]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/dsl_scan.c
MFV 7b495a2a7abf (zlib): Correct incorrect inputs provided to the CRC
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / dsl_scan.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2019 Joyent, Inc.
28  */
29
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/ddt.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/range_tree.h>
55 #ifdef _KERNEL
56 #include <sys/zfs_vfsops.h>
57 #endif
58
59 /*
60  * Grand theory statement on scan queue sorting
61  *
62  * Scanning is implemented by recursively traversing all indirection levels
63  * in an object and reading all blocks referenced from said objects. This
64  * results in us approximately traversing the object from lowest logical
65  * offset to the highest. For best performance, we would want the logical
66  * blocks to be physically contiguous. However, this is frequently not the
67  * case with pools given the allocation patterns of copy-on-write filesystems.
68  * So instead, we put the I/Os into a reordering queue and issue them in a
69  * way that will most benefit physical disks (LBA-order).
70  *
71  * Queue management:
72  *
73  * Ideally, we would want to scan all metadata and queue up all block I/O
74  * prior to starting to issue it, because that allows us to do an optimal
75  * sorting job. This can however consume large amounts of memory. Therefore
76  * we continuously monitor the size of the queues and constrain them to 5%
77  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78  * limit, we clear out a few of the largest extents at the head of the queues
79  * to make room for more scanning. Hopefully, these extents will be fairly
80  * large and contiguous, allowing us to approach sequential I/O throughput
81  * even without a fully sorted tree.
82  *
83  * Metadata scanning takes place in dsl_scan_visit(), which is called from
84  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85  * metadata on the pool, or we need to make room in memory because our
86  * queues are too large, dsl_scan_visit() is postponed and
87  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88  * that metadata scanning and queued I/O issuing are mutually exclusive. This
89  * allows us to provide maximum sequential I/O throughput for the majority of
90  * I/O's issued since sequential I/O performance is significantly negatively
91  * impacted if it is interleaved with random I/O.
92  *
93  * Implementation Notes
94  *
95  * One side effect of the queued scanning algorithm is that the scanning code
96  * needs to be notified whenever a block is freed. This is needed to allow
97  * the scanning code to remove these I/Os from the issuing queue. Additionally,
98  * we do not attempt to queue gang blocks to be issued sequentially since this
99  * is very hard to do and would have an extremely limited performance benefit.
100  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
101  * algorithm.
102  *
103  * Backwards compatibility
104  *
105  * This new algorithm is backwards compatible with the legacy on-disk data
106  * structures (and therefore does not require a new feature flag).
107  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108  * will stop scanning metadata (in logical order) and wait for all outstanding
109  * sorted I/O to complete. Once this is done, we write out a checkpoint
110  * bookmark, indicating that we have scanned everything logically before it.
111  * If the pool is imported on a machine without the new sorting algorithm,
112  * the scan simply resumes from the last checkpoint using the legacy algorithm.
113  */
114
115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
116     const zbookmark_phys_t *);
117
118 static scan_cb_t dsl_scan_scrub_cb;
119
120 static int scan_ds_queue_compare(const void *a, const void *b);
121 static int scan_prefetch_queue_compare(const void *a, const void *b);
122 static void scan_ds_queue_clear(dsl_scan_t *scn);
123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
125     uint64_t *txg);
126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
129 static uint64_t dsl_scan_count_data_disks(vdev_t *vd);
130
131 extern int zfs_vdev_async_write_active_min_dirty_percent;
132
133 /*
134  * By default zfs will check to ensure it is not over the hard memory
135  * limit before each txg. If finer-grained control of this is needed
136  * this value can be set to 1 to enable checking before scanning each
137  * block.
138  */
139 static int zfs_scan_strict_mem_lim = B_FALSE;
140
141 /*
142  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
143  * to strike a balance here between keeping the vdev queues full of I/Os
144  * at all times and not overflowing the queues to cause long latency,
145  * which would cause long txg sync times. No matter what, we will not
146  * overload the drives with I/O, since that is protected by
147  * zfs_vdev_scrub_max_active.
148  */
149 static unsigned long zfs_scan_vdev_limit = 4 << 20;
150
151 static int zfs_scan_issue_strategy = 0;
152 static int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
153 static unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
154
155 /*
156  * fill_weight is non-tunable at runtime, so we copy it at module init from
157  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
158  * break queue sorting.
159  */
160 static int zfs_scan_fill_weight = 3;
161 static uint64_t fill_weight;
162
163 /* See dsl_scan_should_clear() for details on the memory limit tunables */
164 static const uint64_t zfs_scan_mem_lim_min = 16 << 20;  /* bytes */
165 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;    /* bytes */
166 static int zfs_scan_mem_lim_fact = 20;          /* fraction of physmem */
167 static int zfs_scan_mem_lim_soft_fact = 20;     /* fraction of mem lim above */
168
169 static int zfs_scrub_min_time_ms = 1000; /* min millis to scrub per txg */
170 static int zfs_obsolete_min_time_ms = 500; /* min millis to obsolete per txg */
171 static int zfs_free_min_time_ms = 1000; /* min millis to free per txg */
172 static int zfs_resilver_min_time_ms = 3000; /* min millis to resilver per txg */
173 static int zfs_scan_checkpoint_intval = 7200; /* in seconds */
174 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
175 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
176 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
177 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
178 /* max number of blocks to free in a single TXG */
179 static unsigned long zfs_async_block_max_blocks = ULONG_MAX;
180 /* max number of dedup blocks to free in a single TXG */
181 static unsigned long zfs_max_async_dedup_frees = 100000;
182
183 /* set to disable resilver deferring */
184 static int zfs_resilver_disable_defer = B_FALSE;
185
186 /*
187  * We wait a few txgs after importing a pool to begin scanning so that
188  * the import / mounting code isn't held up by scrub / resilver IO.
189  * Unfortunately, it is a bit difficult to determine exactly how long
190  * this will take since userspace will trigger fs mounts asynchronously
191  * and the kernel will create zvol minors asynchronously. As a result,
192  * the value provided here is a bit arbitrary, but represents a
193  * reasonable estimate of how many txgs it will take to finish fully
194  * importing a pool
195  */
196 #define SCAN_IMPORT_WAIT_TXGS           5
197
198 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
199         ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
200         (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
201
202 /*
203  * Enable/disable the processing of the free_bpobj object.
204  */
205 static int zfs_free_bpobj_enabled = 1;
206
207 /* the order has to match pool_scan_type */
208 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
209         NULL,
210         dsl_scan_scrub_cb,      /* POOL_SCAN_SCRUB */
211         dsl_scan_scrub_cb,      /* POOL_SCAN_RESILVER */
212 };
213
214 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
215 typedef struct {
216         uint64_t        sds_dsobj;
217         uint64_t        sds_txg;
218         avl_node_t      sds_node;
219 } scan_ds_t;
220
221 /*
222  * This controls what conditions are placed on dsl_scan_sync_state():
223  * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
224  * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
225  * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
226  *      write out the scn_phys_cached version.
227  * See dsl_scan_sync_state for details.
228  */
229 typedef enum {
230         SYNC_OPTIONAL,
231         SYNC_MANDATORY,
232         SYNC_CACHED
233 } state_sync_type_t;
234
235 /*
236  * This struct represents the minimum information needed to reconstruct a
237  * zio for sequential scanning. This is useful because many of these will
238  * accumulate in the sequential IO queues before being issued, so saving
239  * memory matters here.
240  */
241 typedef struct scan_io {
242         /* fields from blkptr_t */
243         uint64_t                sio_blk_prop;
244         uint64_t                sio_phys_birth;
245         uint64_t                sio_birth;
246         zio_cksum_t             sio_cksum;
247         uint32_t                sio_nr_dvas;
248
249         /* fields from zio_t */
250         uint32_t                sio_flags;
251         zbookmark_phys_t        sio_zb;
252
253         /* members for queue sorting */
254         union {
255                 avl_node_t      sio_addr_node; /* link into issuing queue */
256                 list_node_t     sio_list_node; /* link for issuing to disk */
257         } sio_nodes;
258
259         /*
260          * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
261          * depending on how many were in the original bp. Only the
262          * first DVA is really used for sorting and issuing purposes.
263          * The other DVAs (if provided) simply exist so that the zio
264          * layer can find additional copies to repair from in the
265          * event of an error. This array must go at the end of the
266          * struct to allow this for the variable number of elements.
267          */
268         dva_t                   sio_dva[0];
269 } scan_io_t;
270
271 #define SIO_SET_OFFSET(sio, x)          DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
272 #define SIO_SET_ASIZE(sio, x)           DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
273 #define SIO_GET_OFFSET(sio)             DVA_GET_OFFSET(&(sio)->sio_dva[0])
274 #define SIO_GET_ASIZE(sio)              DVA_GET_ASIZE(&(sio)->sio_dva[0])
275 #define SIO_GET_END_OFFSET(sio)         \
276         (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
277 #define SIO_GET_MUSED(sio)              \
278         (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
279
280 struct dsl_scan_io_queue {
281         dsl_scan_t      *q_scn; /* associated dsl_scan_t */
282         vdev_t          *q_vd; /* top-level vdev that this queue represents */
283
284         /* trees used for sorting I/Os and extents of I/Os */
285         range_tree_t    *q_exts_by_addr;
286         zfs_btree_t             q_exts_by_size;
287         avl_tree_t      q_sios_by_addr;
288         uint64_t        q_sio_memused;
289
290         /* members for zio rate limiting */
291         uint64_t        q_maxinflight_bytes;
292         uint64_t        q_inflight_bytes;
293         kcondvar_t      q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
294
295         /* per txg statistics */
296         uint64_t        q_total_seg_size_this_txg;
297         uint64_t        q_segs_this_txg;
298         uint64_t        q_total_zio_size_this_txg;
299         uint64_t        q_zios_this_txg;
300 };
301
302 /* private data for dsl_scan_prefetch_cb() */
303 typedef struct scan_prefetch_ctx {
304         zfs_refcount_t spc_refcnt;      /* refcount for memory management */
305         dsl_scan_t *spc_scn;            /* dsl_scan_t for the pool */
306         boolean_t spc_root;             /* is this prefetch for an objset? */
307         uint8_t spc_indblkshift;        /* dn_indblkshift of current dnode */
308         uint16_t spc_datablkszsec;      /* dn_idatablkszsec of current dnode */
309 } scan_prefetch_ctx_t;
310
311 /* private data for dsl_scan_prefetch() */
312 typedef struct scan_prefetch_issue_ctx {
313         avl_node_t spic_avl_node;       /* link into scn->scn_prefetch_queue */
314         scan_prefetch_ctx_t *spic_spc;  /* spc for the callback */
315         blkptr_t spic_bp;               /* bp to prefetch */
316         zbookmark_phys_t spic_zb;       /* bookmark to prefetch */
317 } scan_prefetch_issue_ctx_t;
318
319 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
320     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
321 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
322     scan_io_t *sio);
323
324 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
325 static void scan_io_queues_destroy(dsl_scan_t *scn);
326
327 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
328
329 /* sio->sio_nr_dvas must be set so we know which cache to free from */
330 static void
331 sio_free(scan_io_t *sio)
332 {
333         ASSERT3U(sio->sio_nr_dvas, >, 0);
334         ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
335
336         kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
337 }
338
339 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
340 static scan_io_t *
341 sio_alloc(unsigned short nr_dvas)
342 {
343         ASSERT3U(nr_dvas, >, 0);
344         ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
345
346         return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
347 }
348
349 void
350 scan_init(void)
351 {
352         /*
353          * This is used in ext_size_compare() to weight segments
354          * based on how sparse they are. This cannot be changed
355          * mid-scan and the tree comparison functions don't currently
356          * have a mechanism for passing additional context to the
357          * compare functions. Thus we store this value globally and
358          * we only allow it to be set at module initialization time
359          */
360         fill_weight = zfs_scan_fill_weight;
361
362         for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
363                 char name[36];
364
365                 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
366                 sio_cache[i] = kmem_cache_create(name,
367                     (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
368                     0, NULL, NULL, NULL, NULL, NULL, 0);
369         }
370 }
371
372 void
373 scan_fini(void)
374 {
375         for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
376                 kmem_cache_destroy(sio_cache[i]);
377         }
378 }
379
380 static inline boolean_t
381 dsl_scan_is_running(const dsl_scan_t *scn)
382 {
383         return (scn->scn_phys.scn_state == DSS_SCANNING);
384 }
385
386 boolean_t
387 dsl_scan_resilvering(dsl_pool_t *dp)
388 {
389         return (dsl_scan_is_running(dp->dp_scan) &&
390             dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
391 }
392
393 static inline void
394 sio2bp(const scan_io_t *sio, blkptr_t *bp)
395 {
396         memset(bp, 0, sizeof (*bp));
397         bp->blk_prop = sio->sio_blk_prop;
398         bp->blk_phys_birth = sio->sio_phys_birth;
399         bp->blk_birth = sio->sio_birth;
400         bp->blk_fill = 1;       /* we always only work with data pointers */
401         bp->blk_cksum = sio->sio_cksum;
402
403         ASSERT3U(sio->sio_nr_dvas, >, 0);
404         ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
405
406         memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
407 }
408
409 static inline void
410 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
411 {
412         sio->sio_blk_prop = bp->blk_prop;
413         sio->sio_phys_birth = bp->blk_phys_birth;
414         sio->sio_birth = bp->blk_birth;
415         sio->sio_cksum = bp->blk_cksum;
416         sio->sio_nr_dvas = BP_GET_NDVAS(bp);
417
418         /*
419          * Copy the DVAs to the sio. We need all copies of the block so
420          * that the self healing code can use the alternate copies if the
421          * first is corrupted. We want the DVA at index dva_i to be first
422          * in the sio since this is the primary one that we want to issue.
423          */
424         for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
425                 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
426         }
427 }
428
429 int
430 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
431 {
432         int err;
433         dsl_scan_t *scn;
434         spa_t *spa = dp->dp_spa;
435         uint64_t f;
436
437         scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
438         scn->scn_dp = dp;
439
440         /*
441          * It's possible that we're resuming a scan after a reboot so
442          * make sure that the scan_async_destroying flag is initialized
443          * appropriately.
444          */
445         ASSERT(!scn->scn_async_destroying);
446         scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
447             SPA_FEATURE_ASYNC_DESTROY);
448
449         /*
450          * Calculate the max number of in-flight bytes for pool-wide
451          * scanning operations (minimum 1MB). Limits for the issuing
452          * phase are done per top-level vdev and are handled separately.
453          */
454         scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
455             dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20);
456
457         avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
458             offsetof(scan_ds_t, sds_node));
459         avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
460             sizeof (scan_prefetch_issue_ctx_t),
461             offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
462
463         err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
464             "scrub_func", sizeof (uint64_t), 1, &f);
465         if (err == 0) {
466                 /*
467                  * There was an old-style scrub in progress.  Restart a
468                  * new-style scrub from the beginning.
469                  */
470                 scn->scn_restart_txg = txg;
471                 zfs_dbgmsg("old-style scrub was in progress for %s; "
472                     "restarting new-style scrub in txg %llu",
473                     spa->spa_name,
474                     (longlong_t)scn->scn_restart_txg);
475
476                 /*
477                  * Load the queue obj from the old location so that it
478                  * can be freed by dsl_scan_done().
479                  */
480                 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
481                     "scrub_queue", sizeof (uint64_t), 1,
482                     &scn->scn_phys.scn_queue_obj);
483         } else {
484                 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
485                     DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
486                     &scn->scn_phys);
487                 /*
488                  * Detect if the pool contains the signature of #2094.  If it
489                  * does properly update the scn->scn_phys structure and notify
490                  * the administrator by setting an errata for the pool.
491                  */
492                 if (err == EOVERFLOW) {
493                         uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
494                         VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
495                         VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
496                             (23 * sizeof (uint64_t)));
497
498                         err = zap_lookup(dp->dp_meta_objset,
499                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
500                             sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
501                         if (err == 0) {
502                                 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
503
504                                 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
505                                     scn->scn_async_destroying) {
506                                         spa->spa_errata =
507                                             ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
508                                         return (EOVERFLOW);
509                                 }
510
511                                 memcpy(&scn->scn_phys, zaptmp,
512                                     SCAN_PHYS_NUMINTS * sizeof (uint64_t));
513                                 scn->scn_phys.scn_flags = overflow;
514
515                                 /* Required scrub already in progress. */
516                                 if (scn->scn_phys.scn_state == DSS_FINISHED ||
517                                     scn->scn_phys.scn_state == DSS_CANCELED)
518                                         spa->spa_errata =
519                                             ZPOOL_ERRATA_ZOL_2094_SCRUB;
520                         }
521                 }
522
523                 if (err == ENOENT)
524                         return (0);
525                 else if (err)
526                         return (err);
527
528                 /*
529                  * We might be restarting after a reboot, so jump the issued
530                  * counter to how far we've scanned. We know we're consistent
531                  * up to here.
532                  */
533                 scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
534
535                 if (dsl_scan_is_running(scn) &&
536                     spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
537                         /*
538                          * A new-type scrub was in progress on an old
539                          * pool, and the pool was accessed by old
540                          * software.  Restart from the beginning, since
541                          * the old software may have changed the pool in
542                          * the meantime.
543                          */
544                         scn->scn_restart_txg = txg;
545                         zfs_dbgmsg("new-style scrub for %s was modified "
546                             "by old software; restarting in txg %llu",
547                             spa->spa_name,
548                             (longlong_t)scn->scn_restart_txg);
549                 } else if (dsl_scan_resilvering(dp)) {
550                         /*
551                          * If a resilver is in progress and there are already
552                          * errors, restart it instead of finishing this scan and
553                          * then restarting it. If there haven't been any errors
554                          * then remember that the incore DTL is valid.
