact_snaps[i])) {
1147                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1148                                 return (SET_ERROR(EINVAL));
1149                         }
1150                 }
1151         }
1152
1153         error = recv_check_large_blocks(ds, drc->drc_featureflags);
1154         if (error != 0) {
1155                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1156                 return (error);
1157         }
1158
1159         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1160         return (0);
1161 }
1162
1163 static void
1164 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1165 {
1166         dmu_recv_begin_arg_t *drba = arg;
1167         dsl_pool_t *dp = dmu_tx_pool(tx);
1168         const char *tofs = drba->drba_cookie->drc_tofs;
1169         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1170         dsl_dataset_t *ds;
1171         ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1172         /* 6 extra bytes for /%recv */
1173         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1174
1175         (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1176             recv_clone_name);
1177
1178         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1179                 drba->drba_cookie->drc_raw = B_TRUE;
1180         } else {
1181                 dsflags |= DS_HOLD_FLAG_DECRYPT;
1182         }
1183
1184         if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1185             != 0) {
1186                 /* %recv does not exist; continue in tofs */
1187                 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1188                     &ds));
1189                 drba->drba_cookie->drc_newfs = B_TRUE;
1190         }
1191
1192         ASSERT(DS_IS_INCONSISTENT(ds));
1193         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1194         ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1195             drba->drba_cookie->drc_raw);
1196         rrw_exit(&ds->ds_bp_rwlock, FTAG);
1197
1198         drba->drba_cookie->drc_ds = ds;
1199         VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1200         drba->drba_cookie->drc_should_save = B_TRUE;
1201
1202         spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1203 }
1204
1205 /*
1206  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1207  * succeeds; otherwise we will leak the holds on the datasets.
1208  */
1209 int
1210 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1211     boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops,
1212     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1213     zfs_file_t *fp, offset_t *voffp)
1214 {
1215         dmu_recv_begin_arg_t drba = { 0 };
1216         int err;
1217
1218         memset(drc, 0, sizeof (dmu_recv_cookie_t));
1219         drc->drc_drr_begin = drr_begin;
1220         drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1221         drc->drc_tosnap = tosnap;
1222         drc->drc_tofs = tofs;
1223         drc->drc_force = force;
1224         drc->drc_heal = heal;
1225         drc->drc_resumable = resumable;
1226         drc->drc_cred = CRED();
1227         drc->drc_proc = curproc;
1228         drc->drc_clone = (origin != NULL);
1229
1230         if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1231                 drc->drc_byteswap = B_TRUE;
1232                 (void) fletcher_4_incremental_byteswap(drr_begin,
1233                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1234                 byteswap_record(drr_begin);
1235         } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1236                 (void) fletcher_4_incremental_native(drr_begin,
1237                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1238         } else {
1239                 return (SET_ERROR(EINVAL));
1240         }
1241
1242         drc->drc_fp = fp;
1243         drc->drc_voff = *voffp;
1244         drc->drc_featureflags =
1245             DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1246
1247         uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1248         void *payload = NULL;
1249         if (payloadlen != 0)
1250                 payload = kmem_alloc(payloadlen, KM_SLEEP);
1251
1252         err = receive_read_payload_and_next_header(drc, payloadlen,
1253             payload);
1254         if (err != 0) {
1255                 kmem_free(payload, payloadlen);
1256                 return (err);
1257         }
1258         if (payloadlen != 0) {
1259                 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1260                     KM_SLEEP);
1261                 kmem_free(payload, payloadlen);
1262                 if (err != 0) {
1263                         kmem_free(drc->drc_next_rrd,
1264                             sizeof (*drc->drc_next_rrd));
1265                         return (err);
1266                 }
1267         }
1268
1269         if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1270                 drc->drc_spill = B_TRUE;
1271
1272         drba.drba_origin = origin;
1273         drba.drba_cookie = drc;
1274         drba.drba_cred = CRED();
1275         drba.drba_proc = curproc;
1276
1277         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1278                 err = dsl_sync_task(tofs,
1279                     dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1280                     &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1281         } else {
1282                 /*
1283                  * For non-raw, non-incremental, non-resuming receives the
1284                  * user can specify encryption parameters on the command line
1285                  * with "zfs recv -o". For these receives we create a dcp and
1286                  * pass it to the sync task. Creating the dcp will implicitly
1287                  * remove the encryption params from the localprops nvlist,
1288                  * which avoids errors when trying to set these normally
1289                  * read-only properties. Any other kind of receive that
1290                  * attempts to set these properties will fail as a result.
1291                  */
1292                 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1293                     DMU_BACKUP_FEATURE_RAW) == 0 &&
1294                     origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1295                         err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1296                             localprops, hidden_args, &drba.drba_dcp);
1297                 }
1298
1299                 if (err == 0) {
1300                         err = dsl_sync_task(tofs,
1301                             dmu_recv_begin_check, dmu_recv_begin_sync,
1302                             &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1303                         dsl_crypto_params_free(drba.drba_dcp, !!err);
1304                 }
1305         }
1306
1307         if (err != 0) {
1308                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1309                 nvlist_free(drc->drc_begin_nvl);
1310         }
1311         return (err);
1312 }
1313
1314 /*
1315  * Holds data need for corrective recv callback
1316  */
1317 typedef struct cr_cb_data {
1318         uint64_t size;
1319         zbookmark_phys_t zb;
1320         spa_t *spa;
1321 } cr_cb_data_t;
1322
1323 static void
1324 corrective_read_done(zio_t *zio)
1325 {
1326         cr_cb_data_t *data = zio->io_private;
1327         /* Corruption corrected; update error log if needed */
1328         if (zio->io_error == 0)
1329                 spa_remove_error(data->spa, &data->zb);
1330         kmem_free(data, sizeof (cr_cb_data_t));
1331         abd_free(zio->io_abd);
1332 }
1333
1334 /*
1335  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1336  */
1337 static int
1338 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1339     struct receive_record_arg *rrd, blkptr_t *bp)
1340 {
1341         int err;
1342         zio_t *io;
1343         zbookmark_phys_t zb;
1344         dnode_t *dn;
1345         abd_t *abd = rrd->abd;
1346         zio_cksum_t bp_cksum = bp->blk_cksum;
1347         enum zio_flag flags = ZIO_FLAG_SPECULATIVE |
1348             ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL;
1349
1350         if (rwa->raw)
1351                 flags |= ZIO_FLAG_RAW;
1352
1353         err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1354         if (err != 0)
1355                 return (err);
1356         SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1357             dbuf_whichblock(dn, 0, drrw->drr_offset));
1358         dnode_rele(dn, FTAG);
1359
1360         if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1361                 /* Decompress the stream data */
1362                 abd_t *dabd = abd_alloc_linear(
1363                     drrw->drr_logical_size, B_FALSE);
1364                 err = zio_decompress_data(drrw->drr_compressiontype,
1365                     abd, abd_to_buf(dabd), abd_get_size(abd),
1366                     abd_get_size(dabd), NULL);
1367
1368                 if (err != 0) {
1369                         abd_free(dabd);
1370                         return (err);
1371                 }
1372                 /* Swap in the newly decompressed data into the abd */
1373                 abd_free(abd);
1374                 abd = dabd;
1375         }
1376
1377         if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1378                 /* Recompress the data */
1379                 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1380                     B_FALSE);
1381                 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1382                     abd, abd_to_buf(cabd), abd_get_size(abd),
1383                     rwa->os->os_complevel);
1384                 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1385                 /* Swap in newly compressed data into the abd */
1386                 abd_free(abd);
1387                 abd = cabd;
1388                 flags |= ZIO_FLAG_RAW_COMPRESS;
1389         }
1390
1391         /*
1392          * The stream is not encrypted but the data on-disk is.
1393          * We need to re-encrypt the buf using the same
1394          * encryption type, salt, iv, and mac that was used to encrypt
1395          * the block previosly.
1396          */
1397         if (!rwa->raw && BP_USES_CRYPT(bp)) {
1398                 dsl_dataset_t *ds;
1399                 dsl_crypto_key_t *dck = NULL;
1400                 uint8_t salt[ZIO_DATA_SALT_LEN];
1401                 uint8_t iv[ZIO_DATA_IV_LEN];
1402                 uint8_t mac[ZIO_DATA_MAC_LEN];
1403                 boolean_t no_crypt = B_FALSE;
1404                 dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1405                 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1406
1407                 zio_crypt_decode_params_bp(bp, salt, iv);
1408                 zio_crypt_decode_mac_bp(bp, mac);
1409
1410                 dsl_pool_config_enter(dp, FTAG);
1411                 err = dsl_dataset_hold_flags(dp, rwa->tofs,
1412                     DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1413                 if (err != 0) {
1414                         dsl_pool_config_exit(dp, FTAG);
1415                         abd_free(eabd);
1416                         return (SET_ERROR(EACCES));
1417                 }
1418
1419                 /* Look up the key from the spa's keystore */
1420                 err = spa_keystore_lookup_key(rwa->os->os_spa,
1421                     zb.zb_objset, FTAG, &dck);
1422                 if (err != 0) {
1423                         dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1424                             FTAG);
1425                         dsl_pool_config_exit(dp, FTAG);
1426                         abd_free(eabd);
1427                         return (SET_ERROR(EACCES));
1428                 }
1429
1430                 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1431                     BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1432                     mac, abd_get_size(abd), abd, eabd, &no_crypt);
1433
1434                 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1435                 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1436                 dsl_pool_config_exit(dp, FTAG);
1437
1438                 ASSERT0(no_crypt);
1439                 if (err != 0) {
1440                         abd_free(eabd);
1441                         return (err);
1442                 }
1443                 /* Swap in the newly encrypted data into the abd */
1444                 abd_free(abd);
1445                 abd = eabd;
1446
1447                 /*
1448                  * We want to prevent zio_rewrite() from trying to
1449                  * encrypt the data again
1450                  */
1451                 flags |= ZIO_FLAG_RAW_ENCRYPT;
1452         }
1453         rrd->abd = abd;
1454
1455         io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd,
1456             BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb);
1457
1458         ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1459             abd_get_size(abd) == BP_GET_PSIZE(bp));
1460
1461         /* compute new bp checksum value and make sure it matches the old one */
1462         zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1463         if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1464                 zio_destroy(io);
1465                 if (zfs_recv_best_effort_corrective != 0)
1466                         return (0);
1467                 return (SET_ERROR(ECKSUM));
1468         }
1469
1470         /* Correct the corruption in place */
1471         err = zio_wait(io);
1472         if (err == 0) {
1473                 cr_cb_data_t *cb_data =
1474                     kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1475                 cb_data->spa = rwa->os->os_spa;
1476                 cb_data->size = drrw->drr_logical_size;
1477                 cb_data->zb = zb;
1478                 /* Test if healing worked by re-reading the bp */
1479                 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1480                     abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1481                     drrw->drr_logical_size, corrective_read_done,
1482                     cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1483         }
1484         if (err != 0 && zfs_recv_best_effort_corrective != 0)
1485                 err = 0;
1486
1487         return (err);
1488 }
1489
1490 static int
1491 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1492 {
1493         int done = 0;
1494
1495         /*
1496          * The code doesn't rely on this (lengths being multiples of 8).  See
1497          * comment in dump_bytes.
