]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/dmu_zfetch.c
libedit: import version of 2022-04-11
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37 #include <sys/wmsum.h>
38
39 /*
40  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
41  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
42  * prescient prefetch never issues i/os that end up not being needed,
43  * so it can't hurt performance.
44  */
45
46 static int zfs_prefetch_disable = B_FALSE;
47
48 /* max # of streams per zfetch */
49 static unsigned int     zfetch_max_streams = 8;
50 /* min time before stream reclaim */
51 static unsigned int     zfetch_min_sec_reap = 2;
52 /* max bytes to prefetch per stream (default 8MB) */
53 unsigned int    zfetch_max_distance = 8 * 1024 * 1024;
54 /* max bytes to prefetch indirects for per stream (default 64MB) */
55 unsigned int    zfetch_max_idistance = 64 * 1024 * 1024;
56 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
57 unsigned long   zfetch_array_rd_sz = 1024 * 1024;
58
59 typedef struct zfetch_stats {
60         kstat_named_t zfetchstat_hits;
61         kstat_named_t zfetchstat_misses;
62         kstat_named_t zfetchstat_max_streams;
63         kstat_named_t zfetchstat_io_issued;
64 } zfetch_stats_t;
65
66 static zfetch_stats_t zfetch_stats = {
67         { "hits",                       KSTAT_DATA_UINT64 },
68         { "misses",                     KSTAT_DATA_UINT64 },
69         { "max_streams",                KSTAT_DATA_UINT64 },
70         { "io_issued",          KSTAT_DATA_UINT64 },
71 };
72
73 struct {
74         wmsum_t zfetchstat_hits;
75         wmsum_t zfetchstat_misses;
76         wmsum_t zfetchstat_max_streams;
77         wmsum_t zfetchstat_io_issued;
78 } zfetch_sums;
79
80 #define ZFETCHSTAT_BUMP(stat)                                   \
81         wmsum_add(&zfetch_sums.stat, 1)
82 #define ZFETCHSTAT_ADD(stat, val)                               \
83         wmsum_add(&zfetch_sums.stat, val)
84
85
86 static kstat_t          *zfetch_ksp;
87
88 static int
89 zfetch_kstats_update(kstat_t *ksp, int rw)
90 {
91         zfetch_stats_t *zs = ksp->ks_data;
92
93         if (rw == KSTAT_WRITE)
94                 return (EACCES);
95         zs->zfetchstat_hits.value.ui64 =
96             wmsum_value(&zfetch_sums.zfetchstat_hits);
97         zs->zfetchstat_misses.value.ui64 =
98             wmsum_value(&zfetch_sums.zfetchstat_misses);
99         zs->zfetchstat_max_streams.value.ui64 =
100             wmsum_value(&zfetch_sums.zfetchstat_max_streams);
101         zs->zfetchstat_io_issued.value.ui64 =
102             wmsum_value(&zfetch_sums.zfetchstat_io_issued);
103         return (0);
104 }
105
106 void
107 zfetch_init(void)
108 {
109         wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
110         wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
111         wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
112         wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
113
114         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
115             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
116             KSTAT_FLAG_VIRTUAL);
117
118         if (zfetch_ksp != NULL) {
119                 zfetch_ksp->ks_data = &zfetch_stats;
120                 zfetch_ksp->ks_update = zfetch_kstats_update;
121                 kstat_install(zfetch_ksp);
122         }
123 }
124
125 void
126 zfetch_fini(void)
127 {
128         if (zfetch_ksp != NULL) {
129                 kstat_delete(zfetch_ksp);
130                 zfetch_ksp = NULL;
131         }
132
133         wmsum_fini(&zfetch_sums.zfetchstat_hits);
134         wmsum_fini(&zfetch_sums.zfetchstat_misses);
135         wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
136         wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
137 }
138
139 /*
140  * This takes a pointer to a zfetch structure and a dnode.  It performs the
141  * necessary setup for the zfetch structure, grokking data from the
142  * associated dnode.