555                          */
556                         if (scn->scn_phys.scn_errors > 0) {
557                                 scn->scn_restart_txg = txg;
558                                 zfs_dbgmsg("resilver can't excise DTL_MISSING "
559                                     "when finished; restarting on %s in txg "
560                                     "%llu",
561                                     spa->spa_name,
562                                     (u_longlong_t)scn->scn_restart_txg);
563                         } else {
564                                 /* it's safe to excise DTL when finished */
565                                 spa->spa_scrub_started = B_TRUE;
566                         }
567                 }
568         }
569
570         memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
571
572         /* reload the queue into the in-core state */
573         if (scn->scn_phys.scn_queue_obj != 0) {
574                 zap_cursor_t zc;
575                 zap_attribute_t za;
576
577                 for (zap_cursor_init(&zc, dp->dp_meta_objset,
578                     scn->scn_phys.scn_queue_obj);
579                     zap_cursor_retrieve(&zc, &za) == 0;
580                     (void) zap_cursor_advance(&zc)) {
581                         scan_ds_queue_insert(scn,
582                             zfs_strtonum(za.za_name, NULL),
583                             za.za_first_integer);
584                 }
585                 zap_cursor_fini(&zc);
586         }
587
588         spa_scan_stat_init(spa);
589         return (0);
590 }
591
592 void
593 dsl_scan_fini(dsl_pool_t *dp)
594 {
595         if (dp->dp_scan != NULL) {
596                 dsl_scan_t *scn = dp->dp_scan;
597
598                 if (scn->scn_taskq != NULL)
599                         taskq_destroy(scn->scn_taskq);
600
601                 scan_ds_queue_clear(scn);
602                 avl_destroy(&scn->scn_queue);
603                 scan_ds_prefetch_queue_clear(scn);
604                 avl_destroy(&scn->scn_prefetch_queue);
605
606                 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
607                 dp->dp_scan = NULL;
608         }
609 }
610
611 static boolean_t
612 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
613 {
614         return (scn->scn_restart_txg != 0 &&
615             scn->scn_restart_txg <= tx->tx_txg);
616 }
617
618 boolean_t
619 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
620 {
621         return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
622             (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
623 }
624
625 boolean_t
626 dsl_scan_scrubbing(const dsl_pool_t *dp)
627 {
628         dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
629
630         return (scn_phys->scn_state == DSS_SCANNING &&
631             scn_phys->scn_func == POOL_SCAN_SCRUB);
632 }
633
634 boolean_t
635 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
636 {
637         return (dsl_scan_scrubbing(scn->scn_dp) &&
638             scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
639 }
640
641 /*
642  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
643  * Because we can be running in the block sorting algorithm, we do not always
644  * want to write out the record, only when it is "safe" to do so. This safety
645  * condition is achieved by making sure that the sorting queues are empty
646  * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
647  * is inconsistent with how much actual scanning progress has been made. The
648  * kind of sync to be performed is specified by the sync_type argument. If the
649  * sync is optional, we only sync if the queues are empty. If the sync is
650  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
651  * third possible state is a "cached" sync. This is done in response to:
652  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
653  *      destroyed, so we wouldn't be able to restart scanning from it.
654  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
655  *      superseded by a newer snapshot.
656  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
657  *      swapped with its clone.
658  * In all cases, a cached sync simply rewrites the last record we've written,
659  * just slightly modified. For the modifications that are performed to the
660  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
661  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
662  */
663 static void
664 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
665 {
666         int i;
667         spa_t *spa = scn->scn_dp->dp_spa;
668
669         ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
670         if (scn->scn_bytes_pending == 0) {
671                 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
672                         vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
673                         dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
674
675                         if (q == NULL)
676                                 continue;
677
678                         mutex_enter(&vd->vdev_scan_io_queue_lock);
679                         ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
680                         ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
681                             NULL);
682                         ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
683                         mutex_exit(&vd->vdev_scan_io_queue_lock);
684                 }
685
686                 if (scn->scn_phys.scn_queue_obj != 0)
687                         scan_ds_queue_sync(scn, tx);
688                 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
689                     DMU_POOL_DIRECTORY_OBJECT,
690                     DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
691                     &scn->scn_phys, tx));
692                 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
693                     sizeof (scn->scn_phys));
694
695                 if (scn->scn_checkpointing)
696                         zfs_dbgmsg("finish scan checkpoint for %s",
697                             spa->spa_name);
698
699                 scn->scn_checkpointing = B_FALSE;
700                 scn->scn_last_checkpoint = ddi_get_lbolt();
701         } else if (sync_type == SYNC_CACHED) {
702                 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
703                     DMU_POOL_DIRECTORY_OBJECT,
704                     DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
705                     &scn->scn_phys_cached, tx));
706         }
707 }
708
709 int
710 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
711 {
712         (void) arg;
713         dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
714         vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
715
716         if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
717                 return (SET_ERROR(EBUSY));
718
719         return (0);
720 }
721
722 void
723 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
724 {
725         dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
726         pool_scan_func_t *funcp = arg;
727         dmu_object_type_t ot = 0;
728         dsl_pool_t *dp = scn->scn_dp;
729         spa_t *spa = dp->dp_spa;
730
731         ASSERT(!dsl_scan_is_running(scn));
732         ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
733         memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
734         scn->scn_phys.scn_func = *funcp;
735         scn->scn_phys.scn_state = DSS_SCANNING;
736         scn->scn_phys.scn_min_txg = 0;
737         scn->scn_phys.scn_max_txg = tx->tx_txg;
738         scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
739         scn->scn_phys.scn_start_time = gethrestime_sec();
740         scn->scn_phys.scn_errors = 0;
741         scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
742         scn->scn_issued_before_pass = 0;
743         scn->scn_restart_txg = 0;
744         scn->scn_done_txg = 0;
745         scn->scn_last_checkpoint = 0;
746         scn->scn_checkpointing = B_FALSE;
747         spa_scan_stat_init(spa);
748
749         if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
750                 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
751
752                 /* rewrite all disk labels */
753                 vdev_config_dirty(spa->spa_root_vdev);
754
755                 if (vdev_resilver_needed(spa->spa_root_vdev,
756                     &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
757                         nvlist_t *aux = fnvlist_alloc();
758                         fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
759                             "healing");
760                         spa_event_notify(spa, NULL, aux,
761                             ESC_ZFS_RESILVER_START);
762                         nvlist_free(aux);
763                 } else {
764                         spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
765                 }
766
767                 spa->spa_scrub_started = B_TRUE;
768                 /*
769                  * If this is an incremental scrub, limit the DDT scrub phase
770                  * to just the auto-ditto class (for correctness); the rest
771                  * of the scrub should go faster using top-down pruning.
772                  */
773                 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
774                         scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
775
776                 /*
777                  * When starting a resilver clear any existing rebuild state.
778                  * This is required to prevent stale rebuild status from
779                  * being reported when a rebuild is run, then a resilver and
780                  * finally a scrub.  In which case only the scrub status
781                  * should be reported by 'zpool status'.
782                  */
783                 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
784                         vdev_t *rvd = spa->spa_root_vdev;
785                         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
786                                 vdev_t *vd = rvd->vdev_child[i];
787                                 vdev_rebuild_clear_sync(
788                                     (void *)(uintptr_t)vd->vdev_id, tx);
789                         }
790                 }
791         }
792
793         /* back to the generic stuff */
794
795         if (dp->dp_blkstats == NULL) {
796                 dp->dp_blkstats =
797                     vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
798                 mutex_init(&dp->dp_blkstats->zab_lock, NULL,
799                     MUTEX_DEFAULT, NULL);
800         }
801         memset(&dp->dp_blkstats->zab_type, 0,
802             sizeof (dp->dp_blkstats->zab_type));
803
804         if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
805                 ot = DMU_OT_ZAP_OTHER;
806
807         scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
808             ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
809
810         memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
811
812         dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
813
814         spa_history_log_internal(spa, "scan setup", tx,
815             "func=%u mintxg=%llu maxtxg=%llu",
816             *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
817             (u_longlong_t)scn->scn_phys.scn_max_txg);
818 }
819
820 /*
821  * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
822  * Can also be called to resume a paused scrub.
823  */
824 int
825 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
826 {
827         spa_t *spa = dp->dp_spa;
828         dsl_scan_t *scn = dp->dp_scan;
829
830         /*
831          * Purge all vdev caches and probe all devices.  We do this here
832          * rather than in sync context because this requires a writer lock
833          * on the spa_config lock, which we can't do from sync context.  The
834          * spa_scrub_reopen flag indicates that vdev_open() should not
835          * attempt to start another scrub.
836          */
837         spa_vdev_state_enter(spa, SCL_NONE);
838         spa->spa_scrub_reopen = B_TRUE;
839         vdev_reopen(spa->spa_root_vdev);
840         spa->spa_scrub_reopen = B_FALSE;
841         (void) spa_vdev_state_exit(spa, NULL, 0);
842
843         if (func == POOL_SCAN_RESILVER) {
844                 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
845                 return (0);
846         }
847
848         if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
849                 /* got scrub start cmd, resume paused scrub */
850                 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
851                     POOL_SCRUB_NORMAL);
852                 if (err == 0) {
853                         spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
854                         return (SET_ERROR(ECANCELED));
855                 }
856
857                 return (SET_ERROR(err));
858         }
859
860         return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
861             dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
862 }
863
864 static void
865 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
866 {
867         static const char *old_names[] = {
868                 "scrub_bookmark",
869                 "scrub_ddt_bookmark",
870                 "scrub_ddt_class_max",
871                 "scrub_queue",
872                 "scrub_min_txg",
873                 "scrub_max_txg",
874                 "scrub_func",
875                 "scrub_errors",
876                 NULL
877         };
878
879         dsl_pool_t *dp = scn->scn_dp;
880         spa_t *spa = dp->dp_spa;
881         int i;
882
883         /* Remove any remnants of an old-style scrub. */
884         for (i = 0; old_names[i]; i++) {
885                 (void) zap_remove(dp->dp_meta_objset,
886                     DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
887         }
888
889         if (scn->scn_phys.scn_queue_obj != 0) {
890                 VERIFY0(dmu_object_free(dp->dp_meta_objset,
891                     scn->scn_phys.scn_queue_obj, tx));
892                 scn->scn_phys.scn_queue_obj = 0;
893         }
894         scan_ds_queue_clear(scn);
895         scan_ds_prefetch_queue_clear(scn);
896
897         scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
898
899         /*
900          * If we were "restarted" from a stopped state, don't bother
901          * with anything else.
902          */
903         if (!dsl_scan_is_running(scn)) {
904                 ASSERT(!scn->scn_is_sorted);
905                 return;
906         }
907
908         if (scn->scn_is_sorted) {
909                 scan_io_queues_destroy(scn);
910                 scn->scn_is_sorted = B_FALSE;
911
912                 if (scn->scn_taskq != NULL) {
913                         taskq_destroy(scn->scn_taskq);
914                         scn->scn_taskq = NULL;
915                 }
916         }
917
918         scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
919
920         spa_notify_waiters(spa);
921
922         if (dsl_scan_restarting(scn, tx))
923                 spa_history_log_internal(spa, "scan aborted, restarting", tx,
924                     "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
925         else if (!complete)
926                 spa_history_log_internal(spa, "scan cancelled", tx,
927                     "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
928         else
929                 spa_history_log_internal(spa, "scan done", tx,
930                     "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
931
932         if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
933                 spa->spa_scrub_active = B_FALSE;
934
935                 /*
936                  * If the scrub/resilver completed, update all DTLs to
937                  * reflect this.  Whether it succeeded or not, vacate
938                  * all temporary scrub DTLs.
939                  *
940                  * As the scrub does not currently support traversing
941                  * data that have been freed but are part of a checkpoint,
942                  * we don't mark the scrub as done in the DTLs as faults
943                  * may still exist in those vdevs.
944                  */
945                 if (complete &&
946                     !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
947                         vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
948                             scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
949
950                         if (scn->scn_phys.scn_min_txg) {
951                                 nvlist_t *aux = fnvlist_alloc();
952                                 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
953                                     "healing");
954                                 spa_event_notify(spa, NULL, aux,
955                                     ESC_ZFS_RESILVER_FINISH);
956                                 nvlist_free(aux);
957                         } else {
958                                 spa_event_notify(spa, NULL, NULL,
959                                     ESC_ZFS_SCRUB_FINISH);
960                         }
961                 } else {
962                         vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
963                             0, B_TRUE, B_FALSE);
964                 }
965                 spa_errlog_rotate(spa);
966
967                 /*
968                  * Don't clear flag until after vdev_dtl_reassess to ensure that
969                  * DTL_MISSING will get updated when possible.
970                  */
971                 spa->spa_scrub_started = B_FALSE;
972
973                 /*
974                  * We may have finished replacing a device.
975                  * Let the async thread assess this and handle the detach.
976                  */
977                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
978
979                 /*
980                  * Clear any resilver_deferred flags in the config.
981                  * If there are drives that need resilvering, kick
982                  * off an asynchronous request to start resilver.
983                  * vdev_clear_resilver_deferred() may update the config
984                  * before the resilver can restart. In the event of
985                  * a crash during this period, the spa loading code
986                  * will find the drives that need to be resilvered
987                  * and start the resilver then.
988                  */
989                 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
990                     vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
991                         spa_history_log_internal(spa,
992                             "starting deferred resilver", tx, "errors=%llu",
993                             (u_longlong_t)spa_get_errlog_size(spa));
994                         spa_async_request(spa, SPA_ASYNC_RESILVER);
995                 }
996
997                 /* Clear recent error events (i.e. duplicate events tracking) */
998                 if (complete)
999                         zfs_ereport_clear(spa, NULL);
1000         }
1001
1002         scn->scn_phys.scn_end_time = gethrestime_sec();
1003
1004         if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1005                 spa->spa_errata = 0;
1006
1007         ASSERT(!dsl_scan_is_running(scn));
1008 }
1009
1010 static int
1011 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1012 {
1013         (void) arg;
1014         dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1015
1016         if (!dsl_scan_is_running(scn))
1017                 return (SET_ERROR(ENOENT));
1018         return (0);
1019 }
1020
1021 static void
1022 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1023 {
1024         (void) arg;
1025         dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1026
1027         dsl_scan_done(scn, B_FALSE, tx);
1028         dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1029         spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1030 }
1031
1032 int
1033 dsl_scan_cancel(dsl_pool_t *dp)
1034 {
1035         return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1036             dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1037 }
1038
1039 static int
1040 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1041 {
1042         pool_scrub_cmd_t *cmd = arg;
1043         dsl_pool_t *dp = dmu_tx_pool(tx);
1044         dsl_scan_t *scn = dp->dp_scan;
1045
1046         if (*cmd == POOL_SCRUB_PAUSE) {
1047                 /* can't pause a scrub when there is no in-progress scrub */
1048                 if (!dsl_scan_scrubbing(dp))
1049                         return (SET_ERROR(ENOENT));
1050
1051                 /* can't pause a paused scrub */
1052                 if (dsl_scan_is_paused_scrub(scn))
1053                         return (SET_ERROR(EBUSY));
1054         } else if (*cmd != POOL_SCRUB_NORMAL) {
1055                 return (SET_ERROR(ENOTSUP));
1056         }
1057
1058         return (0);
1059 }
1060
1061 static void
1062 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1063 {
1064         pool_scrub_cmd_t *cmd = arg;
1065         dsl_pool_t *dp = dmu_tx_pool(tx);
1066         spa_t *spa = dp->dp_spa;
1067         dsl_scan_t *scn = dp->dp_scan;
1068
1069         if (*cmd == POOL_SCRUB_PAUSE) {
1070                 /* can't pause a scrub when there is no in-progress scrub */
1071                 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1072                 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1073                 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1074                 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1075                 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1076                 spa_notify_waiters(spa);
1077         } else {
1078                 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1079                 if (dsl_scan_is_paused_scrub(scn)) {
1080                         /*
1081                          * We need to keep track of how much time we spend
1082                          * paused per pass so that we can adjust the scrub rate
1083                          * shown in the output of 'zpool status'
1084                          */
1085                         spa->spa_scan_pass_scrub_spent_paused +=
1086                             gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1087                         spa->spa_scan_pass_scrub_pause = 0;
1088                         scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1089                         scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1090                         dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1091                 }
1092         }
1093 }
1094
1095 /*
1096  * Set scrub pause/resume state if it makes sense to do so
1097  */
1098 int
1099 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1100 {
1101         return (dsl_sync_task(spa_name(dp->dp_spa),
1102             dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1103             ZFS_SPACE_CHECK_RESERVED));
1104 }
1105
1106
1107 /* start a new scan, or restart an existing one. */
1108 void
1109 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1110 {
1111         if (txg == 0) {
1112                 dmu_tx_t *tx;
1113                 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1114                 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1115
1116                 txg = dmu_tx_get_txg(tx);
1117                 dp->dp_scan->scn_restart_txg = txg;
1118                 dmu_tx_commit(tx);
1119         } else {
1120                 dp->dp_scan->scn_restart_txg = txg;
1121         }
1122         zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1123             dp->dp_spa->spa_name, (longlong_t)txg);
1124 }
1125
1126 void
1127 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1128 {
1129         zio_free(dp->dp_spa, txg, bp);
1130 }
1131
1132 void
1133 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1134 {
1135         ASSERT(dsl_pool_sync_context(dp));
1136         zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1137 }
1138
1139 static int
1140 scan_ds_queue_compare(const void *a, const void *b)
1141 {
1142         const scan_ds_t *sds_a = a, *sds_b = b;
1143
1144         if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1145                 return (-1);
1146         if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1147                 return (0);
1148         return (1);
1149 }
1150
1151 static void
1152 scan_ds_queue_clear(dsl_scan_t *scn)
1153 {
1154         void *cookie = NULL;
1155         scan_ds_t *sds;
1156         while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1157                 kmem_free(sds, sizeof (*sds));
1158         }
1159 }
1160
1161 static boolean_t
1162 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1163 {
1164         scan_ds_t srch, *sds;
1165
1166         srch.sds_dsobj = dsobj;
1167         sds = avl_find(&scn->scn_queue, &srch, NULL);
1168         if (sds != NULL && txg != NULL)
1169                 *txg = sds->sds_txg;
1170         return (sds != NULL);
1171 }
1172
1173 static void
1174 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1175 {
1176         scan_ds_t *sds;
1177         avl_index_t where;
1178
1179         sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1180         sds->sds_dsobj = dsobj;
1181         sds->sds_txg = txg;
1182
1183         VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1184         avl_insert(&scn->scn_queue, sds, where);
1185 }
1186
1187 static void
1188 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1189 {
1190         scan_ds_t srch, *sds;
1191
1192         srch.sds_dsobj = dsobj;
1193
1194         sds = avl_find(&scn->scn_queue, &srch, NULL);
1195         VERIFY(sds != NULL);
1196         avl_remove(&scn->scn_queue, sds);
1197         kmem_free(sds, sizeof (*sds));
1198 }
1199
1200 static void
1201 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1202 {
1203         dsl_pool_t *dp = scn->scn_dp;
1204         spa_t *spa = dp->dp_spa;
1205         dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1206             DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1207
1208         ASSERT0(scn->scn_bytes_pending);
1209         ASSERT(scn->scn_phys.scn_queue_obj != 0);
1210
1211         VERIFY0(dmu_object_free(dp->dp_meta_objset,
1212             scn->scn_phys.scn_queue_obj, tx));
1213         scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1214             DMU_OT_NONE, 0, tx);
1215         for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1216             sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1217                 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1218                     scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1219                     sds->sds_txg, tx));
1220         }
1221 }
1222
1223 /*
1224  * Computes the memory limit state that we're currently in. A sorted scan
1225  * needs quite a bit of memory to hold the sorting queue, so we need to
1226  * reasonably constrain the size so it doesn't impact overall system
1227  * performance. We compute two limits:
1228  * 1) Hard memory limit: if the amount of memory used by the sorting
1229  *      queues on a pool gets above this value, we stop the metadata
1230  *      scanning portion and start issuing the queued up and sorted
1231  *      I/Os to reduce memory usage.