1498          */
1499         ASSERT(len % 8 == 0 ||
1500             (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1501
1502         while (done < len) {
1503                 ssize_t resid;
1504                 zfs_file_t *fp = drc->drc_fp;
1505                 int err = zfs_file_read(fp, (char *)buf + done,
1506                     len - done, &resid);
1507                 if (resid == len - done) {
1508                         /*
1509                          * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1510                          * that the receive was interrupted and can
1511                          * potentially be resumed.
1512                          */
1513                         err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1514                 }
1515                 drc->drc_voff += len - done - resid;
1516                 done = len - resid;
1517                 if (err != 0)
1518                         return (err);
1519         }
1520
1521         drc->drc_bytes_read += len;
1522
1523         ASSERT3U(done, ==, len);
1524         return (0);
1525 }
1526
1527 static inline uint8_t
1528 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1529 {
1530         if (bonus_type == DMU_OT_SA) {
1531                 return (1);
1532         } else {
1533                 return (1 +
1534                     ((DN_OLD_MAX_BONUSLEN -
1535                     MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1536         }
1537 }
1538
1539 static void
1540 save_resume_state(struct receive_writer_arg *rwa,
1541     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1542 {
1543         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1544
1545         if (!rwa->resumable)
1546                 return;
1547
1548         /*
1549          * We use ds_resume_bytes[] != 0 to indicate that we need to
1550          * update this on disk, so it must not be 0.
1551          */
1552         ASSERT(rwa->bytes_read != 0);
1553
1554         /*
1555          * We only resume from write records, which have a valid
1556          * (non-meta-dnode) object number.
1557          */
1558         ASSERT(object != 0);
1559
1560         /*
1561          * For resuming to work correctly, we must receive records in order,
1562          * sorted by object,offset.  This is checked by the callers, but
1563          * assert it here for good measure.
1564          */
1565         ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1566         ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1567             offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1568         ASSERT3U(rwa->bytes_read, >=,
1569             rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1570
1571         rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1572         rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1573         rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1574 }
1575
1576 static int
1577 receive_object_is_same_generation(objset_t *os, uint64_t object,
1578     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1579     const void *new_bonus, boolean_t *samegenp)
1580 {
1581         zfs_file_info_t zoi;
1582         int err;
1583
1584         dmu_buf_t *old_bonus_dbuf;
1585         err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1586         if (err != 0)
1587                 return (err);
1588         err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1589             &zoi);
1590         dmu_buf_rele(old_bonus_dbuf, FTAG);
1591         if (err != 0)
1592                 return (err);
1593         uint64_t old_gen = zoi.zfi_generation;
1594
1595         err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1596         if (err != 0)
1597                 return (err);
1598         uint64_t new_gen = zoi.zfi_generation;
1599
1600         *samegenp = (old_gen == new_gen);
1601         return (0);
1602 }
1603
1604 static int
1605 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1606     const struct drr_object *drro, const dmu_object_info_t *doi,
1607     const void *bonus_data,
1608     uint64_t *object_to_hold, uint32_t *new_blksz)
1609 {
1610         uint32_t indblksz = drro->drr_indblkshift ?
1611             1ULL << drro->drr_indblkshift : 0;
1612         int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1613             drro->drr_bonuslen);
1614         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1615             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1616         boolean_t do_free_range = B_FALSE;
1617         int err;
1618
1619         *object_to_hold = drro->drr_object;
1620
1621         /* nblkptr should be bounded by the bonus size and type */
1622         if (rwa->raw && nblkptr != drro->drr_nblkptr)
1623                 return (SET_ERROR(EINVAL));
1624
1625         /*
1626          * After the previous send stream, the sending system may
1627          * have freed this object, and then happened to re-allocate
1628          * this object number in a later txg. In this case, we are
1629          * receiving a different logical file, and the block size may
1630          * appear to be different.  i.e. we may have a different
1631          * block size for this object than what the send stream says.
1632          * In this case we need to remove the object's contents,
1633          * so that its structure can be changed and then its contents
1634          * entirely replaced by subsequent WRITE records.
1635          *
1636          * If this is a -L (--large-block) incremental stream, and
1637          * the previous stream was not -L, the block size may appear
1638          * to increase.  i.e. we may have a smaller block size for
1639          * this object than what the send stream says.  In this case
1640          * we need to keep the object's contents and block size
1641          * intact, so that we don't lose parts of the object's
1642          * contents that are not changed by this incremental send
1643          * stream.
1644          *
1645          * We can distinguish between the two above cases by using
1646          * the ZPL's generation number (see
1647          * receive_object_is_same_generation()).  However, we only
1648          * want to rely on the generation number when absolutely
1649          * necessary, because with raw receives, the generation is
1650          * encrypted.  We also want to minimize dependence on the
1651          * ZPL, so that other types of datasets can also be received
1652          * (e.g. ZVOLs, although note that ZVOLS currently do not
1653          * reallocate their objects or change their structure).
1654          * Therefore, we check a number of different cases where we
1655          * know it is safe to discard the object's contents, before
1656          * using the ZPL's generation number to make the above
1657          * distinction.
1658          */
1659         if (drro->drr_blksz != doi->doi_data_block_size) {
1660                 if (rwa->raw) {
1661                         /*
1662                          * RAW streams always have large blocks, so
1663                          * we are sure that the data is not needed
1664                          * due to changing --large-block to be on.
1665                          * Which is fortunate since the bonus buffer
1666                          * (which contains the ZPL generation) is
1667                          * encrypted, and the key might not be
1668                          * loaded.
1669                          */
1670                         do_free_range = B_TRUE;
1671                 } else if (rwa->full) {
1672                         /*
1673                          * This is a full send stream, so it always
1674                          * replaces what we have.  Even if the
1675                          * generation numbers happen to match, this
1676                          * can not actually be the same logical file.
1677                          * This is relevant when receiving a full
1678                          * send as a clone.
1679                          */
1680                         do_free_range = B_TRUE;
1681                 } else if (drro->drr_type !=
1682                     DMU_OT_PLAIN_FILE_CONTENTS ||
1683                     doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1684                         /*
1685                          * PLAIN_FILE_CONTENTS are the only type of
1686                          * objects that have ever been stored with
1687                          * large blocks, so we don't need the special
1688                          * logic below.  ZAP blocks can shrink (when
1689                          * there's only one block), so we don't want
1690                          * to hit the error below about block size
1691                          * only increasing.
1692                          */
1693                         do_free_range = B_TRUE;
1694                 } else if (doi->doi_max_offset <=
1695                     doi->doi_data_block_size) {
1696                         /*
1697                          * There is only one block.  We can free it,
1698                          * because its contents will be replaced by a
1699                          * WRITE record.  This can not be the no-L ->
1700                          * -L case, because the no-L case would have
1701                          * resulted in multiple blocks.  If we
1702                          * supported -L -> no-L, it would not be safe
1703                          * to free the file's contents.  Fortunately,
1704                          * that is not allowed (see
1705                          * recv_check_large_blocks()).
1706                          */
1707                         do_free_range = B_TRUE;
1708                 } else {
1709                         boolean_t is_same_gen;
1710                         err = receive_object_is_same_generation(rwa->os,
1711                             drro->drr_object, doi->doi_bonus_type,
1712                             drro->drr_bonustype, bonus_data, &is_same_gen);
1713                         if (err != 0)
1714                                 return (SET_ERROR(EINVAL));
1715
1716                         if (is_same_gen) {
1717                                 /*
1718                                  * This is the same logical file, and
1719                                  * the block size must be increasing.
1720                                  * It could only decrease if
1721                                  * --large-block was changed to be
1722                                  * off, which is checked in
1723                                  * recv_check_large_blocks().
1724                                  */
1725                                 if (drro->drr_blksz <=
1726                                     doi->doi_data_block_size)
1727                                         return (SET_ERROR(EINVAL));
1728                                 /*
1729                                  * We keep the existing blocksize and
1730                                  * contents.
1731                                  */
1732                                 *new_blksz =
1733                                     doi->doi_data_block_size;
1734                         } else {
1735                                 do_free_range = B_TRUE;
1736                         }
1737                 }
1738         }
1739
1740         /* nblkptr can only decrease if the object was reallocated */
1741         if (nblkptr < doi->doi_nblkptr)
1742                 do_free_range = B_TRUE;
1743
1744         /* number of slots can only change on reallocation */
1745         if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1746                 do_free_range = B_TRUE;
1747
1748         /*
1749          * For raw sends we also check a few other fields to
1750          * ensure we are preserving the objset structure exactly
1751          * as it was on the receive side:
1752          *     - A changed indirect block size
1753          *     - A smaller nlevels
1754          */
1755         if (rwa->raw) {
1756                 if (indblksz != doi->doi_metadata_block_size)
1757                         do_free_range = B_TRUE;
1758                 if (drro->drr_nlevels < doi->doi_indirection)
1759                         do_free_range = B_TRUE;
1760         }
1761
1762         if (do_free_range) {
1763                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1764                     0, DMU_OBJECT_END);
1765                 if (err != 0)
1766                         return (SET_ERROR(EINVAL));
1767         }
1768
1769         /*
1770          * The dmu does not currently support decreasing nlevels
1771          * or changing the number of dnode slots on an object. For
1772          * non-raw sends, this does not matter and the new object
1773          * can just use the previous one's nlevels. For raw sends,
1774          * however, the structure of the received dnode (including
1775          * nlevels and dnode slots) must match that of the send
1776          * side. Therefore, instead of using dmu_object_reclaim(),
1777          * we must free the object completely and call
1778          * dmu_object_claim_dnsize() instead.
1779          */
1780         if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1781             dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1782                 err = dmu_free_long_object(rwa->os, drro->drr_object);
1783                 if (err != 0)
1784                         return (SET_ERROR(EINVAL));
1785
1786                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1787                 *object_to_hold = DMU_NEW_OBJECT;
1788         }
1789
1790         /*
1791          * For raw receives, free everything beyond the new incoming
1792          * maxblkid. Normally this would be done with a DRR_FREE
1793          * record that would come after this DRR_OBJECT record is
1794          * processed. However, for raw receives we manually set the
1795          * maxblkid from the drr_maxblkid and so we must first free
1796          * everything above that blkid to ensure the DMU is always
1797          * consistent with itself. We will never free the first block
1798          * of the object here because a maxblkid of 0 could indicate
1799          * an object with a single block or one with no blocks. This
1800          * free may be skipped when dmu_free_long_range() was called
1801          * above since it covers the entire object's contents.
