]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/dnode_sync.c
ZFS: MFV 2.0-rc1-ga00c61
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / dnode_sync.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2020 Oxide Computer Company
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/dbuf.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_recv.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/spa.h>
38 #include <sys/range_tree.h>
39 #include <sys/zfeature.h>
40
41 static void
42 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
43 {
44         dmu_buf_impl_t *db;
45         int txgoff = tx->tx_txg & TXG_MASK;
46         int nblkptr = dn->dn_phys->dn_nblkptr;
47         int old_toplvl = dn->dn_phys->dn_nlevels - 1;
48         int new_level = dn->dn_next_nlevels[txgoff];
49         int i;
50
51         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
52
53         /* this dnode can't be paged out because it's dirty */
54         ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
55         ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
56
57         db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
58         ASSERT(db != NULL);
59
60         dn->dn_phys->dn_nlevels = new_level;
61         dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
62             dn->dn_object, dn->dn_phys->dn_nlevels);
63
64         /*
65          * Lock ordering requires that we hold the children's db_mutexes (by
66          * calling dbuf_find()) before holding the parent's db_rwlock.  The lock
67          * order is imposed by dbuf_read's steps of "grab the lock to protect
68          * db_parent, get db_parent, hold db_parent's db_rwlock".
69          */
70         dmu_buf_impl_t *children[DN_MAX_NBLKPTR];
71         ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR);
72         for (i = 0; i < nblkptr; i++) {
73                 children[i] =
74                     dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
75         }
76
77         /* transfer dnode's block pointers to new indirect block */
78         (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
79         if (dn->dn_dbuf != NULL)
80                 rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER);
81         rw_enter(&db->db_rwlock, RW_WRITER);
82         ASSERT(db->db.db_data);
83         ASSERT(arc_released(db->db_buf));
84         ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
85         bcopy(dn->dn_phys->dn_blkptr, db->db.db_data,
86             sizeof (blkptr_t) * nblkptr);
87         arc_buf_freeze(db->db_buf);
88
89         /* set dbuf's parent pointers to new indirect buf */
90         for (i = 0; i < nblkptr; i++) {
91                 dmu_buf_impl_t *child = children[i];
92
93                 if (child == NULL)
94                         continue;
95 #ifdef  ZFS_DEBUG
96                 DB_DNODE_ENTER(child);
97                 ASSERT3P(DB_DNODE(child), ==, dn);
98                 DB_DNODE_EXIT(child);
99 #endif  /* DEBUG */
100                 if (child->db_parent && child->db_parent != dn->dn_dbuf) {
101                         ASSERT(child->db_parent->db_level == db->db_level);
102                         ASSERT(child->db_blkptr !=
103                             &dn->dn_phys->dn_blkptr[child->db_blkid]);
104                         mutex_exit(&child->db_mtx);
105                         continue;
106                 }
107                 ASSERT(child->db_parent == NULL ||
108                     child->db_parent == dn->dn_dbuf);
109
110                 child->db_parent = db;
111                 dbuf_add_ref(db, child);
112                 if (db->db.db_data)
113                         child->db_blkptr = (blkptr_t *)db->db.db_data + i;
114                 else
115                         child->db_blkptr = NULL;
116                 dprintf_dbuf_bp(child, child->db_blkptr,
117                     "changed db_blkptr to new indirect %s", "");
118
119                 mutex_exit(&child->db_mtx);
120         }
121
122         bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr);
123
124         rw_exit(&db->db_rwlock);
125         if (dn->dn_dbuf != NULL)
126                 rw_exit(&dn->dn_dbuf->db_rwlock);
127
128         dbuf_rele(db, FTAG);
129
130         rw_exit(&dn->dn_struct_rwlock);
131 }
132
133 static void
134 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
135 {
136         dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
137         uint64_t bytesfreed = 0;
138
139         dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num);
140
141         for (int i = 0; i < num; i++, bp++) {
142                 if (BP_IS_HOLE(bp))
143                         continue;
144
145                 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
146                 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
147
148                 /*
149                  * Save some useful information on the holes being
150                  * punched, including logical size, type, and indirection
151                  * level. Retaining birth time enables detection of when
152                  * holes are punched for reducing the number of free
153                  * records transmitted during a zfs send.