1232  *      This limit is calculated as a fraction of physmem (by default 5%).
1233  *      We constrain the lower bound of the hard limit to an absolute
1234  *      minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1235  *      the upper bound to 5% of the total pool size - no chance we'll
1236  *      ever need that much memory, but just to keep the value in check.
1237  * 2) Soft memory limit: once we hit the hard memory limit, we start
1238  *      issuing I/O to reduce queue memory usage, but we don't want to
1239  *      completely empty out the queues, since we might be able to find I/Os
1240  *      that will fill in the gaps of our non-sequential IOs at some point
1241  *      in the future. So we stop the issuing of I/Os once the amount of
1242  *      memory used drops below the soft limit (at which point we stop issuing
1243  *      I/O and start scanning metadata again).
1244  *
1245  *      This limit is calculated by subtracting a fraction of the hard
1246  *      limit from the hard limit. By default this fraction is 5%, so
1247  *      the soft limit is 95% of the hard limit. We cap the size of the
1248  *      difference between the hard and soft limits at an absolute
1249  *      maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1250  *      sufficient to not cause too frequent switching between the
1251  *      metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1252  *      worth of queues is about 1.2 GiB of on-pool data, so scanning
1253  *      that should take at least a decent fraction of a second).
1254  */
1255 static boolean_t
1256 dsl_scan_should_clear(dsl_scan_t *scn)
1257 {
1258         spa_t *spa = scn->scn_dp->dp_spa;
1259         vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1260         uint64_t alloc, mlim_hard, mlim_soft, mused;
1261
1262         alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1263         alloc += metaslab_class_get_alloc(spa_special_class(spa));
1264         alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1265
1266         mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1267             zfs_scan_mem_lim_min);
1268         mlim_hard = MIN(mlim_hard, alloc / 20);
1269         mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1270             zfs_scan_mem_lim_soft_max);
1271         mused = 0;
1272         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1273                 vdev_t *tvd = rvd->vdev_child[i];
1274                 dsl_scan_io_queue_t *queue;
1275
1276                 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1277                 queue = tvd->vdev_scan_io_queue;
1278                 if (queue != NULL) {
1279                         /* # extents in exts_by_size = # in exts_by_addr */
1280                         mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1281                             sizeof (range_seg_gap_t) + queue->q_sio_memused;
1282                 }
1283                 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1284         }
1285
1286         dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1287
1288         if (mused == 0)
1289                 ASSERT0(scn->scn_bytes_pending);
1290
1291         /*
1292          * If we are above our hard limit, we need to clear out memory.
1293          * If we are below our soft limit, we need to accumulate sequential IOs.
1294          * Otherwise, we should keep doing whatever we are currently doing.
1295          */
1296         if (mused >= mlim_hard)
1297                 return (B_TRUE);
1298         else if (mused < mlim_soft)
1299                 return (B_FALSE);
1300         else
1301                 return (scn->scn_clearing);
1302 }
1303
1304 static boolean_t
1305 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1306 {
1307         /* we never skip user/group accounting objects */
1308         if (zb && (int64_t)zb->zb_object < 0)
1309                 return (B_FALSE);
1310
1311         if (scn->scn_suspending)
1312                 return (B_TRUE); /* we're already suspending */
1313
1314         if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1315                 return (B_FALSE); /* we're resuming */
1316
1317         /* We only know how to resume from level-0 and objset blocks. */
1318         if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1319                 return (B_FALSE);
1320
1321         /*
1322          * We suspend if:
1323          *  - we have scanned for at least the minimum time (default 1 sec
1324          *    for scrub, 3 sec for resilver), and either we have sufficient
1325          *    dirty data that we are starting to write more quickly
1326          *    (default 30%), someone is explicitly waiting for this txg
1327          *    to complete, or we have used up all of the time in the txg
1328          *    timeout (default 5 sec).
1329          *  or
1330          *  - the spa is shutting down because this pool is being exported
1331          *    or the machine is rebooting.
1332          *  or
1333          *  - the scan queue has reached its memory use limit
1334          */
1335         uint64_t curr_time_ns = gethrtime();
1336         uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1337         uint64_t sync_time_ns = curr_time_ns -
1338             scn->scn_dp->dp_spa->spa_sync_starttime;
1339         int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1340         int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1341             zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1342
1343         if ((NSEC2MSEC(scan_time_ns) > mintime &&
1344             (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1345             txg_sync_waiting(scn->scn_dp) ||
1346             NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1347             spa_shutting_down(scn->scn_dp->dp_spa) ||
1348             (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1349                 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1350                         dprintf("suspending at first available bookmark "
1351                             "%llx/%llx/%llx/%llx\n",
1352                             (longlong_t)zb->zb_objset,
1353                             (longlong_t)zb->zb_object,
1354                             (longlong_t)zb->zb_level,
1355                             (longlong_t)zb->zb_blkid);
1356                         SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1357                             zb->zb_objset, 0, 0, 0);
1358                 } else if (zb != NULL) {
1359                         dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1360                             (longlong_t)zb->zb_objset,
1361                             (longlong_t)zb->zb_object,
1362                             (longlong_t)zb->zb_level,
1363                             (longlong_t)zb->zb_blkid);
1364                         scn->scn_phys.scn_bookmark = *zb;
1365                 } else {
1366 #ifdef ZFS_DEBUG
1367                         dsl_scan_phys_t *scnp = &scn->scn_phys;
1368                         dprintf("suspending at at DDT bookmark "
1369                             "%llx/%llx/%llx/%llx\n",
1370                             (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1371                             (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1372                             (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1373                             (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1374 #endif
1375                 }
1376                 scn->scn_suspending = B_TRUE;
1377                 return (B_TRUE);
1378         }
1379         return (B_FALSE);
1380 }
1381
1382 typedef struct zil_scan_arg {
1383         dsl_pool_t      *zsa_dp;
1384         zil_header_t    *zsa_zh;
1385 } zil_scan_arg_t;
1386
1387 static int
1388 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1389     uint64_t claim_txg)
1390 {
1391         (void) zilog;
1392         zil_scan_arg_t *zsa = arg;
1393         dsl_pool_t *dp = zsa->zsa_dp;
1394         dsl_scan_t *scn = dp->dp_scan;
1395         zil_header_t *zh = zsa->zsa_zh;
1396         zbookmark_phys_t zb;
1397
1398         ASSERT(!BP_IS_REDACTED(bp));
1399         if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1400                 return (0);
1401
1402         /*
1403          * One block ("stubby") can be allocated a long time ago; we
1404          * want to visit that one because it has been allocated
1405          * (on-disk) even if it hasn't been claimed (even though for
1406          * scrub there's nothing to do to it).
1407          */
1408         if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1409                 return (0);
1410
1411         SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1412             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1413
1414         VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1415         return (0);
1416 }
1417
1418 static int
1419 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1420     uint64_t claim_txg)
1421 {
1422         (void) zilog;
1423         if (lrc->lrc_txtype == TX_WRITE) {
1424                 zil_scan_arg_t *zsa = arg;
1425                 dsl_pool_t *dp = zsa->zsa_dp;
1426                 dsl_scan_t *scn = dp->dp_scan;
1427                 zil_header_t *zh = zsa->zsa_zh;
1428                 const lr_write_t *lr = (const lr_write_t *)lrc;
1429                 const blkptr_t *bp = &lr->lr_blkptr;
1430                 zbookmark_phys_t zb;
1431
1432                 ASSERT(!BP_IS_REDACTED(bp));
1433                 if (BP_IS_HOLE(bp) ||
1434                     bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1435                         return (0);
1436
1437                 /*
1438                  * birth can be < claim_txg if this record's txg is
1439                  * already txg sync'ed (but this log block contains
1440                  * other records that are not synced)
1441                  */
1442                 if (claim_txg == 0 || bp->blk_birth < claim_txg)
1443                         return (0);
1444
1445                 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1446                     lr->lr_foid, ZB_ZIL_LEVEL,
1447                     lr->lr_offset / BP_GET_LSIZE(bp));
1448
1449                 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1450         }
1451         return (0);
1452 }
1453
1454 static void
1455 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1456 {
1457         uint64_t claim_txg = zh->zh_claim_txg;
1458         zil_scan_arg_t zsa = { dp, zh };
1459         zilog_t *zilog;
1460
1461         ASSERT(spa_writeable(dp->dp_spa));
1462
1463         /*
1464          * We only want to visit blocks that have been claimed but not yet
1465          * replayed (or, in read-only mode, blocks that *would* be claimed).
1466          */
1467         if (claim_txg == 0)
1468                 return;
1469
1470         zilog = zil_alloc(dp->dp_meta_objset, zh);
1471
1472         (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1473             claim_txg, B_FALSE);
1474
1475         zil_free(zilog);
1476 }
1477
1478 /*
1479  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1480  * here is to sort the AVL tree by the order each block will be needed.
1481  */
1482 static int
1483 scan_prefetch_queue_compare(const void *a, const void *b)
1484 {
1485         const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1486         const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1487         const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1488
1489         return (zbookmark_compare(spc_a->spc_datablkszsec,
1490             spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1491             spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1492 }
1493
1494 static void
1495 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1496 {
1497         if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1498                 zfs_refcount_destroy(&spc->spc_refcnt);
1499                 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1500         }
1501 }
1502
1503 static scan_prefetch_ctx_t *
1504 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1505 {
1506         scan_prefetch_ctx_t *spc;
1507
1508         spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1509         zfs_refcount_create(&spc->spc_refcnt);
1510         zfs_refcount_add(&spc->spc_refcnt, tag);
1511         spc->spc_scn = scn;
1512         if (dnp != NULL) {
1513                 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1514                 spc->spc_indblkshift = dnp->dn_indblkshift;
1515                 spc->spc_root = B_FALSE;
1516         } else {
1517                 spc->spc_datablkszsec = 0;
1518                 spc->spc_indblkshift = 0;
1519                 spc->spc_root = B_TRUE;
1520         }
1521
1522         return (spc);
1523 }
1524
1525 static void
1526 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1527 {
1528         zfs_refcount_add(&spc->spc_refcnt, tag);
1529 }
1530
1531 static void
1532 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1533 {
1534         spa_t *spa = scn->scn_dp->dp_spa;
1535         void *cookie = NULL;
1536         scan_prefetch_issue_ctx_t *spic = NULL;
1537
1538         mutex_enter(&spa->spa_scrub_lock);
1539         while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1540             &cookie)) != NULL) {
1541                 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1542                 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1543         }
1544         mutex_exit(&spa->spa_scrub_lock);
1545 }
1546
1547 static boolean_t
1548 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1549     const zbookmark_phys_t *zb)
1550 {
1551         zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1552         dnode_phys_t tmp_dnp;
1553         dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1554
1555         if (zb->zb_objset != last_zb->zb_objset)
1556                 return (B_TRUE);
1557         if ((int64_t)zb->zb_object < 0)
1558                 return (B_FALSE);
1559
1560         tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1561         tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1562
1563         if (zbookmark_subtree_completed(dnp, zb, last_zb))
1564                 return (B_TRUE);
1565
1566         return (B_FALSE);
1567 }
1568
1569 static void
1570 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1571 {
1572         avl_index_t idx;
1573         dsl_scan_t *scn = spc->spc_scn;
1574         spa_t *spa = scn->scn_dp->dp_spa;
1575         scan_prefetch_issue_ctx_t *spic;
1576
1577         if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1578                 return;
1579
1580         if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1581             (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1582             BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1583                 return;
1584
1585         if (dsl_scan_check_prefetch_resume(spc, zb))
1586                 return;
1587
1588         scan_prefetch_ctx_add_ref(spc, scn);
1589         spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1590         spic->spic_spc = spc;
1591         spic->spic_bp = *bp;
1592         spic->spic_zb = *zb;
1593
1594         /*
1595          * Add the IO to the queue of blocks to prefetch. This allows us to
1596          * prioritize blocks that we will need first for the main traversal
1597          * thread.
1598          */
1599         mutex_enter(&spa->spa_scrub_lock);
1600         if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1601                 /* this block is already queued for prefetch */
1602                 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1603                 scan_prefetch_ctx_rele(spc, scn);
1604                 mutex_exit(&spa->spa_scrub_lock);
1605                 return;
1606         }
1607
1608         avl_insert(&scn->scn_prefetch_queue, spic, idx);
1609         cv_broadcast(&spa->spa_scrub_io_cv);
1610         mutex_exit(&spa->spa_scrub_lock);
1611 }
1612
1613 static void
1614 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1615     uint64_t objset, uint64_t object)
1616 {
1617         int i;
1618         zbookmark_phys_t zb;
1619         scan_prefetch_ctx_t *spc;
1620
1621         if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1622                 return;
1623
1624         SET_BOOKMARK(&zb, objset, object, 0, 0);
1625
1626         spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1627
1628         for (i = 0; i < dnp->dn_nblkptr; i++) {
1629                 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1630                 zb.zb_blkid = i;
1631                 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1632         }
1633
1634         if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1635                 zb.zb_level = 0;
1636                 zb.zb_blkid = DMU_SPILL_BLKID;
1637                 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1638         }
1639
1640         scan_prefetch_ctx_rele(spc, FTAG);
1641 }
1642
1643 static void
1644 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1645     arc_buf_t *buf, void *private)
1646 {
1647         (void) zio;
1648         scan_prefetch_ctx_t *spc = private;
1649         dsl_scan_t *scn = spc->spc_scn;
1650         spa_t *spa = scn->scn_dp->dp_spa;
1651
1652         /* broadcast that the IO has completed for rate limiting purposes */
1653         mutex_enter(&spa->spa_scrub_lock);
1654         ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1655         spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1656         cv_broadcast(&spa->spa_scrub_io_cv);
1657         mutex_exit(&spa->spa_scrub_lock);
1658
1659         /* if there was an error or we are done prefetching, just cleanup */
1660         if (buf == NULL || scn->scn_prefetch_stop)
1661                 goto out;
1662
1663         if (BP_GET_LEVEL(bp) > 0) {
1664                 int i;
1665                 blkptr_t *cbp;
1666                 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1667                 zbookmark_phys_t czb;
1668
1669                 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1670                         SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1671                             zb->zb_level - 1, zb->zb_blkid * epb + i);
1672                         dsl_scan_prefetch(spc, cbp, &czb);
1673                 }
1674         } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1675                 dnode_phys_t *cdnp;
1676                 int i;
1677                 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1678
1679                 for (i = 0, cdnp = buf->b_data; i < epb;
1680                     i += cdnp->dn_extra_slots + 1,
1681                     cdnp += cdnp->dn_extra_slots + 1) {
1682                         dsl_scan_prefetch_dnode(scn, cdnp,
1683                             zb->zb_objset, zb->zb_blkid * epb + i);
1684                 }
1685         } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1686                 objset_phys_t *osp = buf->b_data;
1687
1688                 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1689                     zb->zb_objset, DMU_META_DNODE_OBJECT);
1690
1691                 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1692                         dsl_scan_prefetch_dnode(scn,
1693                             &osp->os_groupused_dnode, zb->zb_objset,
1694                             DMU_GROUPUSED_OBJECT);
1695                         dsl_scan_prefetch_dnode(scn,
1696                             &osp->os_userused_dnode, zb->zb_objset,
1697                             DMU_USERUSED_OBJECT);
1698                 }
1699         }
1700
1701 out:
1702         if (buf != NULL)
1703                 arc_buf_destroy(buf, private);
1704         scan_prefetch_ctx_rele(spc, scn);
1705 }
1706
1707 static void
1708 dsl_scan_prefetch_thread(void *arg)
1709 {
1710         dsl_scan_t *scn = arg;
1711         spa_t *spa = scn->scn_dp->dp_spa;
1712         scan_prefetch_issue_ctx_t *spic;
1713
1714         /* loop until we are told to stop */
1715         while (!scn->scn_prefetch_stop) {
1716                 arc_flags_t flags = ARC_FLAG_NOWAIT |
1717                     ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1718                 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1719
1720                 mutex_enter(&spa->spa_scrub_lock);
1721
1722                 /*
1723                  * Wait until we have an IO to issue and are not above our
1724                  * maximum in flight limit.