1802          */
1803         if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1804                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1805                     (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1806                     DMU_OBJECT_END);
1807                 if (err != 0)
1808                         return (SET_ERROR(EINVAL));
1809         }
1810         return (0);
1811 }
1812
1813 noinline static int
1814 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1815     void *data)
1816 {
1817         dmu_object_info_t doi;
1818         dmu_tx_t *tx;
1819         int err;
1820         uint32_t new_blksz = drro->drr_blksz;
1821         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1822             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1823
1824         if (drro->drr_type == DMU_OT_NONE ||
1825             !DMU_OT_IS_VALID(drro->drr_type) ||
1826             !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1827             drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1828             drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1829             P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1830             drro->drr_blksz < SPA_MINBLOCKSIZE ||
1831             drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1832             drro->drr_bonuslen >
1833             DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1834             dn_slots >
1835             (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1836                 return (SET_ERROR(EINVAL));
1837         }
1838
1839         if (rwa->raw) {
1840                 /*
1841                  * We should have received a DRR_OBJECT_RANGE record
1842                  * containing this block and stored it in rwa.
1843                  */
1844                 if (drro->drr_object < rwa->or_firstobj ||
1845                     drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1846                     drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1847                     drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1848                     drro->drr_nlevels > DN_MAX_LEVELS ||
1849                     drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1850                     DN_SLOTS_TO_BONUSLEN(dn_slots) <
1851                     drro->drr_raw_bonuslen)
1852                         return (SET_ERROR(EINVAL));
1853         } else {
1854                 /*
1855                  * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1856                  * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1857                  */
1858                 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1859                     (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1860                         return (SET_ERROR(EINVAL));
1861                 }
1862
1863                 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1864                     drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1865                         return (SET_ERROR(EINVAL));
1866                 }
1867         }
1868
1869         err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1870
1871         if (err != 0 && err != ENOENT && err != EEXIST)
1872                 return (SET_ERROR(EINVAL));
1873
1874         if (drro->drr_object > rwa->max_object)
1875                 rwa->max_object = drro->drr_object;
1876
1877         /*
1878          * If we are losing blkptrs or changing the block size this must
1879          * be a new file instance.  We must clear out the previous file
1880          * contents before we can change this type of metadata in the dnode.
1881          * Raw receives will also check that the indirect structure of the
1882          * dnode hasn't changed.
1883          */
1884         uint64_t object_to_hold;
1885         if (err == 0) {
1886                 err = receive_handle_existing_object(rwa, drro, &doi, data,
1887                     &object_to_hold, &new_blksz);
1888                 if (err != 0)
1889                         return (err);
1890         } else if (err == EEXIST) {
1891                 /*
1892                  * The object requested is currently an interior slot of a
1893                  * multi-slot dnode. This will be resolved when the next txg
1894                  * is synced out, since the send stream will have told us
1895                  * to free this slot when we freed the associated dnode
1896                  * earlier in the stream.
1897                  */
1898                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1899
1900                 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1901                         return (SET_ERROR(EINVAL));
1902
1903                 /* object was freed and we are about to allocate a new one */
1904                 object_to_hold = DMU_NEW_OBJECT;
1905         } else {
1906                 /* object is free and we are about to allocate a new one */
1907                 object_to_hold = DMU_NEW_OBJECT;
1908         }
1909
1910         /*
1911          * If this is a multi-slot dnode there is a chance that this
1912          * object will expand into a slot that is already used by
1913          * another object from the previous snapshot. We must free
1914          * these objects before we attempt to allocate the new dnode.
1915          */
1916         if (dn_slots > 1) {
1917                 boolean_t need_sync = B_FALSE;
1918
1919                 for (uint64_t slot = drro->drr_object + 1;
1920                     slot < drro->drr_object + dn_slots;
1921                     slot++) {
1922                         dmu_object_info_t slot_doi;
1923
1924                         err = dmu_object_info(rwa->os, slot, &slot_doi);
1925                         if (err == ENOENT || err == EEXIST)
1926                                 continue;
1927                         else if (err != 0)
1928                                 return (err);
1929
1930                         err = dmu_free_long_object(rwa->os, slot);
1931                         if (err != 0)
1932                                 return (err);
1933
1934                         need_sync = B_TRUE;
1935                 }
1936
1937                 if (need_sync)
1938                         txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1939         }
1940
1941         tx = dmu_tx_create(rwa->os);
1942         dmu_tx_hold_bonus(tx, object_to_hold);
1943         dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1944         err = dmu_tx_assign(tx, TXG_WAIT);
1945         if (err != 0) {
1946                 dmu_tx_abort(tx);
1947                 return (err);
1948         }
1949
1950         if (object_to_hold == DMU_NEW_OBJECT) {
1951                 /* Currently free, wants to be allocated */
1952                 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1953                     drro->drr_type, new_blksz,
1954                     drro->drr_bonustype, drro->drr_bonuslen,
1955                     dn_slots << DNODE_SHIFT, tx);
1956         } else if (drro->drr_type != doi.doi_type ||
1957             new_blksz != doi.doi_data_block_size ||
1958             drro->drr_bonustype != doi.doi_bonus_type ||
1959             drro->drr_bonuslen != doi.doi_bonus_size) {
1960                 /* Currently allocated, but with different properties */
1961                 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1962                     drro->drr_type, new_blksz,
1963                     drro->drr_bonustype, drro->drr_bonuslen,
1964                     dn_slots << DNODE_SHIFT, rwa->spill ?
1965                     DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1966         } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1967                 /*
1968                  * Currently allocated, the existing version of this object
1969                  * may reference a spill block that is no longer allocated
1970                  * at the source and needs to be freed.
1971                  */
1972                 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1973         }
1974
1975         if (err != 0) {
1976                 dmu_tx_commit(tx);
1977                 return (SET_ERROR(EINVAL));
1978         }
1979
1980         if (rwa->or_crypt_params_present) {
1981                 /*
1982                  * Set the crypt params for the buffer associated with this
1983                  * range of dnodes.  This causes the blkptr_t to have the
1984                  * same crypt params (byteorder, salt, iv, mac) as on the
1985                  * sending side.
1986                  *
1987                  * Since we are committing this tx now, it is possible for
1988                  * the dnode block to end up on-disk with the incorrect MAC,
1989                  * if subsequent objects in this block are received in a
1990                  * different txg.  However, since the dataset is marked as
1991                  * inconsistent, no code paths will do a non-raw read (or
1992                  * decrypt the block / verify the MAC). The receive code and
1993                  * scrub code can safely do raw reads and verify the
1994                  * checksum.  They don't need to verify the MAC.
1995                  */
1996                 dmu_buf_t *db = NULL;
1997                 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1998
1999                 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2000                     offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2001                 if (err != 0) {
2002                         dmu_tx_commit(tx);
2003                         return (SET_ERROR(EINVAL));
2004                 }
2005
2006                 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2007                     rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2008
2009                 dmu_buf_rele(db, FTAG);
2010
2011                 rwa->or_crypt_params_present = B_FALSE;
2012         }
2013
2014         dmu_object_set_checksum(rwa->os, drro->drr_object,
2015             drro->drr_checksumtype, tx);
2016         dmu_object_set_compress(rwa->os, drro->drr_object,
2017             drro->drr_compress, tx);
2018
2019         /* handle more restrictive dnode structuring for raw recvs */
2020         if (rwa->raw) {
2021                 /*
2022                  * Set the indirect block size, block shift, nlevels.
2023                  * This will not fail because we ensured all of the
2024                  * blocks were freed earlier if this is a new object.
2025                  * For non-new objects block size and indirect block
2026                  * shift cannot change and nlevels can only increase.
2027                  */
2028                 ASSERT3U(new_blksz, ==, drro->drr_blksz);
2029                 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2030                     drro->drr_blksz, drro->drr_indblkshift, tx));
2031                 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2032                     drro->drr_nlevels, tx));
2033
2034                 /*
2035                  * Set the maxblkid. This will always succeed because
2036                  * we freed all blocks beyond the new maxblkid above.
2037                  */
2038                 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2039                     drro->drr_maxblkid, tx));
2040         }
2041
2042         if (data != NULL) {
2043                 dmu_buf_t *db;
2044                 dnode_t *dn;
2045                 uint32_t flags = DMU_READ_NO_PREFETCH;
2046
2047                 if (rwa->raw)
2048                         flags |= DMU_READ_NO_DECRYPT;
2049
2050                 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2051                 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2052
2053                 dmu_buf_will_dirty(db, tx);
2054
2055                 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2056                 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2057
2058                 /*
2059                  * Raw bonus buffers have their byteorder determined by the
2060                  * DRR_OBJECT_RANGE record.
2061                  */
2062                 if (rwa->byteswap && !rwa->raw) {
2063                         dmu_object_byteswap_t byteswap =
2064                             DMU_OT_BYTESWAP(drro->drr_bonustype);
2065                         dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2066                             DRR_OBJECT_PAYLOAD_SIZE(drro));
2067                 }
2068                 dmu_buf_rele(db, FTAG);
2069                 dnode_rele(dn, FTAG);
2070         }
2071         dmu_tx_commit(tx);
2072
2073         return (0);
2074 }
2075
2076 noinline static int
2077 receive_freeobjects(struct receive_writer_arg *rwa,
2078     struct drr_freeobjects *drrfo)
2079 {
2080         uint64_t obj;
2081         int next_err = 0;
2082
2083         if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2084                 return (SET_ERROR(EINVAL));
2085
2086         for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2087             obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2088             obj < DN_MAX_OBJECT && next_err == 0;
2089             next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2090                 dmu_object_info_t doi;
2091                 int err;
2092
2093                 err = dmu_object_info(rwa->os, obj, &doi);
2094                 if (err == ENOENT)
2095                         continue;
2096                 else if (err != 0)
2097                         return (err);
2098
2099                 err = dmu_free_long_object(rwa->os, obj);
2100
2101                 if (err != 0)
2102                         return (err);
2103         }
2104         if (next_err != ESRCH)
2105                 return (next_err);
2106         return (0);
2107 }
2108
2109 /*
2110  * Note: if this fails, the caller will clean up any records left on the
2111  * rwa->write_batch list.