154                  */
155
156                 uint64_t lsize = BP_GET_LSIZE(bp);
157                 dmu_object_type_t type = BP_GET_TYPE(bp);
158                 uint64_t lvl = BP_GET_LEVEL(bp);
159
160                 bzero(bp, sizeof (blkptr_t));
161
162                 if (spa_feature_is_active(dn->dn_objset->os_spa,
163                     SPA_FEATURE_HOLE_BIRTH)) {
164                         BP_SET_LSIZE(bp, lsize);
165                         BP_SET_TYPE(bp, type);
166                         BP_SET_LEVEL(bp, lvl);
167                         BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
168                 }
169         }
170         dnode_diduse_space(dn, -bytesfreed);
171 }
172
173 #ifdef ZFS_DEBUG
174 static void
175 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
176 {
177         int off, num;
178         int i, err, epbs;
179         uint64_t txg = tx->tx_txg;
180         dnode_t *dn;
181
182         DB_DNODE_ENTER(db);
183         dn = DB_DNODE(db);
184         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
185         off = start - (db->db_blkid * 1<<epbs);
186         num = end - start + 1;
187
188         ASSERT3U(off, >=, 0);
189         ASSERT3U(num, >=, 0);
190         ASSERT3U(db->db_level, >, 0);
191         ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
192         ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
193         ASSERT(db->db_blkptr != NULL);
194
195         for (i = off; i < off+num; i++) {
196                 uint64_t *buf;
197                 dmu_buf_impl_t *child;
198                 dbuf_dirty_record_t *dr;
199                 int j;
200
201                 ASSERT(db->db_level == 1);
202
203                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
204                 err = dbuf_hold_impl(dn, db->db_level - 1,
205                     (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
206                 rw_exit(&dn->dn_struct_rwlock);
207                 if (err == ENOENT)
208                         continue;
209                 ASSERT(err == 0);
210                 ASSERT(child->db_level == 0);
211                 dr = dbuf_find_dirty_eq(child, txg);
212
213                 /* data_old better be zeroed */
214                 if (dr) {
215                         buf = dr->dt.dl.dr_data->b_data;
216                         for (j = 0; j < child->db.db_size >> 3; j++) {
217                                 if (buf[j] != 0) {
218                                         panic("freed data not zero: "
219                                             "child=%p i=%d off=%d num=%d\n",
220                                             (void *)child, i, off, num);
221                                 }
222                         }
223                 }
224
225                 /*
226                  * db_data better be zeroed unless it's dirty in a
227                  * future txg.
228                  */
229                 mutex_enter(&child->db_mtx);
230                 buf = child->db.db_data;
231                 if (buf != NULL && child->db_state != DB_FILL &&
232                     list_is_empty(&child->db_dirty_records)) {
233                         for (j = 0; j < child->db.db_size >> 3; j++) {
234                                 if (buf[j] != 0) {
235                                         panic("freed data not zero: "
236                                             "child=%p i=%d off=%d num=%d\n",
237                                             (void *)child, i, off, num);
238                                 }
239                         }
240                 }
241                 mutex_exit(&child->db_mtx);
242
243                 dbuf_rele(child, FTAG);
244         }
245         DB_DNODE_EXIT(db);
246 }
247 #endif
248
249 /*
250  * We don't usually free the indirect blocks here.  If in one txg we have a
251  * free_range and a write to the same indirect block, it's important that we
252  * preserve the hole's birth times. Therefore, we don't free any any indirect
253  * blocks in free_children().  If an indirect block happens to turn into all
254  * holes, it will be freed by dbuf_write_children_ready, which happens at a
255  * point in the syncing process where we know for certain the contents of the
256  * indirect block.
257  *
258  * However, if we're freeing a dnode, its space accounting must go to zero
259  * before we actually try to free the dnode, or we will trip an assertion. In
260  * addition, we know the case described above cannot occur, because the dnode is
261  * being freed.  Therefore, we free the indirect blocks immediately in that
262  * case.
263  */
264 static void
265 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
266     boolean_t free_indirects, dmu_tx_t *tx)
267 {
268         dnode_t *dn;
269         blkptr_t *bp;
270         dmu_buf_impl_t *subdb;
271         uint64_t start, end, dbstart, dbend;
272         unsigned int epbs, shift, i;
273
274         /*
275          * There is a small possibility that this block will not be cached:
276          *   1 - if level > 1 and there are no children with level <= 1
277          *   2 - if this block was evicted since we read it from
278          *       dmu_tx_hold_free().