1725                  */
1726                 while (!scn->scn_prefetch_stop &&
1727                     (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1728                     spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1729                         cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1730                 }
1731
1732                 /* recheck if we should stop since we waited for the cv */
1733                 if (scn->scn_prefetch_stop) {
1734                         mutex_exit(&spa->spa_scrub_lock);
1735                         break;
1736                 }
1737
1738                 /* remove the prefetch IO from the tree */
1739                 spic = avl_first(&scn->scn_prefetch_queue);
1740                 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1741                 avl_remove(&scn->scn_prefetch_queue, spic);
1742
1743                 mutex_exit(&spa->spa_scrub_lock);
1744
1745                 if (BP_IS_PROTECTED(&spic->spic_bp)) {
1746                         ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1747                             BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1748                         ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1749                         zio_flags |= ZIO_FLAG_RAW;
1750                 }
1751
1752                 /* issue the prefetch asynchronously */
1753                 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1754                     &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1755                     ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1756
1757                 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1758         }
1759
1760         ASSERT(scn->scn_prefetch_stop);
1761
1762         /* free any prefetches we didn't get to complete */
1763         mutex_enter(&spa->spa_scrub_lock);
1764         while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1765                 avl_remove(&scn->scn_prefetch_queue, spic);
1766                 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1767                 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1768         }
1769         ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1770         mutex_exit(&spa->spa_scrub_lock);
1771 }
1772
1773 static boolean_t
1774 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1775     const zbookmark_phys_t *zb)
1776 {
1777         /*
1778          * We never skip over user/group accounting objects (obj<0)
1779          */
1780         if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1781             (int64_t)zb->zb_object >= 0) {
1782                 /*
1783                  * If we already visited this bp & everything below (in
1784                  * a prior txg sync), don't bother doing it again.
1785                  */
1786                 if (zbookmark_subtree_completed(dnp, zb,
1787                     &scn->scn_phys.scn_bookmark))
1788                         return (B_TRUE);
1789
1790                 /*
1791                  * If we found the block we're trying to resume from, or
1792                  * we went past it to a different object, zero it out to
1793                  * indicate that it's OK to start checking for suspending
1794                  * again.
1795                  */
1796                 if (memcmp(zb, &scn->scn_phys.scn_bookmark,
1797                     sizeof (*zb)) == 0 ||
1798                     zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1799                         dprintf("resuming at %llx/%llx/%llx/%llx\n",
1800                             (longlong_t)zb->zb_objset,
1801                             (longlong_t)zb->zb_object,
1802                             (longlong_t)zb->zb_level,
1803                             (longlong_t)zb->zb_blkid);
1804                         memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
1805                 }
1806         }
1807         return (B_FALSE);
1808 }
1809
1810 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1811     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1812     dmu_objset_type_t ostype, dmu_tx_t *tx);
1813 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
1814     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1815     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1816
1817 /*
1818  * Return nonzero on i/o error.
1819  * Return new buf to write out in *bufp.
1820  */
1821 inline __attribute__((always_inline)) static int
1822 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1823     dnode_phys_t *dnp, const blkptr_t *bp,
1824     const zbookmark_phys_t *zb, dmu_tx_t *tx)
1825 {
1826         dsl_pool_t *dp = scn->scn_dp;
1827         int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1828         int err;
1829
1830         ASSERT(!BP_IS_REDACTED(bp));
1831
1832         /*
1833          * There is an unlikely case of encountering dnodes with contradicting
1834          * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
1835          * or modified before commit 4254acb was merged. As it is not possible
1836          * to know which of the two is correct, report an error.
1837          */
1838         if (dnp != NULL &&
1839             dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
1840                 scn->scn_phys.scn_errors++;
1841                 spa_log_error(dp->dp_spa, zb);
1842                 return (SET_ERROR(EINVAL));
1843         }
1844
1845         if (BP_GET_LEVEL(bp) > 0) {
1846                 arc_flags_t flags = ARC_FLAG_WAIT;
1847                 int i;
1848                 blkptr_t *cbp;
1849                 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1850                 arc_buf_t *buf;
1851
1852                 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1853                     ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1854                 if (err) {
1855                         scn->scn_phys.scn_errors++;
1856                         return (err);
1857                 }
1858                 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1859                         zbookmark_phys_t czb;
1860
1861                         SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1862                             zb->zb_level - 1,
1863                             zb->zb_blkid * epb + i);
1864                         dsl_scan_visitbp(cbp, &czb, dnp,
1865                             ds, scn, ostype, tx);
1866                 }
1867                 arc_buf_destroy(buf, &buf);
1868         } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1869                 arc_flags_t flags = ARC_FLAG_WAIT;
1870                 dnode_phys_t *cdnp;
1871                 int i;
1872                 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1873                 arc_buf_t *buf;
1874
1875                 if (BP_IS_PROTECTED(bp)) {
1876                         ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1877                         zio_flags |= ZIO_FLAG_RAW;
1878                 }
1879
1880                 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1881                     ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1882                 if (err) {
1883                         scn->scn_phys.scn_errors++;
1884                         return (err);
1885                 }
1886                 for (i = 0, cdnp = buf->b_data; i < epb;
1887                     i += cdnp->dn_extra_slots + 1,
1888                     cdnp += cdnp->dn_extra_slots + 1) {
1889                         dsl_scan_visitdnode(scn, ds, ostype,
1890                             cdnp, zb->zb_blkid * epb + i, tx);
1891                 }
1892
1893                 arc_buf_destroy(buf, &buf);
1894         } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1895                 arc_flags_t flags = ARC_FLAG_WAIT;
1896                 objset_phys_t *osp;
1897                 arc_buf_t *buf;
1898
1899                 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1900                     ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1901                 if (err) {
1902                         scn->scn_phys.scn_errors++;
1903                         return (err);
1904                 }
1905
1906                 osp = buf->b_data;
1907
1908                 dsl_scan_visitdnode(scn, ds, osp->os_type,
1909                     &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1910
1911                 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1912                         /*
1913                          * We also always visit user/group/project accounting
1914                          * objects, and never skip them, even if we are
1915                          * suspending. This is necessary so that the
1916                          * space deltas from this txg get integrated.
1917                          */
1918                         if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1919                                 dsl_scan_visitdnode(scn, ds, osp->os_type,
1920                                     &osp->os_projectused_dnode,
1921                                     DMU_PROJECTUSED_OBJECT, tx);
1922                         dsl_scan_visitdnode(scn, ds, osp->os_type,
1923                             &osp->os_groupused_dnode,
1924                             DMU_GROUPUSED_OBJECT, tx);
1925                         dsl_scan_visitdnode(scn, ds, osp->os_type,
1926                             &osp->os_userused_dnode,
1927                             DMU_USERUSED_OBJECT, tx);
1928                 }
1929                 arc_buf_destroy(buf, &buf);
1930         }
1931
1932         return (0);
1933 }
1934
1935 inline __attribute__((always_inline)) static void
1936 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1937     dmu_objset_type_t ostype, dnode_phys_t *dnp,
1938     uint64_t object, dmu_tx_t *tx)
1939 {
1940         int j;
1941
1942         for (j = 0; j < dnp->dn_nblkptr; j++) {
1943                 zbookmark_phys_t czb;
1944
1945                 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1946                     dnp->dn_nlevels - 1, j);
1947                 dsl_scan_visitbp(&dnp->dn_blkptr[j],
1948                     &czb, dnp, ds, scn, ostype, tx);
1949         }
1950
1951         if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1952                 zbookmark_phys_t czb;
1953                 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1954                     0, DMU_SPILL_BLKID);
1955                 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1956                     &czb, dnp, ds, scn, ostype, tx);
1957         }
1958 }
1959
1960 /*
1961  * The arguments are in this order because mdb can only print the
1962  * first 5; we want them to be useful.
1963  */
1964 static void
1965 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1966     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1967     dmu_objset_type_t ostype, dmu_tx_t *tx)
1968 {
1969         dsl_pool_t *dp = scn->scn_dp;
1970         blkptr_t *bp_toread = NULL;
1971
1972         if (dsl_scan_check_suspend(scn, zb))
1973                 return;
1974
1975         if (dsl_scan_check_resume(scn, dnp, zb))
1976                 return;
1977
1978         scn->scn_visited_this_txg++;
1979
1980         /*
1981          * This debugging is commented out to conserve stack space.  This
1982          * function is called recursively and the debugging adds several
1983          * bytes to the stack for each call.  It can be commented back in
1984          * if required to debug an issue in dsl_scan_visitbp().
1985          *
1986          * dprintf_bp(bp,
1987          *     "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1988          *     ds, ds ? ds->ds_object : 0,
1989          *     zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1990          *     bp);
1991          */
1992
1993         if (BP_IS_HOLE(bp)) {
1994                 scn->scn_holes_this_txg++;
1995                 return;
1996         }
1997
1998         if (BP_IS_REDACTED(bp)) {
1999                 ASSERT(dsl_dataset_feature_is_active(ds,
2000                     SPA_FEATURE_REDACTED_DATASETS));
2001                 return;
2002         }
2003
2004         if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
2005                 scn->scn_lt_min_this_txg++;
2006                 return;
2007         }
2008
2009         bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
2010         *bp_toread = *bp;
2011
2012         if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
2013                 goto out;
2014
2015         /*
2016          * If dsl_scan_ddt() has already visited this block, it will have
2017          * already done any translations or scrubbing, so don't call the
2018          * callback again.
2019          */
2020         if (ddt_class_contains(dp->dp_spa,
2021             scn->scn_phys.scn_ddt_class_max, bp)) {
2022                 scn->scn_ddt_contained_this_txg++;
2023                 goto out;
2024         }
2025
2026         /*
2027          * If this block is from the future (after cur_max_txg), then we
2028          * are doing this on behalf of a deleted snapshot, and we will
2029          * revisit the future block on the next pass of this dataset.
2030          * Don't scan it now unless we need to because something
2031          * under it was modified.
2032          */
2033         if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2034                 scn->scn_gt_max_this_txg++;
2035                 goto out;
2036         }
2037
2038         scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2039
2040 out:
2041         kmem_free(bp_toread, sizeof (blkptr_t));
2042 }
2043
2044 static void
2045 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2046     dmu_tx_t *tx)
2047 {
2048         zbookmark_phys_t zb;
2049         scan_prefetch_ctx_t *spc;
2050
2051         SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2052             ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2053
2054         if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2055                 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2056                     zb.zb_objset, 0, 0, 0);
2057         } else {
2058                 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2059         }
2060
2061         scn->scn_objsets_visited_this_txg++;
2062
2063         spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2064         dsl_scan_prefetch(spc, bp, &zb);
2065         scan_prefetch_ctx_rele(spc, FTAG);
2066
2067         dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2068
2069         dprintf_ds(ds, "finished scan%s", "");
2070 }
2071
2072 static void
2073 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2074 {
2075         if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2076                 if (ds->ds_is_snapshot) {
2077                         /*
2078                          * Note:
2079                          *  - scn_cur_{min,max}_txg stays the same.
2080                          *  - Setting the flag is not really necessary if
2081                          *    scn_cur_max_txg == scn_max_txg, because there
2082                          *    is nothing after this snapshot that we care
2083                          *    about.  However, we set it anyway and then
2084                          *    ignore it when we retraverse it in
2085                          *    dsl_scan_visitds().
2086                          */
2087                         scn_phys->scn_bookmark.zb_objset =
2088                             dsl_dataset_phys(ds)->ds_next_snap_obj;
2089                         zfs_dbgmsg("destroying ds %llu on %s; currently "
2090                             "traversing; reset zb_objset to %llu",
2091                             (u_longlong_t)ds->ds_object,
2092                             ds->ds_dir->dd_pool->dp_spa->spa_name,
2093                             (u_longlong_t)dsl_dataset_phys(ds)->
2094                             ds_next_snap_obj);
2095                         scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2096                 } else {
2097                         SET_BOOKMARK(&scn_phys->scn_bookmark,
2098                             ZB_DESTROYED_OBJSET, 0, 0, 0);
2099                         zfs_dbgmsg("destroying ds %llu on %s; currently "
2100                             "traversing; reset bookmark to -1,0,0,0",
2101                             (u_longlong_t)ds->ds_object,
2102                             ds->ds_dir->dd_pool->dp_spa->spa_name);
2103                 }
2104         }
2105 }
2106
2107 /*
2108  * Invoked when a dataset is destroyed. We need to make sure that:
2109  *
2110  * 1) If it is the dataset that was currently being scanned, we write
2111  *      a new dsl_scan_phys_t and marking the objset reference in it
2112  *      as destroyed.
2113  * 2) Remove it from the work queue, if it was present.
2114  *
2115  * If the dataset was actually a snapshot, instead of marking the dataset
2116  * as destroyed, we instead substitute the next snapshot in line.
2117  */
2118 void
2119 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2120 {
2121         dsl_pool_t *dp = ds->ds_dir->dd_pool;
2122         dsl_scan_t *scn = dp->dp_scan;
2123         uint64_t mintxg;
2124
2125         if (!dsl_scan_is_running(scn))
2126                 return;
2127
2128         ds_destroyed_scn_phys(ds, &scn->scn_phys);
2129         ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2130
2131         if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2132                 scan_ds_queue_remove(scn, ds->ds_object);
2133                 if (ds->ds_is_snapshot)
2134                         scan_ds_queue_insert(scn,
2135                             dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2136         }
2137
2138         if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2139             ds->ds_object, &mintxg) == 0) {
2140                 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2141                 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2142                     scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2143                 if (ds->ds_is_snapshot) {
2144                         /*
2145                          * We keep the same mintxg; it could be >
2146                          * ds_creation_txg if the previous snapshot was
2147                          * deleted too.
2148                          */
2149                         VERIFY(zap_add_int_key(dp->dp_meta_objset,
2150                             scn->scn_phys.scn_queue_obj,
2151                             dsl_dataset_phys(ds)->ds_next_snap_obj,
2152                             mintxg, tx) == 0);
2153                         zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2154                             "replacing with %llu",
2155                             (u_longlong_t)ds->ds_object,
2156                             dp->dp_spa->spa_name,
2157                             (u_longlong_t)dsl_dataset_phys(ds)->
2158                             ds_next_snap_obj);
2159                 } else {
2160                         zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2161                             "removing",
2162                             (u_longlong_t)ds->ds_object,
2163                             dp->dp_spa->spa_name);
2164                 }
2165         }
2166
2167         /*
2168          * dsl_scan_sync() should be called after this, and should sync
2169          * out our changed state, but just to be safe, do it here.
2170          */
2171         dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2172 }
2173
2174 static void
2175 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2176 {
2177         if (scn_bookmark->zb_objset == ds->ds_object) {
2178                 scn_bookmark->zb_objset =
2179                     dsl_dataset_phys(ds)->ds_prev_snap_obj;
2180                 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2181                     "reset zb_objset to %llu",
2182                     (u_longlong_t)ds->ds_object,
2183                     ds->ds_dir->dd_pool->dp_spa->spa_name,
2184                     (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2185         }
2186 }
2187
2188 /*
2189  * Called when a dataset is snapshotted. If we were currently traversing
2190  * this snapshot, we reset our bookmark to point at the newly created
2191  * snapshot. We also modify our work queue to remove the old snapshot and
2192  * replace with the new one.
2193  */
2194 void
2195 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2196 {
2197         dsl_pool_t *dp = ds->ds_dir->dd_pool;
2198         dsl_scan_t *scn = dp->dp_scan;
2199         uint64_t mintxg;
2200
2201         if (!dsl_scan_is_running(scn))
2202                 return;
2203
2204         ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2205
2206         ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2207         ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2208
2209         if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2210                 scan_ds_queue_remove(scn, ds->ds_object);
2211                 scan_ds_queue_insert(scn,
2212                     dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2213         }
2214
2215         if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2216             ds->ds_object, &mintxg) == 0) {
2217                 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2218                     scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2219                 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2220                     scn->scn_phys.scn_queue_obj,
2221                     dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2222                 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2223                     "replacing with %llu",
2224                     (u_longlong_t)ds->ds_object,
2225                     dp->dp_spa->spa_name,
2226                     (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2227         }
2228
2229         dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2230 }
2231
2232 static void
2233 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2234     zbookmark_phys_t *scn_bookmark)
2235 {
2236         if (scn_bookmark->zb_objset == ds1->ds_object) {
2237                 scn_bookmark->zb_objset = ds2->ds_object;
2238                 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2239                     "reset zb_objset to %llu",
2240                     (u_longlong_t)ds1->ds_object,
2241                     ds1->ds_dir->dd_pool->dp_spa->spa_name,
2242                     (u_longlong_t)ds2->ds_object);
2243         } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2244                 scn_bookmark->zb_objset = ds1->ds_object;
2245                 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2246                     "reset zb_objset to %llu",
2247                     (u_longlong_t)ds2->ds_object,
2248                     ds2->ds_dir->dd_pool->dp_spa->spa_name,
2249                     (u_longlong_t)ds1->ds_object);
2250         }
2251 }
2252
2253 /*
2254  * Called when an origin dataset and its clone are swapped.  If we were
2255  * currently traversing the dataset, we need to switch to traversing the
2256  * newly promoted clone.
2257  */
2258 void
2259 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2260 {
2261         dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2262         dsl_scan_t *scn = dp->dp_scan;
2263         uint64_t mintxg1, mintxg2;
2264         boolean_t ds1_queued, ds2_queued;
2265
2266         if (!dsl_scan_is_running(scn))
2267                 return;
2268
2269         ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2270         ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2271
2272         /*
2273          * Handle the in-memory scan queue.
2274          */
2275         ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2276         ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2277
2278         /* Sanity checking. */
2279         if (ds1_queued) {
2280                 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2281                 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2282         }
2283         if (ds2_queued) {
2284                 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2285                 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2286         }
2287
2288         if (ds1_queued && ds2_queued) {
2289                 /*
2290                  * If both are queued, we don't need to do anything.
2291                  * The swapping code below would not handle this case correctly,
2292                  * since we can't insert ds2 if it is already there. That's
2293                  * because scan_ds_queue_insert() prohibits a duplicate insert
2294                  * and panics.