2112  */
2113 static int
2114 flush_write_batch_impl(struct receive_writer_arg *rwa)
2115 {
2116         dnode_t *dn;
2117         int err;
2118
2119         if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2120                 return (SET_ERROR(EINVAL));
2121
2122         struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2123         struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2124
2125         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2126         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2127
2128         ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2129         ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2130
2131         dmu_tx_t *tx = dmu_tx_create(rwa->os);
2132         dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2133             last_drrw->drr_offset - first_drrw->drr_offset +
2134             last_drrw->drr_logical_size);
2135         err = dmu_tx_assign(tx, TXG_WAIT);
2136         if (err != 0) {
2137                 dmu_tx_abort(tx);
2138                 dnode_rele(dn, FTAG);
2139                 return (err);
2140         }
2141
2142         struct receive_record_arg *rrd;
2143         while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2144                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2145                 abd_t *abd = rrd->abd;
2146
2147                 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2148
2149                 if (drrw->drr_logical_size != dn->dn_datablksz) {
2150                         /*
2151                          * The WRITE record is larger than the object's block
2152                          * size.  We must be receiving an incremental
2153                          * large-block stream into a dataset that previously did
2154                          * a non-large-block receive.  Lightweight writes must
2155                          * be exactly one block, so we need to decompress the
2156                          * data (if compressed) and do a normal dmu_write().
2157                          */
2158                         ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2159                         if (DRR_WRITE_COMPRESSED(drrw)) {
2160                                 abd_t *decomp_abd =
2161                                     abd_alloc_linear(drrw->drr_logical_size,
2162                                     B_FALSE);
2163
2164                                 err = zio_decompress_data(
2165                                     drrw->drr_compressiontype,
2166                                     abd, abd_to_buf(decomp_abd),
2167                                     abd_get_size(abd),
2168                                     abd_get_size(decomp_abd), NULL);
2169
2170                                 if (err == 0) {
2171                                         dmu_write_by_dnode(dn,
2172                                             drrw->drr_offset,
2173                                             drrw->drr_logical_size,
2174                                             abd_to_buf(decomp_abd), tx);
2175                                 }
2176                                 abd_free(decomp_abd);
2177                         } else {
2178                                 dmu_write_by_dnode(dn,
2179                                     drrw->drr_offset,
2180                                     drrw->drr_logical_size,
2181                                     abd_to_buf(abd), tx);
2182                         }
2183                         if (err == 0)
2184                                 abd_free(abd);
2185                 } else {
2186                         zio_prop_t zp;
2187                         dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2188
2189                         enum zio_flag zio_flags = 0;
2190
2191                         if (rwa->raw) {
2192                                 zp.zp_encrypt = B_TRUE;
2193                                 zp.zp_compress = drrw->drr_compressiontype;
2194                                 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2195                                     !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2196                                     rwa->byteswap;
2197                                 memcpy(zp.zp_salt, drrw->drr_salt,
2198                                     ZIO_DATA_SALT_LEN);
2199                                 memcpy(zp.zp_iv, drrw->drr_iv,
2200                                     ZIO_DATA_IV_LEN);
2201                                 memcpy(zp.zp_mac, drrw->drr_mac,
2202                                     ZIO_DATA_MAC_LEN);
2203                                 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2204                                         zp.zp_nopwrite = B_FALSE;
2205                                         zp.zp_copies = MIN(zp.zp_copies,
2206                                             SPA_DVAS_PER_BP - 1);
2207                                 }
2208                                 zio_flags |= ZIO_FLAG_RAW;
2209                         } else if (DRR_WRITE_COMPRESSED(drrw)) {
2210                                 ASSERT3U(drrw->drr_compressed_size, >, 0);
2211                                 ASSERT3U(drrw->drr_logical_size, >=,
2212                                     drrw->drr_compressed_size);
2213                                 zp.zp_compress = drrw->drr_compressiontype;
2214                                 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2215                         } else if (rwa->byteswap) {
2216                                 /*
2217                                  * Note: compressed blocks never need to be
2218                                  * byteswapped, because WRITE records for
2219                                  * metadata blocks are never compressed. The
2220                                  * exception is raw streams, which are written
2221                                  * in the original byteorder, and the byteorder
2222                                  * bit is preserved in the BP by setting
2223                                  * zp_byteorder above.
2224                                  */
2225                                 dmu_object_byteswap_t byteswap =
2226                                     DMU_OT_BYTESWAP(drrw->drr_type);
2227                                 dmu_ot_byteswap[byteswap].ob_func(
2228                                     abd_to_buf(abd),
2229                                     DRR_WRITE_PAYLOAD_SIZE(drrw));
2230                         }
2231
2232                         /*
2233                          * Since this data can't be read until the receive
2234                          * completes, we can do a "lightweight" write for
2235                          * improved performance.
2236                          */
2237                         err = dmu_lightweight_write_by_dnode(dn,
2238                             drrw->drr_offset, abd, &zp, zio_flags, tx);
2239                 }
2240
2241                 if (err != 0) {
2242                         /*
2243                          * This rrd is left on the list, so the caller will
2244                          * free it (and the abd).
2245                          */
2246                         break;
2247                 }
2248
2249                 /*
2250                  * Note: If the receive fails, we want the resume stream to
2251                  * start with the same record that we last successfully
2252                  * received (as opposed to the next record), so that we can
2253                  * verify that we are resuming from the correct location.
2254                  */
2255                 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2256
2257                 list_remove(&rwa->write_batch, rrd);
2258                 kmem_free(rrd, sizeof (*rrd));
2259         }
2260
2261         dmu_tx_commit(tx);
2262         dnode_rele(dn, FTAG);
2263         return (err);
2264 }
2265
2266 noinline static int
2267 flush_write_batch(struct receive_writer_arg *rwa)
2268 {
2269         if (list_is_empty(&rwa->write_batch))
2270                 return (0);
2271         int err = rwa->err;
2272         if (err == 0)
2273                 err = flush_write_batch_impl(rwa);
2274         if (err != 0) {
2275                 struct receive_record_arg *rrd;
2276                 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2277                         abd_free(rrd->abd);
2278                         kmem_free(rrd, sizeof (*rrd));
2279                 }
2280         }
2281         ASSERT(list_is_empty(&rwa->write_batch));
2282         return (err);
2283 }
2284
2285 noinline static int
2286 receive_process_write_record(struct receive_writer_arg *rwa,
2287     struct receive_record_arg *rrd)
2288 {
2289         int err = 0;
2290
2291         ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2292         struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2293
2294         if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2295             !DMU_OT_IS_VALID(drrw->drr_type))
2296                 return (SET_ERROR(EINVAL));
2297
2298         if (rwa->heal) {
2299                 blkptr_t *bp;
2300                 dmu_buf_t *dbp;
2301                 dnode_t *dn;
2302                 int flags = DB_RF_CANFAIL;
2303
2304                 if (rwa->raw)
2305                         flags |= DB_RF_NO_DECRYPT;
2306
2307                 if (rwa->byteswap) {
2308                         dmu_object_byteswap_t byteswap =
2309                             DMU_OT_BYTESWAP(drrw->drr_type);
2310                         dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2311                             DRR_WRITE_PAYLOAD_SIZE(drrw));
2312                 }
2313
2314                 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2315                     drrw->drr_offset, FTAG, &dbp);
2316                 if (err != 0)
2317                         return (err);
2318
2319                 /* Try to read the object to see if it needs healing */
2320                 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2321                 /*
2322                  * We only try to heal when dbuf_read() returns a ECKSUMs.
2323                  * Other errors (even EIO) get returned to caller.
2324                  * EIO indicates that the device is not present/accessible,
2325                  * so writing to it will likely fail.
2326                  * If the block is healthy, we don't want to overwrite it
2327                  * unnecessarily.
2328                  */
2329                 if (err != ECKSUM) {
2330                         dmu_buf_rele(dbp, FTAG);
2331                         return (err);
2332                 }
2333                 dn = dmu_buf_dnode_enter(dbp);
2334                 /* Make sure the on-disk block and recv record sizes match */
2335                 if (drrw->drr_logical_size !=
2336                     dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) {
2337                         err = ENOTSUP;
2338                         dmu_buf_dnode_exit(dbp);
2339                         dmu_buf_rele(dbp, FTAG);
2340                         return (err);
2341                 }
2342                 /* Get the block pointer for the corrupted block */
2343                 bp = dmu_buf_get_blkptr(dbp);
2344                 err = do_corrective_recv(rwa, drrw, rrd, bp);
2345                 dmu_buf_dnode_exit(dbp);
2346                 dmu_buf_rele(dbp, FTAG);
2347                 return (err);
2348         }
2349
2350         /*
2351          * For resuming to work, records must be in increasing order
2352          * by (object, offset).
2353          */
2354         if (drrw->drr_object < rwa->last_object ||
2355             (drrw->drr_object == rwa->last_object &&
2356             drrw->drr_offset < rwa->last_offset)) {
2357                 return (SET_ERROR(EINVAL));
2358         }
2359
2360         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2361         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2362         uint64_t batch_size =
2363             MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2364         if (first_rrd != NULL &&
2365             (drrw->drr_object != first_drrw->drr_object ||
2366             drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2367                 err = flush_write_batch(rwa);
2368                 if (err != 0)
2369                         return (err);
2370         }
2371
2372         rwa->last_object = drrw->drr_object;
2373         rwa->last_offset = drrw->drr_offset;
2374
2375         if (rwa->last_object > rwa->max_object)
2376                 rwa->max_object = rwa->last_object;
2377
2378         list_insert_tail(&rwa->write_batch, rrd);
2379         /*
2380          * Return EAGAIN to indicate that we will use this rrd again,
2381          * so the caller should not free it
2382          */
2383         return (EAGAIN);
2384 }
2385
2386 static int
2387 receive_write_embedded(struct receive_writer_arg *rwa,
2388     struct drr_write_embedded *drrwe, void *data)
2389 {
2390         dmu_tx_t *tx;
2391         int err;
2392
2393         if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2394                 return (SET_ERROR(EINVAL));
2395
2396         if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2397                 return (SET_ERROR(EINVAL));
2398
2399         if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2400                 return (SET_ERROR(EINVAL));
2401         if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2402                 return (SET_ERROR(EINVAL));
2403         if (rwa->raw)
2404                 return (SET_ERROR(EINVAL));
2405
2406         if (drrwe->drr_object > rwa->max_object)
2407                 rwa->max_object = drrwe->drr_object;
2408
2409         tx = dmu_tx_create(rwa->os);
2410
2411         dmu_tx_hold_write(tx, drrwe->drr_object,
2412             drrwe->drr_offset, drrwe->drr_length);
2413         err = dmu_tx_assign(tx, TXG_WAIT);
2414         if (err != 0) {
2415                 dmu_tx_abort(tx);
2416                 return (err);
2417         }
2418
2419         dmu_write_embedded(rwa->os, drrwe->drr_object,
2420             drrwe->drr_offset, data, drrwe->drr_etype,
2421             drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2422             rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2423
2424         /* See comment in restore_write. */
2425         save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2426         dmu_tx_commit(tx);
2427         return (0);
2428 }
2429
2430 static int
2431 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2432     abd_t *abd)
2433 {
2434         dmu_buf_t *db, *db_spill;
2435         int err;
2436
2437         if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2438             drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2439                 return (SET_ERROR(EINVAL));
2440
2441         /*
2442          * This is an unmodified spill block which was added to the stream
2443          * to resolve an issue with incorrectly removing spill blocks.  It
2444          * should be ignored by current versions of the code which support
2445          * the DRR_FLAG_SPILL_BLOCK flag.