143  */
144 void
145 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
146 {
147         if (zf == NULL)
148                 return;
149         zf->zf_dnode = dno;
150         zf->zf_numstreams = 0;
151
152         list_create(&zf->zf_stream, sizeof (zstream_t),
153             offsetof(zstream_t, zs_node));
154
155         mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
156 }
157
158 static void
159 dmu_zfetch_stream_fini(zstream_t *zs)
160 {
161         ASSERT(!list_link_active(&zs->zs_node));
162         zfs_refcount_destroy(&zs->zs_callers);
163         zfs_refcount_destroy(&zs->zs_refs);
164         kmem_free(zs, sizeof (*zs));
165 }
166
167 static void
168 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
169 {
170         ASSERT(MUTEX_HELD(&zf->zf_lock));
171         list_remove(&zf->zf_stream, zs);
172         zf->zf_numstreams--;
173         membar_producer();
174         if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
175                 dmu_zfetch_stream_fini(zs);
176 }
177
178 /*
179  * Clean-up state associated with a zfetch structure (e.g. destroy the
180  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
181  */
182 void
183 dmu_zfetch_fini(zfetch_t *zf)
184 {
185         zstream_t *zs;
186
187         mutex_enter(&zf->zf_lock);
188         while ((zs = list_head(&zf->zf_stream)) != NULL)
189                 dmu_zfetch_stream_remove(zf, zs);
190         mutex_exit(&zf->zf_lock);
191         list_destroy(&zf->zf_stream);
192         mutex_destroy(&zf->zf_lock);
193
194         zf->zf_dnode = NULL;
195 }
196
197 /*
198  * If there aren't too many streams already, create a new stream.
199  * The "blkid" argument is the next block that we expect this stream to access.
200  * While we're here, clean up old streams (which haven't been
201  * accessed for at least zfetch_min_sec_reap seconds).
202  */
203 static void
204 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
205 {
206         zstream_t *zs_next;
207         hrtime_t now = gethrtime();
208
209         ASSERT(MUTEX_HELD(&zf->zf_lock));
210
211         /*
212          * Clean up old streams.
213          */
214         for (zstream_t *zs = list_head(&zf->zf_stream);
215             zs != NULL; zs = zs_next) {
216                 zs_next = list_next(&zf->zf_stream, zs);
217                 /*
218                  * Skip if still active.  1 -- zf_stream reference.
219                  */
220                 if (zfs_refcount_count(&zs->zs_refs) != 1)
221                         continue;
222                 if (((now - zs->zs_atime) / NANOSEC) >
223                     zfetch_min_sec_reap)
224                         dmu_zfetch_stream_remove(zf, zs);
225         }
226
227         /*
228          * The maximum number of streams is normally zfetch_max_streams,
229          * but for small files we lower it such that it's at least possible
230          * for all the streams to be non-overlapping.
231          *
232          * If we are already at the maximum number of streams for this file,
233          * even after removing old streams, then don't create this stream.
234          */
235         uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
236             zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
237             zfetch_max_distance));
238         if (zf->zf_numstreams >= max_streams) {
239                 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
240                 return;
241         }
242
243         zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
244         zs->zs_blkid = blkid;
245         zs->zs_pf_blkid1 = blkid;
246         zs->zs_pf_blkid = blkid;
247         zs->zs_ipf_blkid1 = blkid;
248         zs->zs_ipf_blkid = blkid;
249         zs->zs_atime = now;
250         zs->zs_fetch = zf;
251         zs->zs_missed = B_FALSE;
252         zfs_refcount_create(&zs->zs_callers);
253         zfs_refcount_create(&zs->zs_refs);
254         /* One reference for zf_stream. */
255         zfs_refcount_add(&zs->zs_refs, NULL);
256         zf->zf_numstreams++;
257         list_insert_head(&zf->zf_stream, zs);
258 }
259
260 static void
261 dmu_zfetch_stream_done(void *arg, boolean_t io_issued)
262 {
263         (void) io_issued;
264         zstream_t *zs = arg;
265
266         if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
267                 dmu_zfetch_stream_fini(zs);
268 }
269
270 /*
271  * This is the predictive prefetch entry point.  dmu_zfetch_prepare()
272  * associates dnode access specified with blkid and nblks arguments with
273  * prefetch stream, predicts further accesses based on that stats and returns
274  * the stream pointer on success.  That pointer must later be passed to
275  * dmu_zfetch_run() to initiate the speculative prefetch for the stream and
276  * release it.  dmu_zfetch() is a wrapper for simple cases when window between
277  * prediction and prefetch initiation is not needed.