2295                  */
2296         } else if (ds1_queued) {
2297                 scan_ds_queue_remove(scn, ds1->ds_object);
2298                 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2299         } else if (ds2_queued) {
2300                 scan_ds_queue_remove(scn, ds2->ds_object);
2301                 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2302         }
2303
2304         /*
2305          * Handle the on-disk scan queue.
2306          * The on-disk state is an out-of-date version of the in-memory state,
2307          * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2308          * be different. Therefore we need to apply the swap logic to the
2309          * on-disk state independently of the in-memory state.
2310          */
2311         ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2312             scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2313         ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2314             scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2315
2316         /* Sanity checking. */
2317         if (ds1_queued) {
2318                 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2319                 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2320         }
2321         if (ds2_queued) {
2322                 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2323                 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2324         }
2325
2326         if (ds1_queued && ds2_queued) {
2327                 /*
2328                  * If both are queued, we don't need to do anything.
2329                  * Alternatively, we could check for EEXIST from
2330                  * zap_add_int_key() and back out to the original state, but
2331                  * that would be more work than checking for this case upfront.
2332                  */
2333         } else if (ds1_queued) {
2334                 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2335                     scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2336                 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2337                     scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2338                 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2339                     "replacing with %llu",
2340                     (u_longlong_t)ds1->ds_object,
2341                     dp->dp_spa->spa_name,
2342                     (u_longlong_t)ds2->ds_object);
2343         } else if (ds2_queued) {
2344                 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2345                     scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2346                 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2347                     scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2348                 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2349                     "replacing with %llu",
2350                     (u_longlong_t)ds2->ds_object,
2351                     dp->dp_spa->spa_name,
2352                     (u_longlong_t)ds1->ds_object);
2353         }
2354
2355         dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2356 }
2357
2358 static int
2359 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2360 {
2361         uint64_t originobj = *(uint64_t *)arg;
2362         dsl_dataset_t *ds;
2363         int err;
2364         dsl_scan_t *scn = dp->dp_scan;
2365
2366         if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2367                 return (0);
2368
2369         err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2370         if (err)
2371                 return (err);
2372
2373         while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2374                 dsl_dataset_t *prev;
2375                 err = dsl_dataset_hold_obj(dp,
2376                     dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2377
2378                 dsl_dataset_rele(ds, FTAG);
2379                 if (err)
2380                         return (err);
2381                 ds = prev;
2382         }
2383         scan_ds_queue_insert(scn, ds->ds_object,
2384             dsl_dataset_phys(ds)->ds_prev_snap_txg);
2385         dsl_dataset_rele(ds, FTAG);
2386         return (0);
2387 }
2388
2389 static void
2390 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2391 {
2392         dsl_pool_t *dp = scn->scn_dp;
2393         dsl_dataset_t *ds;
2394
2395         VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2396
2397         if (scn->scn_phys.scn_cur_min_txg >=
2398             scn->scn_phys.scn_max_txg) {
2399                 /*
2400                  * This can happen if this snapshot was created after the
2401                  * scan started, and we already completed a previous snapshot
2402                  * that was created after the scan started.  This snapshot
2403                  * only references blocks with:
2404                  *
2405                  *      birth < our ds_creation_txg
2406                  *      cur_min_txg is no less than ds_creation_txg.
2407                  *      We have already visited these blocks.
2408                  * or
2409                  *      birth > scn_max_txg
2410                  *      The scan requested not to visit these blocks.
2411                  *
2412                  * Subsequent snapshots (and clones) can reference our
2413                  * blocks, or blocks with even higher birth times.
2414                  * Therefore we do not need to visit them either,
2415                  * so we do not add them to the work queue.
2416                  *
2417                  * Note that checking for cur_min_txg >= cur_max_txg
2418                  * is not sufficient, because in that case we may need to
2419                  * visit subsequent snapshots.  This happens when min_txg > 0,
2420                  * which raises cur_min_txg.  In this case we will visit
2421                  * this dataset but skip all of its blocks, because the
2422                  * rootbp's birth time is < cur_min_txg.  Then we will
2423                  * add the next snapshots/clones to the work queue.
2424                  */
2425                 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2426                 dsl_dataset_name(ds, dsname);
2427                 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2428                     "cur_min_txg (%llu) >= max_txg (%llu)",
2429                     (longlong_t)dsobj, dsname,
2430                     (longlong_t)scn->scn_phys.scn_cur_min_txg,
2431                     (longlong_t)scn->scn_phys.scn_max_txg);
2432                 kmem_free(dsname, MAXNAMELEN);
2433
2434                 goto out;
2435         }
2436
2437         /*
2438          * Only the ZIL in the head (non-snapshot) is valid. Even though
2439          * snapshots can have ZIL block pointers (which may be the same
2440          * BP as in the head), they must be ignored. In addition, $ORIGIN
2441          * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2442          * need to look for a ZIL in it either. So we traverse the ZIL here,
2443          * rather than in scan_recurse(), because the regular snapshot
2444          * block-sharing rules don't apply to it.
2445          */
2446         if (!dsl_dataset_is_snapshot(ds) &&
2447             (dp->dp_origin_snap == NULL ||
2448             ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2449                 objset_t *os;
2450                 if (dmu_objset_from_ds(ds, &os) != 0) {
2451                         goto out;
2452                 }
2453                 dsl_scan_zil(dp, &os->os_zil_header);
2454         }
2455
2456         /*
2457          * Iterate over the bps in this ds.
2458          */
2459         dmu_buf_will_dirty(ds->ds_dbuf, tx);
2460         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2461         dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2462         rrw_exit(&ds->ds_bp_rwlock, FTAG);
2463
2464         char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2465         dsl_dataset_name(ds, dsname);
2466         zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2467             "suspending=%u",
2468             (longlong_t)dsobj, dsname,
2469             (longlong_t)scn->scn_phys.scn_cur_min_txg,
2470             (longlong_t)scn->scn_phys.scn_cur_max_txg,
2471             (int)scn->scn_suspending);
2472         kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2473
2474         if (scn->scn_suspending)
2475                 goto out;
2476
2477         /*
2478          * We've finished this pass over this dataset.
2479          */
2480
2481         /*
2482          * If we did not completely visit this dataset, do another pass.
2483          */
2484         if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2485                 zfs_dbgmsg("incomplete pass on %s; visiting again",
2486                     dp->dp_spa->spa_name);
2487                 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2488                 scan_ds_queue_insert(scn, ds->ds_object,
2489                     scn->scn_phys.scn_cur_max_txg);
2490                 goto out;
2491         }
2492
2493         /*
2494          * Add descendant datasets to work queue.
2495          */
2496         if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2497                 scan_ds_queue_insert(scn,
2498                     dsl_dataset_phys(ds)->ds_next_snap_obj,
2499                     dsl_dataset_phys(ds)->ds_creation_txg);
2500         }
2501         if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2502                 boolean_t usenext = B_FALSE;
2503                 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2504                         uint64_t count;
2505                         /*
2506                          * A bug in a previous version of the code could
2507                          * cause upgrade_clones_cb() to not set
2508                          * ds_next_snap_obj when it should, leading to a
2509                          * missing entry.  Therefore we can only use the
2510                          * next_clones_obj when its count is correct.
2511                          */
2512                         int err = zap_count(dp->dp_meta_objset,
2513                             dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2514                         if (err == 0 &&
2515                             count == dsl_dataset_phys(ds)->ds_num_children - 1)
2516                                 usenext = B_TRUE;
2517                 }
2518
2519                 if (usenext) {
2520                         zap_cursor_t zc;
2521                         zap_attribute_t za;
2522                         for (zap_cursor_init(&zc, dp->dp_meta_objset,
2523                             dsl_dataset_phys(ds)->ds_next_clones_obj);
2524                             zap_cursor_retrieve(&zc, &za) == 0;
2525                             (void) zap_cursor_advance(&zc)) {
2526                                 scan_ds_queue_insert(scn,
2527                                     zfs_strtonum(za.za_name, NULL),
2528                                     dsl_dataset_phys(ds)->ds_creation_txg);
2529                         }
2530                         zap_cursor_fini(&zc);
2531                 } else {
2532                         VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2533                             enqueue_clones_cb, &ds->ds_object,
2534                             DS_FIND_CHILDREN));
2535                 }
2536         }
2537
2538 out:
2539         dsl_dataset_rele(ds, FTAG);
2540 }
2541
2542 static int
2543 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2544 {
2545         (void) arg;
2546         dsl_dataset_t *ds;
2547         int err;
2548         dsl_scan_t *scn = dp->dp_scan;
2549
2550         err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2551         if (err)
2552                 return (err);
2553
2554         while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2555                 dsl_dataset_t *prev;
2556                 err = dsl_dataset_hold_obj(dp,
2557                     dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2558                 if (err) {
2559                         dsl_dataset_rele(ds, FTAG);
2560                         return (err);
2561                 }
2562
2563                 /*
2564                  * If this is a clone, we don't need to worry about it for now.
2565                  */
2566                 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2567                         dsl_dataset_rele(ds, FTAG);
2568                         dsl_dataset_rele(prev, FTAG);
2569                         return (0);
2570                 }
2571                 dsl_dataset_rele(ds, FTAG);
2572                 ds = prev;
2573         }
2574
2575         scan_ds_queue_insert(scn, ds->ds_object,
2576             dsl_dataset_phys(ds)->ds_prev_snap_txg);
2577         dsl_dataset_rele(ds, FTAG);
2578         return (0);
2579 }
2580
2581 void
2582 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2583     ddt_entry_t *dde, dmu_tx_t *tx)
2584 {
2585         (void) tx;
2586         const ddt_key_t *ddk = &dde->dde_key;
2587         ddt_phys_t *ddp = dde->dde_phys;
2588         blkptr_t bp;
2589         zbookmark_phys_t zb = { 0 };
2590
2591         if (!dsl_scan_is_running(scn))
2592                 return;
2593
2594         /*
2595          * This function is special because it is the only thing
2596          * that can add scan_io_t's to the vdev scan queues from
2597          * outside dsl_scan_sync(). For the most part this is ok
2598          * as long as it is called from within syncing context.
2599          * However, dsl_scan_sync() expects that no new sio's will
2600          * be added between when all the work for a scan is done
2601          * and the next txg when the scan is actually marked as
2602          * completed. This check ensures we do not issue new sio's
2603          * during this period.
2604          */
2605         if (scn->scn_done_txg != 0)
2606                 return;
2607
2608         for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2609                 if (ddp->ddp_phys_birth == 0 ||
2610                     ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2611                         continue;
2612                 ddt_bp_create(checksum, ddk, ddp, &bp);
2613
2614                 scn->scn_visited_this_txg++;
2615                 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2616         }
2617 }
2618
2619 /*
2620  * Scrub/dedup interaction.
2621  *
2622  * If there are N references to a deduped block, we don't want to scrub it
2623  * N times -- ideally, we should scrub it exactly once.
2624  *
2625  * We leverage the fact that the dde's replication class (enum ddt_class)
2626  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2627  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2628  *
2629  * To prevent excess scrubbing, the scrub begins by walking the DDT
2630  * to find all blocks with refcnt > 1, and scrubs each of these once.
2631  * Since there are two replication classes which contain blocks with
2632  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2633  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2634  *
2635  * There would be nothing more to say if a block's refcnt couldn't change
2636  * during a scrub, but of course it can so we must account for changes
2637  * in a block's replication class.
2638  *
2639  * Here's an example of what can occur:
2640  *
2641  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2642  * when visited during the top-down scrub phase, it will be scrubbed twice.
2643  * This negates our scrub optimization, but is otherwise harmless.
2644  *
2645  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2646  * on each visit during the top-down scrub phase, it will never be scrubbed.
2647  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2648  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2649  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2650  * while a scrub is in progress, it scrubs the block right then.
2651  */
2652 static void
2653 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2654 {
2655         ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2656         ddt_entry_t dde = {{{{0}}}};
2657         int error;
2658         uint64_t n = 0;
2659
2660         while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2661                 ddt_t *ddt;
2662
2663                 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2664                         break;
2665                 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2666                     (longlong_t)ddb->ddb_class,
2667                     (longlong_t)ddb->ddb_type,
2668                     (longlong_t)ddb->ddb_checksum,
2669                     (longlong_t)ddb->ddb_cursor);
2670
2671                 /* There should be no pending changes to the dedup table */
2672                 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2673                 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2674
2675                 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2676                 n++;
2677
2678                 if (dsl_scan_check_suspend(scn, NULL))
2679                         break;
2680         }
2681
2682         zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
2683             "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
2684             (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2685
2686         ASSERT(error == 0 || error == ENOENT);
2687         ASSERT(error != ENOENT ||
2688             ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2689 }
2690
2691 static uint64_t
2692 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2693 {
2694         uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2695         if (ds->ds_is_snapshot)
2696                 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2697         return (smt);
2698 }
2699
2700 static void
2701 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2702 {
2703         scan_ds_t *sds;
2704         dsl_pool_t *dp = scn->scn_dp;
2705
2706         if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2707             scn->scn_phys.scn_ddt_class_max) {
2708                 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2709                 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2710                 dsl_scan_ddt(scn, tx);
2711                 if (scn->scn_suspending)
2712                         return;
2713         }
2714
2715         if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2716                 /* First do the MOS & ORIGIN */
2717
2718                 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2719                 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2720                 dsl_scan_visit_rootbp(scn, NULL,
2721                     &dp->dp_meta_rootbp, tx);
2722                 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2723                 if (scn->scn_suspending)
2724                         return;
2725
2726                 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2727                         VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2728                             enqueue_cb, NULL, DS_FIND_CHILDREN));
2729                 } else {
2730                         dsl_scan_visitds(scn,
2731                             dp->dp_origin_snap->ds_object, tx);
2732                 }
2733                 ASSERT(!scn->scn_suspending);
2734         } else if (scn->scn_phys.scn_bookmark.zb_objset !=
2735             ZB_DESTROYED_OBJSET) {
2736                 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2737                 /*
2738                  * If we were suspended, continue from here. Note if the
2739                  * ds we were suspended on was deleted, the zb_objset may
2740                  * be -1, so we will skip this and find a new objset
2741                  * below.
2742                  */
2743                 dsl_scan_visitds(scn, dsobj, tx);
2744                 if (scn->scn_suspending)
2745                         return;
2746         }
2747
2748         /*
2749          * In case we suspended right at the end of the ds, zero the
2750          * bookmark so we don't think that we're still trying to resume.
2751          */
2752         memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
2753
2754         /*
2755          * Keep pulling things out of the dataset avl queue. Updates to the
2756          * persistent zap-object-as-queue happen only at checkpoints.
2757          */
2758         while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2759                 dsl_dataset_t *ds;
2760                 uint64_t dsobj = sds->sds_dsobj;
2761                 uint64_t txg = sds->sds_txg;
2762
2763                 /* dequeue and free the ds from the queue */
2764                 scan_ds_queue_remove(scn, dsobj);
2765                 sds = NULL;
2766
2767                 /* set up min / max txg */
2768                 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2769                 if (txg != 0) {
2770                         scn->scn_phys.scn_cur_min_txg =
2771                             MAX(scn->scn_phys.scn_min_txg, txg);
2772                 } else {
2773                         scn->scn_phys.scn_cur_min_txg =
2774                             MAX(scn->scn_phys.scn_min_txg,
2775                             dsl_dataset_phys(ds)->ds_prev_snap_txg);
2776                 }
2777                 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2778                 dsl_dataset_rele(ds, FTAG);
2779
2780                 dsl_scan_visitds(scn, dsobj, tx);
2781                 if (scn->scn_suspending)
2782                         return;
2783         }
2784
2785         /* No more objsets to fetch, we're done */
2786         scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2787         ASSERT0(scn->scn_suspending);
2788 }
2789
2790 static uint64_t
2791 dsl_scan_count_data_disks(vdev_t *rvd)
2792 {
2793         uint64_t i, leaves = 0;
2794
2795         for (i = 0; i < rvd->vdev_children; i++) {
2796                 vdev_t *vd = rvd->vdev_child[i];
2797                 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
2798                         continue;
2799                 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
2800         }
2801         return (leaves);
2802 }
2803
2804 static void
2805 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2806 {
2807         int i;
2808         uint64_t cur_size = 0;
2809
2810         for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2811                 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2812         }
2813
2814         q->q_total_zio_size_this_txg += cur_size;
2815         q->q_zios_this_txg++;
2816 }
2817
2818 static void
2819 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2820     uint64_t end)
2821 {
2822         q->q_total_seg_size_this_txg += end - start;
2823         q->q_segs_this_txg++;
2824 }
2825
2826 static boolean_t
2827 scan_io_queue_check_suspend(dsl_scan_t *scn)
2828 {
2829         /* See comment in dsl_scan_check_suspend() */
2830         uint64_t curr_time_ns = gethrtime();
2831         uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2832         uint64_t sync_time_ns = curr_time_ns -
2833             scn->scn_dp->dp_spa->spa_sync_starttime;
2834         int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2835         int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2836             zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2837
2838         return ((NSEC2MSEC(scan_time_ns) > mintime &&
2839             (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2840             txg_sync_waiting(scn->scn_dp) ||
2841             NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2842             spa_shutting_down(scn->scn_dp->dp_spa));
2843 }
2844
2845 /*
2846  * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2847  * disk. This consumes the io_list and frees the scan_io_t's. This is
2848  * called when emptying queues, either when we're up against the memory
2849  * limit or when we have finished scanning. Returns B_TRUE if we stopped
2850  * processing the list before we finished. Any sios that were not issued
2851  * will remain in the io_list.
2852  */
2853 static boolean_t
2854 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2855 {
2856         dsl_scan_t *scn = queue->q_scn;
2857         scan_io_t *sio;
2858         int64_t bytes_issued = 0;
2859         boolean_t suspended = B_FALSE;
2860
2861         while ((sio = list_head(io_list)) != NULL) {
2862                 blkptr_t bp;
2863
2864                 if (scan_io_queue_check_suspend(scn)) {
2865                         suspended = B_TRUE;
2866                         break;
2867                 }
2868
2869                 sio2bp(sio, &bp);
2870                 bytes_issued += SIO_GET_ASIZE(sio);
2871                 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2872                     &sio->sio_zb, queue);
2873                 (void) list_remove_head(io_list);
2874                 scan_io_queues_update_zio_stats(queue, &bp);
2875                 sio_free(sio);
2876         }
2877
2878         atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2879
2880         return (suspended);
2881 }
2882
2883 /*
2884  * This function removes sios from an IO queue which reside within a given
2885  * range_seg_t and inserts them (in offset order) into a list. Note that
2886  * we only ever return a maximum of 32 sios at once. If there are more sios
2887  * to process within this segment that did not make it onto the list we
2888  * return B_TRUE and otherwise B_FALSE.