2446          */
2447         if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2448                 abd_free(abd);
2449                 return (0);
2450         }
2451
2452         if (rwa->raw) {
2453                 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2454                     drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2455                     drrs->drr_compressed_size == 0)
2456                         return (SET_ERROR(EINVAL));
2457         }
2458
2459         if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2460                 return (SET_ERROR(EINVAL));
2461
2462         if (drrs->drr_object > rwa->max_object)
2463                 rwa->max_object = drrs->drr_object;
2464
2465         VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2466         if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2467             &db_spill)) != 0) {
2468                 dmu_buf_rele(db, FTAG);
2469                 return (err);
2470         }
2471
2472         dmu_tx_t *tx = dmu_tx_create(rwa->os);
2473
2474         dmu_tx_hold_spill(tx, db->db_object);
2475
2476         err = dmu_tx_assign(tx, TXG_WAIT);
2477         if (err != 0) {
2478                 dmu_buf_rele(db, FTAG);
2479                 dmu_buf_rele(db_spill, FTAG);
2480                 dmu_tx_abort(tx);
2481                 return (err);
2482         }
2483
2484         /*
2485          * Spill blocks may both grow and shrink.  When a change in size
2486          * occurs any existing dbuf must be updated to match the logical
2487          * size of the provided arc_buf_t.
2488          */
2489         if (db_spill->db_size != drrs->drr_length) {
2490                 dmu_buf_will_fill(db_spill, tx);
2491                 VERIFY0(dbuf_spill_set_blksz(db_spill,
2492                     drrs->drr_length, tx));
2493         }
2494
2495         arc_buf_t *abuf;
2496         if (rwa->raw) {
2497                 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2498                     !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2499                     rwa->byteswap;
2500
2501                 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2502                     drrs->drr_object, byteorder, drrs->drr_salt,
2503                     drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2504                     drrs->drr_compressed_size, drrs->drr_length,
2505                     drrs->drr_compressiontype, 0);
2506         } else {
2507                 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2508                     DMU_OT_IS_METADATA(drrs->drr_type),
2509                     drrs->drr_length);
2510                 if (rwa->byteswap) {
2511                         dmu_object_byteswap_t byteswap =
2512                             DMU_OT_BYTESWAP(drrs->drr_type);
2513                         dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2514                             DRR_SPILL_PAYLOAD_SIZE(drrs));
2515                 }
2516         }
2517
2518         memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2519         abd_free(abd);
2520         dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2521
2522         dmu_buf_rele(db, FTAG);
2523         dmu_buf_rele(db_spill, FTAG);
2524
2525         dmu_tx_commit(tx);
2526         return (0);
2527 }
2528
2529 noinline static int
2530 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2531 {
2532         int err;
2533
2534         if (drrf->drr_length != -1ULL &&
2535             drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2536                 return (SET_ERROR(EINVAL));
2537
2538         if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2539                 return (SET_ERROR(EINVAL));
2540
2541         if (drrf->drr_object > rwa->max_object)
2542                 rwa->max_object = drrf->drr_object;
2543
2544         err = dmu_free_long_range(rwa->os, drrf->drr_object,
2545             drrf->drr_offset, drrf->drr_length);
2546
2547         return (err);
2548 }
2549
2550 static int
2551 receive_object_range(struct receive_writer_arg *rwa,
2552     struct drr_object_range *drror)
2553 {
2554         /*
2555          * By default, we assume this block is in our native format
2556          * (ZFS_HOST_BYTEORDER). We then take into account whether
2557          * the send stream is byteswapped (rwa->byteswap). Finally,
2558          * we need to byteswap again if this particular block was
2559          * in non-native format on the send side.
2560          */
2561         boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2562             !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2563
2564         /*
2565          * Since dnode block sizes are constant, we should not need to worry
2566          * about making sure that the dnode block size is the same on the
2567          * sending and receiving sides for the time being. For non-raw sends,
2568          * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2569          * record at all). Raw sends require this record type because the
2570          * encryption parameters are used to protect an entire block of bonus
2571          * buffers. If the size of dnode blocks ever becomes variable,
2572          * handling will need to be added to ensure that dnode block sizes
2573          * match on the sending and receiving side.
2574          */
2575         if (drror->drr_numslots != DNODES_PER_BLOCK ||
2576             P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2577             !rwa->raw)
2578                 return (SET_ERROR(EINVAL));
2579
2580         if (drror->drr_firstobj > rwa->max_object)
2581                 rwa->max_object = drror->drr_firstobj;
2582
2583         /*
2584          * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2585          * so that the block of dnodes is not written out when it's empty,
2586          * and converted to a HOLE BP.
2587          */
2588         rwa->or_crypt_params_present = B_TRUE;
2589         rwa->or_firstobj = drror->drr_firstobj;
2590         rwa->or_numslots = drror->drr_numslots;
2591         memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2592         memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2593         memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2594         rwa->or_byteorder = byteorder;
2595
2596         return (0);
2597 }
2598
2599 /*
2600  * Until we have the ability to redact large ranges of data efficiently, we
2601  * process these records as frees.
2602  */
2603 noinline static int
2604 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2605 {
2606         struct drr_free drrf = {0};
2607         drrf.drr_length = drrr->drr_length;
2608         drrf.drr_object = drrr->drr_object;
2609         drrf.drr_offset = drrr->drr_offset;
2610         drrf.drr_toguid = drrr->drr_toguid;
2611         return (receive_free(rwa, &drrf));
2612 }
2613
2614 /* used to destroy the drc_ds on error */
2615 static void
2616 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2617 {
2618         dsl_dataset_t *ds = drc->drc_ds;
2619         ds_hold_flags_t dsflags;
2620
2621         dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2622         /*
2623          * Wait for the txg sync before cleaning up the receive. For
2624          * resumable receives, this ensures that our resume state has
2625          * been written out to disk. For raw receives, this ensures
2626          * that the user accounting code will not attempt to do anything
2627          * after we stopped receiving the dataset.
2628          */
2629         txg_wait_synced(ds->ds_dir->dd_pool, 0);
2630         ds->ds_objset->os_raw_receive = B_FALSE;
2631
2632         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2633         if (drc->drc_resumable && drc->drc_should_save &&
2634             !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2635                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2636                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2637         } else {
2638                 char name[ZFS_MAX_DATASET_NAME_LEN];
2639                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2640                 dsl_dataset_name(ds, name);
2641                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2642                 if (!drc->drc_heal)
2643                         (void) dsl_destroy_head(name);
2644         }
2645 }
2646
2647 static void
2648 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2649 {
2650         if (drc->drc_byteswap) {
2651                 (void) fletcher_4_incremental_byteswap(buf, len,
2652                     &drc->drc_cksum);
2653         } else {
2654                 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2655         }
2656 }
2657
2658 /*
2659  * Read the payload into a buffer of size len, and update the current record's
2660  * payload field.
2661  * Allocate drc->drc_next_rrd and read the next record's header into
2662  * drc->drc_next_rrd->header.
2663  * Verify checksum of payload and next record.
2664  */
2665 static int
2666 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2667 {
2668         int err;
2669
2670         if (len != 0) {
2671                 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2672                 err = receive_read(drc, len, buf);
2673                 if (err != 0)
2674                         return (err);
2675                 receive_cksum(drc, len, buf);
2676
2677                 /* note: rrd is NULL when reading the begin record's payload */
2678                 if (drc->drc_rrd != NULL) {
2679                         drc->drc_rrd->payload = buf;
2680                         drc->drc_rrd->payload_size = len;
2681                         drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2682                 }
2683         } else {
2684                 ASSERT3P(buf, ==, NULL);
2685         }
2686
2687         drc->drc_prev_cksum = drc->drc_cksum;
2688
2689         drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2690         err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2691             &drc->drc_next_rrd->header);
2692         drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2693
2694         if (err != 0) {
2695                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2696                 drc->drc_next_rrd = NULL;
2697                 return (err);
2698         }
2699         if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2700                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2701                 drc->drc_next_rrd = NULL;
2702                 return (SET_ERROR(EINVAL));
2703         }
2704
2705         /*
2706          * Note: checksum is of everything up to but not including the
2707          * checksum itself.
2708          */
2709         ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2710             ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2711         receive_cksum(drc,
2712             offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2713             &drc->drc_next_rrd->header);
2714
2715         zio_cksum_t cksum_orig =
2716             drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2717         zio_cksum_t *cksump =
2718             &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2719
2720         if (drc->drc_byteswap)
2721                 byteswap_record(&drc->drc_next_rrd->header);
2722
2723         if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2724             !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2725                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2726                 drc->drc_next_rrd = NULL;
2727                 return (SET_ERROR(ECKSUM));
2728         }
2729
2730         receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2731
2732         return (0);
2733 }
2734
2735 /*
2736  * Issue the prefetch reads for any necessary indirect blocks.
2737  *
2738  * We use the object ignore list to tell us whether or not to issue prefetches
2739  * for a given object.  We do this for both correctness (in case the blocksize
2740  * of an object has changed) and performance (if the object doesn't exist, don't
2741  * needlessly try to issue prefetches).  We also trim the list as we go through
2742  * the stream to prevent it from growing to an unbounded size.
2743  *
2744  * The object numbers within will always be in sorted order, and any write
2745  * records we see will also be in sorted order, but they're not sorted with
2746  * respect to each other (i.e. we can get several object records before
2747  * receiving each object's write records).  As a result, once we've reached a
2748  * given object number, we can safely remove any reference to lower object
2749  * numbers in the ignore list. In practice, we receive up to 32 object records
2750  * before receiving write records, so the list can have up to 32 nodes in it.
2751  */
2752 static void
2753 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2754     uint64_t length)
2755 {
2756         if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2757                 dmu_prefetch(drc->drc_os, object, 1, offset, length,
2758                     ZIO_PRIORITY_SYNC_READ);
2759         }
2760 }
2761
2762 /*
2763  * Read records off the stream, issuing any necessary prefetches.