278  * fetch_data argument specifies whether actual data blocks should be fetched:
279  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
280  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
281  */
282 zstream_t *
283 dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
284     boolean_t fetch_data, boolean_t have_lock)
285 {
286         zstream_t *zs;
287         int64_t pf_start, ipf_start;
288         int64_t pf_ahead_blks, max_blks;
289         int max_dist_blks, pf_nblks, ipf_nblks;
290         uint64_t end_of_access_blkid, maxblkid;
291         end_of_access_blkid = blkid + nblks;
292         spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
293
294         if (zfs_prefetch_disable)
295                 return (NULL);
296         /*
297          * If we haven't yet loaded the indirect vdevs' mappings, we
298          * can only read from blocks that we carefully ensure are on
299          * concrete vdevs (or previously-loaded indirect vdevs).  So we
300          * can't allow the predictive prefetcher to attempt reads of other
301          * blocks (e.g. of the MOS's dnode object).
302          */
303         if (!spa_indirect_vdevs_loaded(spa))
304                 return (NULL);
305
306         /*
307          * As a fast path for small (single-block) files, ignore access
308          * to the first block.
309          */
310         if (!have_lock && blkid == 0)
311                 return (NULL);
312
313         if (!have_lock)
314                 rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
315
316         /*
317          * A fast path for small files for which no prefetch will
318          * happen.
319          */
320         maxblkid = zf->zf_dnode->dn_maxblkid;
321         if (maxblkid < 2) {
322                 if (!have_lock)
323                         rw_exit(&zf->zf_dnode->dn_struct_rwlock);
324                 return (NULL);
325         }
326         mutex_enter(&zf->zf_lock);
327
328         /*
329          * Find matching prefetch stream.  Depending on whether the accesses
330          * are block-aligned, first block of the new access may either follow
331          * the last block of the previous access, or be equal to it.
332          */
333         for (zs = list_head(&zf->zf_stream); zs != NULL;
334             zs = list_next(&zf->zf_stream, zs)) {
335                 if (blkid == zs->zs_blkid) {
336                         break;
337                 } else if (blkid + 1 == zs->zs_blkid) {
338                         blkid++;
339                         nblks--;
340                         break;
341                 }
342         }
343
344         /*
345          * If the file is ending, remove the matching stream if found.
346          * If not found then it is too late to create a new one now.
347          */
348         if (end_of_access_blkid >= maxblkid) {
349                 if (zs != NULL)
350                         dmu_zfetch_stream_remove(zf, zs);
351                 mutex_exit(&zf->zf_lock);
352                 if (!have_lock)
353                         rw_exit(&zf->zf_dnode->dn_struct_rwlock);
354                 return (NULL);
355         }
356
357         /* Exit if we already prefetched this block before. */
358         if (nblks == 0) {
359                 mutex_exit(&zf->zf_lock);
360                 if (!have_lock)
361                         rw_exit(&zf->zf_dnode->dn_struct_rwlock);
362                 return (NULL);
363         }
364
365         if (zs == NULL) {
366                 /*
367                  * This access is not part of any existing stream.  Create
368                  * a new stream for it.
369                  */
370                 dmu_zfetch_stream_create(zf, end_of_access_blkid);
371                 mutex_exit(&zf->zf_lock);
372                 if (!have_lock)
373                         rw_exit(&zf->zf_dnode->dn_struct_rwlock);
374                 ZFETCHSTAT_BUMP(zfetchstat_misses);
375                 return (NULL);
376         }
377
378         /*
379          * This access was to a block that we issued a prefetch for on
380          * behalf of this stream. Issue further prefetches for this stream.
381          *
382          * Normally, we start prefetching where we stopped
383          * prefetching last (zs_pf_blkid).  But when we get our first
384          * hit on this stream, zs_pf_blkid == zs_blkid, we don't
385          * want to prefetch the block we just accessed.  In this case,
386          * start just after the block we just accessed.
387          */
388         pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
389         if (zs->zs_pf_blkid1 < end_of_access_blkid)
390                 zs->zs_pf_blkid1 = end_of_access_blkid;
391         if (zs->zs_ipf_blkid1 < end_of_access_blkid)
392                 zs->zs_ipf_blkid1 = end_of_access_blkid;
393
394         /*
395          * Double our amount of prefetched data, but don't let the
396          * prefetch get further ahead than zfetch_max_distance.
397          */
398         if (fetch_data) {
399                 max_dist_blks =
400                     zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
401                 /*
402                  * Previously, we were (zs_pf_blkid - blkid) ahead.  We
403                  * want to now be double that, so read that amount again,
404                  * plus the amount we are catching up by (i.e. the amount
405                  * read just now).