279          */
280         if (db->db_state != DB_CACHED)
281                 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
282
283         /*
284          * If we modify this indirect block, and we are not freeing the
285          * dnode (!free_indirects), then this indirect block needs to get
286          * written to disk by dbuf_write().  If it is dirty, we know it will
287          * be written (otherwise, we would have incorrect on-disk state
288          * because the space would be freed but still referenced by the BP
289          * in this indirect block).  Therefore we VERIFY that it is
290          * dirty.
291          *
292          * Our VERIFY covers some cases that do not actually have to be
293          * dirty, but the open-context code happens to dirty.  E.g. if the
294          * blocks we are freeing are all holes, because in that case, we
295          * are only freeing part of this indirect block, so it is an
296          * ancestor of the first or last block to be freed.  The first and
297          * last L1 indirect blocks are always dirtied by dnode_free_range().
298          */
299         db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
300         VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
301         dmu_buf_unlock_parent(db, dblt, FTAG);
302
303         dbuf_release_bp(db);
304         bp = db->db.db_data;
305
306         DB_DNODE_ENTER(db);
307         dn = DB_DNODE(db);
308         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
309         ASSERT3U(epbs, <, 31);
310         shift = (db->db_level - 1) * epbs;
311         dbstart = db->db_blkid << epbs;
312         start = blkid >> shift;
313         if (dbstart < start) {
314                 bp += start - dbstart;
315         } else {
316                 start = dbstart;
317         }
318         dbend = ((db->db_blkid + 1) << epbs) - 1;
319         end = (blkid + nblks - 1) >> shift;
320         if (dbend <= end)
321                 end = dbend;
322
323         ASSERT3U(start, <=, end);
324
325         if (db->db_level == 1) {
326                 FREE_VERIFY(db, start, end, tx);
327                 rw_enter(&db->db_rwlock, RW_WRITER);
328                 free_blocks(dn, bp, end - start + 1, tx);
329                 rw_exit(&db->db_rwlock);
330         } else {
331                 for (uint64_t id = start; id <= end; id++, bp++) {
332                         if (BP_IS_HOLE(bp))
333                                 continue;
334                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
335                         VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
336                             id, TRUE, FALSE, FTAG, &subdb));
337                         rw_exit(&dn->dn_struct_rwlock);
338                         ASSERT3P(bp, ==, subdb->db_blkptr);
339
340                         free_children(subdb, blkid, nblks, free_indirects, tx);
341                         dbuf_rele(subdb, FTAG);
342                 }
343         }
344
345         if (free_indirects) {
346                 rw_enter(&db->db_rwlock, RW_WRITER);
347                 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
348                         ASSERT(BP_IS_HOLE(bp));
349                 bzero(db->db.db_data, db->db.db_size);
350                 free_blocks(dn, db->db_blkptr, 1, tx);
351                 rw_exit(&db->db_rwlock);
352         }
353
354         DB_DNODE_EXIT(db);
355         arc_buf_freeze(db->db_buf);
356 }
357
358 /*
359  * Traverse the indicated range of the provided file
360  * and "free" all the blocks contained there.