2764  */
2765 static int
2766 receive_read_record(dmu_recv_cookie_t *drc)
2767 {
2768         int err;
2769
2770         switch (drc->drc_rrd->header.drr_type) {
2771         case DRR_OBJECT:
2772         {
2773                 struct drr_object *drro =
2774                     &drc->drc_rrd->header.drr_u.drr_object;
2775                 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2776                 void *buf = NULL;
2777                 dmu_object_info_t doi;
2778
2779                 if (size != 0)
2780                         buf = kmem_zalloc(size, KM_SLEEP);
2781
2782                 err = receive_read_payload_and_next_header(drc, size, buf);
2783                 if (err != 0) {
2784                         kmem_free(buf, size);
2785                         return (err);
2786                 }
2787                 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2788                 /*
2789                  * See receive_read_prefetch for an explanation why we're
2790                  * storing this object in the ignore_obj_list.
2791                  */
2792                 if (err == ENOENT || err == EEXIST ||
2793                     (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2794                         objlist_insert(drc->drc_ignore_objlist,
2795                             drro->drr_object);
2796                         err = 0;
2797                 }
2798                 return (err);
2799         }
2800         case DRR_FREEOBJECTS:
2801         {
2802                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2803                 return (err);
2804         }
2805         case DRR_WRITE:
2806         {
2807                 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2808                 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2809                 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2810                 err = receive_read_payload_and_next_header(drc, size,
2811                     abd_to_buf(abd));
2812                 if (err != 0) {
2813                         abd_free(abd);
2814                         return (err);
2815                 }
2816                 drc->drc_rrd->abd = abd;
2817                 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2818                     drrw->drr_logical_size);
2819                 return (err);
2820         }
2821         case DRR_WRITE_EMBEDDED:
2822         {
2823                 struct drr_write_embedded *drrwe =
2824                     &drc->drc_rrd->header.drr_u.drr_write_embedded;
2825                 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2826                 void *buf = kmem_zalloc(size, KM_SLEEP);
2827
2828                 err = receive_read_payload_and_next_header(drc, size, buf);
2829                 if (err != 0) {
2830                         kmem_free(buf, size);
2831                         return (err);
2832                 }
2833
2834                 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2835                     drrwe->drr_length);
2836                 return (err);
2837         }
2838         case DRR_FREE:
2839         case DRR_REDACT:
2840         {
2841                 /*
2842                  * It might be beneficial to prefetch indirect blocks here, but
2843                  * we don't really have the data to decide for sure.
2844                  */
2845                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2846                 return (err);
2847         }
2848         case DRR_END:
2849         {
2850                 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2851                 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2852                     drre->drr_checksum))
2853                         return (SET_ERROR(ECKSUM));
2854                 return (0);
2855         }
2856         case DRR_SPILL:
2857         {
2858                 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2859                 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2860                 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2861                 err = receive_read_payload_and_next_header(drc, size,
2862                     abd_to_buf(abd));
2863                 if (err != 0)
2864                         abd_free(abd);
2865                 else
2866                         drc->drc_rrd->abd = abd;
2867                 return (err);
2868         }
2869         case DRR_OBJECT_RANGE:
2870         {
2871                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2872                 return (err);
2873
2874         }
2875         default:
2876                 return (SET_ERROR(EINVAL));
2877         }
2878 }
2879
2880
2881
2882 static void
2883 dprintf_drr(struct receive_record_arg *rrd, int err)
2884 {
2885 #ifdef ZFS_DEBUG
2886         switch (rrd->header.drr_type) {
2887         case DRR_OBJECT:
2888         {
2889                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2890                 dprintf("drr_type = OBJECT obj = %llu type = %u "
2891                     "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2892                     "compress = %u dn_slots = %u err = %d\n",
2893                     (u_longlong_t)drro->drr_object, drro->drr_type,
2894                     drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2895                     drro->drr_checksumtype, drro->drr_compress,
2896                     drro->drr_dn_slots, err);
2897                 break;
2898         }
2899         case DRR_FREEOBJECTS:
2900         {
2901                 struct drr_freeobjects *drrfo =
2902                     &rrd->header.drr_u.drr_freeobjects;
2903                 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2904                     "numobjs = %llu err = %d\n",
2905                     (u_longlong_t)drrfo->drr_firstobj,
2906                     (u_longlong_t)drrfo->drr_numobjs, err);
2907                 break;
2908         }
2909         case DRR_WRITE:
2910         {
2911                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2912                 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2913                     "lsize = %llu cksumtype = %u flags = %u "
2914                     "compress = %u psize = %llu err = %d\n",
2915                     (u_longlong_t)drrw->drr_object, drrw->drr_type,
2916                     (u_longlong_t)drrw->drr_offset,
2917                     (u_longlong_t)drrw->drr_logical_size,
2918                     drrw->drr_checksumtype, drrw->drr_flags,
2919                     drrw->drr_compressiontype,
2920                     (u_longlong_t)drrw->drr_compressed_size, err);
2921                 break;
2922         }
2923         case DRR_WRITE_BYREF:
2924         {
2925                 struct drr_write_byref *drrwbr =
2926                     &rrd->header.drr_u.drr_write_byref;
2927                 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2928                     "length = %llu toguid = %llx refguid = %llx "
2929                     "refobject = %llu refoffset = %llu cksumtype = %u "
2930                     "flags = %u err = %d\n",
2931                     (u_longlong_t)drrwbr->drr_object,
2932                     (u_longlong_t)drrwbr->drr_offset,
2933                     (u_longlong_t)drrwbr->drr_length,
2934                     (u_longlong_t)drrwbr->drr_toguid,
2935                     (u_longlong_t)drrwbr->drr_refguid,
2936                     (u_longlong_t)drrwbr->drr_refobject,
2937                     (u_longlong_t)drrwbr->drr_refoffset,
2938                     drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2939                 break;
2940         }
2941         case DRR_WRITE_EMBEDDED:
2942         {
2943                 struct drr_write_embedded *drrwe =
2944                     &rrd->header.drr_u.drr_write_embedded;
2945                 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2946                     "length = %llu compress = %u etype = %u lsize = %u "
2947                     "psize = %u err = %d\n",
2948                     (u_longlong_t)drrwe->drr_object,
2949                     (u_longlong_t)drrwe->drr_offset,
2950                     (u_longlong_t)drrwe->drr_length,
2951                     drrwe->drr_compression, drrwe->drr_etype,
2952                     drrwe->drr_lsize, drrwe->drr_psize, err);
2953                 break;
2954         }
2955         case DRR_FREE:
2956         {
2957                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2958                 dprintf("drr_type = FREE obj = %llu offset = %llu "
2959                     "length = %lld err = %d\n",
2960                     (u_longlong_t)drrf->drr_object,
2961                     (u_longlong_t)drrf->drr_offset,
2962                     (longlong_t)drrf->drr_length,
2963                     err);
2964                 break;
2965         }
2966         case DRR_SPILL:
2967         {
2968                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2969                 dprintf("drr_type = SPILL obj = %llu length = %llu "
2970                     "err = %d\n", (u_longlong_t)drrs->drr_object,
2971                     (u_longlong_t)drrs->drr_length, err);
2972                 break;
2973         }
2974         case DRR_OBJECT_RANGE:
2975         {
2976                 struct drr_object_range *drror =
2977                     &rrd->header.drr_u.drr_object_range;
2978                 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2979                     "numslots = %llu flags = %u err = %d\n",
2980                     (u_longlong_t)drror->drr_firstobj,
2981                     (u_longlong_t)drror->drr_numslots,
2982                     drror->drr_flags, err);
2983                 break;
2984         }
2985         default:
2986                 return;
2987         }
2988 #endif
2989 }
2990
2991 /*
2992  * Commit the records to the pool.
2993  */
2994 static int
2995 receive_process_record(struct receive_writer_arg *rwa,
2996     struct receive_record_arg *rrd)
2997 {
2998         int err;
2999
3000         /* Processing in order, therefore bytes_read should be increasing. */
3001         ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3002         rwa->bytes_read = rrd->bytes_read;
3003
3004         /* We can only heal write records; other ones get ignored */
3005         if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3006                 if (rrd->abd != NULL) {
3007                         abd_free(rrd->abd);
3008                         rrd->abd = NULL;
3009                 } else if (rrd->payload != NULL) {
3010                         kmem_free(rrd->payload, rrd->payload_size);
3011                         rrd->payload = NULL;
3012                 }
3013                 return (0);
3014         }
3015
3016         if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3017                 err = flush_write_batch(rwa);
3018                 if (err != 0) {
3019                         if (rrd->abd != NULL) {
3020                                 abd_free(rrd->abd);
3021                                 rrd->abd = NULL;
3022                                 rrd->payload = NULL;
3023                         } else if (rrd->payload != NULL) {
3024                                 kmem_free(rrd->payload, rrd->payload_size);
3025                                 rrd->payload = NULL;
3026                         }
3027
3028                         return (err);
3029                 }
3030         }
3031
3032         switch (rrd->header.drr_type) {
3033         case DRR_OBJECT:
3034         {
3035                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
3036                 err = receive_object(rwa, drro, rrd->payload);
3037                 kmem_free(rrd->payload, rrd->payload_size);
3038                 rrd->payload = NULL;
3039                 break;
3040         }
3041         case DRR_FREEOBJECTS:
3042         {
3043                 struct drr_freeobjects *drrfo =
3044                     &rrd->header.drr_u.drr_freeobjects;
3045                 err = receive_freeobjects(rwa, drrfo);
3046                 break;
3047         }
3048         case DRR_WRITE:
3049         {
3050                 err = receive_process_write_record(rwa, rrd);
3051                 if (rwa->heal) {
3052                         /*
3053                          * If healing - always free the abd after processing
3054                          */
3055                         abd_free(rrd->abd);
3056                         rrd->abd = NULL;
3057                 } else if (err != EAGAIN) {
3058                         /*
3059                          * On success, a non-healing
3060                          * receive_process_write_record() returns
3061                          * EAGAIN to indicate that we do not want to free
3062                          * the rrd or arc_buf.