2889  */
2890 static boolean_t
2891 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2892 {
2893         scan_io_t *srch_sio, *sio, *next_sio;
2894         avl_index_t idx;
2895         uint_t num_sios = 0;
2896         int64_t bytes_issued = 0;
2897
2898         ASSERT(rs != NULL);
2899         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2900
2901         srch_sio = sio_alloc(1);
2902         srch_sio->sio_nr_dvas = 1;
2903         SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
2904
2905         /*
2906          * The exact start of the extent might not contain any matching zios,
2907          * so if that's the case, examine the next one in the tree.
2908          */
2909         sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2910         sio_free(srch_sio);
2911
2912         if (sio == NULL)
2913                 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2914
2915         while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2916             queue->q_exts_by_addr) && num_sios <= 32) {
2917                 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
2918                     queue->q_exts_by_addr));
2919                 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
2920                     queue->q_exts_by_addr));
2921
2922                 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2923                 avl_remove(&queue->q_sios_by_addr, sio);
2924                 queue->q_sio_memused -= SIO_GET_MUSED(sio);
2925
2926                 bytes_issued += SIO_GET_ASIZE(sio);
2927                 num_sios++;
2928                 list_insert_tail(list, sio);
2929                 sio = next_sio;
2930         }
2931
2932         /*
2933          * We limit the number of sios we process at once to 32 to avoid
2934          * biting off more than we can chew. If we didn't take everything
2935          * in the segment we update it to reflect the work we were able to
2936          * complete. Otherwise, we remove it from the range tree entirely.
2937          */
2938         if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2939             queue->q_exts_by_addr)) {
2940                 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2941                     -bytes_issued);
2942                 range_tree_resize_segment(queue->q_exts_by_addr, rs,
2943                     SIO_GET_OFFSET(sio), rs_get_end(rs,
2944                     queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
2945
2946                 return (B_TRUE);
2947         } else {
2948                 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
2949                 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
2950                 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
2951                 return (B_FALSE);
2952         }
2953 }
2954
2955 /*
2956  * This is called from the queue emptying thread and selects the next
2957  * extent from which we are to issue I/Os. The behavior of this function
2958  * depends on the state of the scan, the current memory consumption and
2959  * whether or not we are performing a scan shutdown.
2960  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2961  *      needs to perform a checkpoint
2962  * 2) We select the largest available extent if we are up against the
2963  *      memory limit.
2964  * 3) Otherwise we don't select any extents.
2965  */
2966 static range_seg_t *
2967 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2968 {
2969         dsl_scan_t *scn = queue->q_scn;
2970         range_tree_t *rt = queue->q_exts_by_addr;
2971
2972         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2973         ASSERT(scn->scn_is_sorted);
2974
2975         /* handle tunable overrides */
2976         if (scn->scn_checkpointing || scn->scn_clearing) {
2977                 if (zfs_scan_issue_strategy == 1) {
2978                         return (range_tree_first(rt));
2979                 } else if (zfs_scan_issue_strategy == 2) {
2980                         /*
2981                          * We need to get the original entry in the by_addr
2982                          * tree so we can modify it.
2983                          */
2984                         range_seg_t *size_rs =
2985                             zfs_btree_first(&queue->q_exts_by_size, NULL);
2986                         if (size_rs == NULL)
2987                                 return (NULL);
2988                         uint64_t start = rs_get_start(size_rs, rt);
2989                         uint64_t size = rs_get_end(size_rs, rt) - start;
2990                         range_seg_t *addr_rs = range_tree_find(rt, start,
2991                             size);
2992                         ASSERT3P(addr_rs, !=, NULL);
2993                         ASSERT3U(rs_get_start(size_rs, rt), ==,
2994                             rs_get_start(addr_rs, rt));
2995                         ASSERT3U(rs_get_end(size_rs, rt), ==,
2996                             rs_get_end(addr_rs, rt));
2997                         return (addr_rs);
2998                 }
2999         }
3000
3001         /*
3002          * During normal clearing, we want to issue our largest segments
3003          * first, keeping IO as sequential as possible, and leaving the
3004          * smaller extents for later with the hope that they might eventually
3005          * grow to larger sequential segments. However, when the scan is
3006          * checkpointing, no new extents will be added to the sorting queue,
3007          * so the way we are sorted now is as good as it will ever get.
3008          * In this case, we instead switch to issuing extents in LBA order.
3009          */
3010         if (scn->scn_checkpointing) {
3011                 return (range_tree_first(rt));
3012         } else if (scn->scn_clearing) {
3013                 /*
3014                  * We need to get the original entry in the by_addr
3015                  * tree so we can modify it.
3016                  */
3017                 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
3018                     NULL);
3019                 if (size_rs == NULL)
3020                         return (NULL);
3021                 uint64_t start = rs_get_start(size_rs, rt);
3022                 uint64_t size = rs_get_end(size_rs, rt) - start;
3023                 range_seg_t *addr_rs = range_tree_find(rt, start, size);
3024                 ASSERT3P(addr_rs, !=, NULL);
3025                 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
3026                     rt));
3027                 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
3028                 return (addr_rs);
3029         } else {
3030                 return (NULL);
3031         }
3032 }
3033
3034 static void
3035 scan_io_queues_run_one(void *arg)
3036 {
3037         dsl_scan_io_queue_t *queue = arg;
3038         kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3039         boolean_t suspended = B_FALSE;
3040         range_seg_t *rs = NULL;
3041         scan_io_t *sio = NULL;
3042         list_t sio_list;
3043
3044         ASSERT(queue->q_scn->scn_is_sorted);
3045
3046         list_create(&sio_list, sizeof (scan_io_t),
3047             offsetof(scan_io_t, sio_nodes.sio_list_node));
3048         mutex_enter(q_lock);
3049
3050         /* Calculate maximum in-flight bytes for this vdev. */
3051         queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3052             (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3053
3054         /* reset per-queue scan statistics for this txg */
3055         queue->q_total_seg_size_this_txg = 0;
3056         queue->q_segs_this_txg = 0;
3057         queue->q_total_zio_size_this_txg = 0;
3058         queue->q_zios_this_txg = 0;
3059
3060         /* loop until we run out of time or sios */
3061         while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3062                 uint64_t seg_start = 0, seg_end = 0;
3063                 boolean_t more_left = B_TRUE;
3064
3065                 ASSERT(list_is_empty(&sio_list));
3066
3067                 /* loop while we still have sios left to process in this rs */
3068                 while (more_left) {
3069                         scan_io_t *first_sio, *last_sio;
3070
3071                         /*
3072                          * We have selected which extent needs to be
3073                          * processed next. Gather up the corresponding sios.
3074                          */
3075                         more_left = scan_io_queue_gather(queue, rs, &sio_list);
3076                         ASSERT(!list_is_empty(&sio_list));
3077                         first_sio = list_head(&sio_list);
3078                         last_sio = list_tail(&sio_list);
3079
3080                         seg_end = SIO_GET_END_OFFSET(last_sio);
3081                         if (seg_start == 0)
3082                                 seg_start = SIO_GET_OFFSET(first_sio);
3083
3084                         /*
3085                          * Issuing sios can take a long time so drop the
3086                          * queue lock. The sio queue won't be updated by
3087                          * other threads since we're in syncing context so
3088                          * we can be sure that our trees will remain exactly
3089                          * as we left them.
3090                          */
3091                         mutex_exit(q_lock);
3092                         suspended = scan_io_queue_issue(queue, &sio_list);
3093                         mutex_enter(q_lock);
3094
3095                         if (suspended)
3096                                 break;
3097                 }
3098
3099                 /* update statistics for debugging purposes */
3100                 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3101
3102                 if (suspended)
3103                         break;
3104         }
3105
3106         /*
3107          * If we were suspended in the middle of processing,
3108          * requeue any unfinished sios and exit.
3109          */
3110         while ((sio = list_head(&sio_list)) != NULL) {
3111                 list_remove(&sio_list, sio);
3112                 scan_io_queue_insert_impl(queue, sio);
3113         }
3114
3115         mutex_exit(q_lock);
3116         list_destroy(&sio_list);
3117 }
3118
3119 /*
3120  * Performs an emptying run on all scan queues in the pool. This just
3121  * punches out one thread per top-level vdev, each of which processes
3122  * only that vdev's scan queue. We can parallelize the I/O here because
3123  * we know that each queue's I/Os only affect its own top-level vdev.
3124  *
3125  * This function waits for the queue runs to complete, and must be
3126  * called from dsl_scan_sync (or in general, syncing context).
3127  */
3128 static void
3129 scan_io_queues_run(dsl_scan_t *scn)
3130 {
3131         spa_t *spa = scn->scn_dp->dp_spa;
3132
3133         ASSERT(scn->scn_is_sorted);
3134         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3135
3136         if (scn->scn_bytes_pending == 0)
3137                 return;
3138
3139         if (scn->scn_taskq == NULL) {
3140                 int nthreads = spa->spa_root_vdev->vdev_children;
3141
3142                 /*
3143                  * We need to make this taskq *always* execute as many
3144                  * threads in parallel as we have top-level vdevs and no
3145                  * less, otherwise strange serialization of the calls to
3146                  * scan_io_queues_run_one can occur during spa_sync runs
3147                  * and that significantly impacts performance.
3148                  */
3149                 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3150                     minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3151         }
3152
3153         for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3154                 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3155
3156                 mutex_enter(&vd->vdev_scan_io_queue_lock);
3157                 if (vd->vdev_scan_io_queue != NULL) {
3158                         VERIFY(taskq_dispatch(scn->scn_taskq,
3159                             scan_io_queues_run_one, vd->vdev_scan_io_queue,
3160                             TQ_SLEEP) != TASKQID_INVALID);
3161                 }
3162                 mutex_exit(&vd->vdev_scan_io_queue_lock);
3163         }
3164
3165         /*
3166          * Wait for the queues to finish issuing their IOs for this run
3167          * before we return. There may still be IOs in flight at this
3168          * point.
3169          */
3170         taskq_wait(scn->scn_taskq);
3171 }
3172
3173 static boolean_t
3174 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3175 {
3176         uint64_t elapsed_nanosecs;
3177
3178         if (zfs_recover)
3179                 return (B_FALSE);
3180
3181         if (zfs_async_block_max_blocks != 0 &&
3182             scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3183                 return (B_TRUE);
3184         }
3185
3186         if (zfs_max_async_dedup_frees != 0 &&
3187             scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3188                 return (B_TRUE);
3189         }
3190
3191         elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3192         return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3193             (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3194             txg_sync_waiting(scn->scn_dp)) ||
3195             spa_shutting_down(scn->scn_dp->dp_spa));
3196 }
3197
3198 static int
3199 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3200 {
3201         dsl_scan_t *scn = arg;
3202
3203         if (!scn->scn_is_bptree ||
3204             (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3205                 if (dsl_scan_async_block_should_pause(scn))
3206                         return (SET_ERROR(ERESTART));
3207         }
3208
3209         zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3210             dmu_tx_get_txg(tx), bp, 0));
3211         dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3212             -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3213             -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3214         scn->scn_visited_this_txg++;
3215         if (BP_GET_DEDUP(bp))
3216                 scn->scn_dedup_frees_this_txg++;
3217         return (0);
3218 }
3219
3220 static void
3221 dsl_scan_update_stats(dsl_scan_t *scn)
3222 {
3223         spa_t *spa = scn->scn_dp->dp_spa;
3224         uint64_t i;
3225         uint64_t seg_size_total = 0, zio_size_total = 0;
3226         uint64_t seg_count_total = 0, zio_count_total = 0;
3227
3228         for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3229                 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3230                 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3231
3232                 if (queue == NULL)
3233                         continue;
3234
3235                 seg_size_total += queue->q_total_seg_size_this_txg;
3236                 zio_size_total += queue->q_total_zio_size_this_txg;
3237                 seg_count_total += queue->q_segs_this_txg;
3238                 zio_count_total += queue->q_zios_this_txg;
3239         }
3240
3241         if (seg_count_total == 0 || zio_count_total == 0) {
3242                 scn->scn_avg_seg_size_this_txg = 0;
3243                 scn->scn_avg_zio_size_this_txg = 0;
3244                 scn->scn_segs_this_txg = 0;
3245                 scn->scn_zios_this_txg = 0;
3246                 return;
3247         }
3248
3249         scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3250         scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3251         scn->scn_segs_this_txg = seg_count_total;
3252         scn->scn_zios_this_txg = zio_count_total;
3253 }
3254
3255 static int
3256 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3257     dmu_tx_t *tx)
3258 {
3259         ASSERT(!bp_freed);
3260         return (dsl_scan_free_block_cb(arg, bp, tx));
3261 }
3262
3263 static int
3264 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3265     dmu_tx_t *tx)
3266 {
3267         ASSERT(!bp_freed);
3268         dsl_scan_t *scn = arg;
3269         const dva_t *dva = &bp->blk_dva[0];
3270
3271         if (dsl_scan_async_block_should_pause(scn))
3272                 return (SET_ERROR(ERESTART));
3273
3274         spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3275             DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3276             DVA_GET_ASIZE(dva), tx);
3277         scn->scn_visited_this_txg++;
3278         return (0);
3279 }
3280
3281 boolean_t
3282 dsl_scan_active(dsl_scan_t *scn)
3283 {
3284         spa_t *spa = scn->scn_dp->dp_spa;
3285         uint64_t used = 0, comp, uncomp;
3286         boolean_t clones_left;
3287
3288         if (spa->spa_load_state != SPA_LOAD_NONE)
3289                 return (B_FALSE);
3290         if (spa_shutting_down(spa))
3291                 return (B_FALSE);
3292         if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3293             (scn->scn_async_destroying && !scn->scn_async_stalled))
3294                 return (B_TRUE);
3295
3296         if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3297                 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3298                     &used, &comp, &uncomp);
3299         }
3300         clones_left = spa_livelist_delete_check(spa);
3301         return ((used != 0) || (clones_left));
3302 }
3303
3304 static boolean_t
3305 dsl_scan_check_deferred(vdev_t *vd)
3306 {
3307         boolean_t need_resilver = B_FALSE;
3308
3309         for (int c = 0; c < vd->vdev_children; c++) {
3310                 need_resilver |=
3311                     dsl_scan_check_deferred(vd->vdev_child[c]);
3312         }
3313
3314         if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3315             !vd->vdev_ops->vdev_op_leaf)
3316                 return (need_resilver);
3317
3318         if (!vd->vdev_resilver_deferred)
3319                 need_resilver = B_TRUE;
3320
3321         return (need_resilver);
3322 }
3323
3324 static boolean_t
3325 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3326     uint64_t phys_birth)
3327 {
3328         vdev_t *vd;
3329
3330         vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3331
3332         if (vd->vdev_ops == &vdev_indirect_ops) {
3333                 /*
3334                  * The indirect vdev can point to multiple
3335                  * vdevs.  For simplicity, always create
3336                  * the resilver zio_t. zio_vdev_io_start()
3337                  * will bypass the child resilver i/o's if
3338                  * they are on vdevs that don't have DTL's.
3339                  */
3340                 return (B_TRUE);
3341         }
3342
3343         if (DVA_GET_GANG(dva)) {
3344                 /*
3345                  * Gang members may be spread across multiple
3346                  * vdevs, so the best estimate we have is the
3347                  * scrub range, which has already been checked.
3348                  * XXX -- it would be better to change our
3349                  * allocation policy to ensure that all
3350                  * gang members reside on the same vdev.
3351                  */
3352                 return (B_TRUE);
3353         }
3354
3355         /*
3356          * Check if the top-level vdev must resilver this offset.
3357          * When the offset does not intersect with a dirty leaf DTL
3358          * then it may be possible to skip the resilver IO.  The psize
3359          * is provided instead of asize to simplify the check for RAIDZ.
3360          */
3361         if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3362                 return (B_FALSE);
3363
3364         /*
3365          * Check that this top-level vdev has a device under it which
3366          * is resilvering and is not deferred.
3367          */
3368         if (!dsl_scan_check_deferred(vd))
3369                 return (B_FALSE);
3370
3371         return (B_TRUE);
3372 }
3373
3374 static int
3375 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3376 {
3377         dsl_scan_t *scn = dp->dp_scan;
3378         spa_t *spa = dp->dp_spa;
3379         int err = 0;
3380
3381         if (spa_suspend_async_destroy(spa))
3382                 return (0);
3383
3384         if (zfs_free_bpobj_enabled &&
3385             spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3386                 scn->scn_is_bptree = B_FALSE;
3387                 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3388                 scn->scn_zio_root = zio_root(spa, NULL,
3389                     NULL, ZIO_FLAG_MUSTSUCCEED);
3390                 err = bpobj_iterate(&dp->dp_free_bpobj,
3391                     bpobj_dsl_scan_free_block_cb, scn, tx);
3392                 VERIFY0(zio_wait(scn->scn_zio_root));
3393                 scn->scn_zio_root = NULL;
3394
3395                 if (err != 0 && err != ERESTART)
3396                         zfs_panic_recover("error %u from bpobj_iterate()", err);
3397         }
3398
3399         if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3400                 ASSERT(scn->scn_async_destroying);
3401                 scn->scn_is_bptree = B_TRUE;
3402                 scn->scn_zio_root = zio_root(spa, NULL,
3403                     NULL, ZIO_FLAG_MUSTSUCCEED);
3404                 err = bptree_iterate(dp->dp_meta_objset,
3405                     dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3406                 VERIFY0(zio_wait(scn->scn_zio_root));
3407                 scn->scn_zio_root = NULL;
3408
3409                 if (err == EIO || err == ECKSUM) {
3410                         err = 0;
3411                 } else if (err != 0 && err != ERESTART) {
3412                         zfs_panic_recover("error %u from "
3413                             "traverse_dataset_destroyed()", err);
3414                 }
3415
3416                 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3417                         /* finished; deactivate async destroy feature */
3418                         spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3419                         ASSERT(!spa_feature_is_active(spa,
3420                             SPA_FEATURE_ASYNC_DESTROY));
3421                         VERIFY0(zap_remove(dp->dp_meta_objset,
3422                             DMU_POOL_DIRECTORY_OBJECT,
3423                             DMU_POOL_BPTREE_OBJ, tx));
3424                         VERIFY0(bptree_free(dp->dp_meta_objset,
3425                             dp->dp_bptree_obj, tx));
3426                         dp->dp_bptree_obj = 0;
3427                         scn->scn_async_destroying = B_FALSE;
3428                         scn->scn_async_stalled = B_FALSE;
3429                 } else {
3430                         /*
3431                          * If we didn't make progress, mark the async
3432                          * destroy as stalled, so that we will not initiate
3433                          * a spa_sync() on its behalf.  Note that we only
3434                          * check this if we are not finished, because if the
3435                          * bptree had no blocks for us to visit, we can
3436                          * finish without "making progress".