361  */
362 static void
363 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
364     boolean_t free_indirects, dmu_tx_t *tx)
365 {
366         blkptr_t *bp = dn->dn_phys->dn_blkptr;
367         int dnlevel = dn->dn_phys->dn_nlevels;
368         boolean_t trunc = B_FALSE;
369
370         if (blkid > dn->dn_phys->dn_maxblkid)
371                 return;
372
373         ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
374         if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
375                 nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
376                 trunc = B_TRUE;
377         }
378
379         /* There are no indirect blocks in the object */
380         if (dnlevel == 1) {
381                 if (blkid >= dn->dn_phys->dn_nblkptr) {
382                         /* this range was never made persistent */
383                         return;
384                 }
385                 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
386                 free_blocks(dn, bp + blkid, nblks, tx);
387         } else {
388                 int shift = (dnlevel - 1) *
389                     (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
390                 int start = blkid >> shift;
391                 int end = (blkid + nblks - 1) >> shift;
392                 dmu_buf_impl_t *db;
393
394                 ASSERT(start < dn->dn_phys->dn_nblkptr);
395                 bp += start;
396                 for (int i = start; i <= end; i++, bp++) {
397                         if (BP_IS_HOLE(bp))
398                                 continue;
399                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
400                         VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
401                             TRUE, FALSE, FTAG, &db));
402                         rw_exit(&dn->dn_struct_rwlock);
403                         free_children(db, blkid, nblks, free_indirects, tx);
404                         dbuf_rele(db, FTAG);
405                 }
406         }
407
408         /*
409          * Do not truncate the maxblkid if we are performing a raw
410          * receive. The raw receive sets the maxblkid manually and
411          * must not be overridden. Usually, the last DRR_FREE record
412          * will be at the maxblkid, because the source system sets
413          * the maxblkid when truncating. However, if the last block
414          * was freed by overwriting with zeros and being compressed
415          * away to a hole, the source system will generate a DRR_FREE
416          * record while leaving the maxblkid after the end of that
417          * record. In this case we need to leave the maxblkid as
418          * indicated in the DRR_OBJECT record, so that it matches the
419          * source system, ensuring that the cryptographic hashes will
420          * match.
421          */
422         if (trunc && !dn->dn_objset->os_raw_receive) {
423                 uint64_t off __maybe_unused;
424                 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
425
426                 off = (dn->dn_phys->dn_maxblkid + 1) *
427                     (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
428                 ASSERT(off < dn->dn_phys->dn_maxblkid ||
429                     dn->dn_phys->dn_maxblkid == 0 ||
430                     dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
431         }
432 }
433
434 typedef struct dnode_sync_free_range_arg {
435         dnode_t *dsfra_dnode;
436         dmu_tx_t *dsfra_tx;
437         boolean_t dsfra_free_indirects;
438 } dnode_sync_free_range_arg_t;
439
440 static void
441 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
442 {
443         dnode_sync_free_range_arg_t *dsfra = arg;
444         dnode_t *dn = dsfra->dsfra_dnode;
445
446         mutex_exit(&dn->dn_mtx);
447         dnode_sync_free_range_impl(dn, blkid, nblks,
448             dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
449         mutex_enter(&dn->dn_mtx);
450 }
451
452 /*
453  * Try to kick all the dnode's dbufs out of the cache...
454  */
455 void
456 dnode_evict_dbufs(dnode_t *dn)
457 {
458         dmu_buf_impl_t *db_marker;
459         dmu_buf_impl_t *db, *db_next;
460
461         db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
462
463         mutex_enter(&dn->dn_dbufs_mtx);
464         for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
465
466 #ifdef  ZFS_DEBUG
467                 DB_DNODE_ENTER(db);
468                 ASSERT3P(DB_DNODE(db), ==, dn);
469                 DB_DNODE_EXIT(db);
470 #endif  /* DEBUG */
471
472                 mutex_enter(&db->db_mtx);
473                 if (db->db_state != DB_EVICTING &&
474                     zfs_refcount_is_zero(&db->db_holds)) {
475                         db_marker->db_level = db->db_level;
476                         db_marker->db_blkid = db->db_blkid;
477                         db_marker->db_state = DB_SEARCH;
478                         avl_insert_here(&dn->dn_dbufs, db_marker, db,
479                             AVL_BEFORE);
480
481                         /*
482                          * We need to use the "marker" dbuf rather than
483                          * simply getting the next dbuf, because
484                          * dbuf_destroy() may actually remove multiple dbufs.