3063                          */
3064                         ASSERT(err != 0);
3065                         abd_free(rrd->abd);
3066                         rrd->abd = NULL;
3067                 }
3068                 break;
3069         }
3070         case DRR_WRITE_EMBEDDED:
3071         {
3072                 struct drr_write_embedded *drrwe =
3073                     &rrd->header.drr_u.drr_write_embedded;
3074                 err = receive_write_embedded(rwa, drrwe, rrd->payload);
3075                 kmem_free(rrd->payload, rrd->payload_size);
3076                 rrd->payload = NULL;
3077                 break;
3078         }
3079         case DRR_FREE:
3080         {
3081                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3082                 err = receive_free(rwa, drrf);
3083                 break;
3084         }
3085         case DRR_SPILL:
3086         {
3087                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3088                 err = receive_spill(rwa, drrs, rrd->abd);
3089                 if (err != 0)
3090                         abd_free(rrd->abd);
3091                 rrd->abd = NULL;
3092                 rrd->payload = NULL;
3093                 break;
3094         }
3095         case DRR_OBJECT_RANGE:
3096         {
3097                 struct drr_object_range *drror =
3098                     &rrd->header.drr_u.drr_object_range;
3099                 err = receive_object_range(rwa, drror);
3100                 break;
3101         }
3102         case DRR_REDACT:
3103         {
3104                 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3105                 err = receive_redact(rwa, drrr);
3106                 break;
3107         }
3108         default:
3109                 err = (SET_ERROR(EINVAL));
3110         }
3111
3112         if (err != 0)
3113                 dprintf_drr(rrd, err);
3114
3115         return (err);
3116 }
3117
3118 /*
3119  * dmu_recv_stream's worker thread; pull records off the queue, and then call
3120  * receive_process_record  When we're done, signal the main thread and exit.
3121  */
3122 static __attribute__((noreturn)) void
3123 receive_writer_thread(void *arg)
3124 {
3125         struct receive_writer_arg *rwa = arg;
3126         struct receive_record_arg *rrd;
3127         fstrans_cookie_t cookie = spl_fstrans_mark();
3128
3129         for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3130             rrd = bqueue_dequeue(&rwa->q)) {
3131                 /*
3132                  * If there's an error, the main thread will stop putting things
3133                  * on the queue, but we need to clear everything in it before we
3134                  * can exit.
3135                  */
3136                 int err = 0;
3137                 if (rwa->err == 0) {
3138                         err = receive_process_record(rwa, rrd);
3139                 } else if (rrd->abd != NULL) {
3140                         abd_free(rrd->abd);
3141                         rrd->abd = NULL;
3142                         rrd->payload = NULL;
3143                 } else if (rrd->payload != NULL) {
3144                         kmem_free(rrd->payload, rrd->payload_size);
3145                         rrd->payload = NULL;
3146                 }
3147                 /*
3148                  * EAGAIN indicates that this record has been saved (on
3149                  * raw->write_batch), and will be used again, so we don't
3150                  * free it.
3151                  * When healing data we always need to free the record.
3152                  */
3153                 if (err != EAGAIN || rwa->heal) {
3154                         if (rwa->err == 0)
3155                                 rwa->err = err;
3156                         kmem_free(rrd, sizeof (*rrd));
3157                 }
3158         }
3159         kmem_free(rrd, sizeof (*rrd));
3160
3161         if (rwa->heal) {
3162                 zio_wait(rwa->heal_pio);
3163         } else {
3164                 int err = flush_write_batch(rwa);
3165                 if (rwa->err == 0)
3166                         rwa->err = err;
3167         }
3168         mutex_enter(&rwa->mutex);
3169         rwa->done = B_TRUE;
3170         cv_signal(&rwa->cv);
3171         mutex_exit(&rwa->mutex);
3172         spl_fstrans_unmark(cookie);
3173         thread_exit();
3174 }
3175
3176 static int
3177 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3178 {
3179         uint64_t val;
3180         objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3181         uint64_t dsobj = dmu_objset_id(drc->drc_os);
3182         uint64_t resume_obj, resume_off;
3183
3184         if (nvlist_lookup_uint64(begin_nvl,
3185             "resume_object", &resume_obj) != 0 ||
3186             nvlist_lookup_uint64(begin_nvl,
3187             "resume_offset", &resume_off) != 0) {
3188                 return (SET_ERROR(EINVAL));
3189         }
3190         VERIFY0(zap_lookup(mos, dsobj,
3191             DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3192         if (resume_obj != val)
3193                 return (SET_ERROR(EINVAL));
3194         VERIFY0(zap_lookup(mos, dsobj,
3195             DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3196         if (resume_off != val)
3197                 return (SET_ERROR(EINVAL));
3198
3199         return (0);
3200 }
3201
3202 /*
3203  * Read in the stream's records, one by one, and apply them to the pool.  There
3204  * are two threads involved; the thread that calls this function will spin up a
3205  * worker thread, read the records off the stream one by one, and issue
3206  * prefetches for any necessary indirect blocks.  It will then push the records
3207  * onto an internal blocking queue.  The worker thread will pull the records off
3208  * the queue, and actually write the data into the DMU.  This way, the worker
3209  * thread doesn't have to wait for reads to complete, since everything it needs
3210  * (the indirect blocks) will be prefetched.
3211  *
3212  * NB: callers *must* call dmu_recv_end() if this succeeds.
3213  */
3214 int
3215 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3216 {
3217         int err = 0;
3218         struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3219
3220         if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3221                 uint64_t bytes = 0;
3222                 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3223                     drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3224                     sizeof (bytes), 1, &bytes);
3225                 drc->drc_bytes_read += bytes;
3226         }
3227
3228         drc->drc_ignore_objlist = objlist_create();
3229
3230         /* these were verified in dmu_recv_begin */
3231         ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3232             DMU_SUBSTREAM);
3233         ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3234
3235         ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3236         ASSERT0(drc->drc_os->os_encrypted &&
3237             (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3238
3239         /* handle DSL encryption key payload */
3240         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3241                 nvlist_t *keynvl = NULL;
3242
3243                 ASSERT(drc->drc_os->os_encrypted);
3244                 ASSERT(drc->drc_raw);
3245
3246                 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3247                     &keynvl);
3248                 if (err != 0)
3249                         goto out;
3250
3251                 if (!drc->drc_heal) {
3252                         /*
3253                          * If this is a new dataset we set the key immediately.
3254                          * Otherwise we don't want to change the key until we
3255                          * are sure the rest of the receive succeeded so we
3256                          * stash the keynvl away until then.
3257                          */
3258                         err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3259                             drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3260                             drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3261                         if (err != 0)
3262                                 goto out;
3263                 }
3264
3265                 /* see comment in dmu_recv_end_sync() */
3266                 drc->drc_ivset_guid = 0;
3267                 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3268                     &drc->drc_ivset_guid);
3269
3270                 if (!drc->drc_newfs)
3271                         drc->drc_keynvl = fnvlist_dup(keynvl);
3272         }
3273
3274         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3275                 err = resume_check(drc, drc->drc_begin_nvl);
3276                 if (err != 0)
3277                         goto out;
3278         }
3279
3280         /*
3281          * If we failed before this point we will clean up any new resume
3282          * state that was created. Now that we've gotten past the initial
3283          * checks we are ok to retain that resume state.
3284          */
3285         drc->drc_should_save = B_TRUE;
3286
3287         (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3288             MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3289             offsetof(struct receive_record_arg, node));
3290         cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3291         mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3292         rwa->os = drc->drc_os;
3293         rwa->byteswap = drc->drc_byteswap;
3294         rwa->heal = drc->drc_heal;
3295         rwa->tofs = drc->drc_tofs;
3296         rwa->resumable = drc->drc_resumable;
3297         rwa->raw = drc->drc_raw;
3298         rwa->spill = drc->drc_spill;
3299         rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3300         rwa->os->os_raw_receive = drc->drc_raw;
3301         if (drc->drc_heal) {
3302                 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3303                     ZIO_FLAG_GODFATHER);
3304         }
3305         list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3306             offsetof(struct receive_record_arg, node.bqn_node));
3307
3308         (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3309             TS_RUN, minclsyspri);
3310         /*
3311          * We're reading rwa->err without locks, which is safe since we are the
3312          * only reader, and the worker thread is the only writer.  It's ok if we
3313          * miss a write for an iteration or two of the loop, since the writer
3314          * thread will keep freeing records we send it until we send it an eos
3315          * marker.
3316          *
3317          * We can leave this loop in 3 ways:  First, if rwa->err is
3318          * non-zero.  In that case, the writer thread will free the rrd we just
3319          * pushed.  Second, if  we're interrupted; in that case, either it's the
3320          * first loop and drc->drc_rrd was never allocated, or it's later, and
3321          * drc->drc_rrd has been handed off to the writer thread who will free
3322          * it.  Finally, if receive_read_record fails or we're at the end of the
3323          * stream, then we free drc->drc_rrd and exit.
3324          */
3325         while (rwa->err == 0) {
3326                 if (issig(JUSTLOOKING) && issig(FORREAL)) {
3327                         err = SET_ERROR(EINTR);
3328                         break;
3329                 }
3330
3331                 ASSERT3P(drc->drc_rrd, ==, NULL);
3332                 drc->drc_rrd = drc->drc_next_rrd;
3333                 drc->drc_next_rrd = NULL;
3334                 /* Allocates and loads header into drc->drc_next_rrd */
3335                 err = receive_read_record(drc);
3336
3337                 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3338                         kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3339                         drc->drc_rrd = NULL;
3340                         break;
3341                 }
3342
3343                 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3344                     sizeof (struct receive_record_arg) +
3345                     drc->drc_rrd->payload_size);
3346                 drc->drc_rrd = NULL;
3347         }
3348
3349         ASSERT3P(drc->drc_rrd, ==, NULL);
3350         drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3351         drc->drc_rrd->eos_marker = B_TRUE;
3352         bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3353
3354         mutex_enter(&rwa->mutex);
3355         while (!rwa->done) {
3356                 /*
3357                  * We need to use cv_wait_sig() so that any process that may
3358                  * be sleeping here can still fork.
3359                  */
3360                 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3361         }
3362         mutex_exit(&rwa->mutex);
3363
3364         /*
3365          * If we are receiving a full stream as a clone, all object IDs which
3366          * are greater than the maximum ID referenced in the stream are
3367          * by definition unused and must be freed.
3368          */
3369         if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3370                 uint64_t obj = rwa->max_object + 1;
3371                 int free_err = 0;
3372                 int next_err = 0;
3373
3374                 while (next_err == 0) {
3375                         free_err = dmu_free_long_object(rwa->os, obj);
3376                         if (free_err != 0 && free_err != ENOENT)
3377                                 break;
3378
3379                         next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3380                 }
3381
3382                 if (err == 0) {
3383                         if (free_err != 0 && free_err != ENOENT)
3384                                 err = free_err;
3385                         else if (next_err != ESRCH)
3386                                 err = next_err;
3387                 }
3388         }
3389
3390         cv_destroy(&rwa->cv);
3391         mutex_destroy(&rwa->mutex);
3392         bqueue_destroy(&rwa->q);
3393         list_destroy(&rwa->write_batch);
3394         if (err == 0)
3395                 err = rwa->err;
3396
3397 out:
3398         /*
3399          * If we hit an error before we started the receive_writer_thread
3400          * we need to clean up the next_rrd we create by processing the
3401          * DRR_BEGIN record.