3437                          */
3438                         scn->scn_async_stalled =
3439                             (scn->scn_visited_this_txg == 0);
3440                 }
3441         }
3442         if (scn->scn_visited_this_txg) {
3443                 zfs_dbgmsg("freed %llu blocks in %llums from "
3444                     "free_bpobj/bptree on %s in txg %llu; err=%u",
3445                     (longlong_t)scn->scn_visited_this_txg,
3446                     (longlong_t)
3447                     NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3448                     spa->spa_name, (longlong_t)tx->tx_txg, err);
3449                 scn->scn_visited_this_txg = 0;
3450                 scn->scn_dedup_frees_this_txg = 0;
3451
3452                 /*
3453                  * Write out changes to the DDT that may be required as a
3454                  * result of the blocks freed.  This ensures that the DDT
3455                  * is clean when a scrub/resilver runs.
3456                  */
3457                 ddt_sync(spa, tx->tx_txg);
3458         }
3459         if (err != 0)
3460                 return (err);
3461         if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3462             zfs_free_leak_on_eio &&
3463             (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3464             dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3465             dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3466                 /*
3467                  * We have finished background destroying, but there is still
3468                  * some space left in the dp_free_dir. Transfer this leaked
3469                  * space to the dp_leak_dir.
3470                  */
3471                 if (dp->dp_leak_dir == NULL) {
3472                         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3473                         (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3474                             LEAK_DIR_NAME, tx);
3475                         VERIFY0(dsl_pool_open_special_dir(dp,
3476                             LEAK_DIR_NAME, &dp->dp_leak_dir));
3477                         rrw_exit(&dp->dp_config_rwlock, FTAG);
3478                 }
3479                 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3480                     dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3481                     dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3482                     dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3483                 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3484                     -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3485                     -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3486                     -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3487         }
3488
3489         if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3490             !spa_livelist_delete_check(spa)) {
3491                 /* finished; verify that space accounting went to zero */
3492                 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3493                 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3494                 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3495         }
3496
3497         spa_notify_waiters(spa);
3498
3499         EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3500             0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3501             DMU_POOL_OBSOLETE_BPOBJ));
3502         if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3503                 ASSERT(spa_feature_is_active(dp->dp_spa,
3504                     SPA_FEATURE_OBSOLETE_COUNTS));
3505
3506                 scn->scn_is_bptree = B_FALSE;
3507                 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3508                 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3509                     dsl_scan_obsolete_block_cb, scn, tx);
3510                 if (err != 0 && err != ERESTART)
3511                         zfs_panic_recover("error %u from bpobj_iterate()", err);
3512
3513                 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3514                         dsl_pool_destroy_obsolete_bpobj(dp, tx);
3515         }
3516         return (0);
3517 }
3518
3519 /*
3520  * This is the primary entry point for scans that is called from syncing
3521  * context. Scans must happen entirely during syncing context so that we
3522  * can guarantee that blocks we are currently scanning will not change out
3523  * from under us. While a scan is active, this function controls how quickly
3524  * transaction groups proceed, instead of the normal handling provided by
3525  * txg_sync_thread().
3526  */
3527 void
3528 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3529 {
3530         int err = 0;
3531         dsl_scan_t *scn = dp->dp_scan;
3532         spa_t *spa = dp->dp_spa;
3533         state_sync_type_t sync_type = SYNC_OPTIONAL;
3534
3535         if (spa->spa_resilver_deferred &&
3536             !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3537                 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3538
3539         /*
3540          * Check for scn_restart_txg before checking spa_load_state, so
3541          * that we can restart an old-style scan while the pool is being
3542          * imported (see dsl_scan_init). We also restart scans if there
3543          * is a deferred resilver and the user has manually disabled
3544          * deferred resilvers via the tunable.
3545          */
3546         if (dsl_scan_restarting(scn, tx) ||
3547             (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3548                 pool_scan_func_t func = POOL_SCAN_SCRUB;
3549                 dsl_scan_done(scn, B_FALSE, tx);
3550                 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3551                         func = POOL_SCAN_RESILVER;
3552                 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
3553                     func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
3554                 dsl_scan_setup_sync(&func, tx);
3555         }
3556
3557         /*
3558          * Only process scans in sync pass 1.
3559          */
3560         if (spa_sync_pass(spa) > 1)
3561                 return;
3562
3563         /*
3564          * If the spa is shutting down, then stop scanning. This will
3565          * ensure that the scan does not dirty any new data during the
3566          * shutdown phase.
3567          */
3568         if (spa_shutting_down(spa))
3569                 return;
3570
3571         /*
3572          * If the scan is inactive due to a stalled async destroy, try again.
3573          */
3574         if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3575                 return;
3576
3577         /* reset scan statistics */
3578         scn->scn_visited_this_txg = 0;
3579         scn->scn_dedup_frees_this_txg = 0;
3580         scn->scn_holes_this_txg = 0;
3581         scn->scn_lt_min_this_txg = 0;
3582         scn->scn_gt_max_this_txg = 0;
3583         scn->scn_ddt_contained_this_txg = 0;
3584         scn->scn_objsets_visited_this_txg = 0;
3585         scn->scn_avg_seg_size_this_txg = 0;
3586         scn->scn_segs_this_txg = 0;
3587         scn->scn_avg_zio_size_this_txg = 0;
3588         scn->scn_zios_this_txg = 0;
3589         scn->scn_suspending = B_FALSE;
3590         scn->scn_sync_start_time = gethrtime();
3591         spa->spa_scrub_active = B_TRUE;
3592
3593         /*
3594          * First process the async destroys.  If we suspend, don't do
3595          * any scrubbing or resilvering.  This ensures that there are no
3596          * async destroys while we are scanning, so the scan code doesn't
3597          * have to worry about traversing it.  It is also faster to free the
3598          * blocks than to scrub them.
3599          */
3600         err = dsl_process_async_destroys(dp, tx);
3601         if (err != 0)
3602                 return;
3603
3604         if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3605                 return;
3606
3607         /*
3608          * Wait a few txgs after importing to begin scanning so that
3609          * we can get the pool imported quickly.
3610          */
3611         if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3612                 return;
3613
3614         /*
3615          * zfs_scan_suspend_progress can be set to disable scan progress.
3616          * We don't want to spin the txg_sync thread, so we add a delay
3617          * here to simulate the time spent doing a scan. This is mostly
3618          * useful for testing and debugging.
3619          */
3620         if (zfs_scan_suspend_progress) {
3621                 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3622                 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3623                     zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3624
3625                 while (zfs_scan_suspend_progress &&
3626                     !txg_sync_waiting(scn->scn_dp) &&
3627                     !spa_shutting_down(scn->scn_dp->dp_spa) &&
3628                     NSEC2MSEC(scan_time_ns) < mintime) {
3629                         delay(hz);
3630                         scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3631                 }
3632                 return;
3633         }
3634
3635         /*
3636          * It is possible to switch from unsorted to sorted at any time,
3637          * but afterwards the scan will remain sorted unless reloaded from
3638          * a checkpoint after a reboot.
3639          */
3640         if (!zfs_scan_legacy) {
3641                 scn->scn_is_sorted = B_TRUE;
3642                 if (scn->scn_last_checkpoint == 0)
3643                         scn->scn_last_checkpoint = ddi_get_lbolt();
3644         }
3645
3646         /*
3647          * For sorted scans, determine what kind of work we will be doing
3648          * this txg based on our memory limitations and whether or not we
3649          * need to perform a checkpoint.
3650          */
3651         if (scn->scn_is_sorted) {
3652                 /*
3653                  * If we are over our checkpoint interval, set scn_clearing
3654                  * so that we can begin checkpointing immediately. The
3655                  * checkpoint allows us to save a consistent bookmark
3656                  * representing how much data we have scrubbed so far.
3657                  * Otherwise, use the memory limit to determine if we should
3658                  * scan for metadata or start issue scrub IOs. We accumulate
3659                  * metadata until we hit our hard memory limit at which point
3660                  * we issue scrub IOs until we are at our soft memory limit.
3661                  */
3662                 if (scn->scn_checkpointing ||
3663                     ddi_get_lbolt() - scn->scn_last_checkpoint >
3664                     SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3665                         if (!scn->scn_checkpointing)
3666                                 zfs_dbgmsg("begin scan checkpoint for %s",
3667                                     spa->spa_name);
3668
3669                         scn->scn_checkpointing = B_TRUE;
3670                         scn->scn_clearing = B_TRUE;
3671                 } else {
3672                         boolean_t should_clear = dsl_scan_should_clear(scn);
3673                         if (should_clear && !scn->scn_clearing) {
3674                                 zfs_dbgmsg("begin scan clearing for %s",
3675                                     spa->spa_name);
3676                                 scn->scn_clearing = B_TRUE;
3677                         } else if (!should_clear && scn->scn_clearing) {
3678                                 zfs_dbgmsg("finish scan clearing for %s",
3679                                     spa->spa_name);
3680                                 scn->scn_clearing = B_FALSE;
3681                         }
3682                 }
3683         } else {
3684                 ASSERT0(scn->scn_checkpointing);
3685                 ASSERT0(scn->scn_clearing);
3686         }
3687
3688         if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3689                 /* Need to scan metadata for more blocks to scrub */
3690                 dsl_scan_phys_t *scnp = &scn->scn_phys;
3691                 taskqid_t prefetch_tqid;
3692
3693                 /*
3694                  * Recalculate the max number of in-flight bytes for pool-wide
3695                  * scanning operations (minimum 1MB). Limits for the issuing
3696                  * phase are done per top-level vdev and are handled separately.
3697                  */
3698                 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
3699                     dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20);
3700
3701                 if (scnp->scn_ddt_bookmark.ddb_class <=
3702                     scnp->scn_ddt_class_max) {
3703                         ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3704                         zfs_dbgmsg("doing scan sync for %s txg %llu; "
3705                             "ddt bm=%llu/%llu/%llu/%llx",
3706                             spa->spa_name,
3707                             (longlong_t)tx->tx_txg,
3708                             (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3709                             (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3710                             (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3711                             (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3712                 } else {
3713                         zfs_dbgmsg("doing scan sync for %s txg %llu; "
3714                             "bm=%llu/%llu/%llu/%llu",
3715                             spa->spa_name,
3716                             (longlong_t)tx->tx_txg,
3717                             (longlong_t)scnp->scn_bookmark.zb_objset,
3718                             (longlong_t)scnp->scn_bookmark.zb_object,
3719                             (longlong_t)scnp->scn_bookmark.zb_level,
3720                             (longlong_t)scnp->scn_bookmark.zb_blkid);
3721                 }
3722
3723                 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3724                     NULL, ZIO_FLAG_CANFAIL);
3725
3726                 scn->scn_prefetch_stop = B_FALSE;
3727                 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3728                     dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3729                 ASSERT(prefetch_tqid != TASKQID_INVALID);
3730
3731                 dsl_pool_config_enter(dp, FTAG);
3732                 dsl_scan_visit(scn, tx);
3733                 dsl_pool_config_exit(dp, FTAG);
3734
3735                 mutex_enter(&dp->dp_spa->spa_scrub_lock);
3736                 scn->scn_prefetch_stop = B_TRUE;
3737                 cv_broadcast(&spa->spa_scrub_io_cv);
3738                 mutex_exit(&dp->dp_spa->spa_scrub_lock);
3739
3740                 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3741                 (void) zio_wait(scn->scn_zio_root);
3742                 scn->scn_zio_root = NULL;
3743
3744                 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
3745                     "(%llu os's, %llu holes, %llu < mintxg, "
3746                     "%llu in ddt, %llu > maxtxg)",
3747                     (longlong_t)scn->scn_visited_this_txg,
3748                     spa->spa_name,
3749                     (longlong_t)NSEC2MSEC(gethrtime() -
3750                     scn->scn_sync_start_time),
3751                     (longlong_t)scn->scn_objsets_visited_this_txg,
3752                     (longlong_t)scn->scn_holes_this_txg,
3753                     (longlong_t)scn->scn_lt_min_this_txg,
3754                     (longlong_t)scn->scn_ddt_contained_this_txg,
3755                     (longlong_t)scn->scn_gt_max_this_txg);
3756
3757                 if (!scn->scn_suspending) {
3758                         ASSERT0(avl_numnodes(&scn->scn_queue));
3759                         scn->scn_done_txg = tx->tx_txg + 1;
3760                         if (scn->scn_is_sorted) {
3761                                 scn->scn_checkpointing = B_TRUE;
3762                                 scn->scn_clearing = B_TRUE;
3763                         }
3764                         zfs_dbgmsg("scan complete for %s txg %llu",
3765                             spa->spa_name,
3766                             (longlong_t)tx->tx_txg);
3767                 }
3768         } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3769                 ASSERT(scn->scn_clearing);
3770
3771                 /* need to issue scrubbing IOs from per-vdev queues */
3772                 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3773                     NULL, ZIO_FLAG_CANFAIL);
3774                 scan_io_queues_run(scn);
3775                 (void) zio_wait(scn->scn_zio_root);
3776                 scn->scn_zio_root = NULL;
3777
3778                 /* calculate and dprintf the current memory usage */
3779                 (void) dsl_scan_should_clear(scn);
3780                 dsl_scan_update_stats(scn);
3781
3782                 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
3783                     "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
3784                     (longlong_t)scn->scn_zios_this_txg,
3785                     spa->spa_name,
3786                     (longlong_t)scn->scn_segs_this_txg,
3787                     (longlong_t)NSEC2MSEC(gethrtime() -
3788                     scn->scn_sync_start_time),
3789                     (longlong_t)scn->scn_avg_zio_size_this_txg,
3790                     (longlong_t)scn->scn_avg_seg_size_this_txg);
3791         } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3792                 /* Finished with everything. Mark the scrub as complete */
3793                 zfs_dbgmsg("scan issuing complete txg %llu for %s",
3794                     (longlong_t)tx->tx_txg,
3795                     spa->spa_name);
3796                 ASSERT3U(scn->scn_done_txg, !=, 0);
3797                 ASSERT0(spa->spa_scrub_inflight);
3798                 ASSERT0(scn->scn_bytes_pending);
3799                 dsl_scan_done(scn, B_TRUE, tx);
3800                 sync_type = SYNC_MANDATORY;
3801         }
3802
3803         dsl_scan_sync_state(scn, tx, sync_type);
3804 }
3805
3806 static void
3807 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3808 {
3809         int i;
3810
3811         /*
3812          * Don't count embedded bp's, since we already did the work of
3813          * scanning these when we scanned the containing block.
3814          */
3815         if (BP_IS_EMBEDDED(bp))
3816                 return;
3817
3818         /*
3819          * Update the spa's stats on how many bytes we have issued.
3820          * Sequential scrubs create a zio for each DVA of the bp. Each
3821          * of these will include all DVAs for repair purposes, but the
3822          * zio code will only try the first one unless there is an issue.
3823          * Therefore, we should only count the first DVA for these IOs.
3824          */
3825         if (scn->scn_is_sorted) {
3826                 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3827                     DVA_GET_ASIZE(&bp->blk_dva[0]));
3828         } else {
3829                 spa_t *spa = scn->scn_dp->dp_spa;
3830
3831                 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3832                         atomic_add_64(&spa->spa_scan_pass_issued,
3833                             DVA_GET_ASIZE(&bp->blk_dva[i]));
3834                 }
3835         }
3836
3837         /*
3838          * If we resume after a reboot, zab will be NULL; don't record
3839          * incomplete stats in that case.
3840          */
3841         if (zab == NULL)
3842                 return;
3843
3844         mutex_enter(&zab->zab_lock);
3845
3846         for (i = 0; i < 4; i++) {
3847                 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3848                 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3849
3850                 if (t & DMU_OT_NEWTYPE)
3851                         t = DMU_OT_OTHER;
3852                 zfs_blkstat_t *zb = &zab->zab_type[l][t];
3853                 int equal;
3854
3855                 zb->zb_count++;
3856                 zb->zb_asize += BP_GET_ASIZE(bp);
3857                 zb->zb_lsize += BP_GET_LSIZE(bp);
3858                 zb->zb_psize += BP_GET_PSIZE(bp);
3859                 zb->zb_gangs += BP_COUNT_GANG(bp);
3860
3861                 switch (BP_GET_NDVAS(bp)) {
3862                 case 2:
3863                         if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3864                             DVA_GET_VDEV(&bp->blk_dva[1]))
3865                                 zb->zb_ditto_2_of_2_samevdev++;
3866                         break;
3867                 case 3:
3868                         equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3869                             DVA_GET_VDEV(&bp->blk_dva[1])) +
3870                             (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3871                             DVA_GET_VDEV(&bp->blk_dva[2])) +
3872                             (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3873                             DVA_GET_VDEV(&bp->blk_dva[2]));
3874                         if (equal == 1)
3875                                 zb->zb_ditto_2_of_3_samevdev++;
3876                         else if (equal == 3)
3877                                 zb->zb_ditto_3_of_3_samevdev++;
3878                         break;
3879                 }
3880         }
3881
3882         mutex_exit(&zab->zab_lock);
3883 }
3884
3885 static void
3886 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3887 {
3888         avl_index_t idx;
3889         int64_t asize = SIO_GET_ASIZE(sio);
3890         dsl_scan_t *scn = queue->q_scn;
3891
3892         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3893
3894         if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3895                 /* block is already scheduled for reading */
3896                 atomic_add_64(&scn->scn_bytes_pending, -asize);
3897                 sio_free(sio);
3898                 return;
3899         }
3900         avl_insert(&queue->q_sios_by_addr, sio, idx);
3901         queue->q_sio_memused += SIO_GET_MUSED(sio);
3902         range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3903 }
3904
3905 /*
3906  * Given all the info we got from our metadata scanning process, we
3907  * construct a scan_io_t and insert it into the scan sorting queue. The
3908  * I/O must already be suitable for us to process. This is controlled
3909  * by dsl_scan_enqueue().