485                          * It can call itself recursively on the parent dbuf,
486                          * which may also be removed from dn_dbufs.  The code
487                          * flow would look like:
488                          *
489                          * dbuf_destroy():
490                          *   dnode_rele_and_unlock(parent_dbuf, evicting=TRUE):
491                          *      if (!cacheable || pending_evict)
492                          *        dbuf_destroy()
493                          */
494                         dbuf_destroy(db);
495
496                         db_next = AVL_NEXT(&dn->dn_dbufs, db_marker);
497                         avl_remove(&dn->dn_dbufs, db_marker);
498                 } else {
499                         db->db_pending_evict = TRUE;
500                         mutex_exit(&db->db_mtx);
501                         db_next = AVL_NEXT(&dn->dn_dbufs, db);
502                 }
503         }
504         mutex_exit(&dn->dn_dbufs_mtx);
505
506         kmem_free(db_marker, sizeof (dmu_buf_impl_t));
507
508         dnode_evict_bonus(dn);
509 }
510
511 void
512 dnode_evict_bonus(dnode_t *dn)
513 {
514         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
515         if (dn->dn_bonus != NULL) {
516                 if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) {
517                         mutex_enter(&dn->dn_bonus->db_mtx);
518                         dbuf_destroy(dn->dn_bonus);
519                         dn->dn_bonus = NULL;
520                 } else {
521                         dn->dn_bonus->db_pending_evict = TRUE;
522                 }
523         }
524         rw_exit(&dn->dn_struct_rwlock);
525 }
526
527 static void
528 dnode_undirty_dbufs(list_t *list)
529 {
530         dbuf_dirty_record_t *dr;
531
532         while ((dr = list_head(list))) {
533                 dmu_buf_impl_t *db = dr->dr_dbuf;
534                 uint64_t txg = dr->dr_txg;
535
536                 if (db->db_level != 0)
537                         dnode_undirty_dbufs(&dr->dt.di.dr_children);
538
539                 mutex_enter(&db->db_mtx);
540                 /* XXX - use dbuf_undirty()? */
541                 list_remove(list, dr);
542                 ASSERT(list_head(&db->db_dirty_records) == dr);
543                 list_remove_head(&db->db_dirty_records);
544                 ASSERT(list_is_empty(&db->db_dirty_records));
545                 db->db_dirtycnt -= 1;
546                 if (db->db_level == 0) {
547                         ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
548                             dr->dt.dl.dr_data == db->db_buf);
549                         dbuf_unoverride(dr);
550                 } else {
551                         mutex_destroy(&dr->dt.di.dr_mtx);
552                         list_destroy(&dr->dt.di.dr_children);
553                 }
554                 kmem_free(dr, sizeof (dbuf_dirty_record_t));
555                 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
556         }
557 }
558
559 static void
560 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
561 {
562         int txgoff = tx->tx_txg & TXG_MASK;
563
564         ASSERT(dmu_tx_is_syncing(tx));
565
566         /*
567          * Our contents should have been freed in dnode_sync() by the
568          * free range record inserted by the caller of dnode_free().
569          */
570         ASSERT0(DN_USED_BYTES(dn->dn_phys));
571         ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
572
573         dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
574         dnode_evict_dbufs(dn);
575
576         /*
577          * XXX - It would be nice to assert this, but we may still
578          * have residual holds from async evictions from the arc...
579          *
580          * zfs_obj_to_path() also depends on this being
581          * commented out.
582          *
583          * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1);
584          */
585
586         /* Undirty next bits */
587         dn->dn_next_nlevels[txgoff] = 0;
588         dn->dn_next_indblkshift[txgoff] = 0;
589         dn->dn_next_blksz[txgoff] = 0;
590         dn->dn_next_maxblkid[txgoff] = 0;
591
592         /* ASSERT(blkptrs are zero); */
593         ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
594         ASSERT(dn->dn_type != DMU_OT_NONE);
595
596         ASSERT(dn->dn_free_txg > 0);
597         if (dn->dn_allocated_txg != dn->dn_free_txg)
598                 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
599         bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots);
600         dnode_free_interior_slots(dn);
601
602         mutex_enter(&dn->dn_mtx);
603         dn->dn_type = DMU_OT_NONE;
604         dn->dn_maxblkid = 0;
605         dn->dn_allocated_txg = 0;
606         dn->dn_free_txg = 0;
607         dn->dn_have_spill = B_FALSE;
608         dn->dn_num_slots = 1;
609         mutex_exit(&dn->dn_mtx);
610
611         ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
612
613         dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
614         /*
615          * Now that we've released our hold, the dnode may
616          * be evicted, so we mustn't access it.
617          */
618 }
619
620 /*
621  * Write out the dnode's dirty buffers.