3402          */
3403         if (drc->drc_next_rrd != NULL)
3404                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3405
3406         /*
3407          * The objset will be invalidated by dmu_recv_end() when we do
3408          * dsl_dataset_clone_swap_sync_impl().
3409          */
3410         drc->drc_os = NULL;
3411
3412         kmem_free(rwa, sizeof (*rwa));
3413         nvlist_free(drc->drc_begin_nvl);
3414
3415         if (err != 0) {
3416                 /*
3417                  * Clean up references. If receive is not resumable,
3418                  * destroy what we created, so we don't leave it in
3419                  * the inconsistent state.
3420                  */
3421                 dmu_recv_cleanup_ds(drc);
3422                 nvlist_free(drc->drc_keynvl);
3423         }
3424
3425         objlist_destroy(drc->drc_ignore_objlist);
3426         drc->drc_ignore_objlist = NULL;
3427         *voffp = drc->drc_voff;
3428         return (err);
3429 }
3430
3431 static int
3432 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3433 {
3434         dmu_recv_cookie_t *drc = arg;
3435         dsl_pool_t *dp = dmu_tx_pool(tx);
3436         int error;
3437
3438         ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3439
3440         if (drc->drc_heal) {
3441                 error = 0;
3442         } else if (!drc->drc_newfs) {
3443                 dsl_dataset_t *origin_head;
3444
3445                 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3446                 if (error != 0)
3447                         return (error);
3448                 if (drc->drc_force) {
3449                         /*
3450                          * We will destroy any snapshots in tofs (i.e. before
3451                          * origin_head) that are after the origin (which is
3452                          * the snap before drc_ds, because drc_ds can not
3453                          * have any snaps of its own).
3454                          */
3455                         uint64_t obj;
3456
3457                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3458                         while (obj !=
3459                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3460                                 dsl_dataset_t *snap;
3461                                 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3462                                     &snap);
3463                                 if (error != 0)
3464                                         break;
3465                                 if (snap->ds_dir != origin_head->ds_dir)
3466                                         error = SET_ERROR(EINVAL);
3467                                 if (error == 0)  {
3468                                         error = dsl_destroy_snapshot_check_impl(
3469                                             snap, B_FALSE);
3470                                 }
3471                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3472                                 dsl_dataset_rele(snap, FTAG);
3473                                 if (error != 0)
3474                                         break;
3475                         }
3476                         if (error != 0) {
3477                                 dsl_dataset_rele(origin_head, FTAG);
3478                                 return (error);
3479                         }
3480                 }
3481                 if (drc->drc_keynvl != NULL) {
3482                         error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3483                             drc->drc_keynvl, tx);
3484                         if (error != 0) {
3485                                 dsl_dataset_rele(origin_head, FTAG);
3486                                 return (error);
3487                         }
3488                 }
3489
3490                 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3491                     origin_head, drc->drc_force, drc->drc_owner, tx);
3492                 if (error != 0) {
3493                         dsl_dataset_rele(origin_head, FTAG);
3494                         return (error);
3495                 }
3496                 error = dsl_dataset_snapshot_check_impl(origin_head,
3497                     drc->drc_tosnap, tx, B_TRUE, 1,
3498                     drc->drc_cred, drc->drc_proc);
3499                 dsl_dataset_rele(origin_head, FTAG);
3500                 if (error != 0)
3501                         return (error);
3502
3503                 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3504         } else {
3505                 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3506                     drc->drc_tosnap, tx, B_TRUE, 1,
3507                     drc->drc_cred, drc->drc_proc);
3508         }
3509         return (error);
3510 }
3511
3512 static void
3513 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3514 {
3515         dmu_recv_cookie_t *drc = arg;
3516         dsl_pool_t *dp = dmu_tx_pool(tx);
3517         boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3518         uint64_t newsnapobj = 0;
3519
3520         spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3521             tx, "snap=%s", drc->drc_tosnap);
3522         drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3523
3524         if (drc->drc_heal) {
3525                 if (drc->drc_keynvl != NULL) {
3526                         nvlist_free(drc->drc_keynvl);
3527                         drc->drc_keynvl = NULL;
3528                 }
3529         } else if (!drc->drc_newfs) {
3530                 dsl_dataset_t *origin_head;
3531
3532                 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3533                     &origin_head));
3534
3535                 if (drc->drc_force) {
3536                         /*
3537                          * Destroy any snapshots of drc_tofs (origin_head)
3538                          * after the origin (the snap before drc_ds).
3539                          */
3540                         uint64_t obj;
3541
3542                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3543                         while (obj !=
3544                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3545                                 dsl_dataset_t *snap;
3546                                 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3547                                     &snap));
3548                                 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3549                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3550                                 dsl_destroy_snapshot_sync_impl(snap,
3551                                     B_FALSE, tx);
3552                                 dsl_dataset_rele(snap, FTAG);
3553                         }
3554                 }
3555                 if (drc->drc_keynvl != NULL) {
3556                         dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3557                             drc->drc_keynvl, tx);
3558                         nvlist_free(drc->drc_keynvl);
3559                         drc->drc_keynvl = NULL;
3560                 }
3561
3562                 VERIFY3P(drc->drc_ds->ds_prev, ==,
3563                     origin_head->ds_prev);
3564
3565                 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3566                     origin_head, tx);
3567                 /*
3568                  * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3569                  * so drc_os is no longer valid.
3570                  */
3571                 drc->drc_os = NULL;
3572
3573                 dsl_dataset_snapshot_sync_impl(origin_head,
3574                     drc->drc_tosnap, tx);
3575
3576                 /* set snapshot's creation time and guid */
3577                 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3578                 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3579                     drc->drc_drrb->drr_creation_time;
3580                 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3581                     drc->drc_drrb->drr_toguid;
3582                 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3583                     ~DS_FLAG_INCONSISTENT;
3584
3585                 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3586                 dsl_dataset_phys(origin_head)->ds_flags &=
3587                     ~DS_FLAG_INCONSISTENT;
3588
3589                 newsnapobj =
3590                     dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3591
3592                 dsl_dataset_rele(origin_head, FTAG);
3593                 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3594
3595                 if (drc->drc_owner != NULL)
3596                         VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3597         } else {
3598                 dsl_dataset_t *ds = drc->drc_ds;
3599
3600                 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3601
3602                 /* set snapshot's creation time and guid */
3603                 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3604                 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3605                     drc->drc_drrb->drr_creation_time;
3606                 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3607                     drc->drc_drrb->drr_toguid;
3608                 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3609                     ~DS_FLAG_INCONSISTENT;
3610
3611                 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3612                 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3613                 if (dsl_dataset_has_resume_receive_state(ds)) {
3614                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3615                             DS_FIELD_RESUME_FROMGUID, tx);
3616                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3617                             DS_FIELD_RESUME_OBJECT, tx);
3618                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3619                             DS_FIELD_RESUME_OFFSET, tx);
3620                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3621                             DS_FIELD_RESUME_BYTES, tx);
3622                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3623                             DS_FIELD_RESUME_TOGUID, tx);
3624                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3625                             DS_FIELD_RESUME_TONAME, tx);
3626                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3627                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3628                 }
3629                 newsnapobj =
3630                     dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3631         }
3632
3633         /*
3634          * If this is a raw receive, the crypt_keydata nvlist will include
3635          * a to_ivset_guid for us to set on the new snapshot. This value
3636          * will override the value generated by the snapshot code. However,
3637          * this value may not be present, because older implementations of
3638          * the raw send code did not include this value, and we are still
3639          * allowed to receive them if the zfs_disable_ivset_guid_check
3640          * tunable is set, in which case we will leave the newly-generated
3641          * value.
3642          */
3643         if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3644                 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3645                     DMU_OT_DSL_DATASET, tx);
3646                 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3647                     DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3648                     &drc->drc_ivset_guid, tx));
3649         }
3650
3651         /*
3652          * Release the hold from dmu_recv_begin.  This must be done before
3653          * we return to open context, so that when we free the dataset's dnode
3654          * we can evict its bonus buffer. Since the dataset may be destroyed
3655          * at this point (and therefore won't have a valid pointer to the spa)
3656          * we release the key mapping manually here while we do have a valid
3657          * pointer, if it exists.
3658          */
3659         if (!drc->drc_raw && encrypted) {
3660                 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3661                     drc->drc_ds->ds_object, drc->drc_ds);
3662         }
3663         dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3664         drc->drc_ds = NULL;
3665 }
3666
3667 static int dmu_recv_end_modified_blocks = 3;
3668
3669 static int
3670 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3671 {
3672 #ifdef _KERNEL
3673         /*
3674          * We will be destroying the ds; make sure its origin is unmounted if
3675          * necessary.
3676          */
3677         char name[ZFS_MAX_DATASET_NAME_LEN];
3678         dsl_dataset_name(drc->drc_ds, name);
3679         zfs_destroy_unmount_origin(name);
3680 #endif
3681
3682         return (dsl_sync_task(drc->drc_tofs,
3683             dmu_recv_end_check, dmu_recv_end_sync, drc,
3684             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3685 }
3686
3687 static int
3688 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3689 {
3690         return (dsl_sync_task(drc->drc_tofs,
3691             dmu_recv_end_check, dmu_recv_end_sync, drc,
3692             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3693 }
3694
3695 int
3696 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3697 {
3698         int error;
3699
3700         drc->drc_owner = owner;
3701
3702         if (drc->drc_newfs)
3703                 error = dmu_recv_new_end(drc);
3704         else
3705                 error = dmu_recv_existing_end(drc);
3706
3707         if (error != 0) {
3708                 dmu_recv_cleanup_ds(drc);
3709                 nvlist_free(drc->drc_keynvl);
3710         } else if (!drc->drc_heal) {
3711                 if (drc->drc_newfs) {
3712                         zvol_create_minor(drc->drc_tofs);
3713                 }
3714                 char *snapname = kmem_asprintf("%s@%s",
3715                     drc->drc_tofs, drc->drc_tosnap);
3716                 zvol_create_minor(snapname);
3717                 kmem_strfree(snapname);
3718         }
3719         return (error);
3720 }
3721
3722 /*
3723  * Return TRUE if this objset is currently being received into.
3724  */
3725 boolean_t
3726 dmu_objset_is_receiving(objset_t *os)
3727 {
3728         return (os->os_dsl_dataset != NULL &&
3729             os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3730 }
3731
3732 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3733         "Maximum receive queue length");
3734
3735 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3736         "Receive queue fill fraction");
3737
3738 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3739         "Maximum amount of writes to batch into one transaction");
3740
3741 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3742         "Ignore errors during corrective receive");
3743 /* END CSTYLED */