406                  */
407                 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
408                 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
409                 pf_nblks = MIN(pf_ahead_blks, max_blks);
410         } else {
411                 pf_nblks = 0;
412         }
413
414         zs->zs_pf_blkid = pf_start + pf_nblks;
415
416         /*
417          * Do the same for indirects, starting from where we stopped last,
418          * or where we will stop reading data blocks (and the indirects
419          * that point to them).
420          */
421         ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
422         max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
423         /*
424          * We want to double our distance ahead of the data prefetch
425          * (or reader, if we are not prefetching data).  Previously, we
426          * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
427          * that amount again, plus the amount we are catching up by
428          * (i.e. the amount read now + the amount of data prefetched now).
429          */
430         pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
431         max_blks = max_dist_blks - (ipf_start - zs->zs_pf_blkid);
432         ipf_nblks = MIN(pf_ahead_blks, max_blks);
433         zs->zs_ipf_blkid = ipf_start + ipf_nblks;
434
435         zs->zs_blkid = end_of_access_blkid;
436         /* Protect the stream from reclamation. */
437         zs->zs_atime = gethrtime();
438         zfs_refcount_add(&zs->zs_refs, NULL);
439         /* Count concurrent callers. */
440         zfs_refcount_add(&zs->zs_callers, NULL);
441         mutex_exit(&zf->zf_lock);
442
443         if (!have_lock)
444                 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
445
446         ZFETCHSTAT_BUMP(zfetchstat_hits);
447         return (zs);
448 }
449
450 void
451 dmu_zfetch_run(zstream_t *zs, boolean_t missed, boolean_t have_lock)
452 {
453         zfetch_t *zf = zs->zs_fetch;
454         int64_t pf_start, pf_end, ipf_start, ipf_end;
455         int epbs, issued;
456
457         if (missed)
458                 zs->zs_missed = missed;
459
460         /*
461          * Postpone the prefetch if there are more concurrent callers.
462          * It happens when multiple requests are waiting for the same
463          * indirect block.  The last one will run the prefetch for all.
464          */
465         if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
466                 /* Drop reference taken in dmu_zfetch_prepare(). */
467                 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
468                         dmu_zfetch_stream_fini(zs);
469                 return;
470         }
471
472         mutex_enter(&zf->zf_lock);
473         if (zs->zs_missed) {
474                 pf_start = zs->zs_pf_blkid1;
475                 pf_end = zs->zs_pf_blkid1 = zs->zs_pf_blkid;
476         } else {
477                 pf_start = pf_end = 0;
478         }
479         ipf_start = MAX(zs->zs_pf_blkid1, zs->zs_ipf_blkid1);
480         ipf_end = zs->zs_ipf_blkid1 = zs->zs_ipf_blkid;
481         mutex_exit(&zf->zf_lock);
482         ASSERT3S(pf_start, <=, pf_end);
483         ASSERT3S(ipf_start, <=, ipf_end);
484
485         epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
486         ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
487         ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
488         ASSERT3S(ipf_start, <=, ipf_end);
489         issued = pf_end - pf_start + ipf_end - ipf_start;
490         if (issued > 1) {
491                 /* More references on top of taken in dmu_zfetch_prepare(). */
492                 for (int i = 0; i < issued - 1; i++)
493                         zfs_refcount_add(&zs->zs_refs, NULL);
494         } else if (issued == 0) {
495                 /* Some other thread has done our work, so drop the ref. */
496                 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
497                         dmu_zfetch_stream_fini(zs);
498                 return;
499         }
500
501         if (!have_lock)
502                 rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
503
504         issued = 0;
505         for (int64_t blk = pf_start; blk < pf_end; blk++) {
506                 issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
507                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
508                     dmu_zfetch_stream_done, zs);
509         }
510         for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
511                 issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
512                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
513                     dmu_zfetch_stream_done, zs);
514         }
515
516         if (!have_lock)
517                 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
518
519         if (issued)
520                 ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
521 }
522
523 void
524 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
525     boolean_t missed, boolean_t have_lock)
526 {
527         zstream_t *zs;
528
529         zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
530         if (zs)
531                 dmu_zfetch_run(zs, missed, have_lock);
532 }
533
534 ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
535         "Disable all ZFS prefetching");
536
537 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
538         "Max number of streams per zfetch");
539
540 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
541         "Min time before stream reclaim");
542
543 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
544         "Max bytes to prefetch per stream");
545
546 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
547         "Max bytes to prefetch indirects for per stream");
548
549 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, array_rd_sz, ULONG, ZMOD_RW,
550         "Number of bytes in a array_read");