622  */
623 void
624 dnode_sync(dnode_t *dn, dmu_tx_t *tx)
625 {
626         objset_t *os = dn->dn_objset;
627         dnode_phys_t *dnp = dn->dn_phys;
628         int txgoff = tx->tx_txg & TXG_MASK;
629         list_t *list = &dn->dn_dirty_records[txgoff];
630         static const dnode_phys_t zerodn __maybe_unused = { 0 };
631         boolean_t kill_spill = B_FALSE;
632
633         ASSERT(dmu_tx_is_syncing(tx));
634         ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
635         ASSERT(dnp->dn_type != DMU_OT_NONE ||
636             bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
637         DNODE_VERIFY(dn);
638
639         ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
640
641         /*
642          * Do user accounting if it is enabled and this is not
643          * an encrypted receive.
644          */
645         if (dmu_objset_userused_enabled(os) &&
646             !DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
647             (!os->os_encrypted || !dmu_objset_is_receiving(os))) {
648                 mutex_enter(&dn->dn_mtx);
649                 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
650                 dn->dn_oldflags = dn->dn_phys->dn_flags;
651                 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
652                 if (dmu_objset_userobjused_enabled(dn->dn_objset))
653                         dn->dn_phys->dn_flags |=
654                             DNODE_FLAG_USEROBJUSED_ACCOUNTED;
655                 mutex_exit(&dn->dn_mtx);
656                 dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
657         } else {
658                 /* Once we account for it, we should always account for it */
659                 ASSERT(!(dn->dn_phys->dn_flags &
660                     DNODE_FLAG_USERUSED_ACCOUNTED));
661                 ASSERT(!(dn->dn_phys->dn_flags &
662                     DNODE_FLAG_USEROBJUSED_ACCOUNTED));
663         }
664
665         mutex_enter(&dn->dn_mtx);
666         if (dn->dn_allocated_txg == tx->tx_txg) {
667                 /* The dnode is newly allocated or reallocated */
668                 if (dnp->dn_type == DMU_OT_NONE) {
669                         /* this is a first alloc, not a realloc */
670                         dnp->dn_nlevels = 1;
671                         dnp->dn_nblkptr = dn->dn_nblkptr;
672                 }
673
674                 dnp->dn_type = dn->dn_type;
675                 dnp->dn_bonustype = dn->dn_bonustype;
676                 dnp->dn_bonuslen = dn->dn_bonuslen;
677         }
678
679         dnp->dn_extra_slots = dn->dn_num_slots - 1;
680
681         ASSERT(dnp->dn_nlevels > 1 ||
682             BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
683             BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
684             BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
685             dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
686         ASSERT(dnp->dn_nlevels < 2 ||
687             BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
688             BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
689
690         if (dn->dn_next_type[txgoff] != 0) {
691                 dnp->dn_type = dn->dn_type;
692                 dn->dn_next_type[txgoff] = 0;
693         }
694
695         if (dn->dn_next_blksz[txgoff] != 0) {
696                 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
697                     SPA_MINBLOCKSIZE) == 0);
698                 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
699                     dn->dn_maxblkid == 0 || list_head(list) != NULL ||
700                     dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
701                     dnp->dn_datablkszsec ||
702                     !range_tree_is_empty(dn->dn_free_ranges[txgoff]));
703                 dnp->dn_datablkszsec =
704                     dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
705                 dn->dn_next_blksz[txgoff] = 0;
706         }
707
708         if (dn->dn_next_bonuslen[txgoff] != 0) {
709                 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
710                         dnp->dn_bonuslen = 0;
711                 else
712                         dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
713                 ASSERT(dnp->dn_bonuslen <=
714                     DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
715                 dn->dn_next_bonuslen[txgoff] = 0;
716         }
717
718         if (dn->dn_next_bonustype[txgoff] != 0) {
719                 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
720                 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
721                 dn->dn_next_bonustype[txgoff] = 0;
722         }
723
724         boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
725             dn->dn_free_txg <= tx->tx_txg;
726
727         /*
728          * Remove the spill block if we have been explicitly asked to
729          * remove it, or if the object is being removed.
730          */
731         if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
732                 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
733                         kill_spill = B_TRUE;
734                 dn->dn_rm_spillblk[txgoff] = 0;
735         }
736
737         if (dn->dn_next_indblkshift[txgoff] != 0) {
738                 ASSERT(dnp->dn_nlevels == 1);
739                 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
740                 dn->dn_next_indblkshift[txgoff] = 0;
741         }
742
743         /*
744          * Just take the live (open-context) values for checksum and compress.