3910  */
3911 static void
3912 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3913     int zio_flags, const zbookmark_phys_t *zb)
3914 {
3915         dsl_scan_t *scn = queue->q_scn;
3916         scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3917
3918         ASSERT0(BP_IS_GANG(bp));
3919         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3920
3921         bp2sio(bp, sio, dva_i);
3922         sio->sio_flags = zio_flags;
3923         sio->sio_zb = *zb;
3924
3925         /*
3926          * Increment the bytes pending counter now so that we can't
3927          * get an integer underflow in case the worker processes the
3928          * zio before we get to incrementing this counter.
3929          */
3930         atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3931
3932         scan_io_queue_insert_impl(queue, sio);
3933 }
3934
3935 /*
3936  * Given a set of I/O parameters as discovered by the metadata traversal
3937  * process, attempts to place the I/O into the sorted queues (if allowed),
3938  * or immediately executes the I/O.
3939  */
3940 static void
3941 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3942     const zbookmark_phys_t *zb)
3943 {
3944         spa_t *spa = dp->dp_spa;
3945
3946         ASSERT(!BP_IS_EMBEDDED(bp));
3947
3948         /*
3949          * Gang blocks are hard to issue sequentially, so we just issue them
3950          * here immediately instead of queuing them.
3951          */
3952         if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3953                 scan_exec_io(dp, bp, zio_flags, zb, NULL);
3954                 return;
3955         }
3956
3957         for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3958                 dva_t dva;
3959                 vdev_t *vdev;
3960
3961                 dva = bp->blk_dva[i];
3962                 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3963                 ASSERT(vdev != NULL);
3964
3965                 mutex_enter(&vdev->vdev_scan_io_queue_lock);
3966                 if (vdev->vdev_scan_io_queue == NULL)
3967                         vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3968                 ASSERT(dp->dp_scan != NULL);
3969                 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3970                     i, zio_flags, zb);
3971                 mutex_exit(&vdev->vdev_scan_io_queue_lock);
3972         }
3973 }
3974
3975 static int
3976 dsl_scan_scrub_cb(dsl_pool_t *dp,
3977     const blkptr_t *bp, const zbookmark_phys_t *zb)
3978 {
3979         dsl_scan_t *scn = dp->dp_scan;
3980         spa_t *spa = dp->dp_spa;
3981         uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3982         size_t psize = BP_GET_PSIZE(bp);
3983         boolean_t needs_io = B_FALSE;
3984         int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3985
3986
3987         if (phys_birth <= scn->scn_phys.scn_min_txg ||
3988             phys_birth >= scn->scn_phys.scn_max_txg) {
3989                 count_block(scn, dp->dp_blkstats, bp);
3990                 return (0);
3991         }
3992
3993         /* Embedded BP's have phys_birth==0, so we reject them above. */
3994         ASSERT(!BP_IS_EMBEDDED(bp));
3995
3996         ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3997         if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3998                 zio_flags |= ZIO_FLAG_SCRUB;
3999                 needs_io = B_TRUE;
4000         } else {
4001                 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4002                 zio_flags |= ZIO_FLAG_RESILVER;
4003                 needs_io = B_FALSE;
4004         }
4005
4006         /* If it's an intent log block, failure is expected. */
4007         if (zb->zb_level == ZB_ZIL_LEVEL)
4008                 zio_flags |= ZIO_FLAG_SPECULATIVE;
4009
4010         for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4011                 const dva_t *dva = &bp->blk_dva[d];
4012
4013                 /*
4014                  * Keep track of how much data we've examined so that
4015                  * zpool(8) status can make useful progress reports.
4016                  */
4017                 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
4018                 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
4019
4020                 /* if it's a resilver, this may not be in the target range */
4021                 if (!needs_io)
4022                         needs_io = dsl_scan_need_resilver(spa, dva, psize,
4023                             phys_birth);
4024         }
4025
4026         if (needs_io && !zfs_no_scrub_io) {
4027                 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4028         } else {
4029                 count_block(scn, dp->dp_blkstats, bp);
4030         }
4031
4032         /* do not relocate this block */
4033         return (0);
4034 }
4035
4036 static void
4037 dsl_scan_scrub_done(zio_t *zio)
4038 {
4039         spa_t *spa = zio->io_spa;
4040         blkptr_t *bp = zio->io_bp;
4041         dsl_scan_io_queue_t *queue = zio->io_private;
4042
4043         abd_free(zio->io_abd);
4044
4045         if (queue == NULL) {
4046                 mutex_enter(&spa->spa_scrub_lock);
4047                 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4048                 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4049                 cv_broadcast(&spa->spa_scrub_io_cv);
4050                 mutex_exit(&spa->spa_scrub_lock);
4051         } else {
4052                 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4053                 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4054                 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4055                 cv_broadcast(&queue->q_zio_cv);
4056                 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4057         }
4058
4059         if (zio->io_error && (zio->io_error != ECKSUM ||
4060             !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4061                 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
4062         }
4063 }
4064
4065 /*
4066  * Given a scanning zio's information, executes the zio. The zio need
4067  * not necessarily be only sortable, this function simply executes the
4068  * zio, no matter what it is. The optional queue argument allows the
4069  * caller to specify that they want per top level vdev IO rate limiting
4070  * instead of the legacy global limiting.
4071  */
4072 static void
4073 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4074     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4075 {
4076         spa_t *spa = dp->dp_spa;
4077         dsl_scan_t *scn = dp->dp_scan;
4078         size_t size = BP_GET_PSIZE(bp);
4079         abd_t *data = abd_alloc_for_io(size, B_FALSE);
4080
4081         if (queue == NULL) {
4082                 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4083                 mutex_enter(&spa->spa_scrub_lock);
4084                 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4085                         cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4086                 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4087                 mutex_exit(&spa->spa_scrub_lock);
4088         } else {
4089                 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4090
4091                 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4092                 mutex_enter(q_lock);
4093                 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4094                         cv_wait(&queue->q_zio_cv, q_lock);
4095                 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4096                 mutex_exit(q_lock);
4097         }
4098
4099         count_block(scn, dp->dp_blkstats, bp);
4100         zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size,
4101             dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4102 }
4103
4104 /*
4105  * This is the primary extent sorting algorithm. We balance two parameters:
4106  * 1) how many bytes of I/O are in an extent
4107  * 2) how well the extent is filled with I/O (as a fraction of its total size)
4108  * Since we allow extents to have gaps between their constituent I/Os, it's
4109  * possible to have a fairly large extent that contains the same amount of
4110  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4111  * The algorithm sorts based on a score calculated from the extent's size,
4112  * the relative fill volume (in %) and a "fill weight" parameter that controls
4113  * the split between whether we prefer larger extents or more well populated
4114  * extents:
4115  *
4116  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4117  *
4118  * Example:
4119  * 1) assume extsz = 64 MiB
4120  * 2) assume fill = 32 MiB (extent is half full)
4121  * 3) assume fill_weight = 3
4122  * 4)   SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4123  *      SCORE = 32M + (50 * 3 * 32M) / 100
4124  *      SCORE = 32M + (4800M / 100)
4125  *      SCORE = 32M + 48M
4126  *               ^     ^
4127  *               |     +--- final total relative fill-based score
4128  *               +--------- final total fill-based score
4129  *      SCORE = 80M
4130  *
4131  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4132  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4133  * Note that as an optimization, we replace multiplication and division by
4134  * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4135  */
4136 static int
4137 ext_size_compare(const void *x, const void *y)
4138 {
4139         const range_seg_gap_t *rsa = x, *rsb = y;
4140
4141         uint64_t sa = rsa->rs_end - rsa->rs_start;
4142         uint64_t sb = rsb->rs_end - rsb->rs_start;
4143         uint64_t score_a, score_b;
4144
4145         score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
4146             fill_weight * rsa->rs_fill) >> 7);
4147         score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
4148             fill_weight * rsb->rs_fill) >> 7);
4149
4150         if (score_a > score_b)
4151                 return (-1);
4152         if (score_a == score_b) {
4153                 if (rsa->rs_start < rsb->rs_start)
4154                         return (-1);
4155                 if (rsa->rs_start == rsb->rs_start)
4156                         return (0);
4157                 return (1);
4158         }
4159         return (1);
4160 }
4161
4162 /*
4163  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4164  * based on LBA-order (from lowest to highest).
4165  */
4166 static int
4167 sio_addr_compare(const void *x, const void *y)
4168 {
4169         const scan_io_t *a = x, *b = y;
4170
4171         return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4172 }
4173
4174 /* IO queues are created on demand when they are needed. */
4175 static dsl_scan_io_queue_t *
4176 scan_io_queue_create(vdev_t *vd)
4177 {
4178         dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4179         dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4180
4181         q->q_scn = scn;
4182         q->q_vd = vd;
4183         q->q_sio_memused = 0;
4184         cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4185         q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
4186             &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
4187         avl_create(&q->q_sios_by_addr, sio_addr_compare,
4188             sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4189
4190         return (q);
4191 }
4192
4193 /*
4194  * Destroys a scan queue and all segments and scan_io_t's contained in it.
4195  * No further execution of I/O occurs, anything pending in the queue is
4196  * simply freed without being executed.
4197  */
4198 void
4199 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4200 {
4201         dsl_scan_t *scn = queue->q_scn;
4202         scan_io_t *sio;
4203         void *cookie = NULL;
4204         int64_t bytes_dequeued = 0;
4205
4206         ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4207
4208         while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4209             NULL) {
4210                 ASSERT(range_tree_contains(queue->q_exts_by_addr,
4211                     SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4212                 bytes_dequeued += SIO_GET_ASIZE(sio);
4213                 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4214                 sio_free(sio);
4215         }
4216
4217         ASSERT0(queue->q_sio_memused);
4218         atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4219         range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4220         range_tree_destroy(queue->q_exts_by_addr);
4221         avl_destroy(&queue->q_sios_by_addr);
4222         cv_destroy(&queue->q_zio_cv);
4223
4224         kmem_free(queue, sizeof (*queue));
4225 }
4226
4227 /*
4228  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4229  * called on behalf of vdev_top_transfer when creating or destroying
4230  * a mirror vdev due to zpool attach/detach.
4231  */
4232 void
4233 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4234 {
4235         mutex_enter(&svd->vdev_scan_io_queue_lock);
4236         mutex_enter(&tvd->vdev_scan_io_queue_lock);
4237
4238         VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4239         tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4240         svd->vdev_scan_io_queue = NULL;
4241         if (tvd->vdev_scan_io_queue != NULL)
4242                 tvd->vdev_scan_io_queue->q_vd = tvd;
4243
4244         mutex_exit(&tvd->vdev_scan_io_queue_lock);
4245         mutex_exit(&svd->vdev_scan_io_queue_lock);
4246 }
4247
4248 static void
4249 scan_io_queues_destroy(dsl_scan_t *scn)
4250 {
4251         vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4252
4253         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4254                 vdev_t *tvd = rvd->vdev_child[i];
4255
4256                 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4257                 if (tvd->vdev_scan_io_queue != NULL)
4258                         dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4259                 tvd->vdev_scan_io_queue = NULL;
4260                 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4261         }
4262 }
4263
4264 static void
4265 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4266 {
4267         dsl_pool_t *dp = spa->spa_dsl_pool;
4268         dsl_scan_t *scn = dp->dp_scan;
4269         vdev_t *vdev;
4270         kmutex_t *q_lock;
4271         dsl_scan_io_queue_t *queue;
4272         scan_io_t *srch_sio, *sio;
4273         avl_index_t idx;
4274         uint64_t start, size;
4275
4276         vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4277         ASSERT(vdev != NULL);
4278         q_lock = &vdev->vdev_scan_io_queue_lock;
4279         queue = vdev->vdev_scan_io_queue;
4280
4281         mutex_enter(q_lock);
4282         if (queue == NULL) {
4283                 mutex_exit(q_lock);
4284                 return;
4285         }
4286
4287         srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4288         bp2sio(bp, srch_sio, dva_i);
4289         start = SIO_GET_OFFSET(srch_sio);
4290         size = SIO_GET_ASIZE(srch_sio);
4291
4292         /*
4293          * We can find the zio in two states:
4294          * 1) Cold, just sitting in the queue of zio's to be issued at
4295          *      some point in the future. In this case, all we do is
4296          *      remove the zio from the q_sios_by_addr tree, decrement
4297          *      its data volume from the containing range_seg_t and
4298          *      resort the q_exts_by_size tree to reflect that the
4299          *      range_seg_t has lost some of its 'fill'. We don't shorten
4300          *      the range_seg_t - this is usually rare enough not to be
4301          *      worth the extra hassle of trying keep track of precise
4302          *      extent boundaries.
4303          * 2) Hot, where the zio is currently in-flight in
4304          *      dsl_scan_issue_ios. In this case, we can't simply
4305          *      reach in and stop the in-flight zio's, so we instead
4306          *      block the caller. Eventually, dsl_scan_issue_ios will
4307          *      be done with issuing the zio's it gathered and will
4308          *      signal us.
4309          */
4310         sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4311         sio_free(srch_sio);
4312
4313         if (sio != NULL) {
4314                 int64_t asize = SIO_GET_ASIZE(sio);
4315                 blkptr_t tmpbp;
4316
4317                 /* Got it while it was cold in the queue */
4318                 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4319                 ASSERT3U(size, ==, asize);
4320                 avl_remove(&queue->q_sios_by_addr, sio);
4321                 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4322
4323                 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4324                 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4325
4326                 /*
4327                  * We only update scn_bytes_pending in the cold path,
4328                  * otherwise it will already have been accounted for as
4329                  * part of the zio's execution.
4330                  */
4331                 atomic_add_64(&scn->scn_bytes_pending, -asize);
4332
4333                 /* count the block as though we issued it */
4334                 sio2bp(sio, &tmpbp);
4335                 count_block(scn, dp->dp_blkstats, &tmpbp);
4336
4337                 sio_free(sio);
4338         }
4339         mutex_exit(q_lock);
4340 }
4341
4342 /*
4343  * Callback invoked when a zio_free() zio is executing. This needs to be
4344  * intercepted to prevent the zio from deallocating a particular portion
4345  * of disk space and it then getting reallocated and written to, while we
4346  * still have it queued up for processing.
4347  */
4348 void
4349 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4350 {
4351         dsl_pool_t *dp = spa->spa_dsl_pool;
4352         dsl_scan_t *scn = dp->dp_scan;
4353
4354         ASSERT(!BP_IS_EMBEDDED(bp));
4355         ASSERT(scn != NULL);
4356         if (!dsl_scan_is_running(scn))
4357                 return;
4358
4359         for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4360                 dsl_scan_freed_dva(spa, bp, i);
4361 }
4362
4363 /*
4364  * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4365  * not started, start it. Otherwise, only restart if max txg in DTL range is
4366  * greater than the max txg in the current scan. If the DTL max is less than
4367  * the scan max, then the vdev has not missed any new data since the resilver
4368  * started, so a restart is not needed.
4369  */
4370 void
4371 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
4372 {
4373         uint64_t min, max;
4374
4375         if (!vdev_resilver_needed(vd, &min, &max))
4376                 return;
4377
4378         if (!dsl_scan_resilvering(dp)) {
4379                 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4380                 return;
4381         }
4382
4383         if (max <= dp->dp_scan->scn_phys.scn_max_txg)
4384                 return;
4385
4386         /* restart is needed, check if it can be deferred */
4387         if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4388                 vdev_defer_resilver(vd);
4389         else
4390                 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4391 }
4392
4393 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW,
4394         "Max bytes in flight per leaf vdev for scrubs and resilvers");
4395
4396 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW,
4397         "Min millisecs to scrub per txg");
4398
4399 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW,
4400         "Min millisecs to obsolete per txg");
4401
4402 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW,
4403         "Min millisecs to free per txg");
4404
4405 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW,
4406         "Min millisecs to resilver per txg");
4407
4408 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
4409         "Set to prevent scans from progressing");
4410
4411 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
4412         "Set to disable scrub I/O");
4413
4414 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
4415         "Set to disable scrub prefetching");
4416
4417 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW,
4418         "Max number of blocks freed in one txg");
4419
4420 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW,
4421         "Max number of dedup blocks freed in one txg");
4422
4423 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
4424         "Enable processing of the free_bpobj");
4425
4426 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW,
4427         "Fraction of RAM for scan hard limit");
4428
4429 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW,
4430         "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
4431
4432 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
4433         "Scrub using legacy non-sequential method");
4434
4435 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW,
4436         "Scan progress on-disk checkpointing interval");
4437
4438 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW,
4439         "Max gap in bytes between sequential scrub / resilver I/Os");
4440
4441 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW,
4442         "Fraction of hard limit used as soft limit");
4443
4444 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
4445         "Tunable to attempt to reduce lock contention");
4446
4447 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW,
4448         "Tunable to adjust bias towards more filled segments during scans");
4449
4450 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
4451         "Process all resilvers immediately");