745          * Strictly speaking it's a future leak, but nothing bad happens if we
746          * start using the new checksum or compress algorithm a little early.
747          */
748         dnp->dn_checksum = dn->dn_checksum;
749         dnp->dn_compress = dn->dn_compress;
750
751         mutex_exit(&dn->dn_mtx);
752
753         if (kill_spill) {
754                 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
755                 mutex_enter(&dn->dn_mtx);
756                 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
757                 mutex_exit(&dn->dn_mtx);
758         }
759
760         /* process all the "freed" ranges in the file */
761         if (dn->dn_free_ranges[txgoff] != NULL) {
762                 dnode_sync_free_range_arg_t dsfra;
763                 dsfra.dsfra_dnode = dn;
764                 dsfra.dsfra_tx = tx;
765                 dsfra.dsfra_free_indirects = freeing_dnode;
766                 mutex_enter(&dn->dn_mtx);
767                 if (freeing_dnode) {
768                         ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
769                             0, dn->dn_maxblkid + 1));
770                 }
771                 /*
772                  * Because dnode_sync_free_range() must drop dn_mtx during its
773                  * processing, using it as a callback to range_tree_vacate() is
774                  * not safe.  No other operations (besides destroy) are allowed
775                  * once range_tree_vacate() has begun, and dropping dn_mtx
776                  * would leave a window open for another thread to observe that
777                  * invalid (and unsafe) state.
778                  */
779                 range_tree_walk(dn->dn_free_ranges[txgoff],
780                     dnode_sync_free_range, &dsfra);
781                 range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL);
782                 range_tree_destroy(dn->dn_free_ranges[txgoff]);
783                 dn->dn_free_ranges[txgoff] = NULL;
784                 mutex_exit(&dn->dn_mtx);
785         }
786
787         if (freeing_dnode) {
788                 dn->dn_objset->os_freed_dnodes++;
789                 dnode_sync_free(dn, tx);
790                 return;
791         }
792
793         if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
794                 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
795                 mutex_enter(&ds->ds_lock);
796                 ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] =
797                     (void *)B_TRUE;
798                 mutex_exit(&ds->ds_lock);
799         }
800
801         if (dn->dn_next_nlevels[txgoff]) {
802                 dnode_increase_indirection(dn, tx);
803                 dn->dn_next_nlevels[txgoff] = 0;
804         }
805
806         /*
807          * This must be done after dnode_sync_free_range()
808          * and dnode_increase_indirection(). See dnode_new_blkid()
809          * for an explanation of the high bit being set.
810          */
811         if (dn->dn_next_maxblkid[txgoff]) {
812                 mutex_enter(&dn->dn_mtx);
813                 dnp->dn_maxblkid =
814                     dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET;
815                 dn->dn_next_maxblkid[txgoff] = 0;
816                 mutex_exit(&dn->dn_mtx);
817         }
818
819         if (dn->dn_next_nblkptr[txgoff]) {
820                 /* this should only happen on a realloc */
821                 ASSERT(dn->dn_allocated_txg == tx->tx_txg);
822                 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
823                         /* zero the new blkptrs we are gaining */
824                         bzero(dnp->dn_blkptr + dnp->dn_nblkptr,
825                             sizeof (blkptr_t) *
826                             (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
827 #ifdef ZFS_DEBUG
828                 } else {
829                         int i;
830                         ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
831                         /* the blkptrs we are losing better be unallocated */
832                         for (i = 0; i < dnp->dn_nblkptr; i++) {
833                                 if (i >= dn->dn_next_nblkptr[txgoff])
834                                         ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
835                         }
836 #endif
837                 }
838                 mutex_enter(&dn->dn_mtx);
839                 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
840                 dn->dn_next_nblkptr[txgoff] = 0;
841                 mutex_exit(&dn->dn_mtx);
842         }
843
844         dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
845
846         if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
847                 ASSERT3P(list_head(list), ==, NULL);
848                 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
849         }
850
851         /*
852          * Although we have dropped our reference to the dnode, it
853          * can't be evicted until its written, and we haven't yet
854          * initiated the IO for the dnode's dbuf.
855          */
856 }