]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev.c
Update OpenZFS to 2.0.0-rc3-gfc5966
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  */
32
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/spa_impl.h>
37 #include <sys/bpobj.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_rebuild.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/space_map.h>
47 #include <sys/space_reftree.h>
48 #include <sys/zio.h>
49 #include <sys/zap.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/arc.h>
52 #include <sys/zil.h>
53 #include <sys/dsl_scan.h>
54 #include <sys/abd.h>
55 #include <sys/vdev_initialize.h>
56 #include <sys/vdev_trim.h>
57 #include <sys/zvol.h>
58 #include <sys/zfs_ratelimit.h>
59
60 /* default target for number of metaslabs per top-level vdev */
61 int zfs_vdev_default_ms_count = 200;
62
63 /* minimum number of metaslabs per top-level vdev */
64 int zfs_vdev_min_ms_count = 16;
65
66 /* practical upper limit of total metaslabs per top-level vdev */
67 int zfs_vdev_ms_count_limit = 1ULL << 17;
68
69 /* lower limit for metaslab size (512M) */
70 int zfs_vdev_default_ms_shift = 29;
71
72 /* upper limit for metaslab size (16G) */
73 int zfs_vdev_max_ms_shift = 34;
74
75 int vdev_validate_skip = B_FALSE;
76
77 /*
78  * Since the DTL space map of a vdev is not expected to have a lot of
79  * entries, we default its block size to 4K.
80  */
81 int zfs_vdev_dtl_sm_blksz = (1 << 12);
82
83 /*
84  * Rate limit slow IO (delay) events to this many per second.
85  */
86 unsigned int zfs_slow_io_events_per_second = 20;
87
88 /*
89  * Rate limit checksum events after this many checksum errors per second.
90  */
91 unsigned int zfs_checksum_events_per_second = 20;
92
93 /*
94  * Ignore errors during scrub/resilver.  Allows to work around resilver
95  * upon import when there are pool errors.
96  */
97 int zfs_scan_ignore_errors = 0;
98
99 /*
100  * vdev-wide space maps that have lots of entries written to them at
101  * the end of each transaction can benefit from a higher I/O bandwidth
102  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
103  */
104 int zfs_vdev_standard_sm_blksz = (1 << 17);
105
106 /*
107  * Tunable parameter for debugging or performance analysis. Setting this
108  * will cause pool corruption on power loss if a volatile out-of-order
109  * write cache is enabled.
110  */
111 int zfs_nocacheflush = 0;
112
113 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
114 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
115
116 /*PRINTFLIKE2*/
117 void
118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
119 {
120         va_list adx;
121         char buf[256];
122
123         va_start(adx, fmt);
124         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
125         va_end(adx);
126
127         if (vd->vdev_path != NULL) {
128                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
129                     vd->vdev_path, buf);
130         } else {
131                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
132                     vd->vdev_ops->vdev_op_type,
133                     (u_longlong_t)vd->vdev_id,
134                     (u_longlong_t)vd->vdev_guid, buf);
135         }
136 }
137
138 void
139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
140 {
141         char state[20];
142
143         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
144                 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
145                     vd->vdev_ops->vdev_op_type);
146                 return;
147         }
148
149         switch (vd->vdev_state) {
150         case VDEV_STATE_UNKNOWN:
151                 (void) snprintf(state, sizeof (state), "unknown");
152                 break;
153         case VDEV_STATE_CLOSED:
154                 (void) snprintf(state, sizeof (state), "closed");
155                 break;
156         case VDEV_STATE_OFFLINE:
157                 (void) snprintf(state, sizeof (state), "offline");
158                 break;
159         case VDEV_STATE_REMOVED:
160                 (void) snprintf(state, sizeof (state), "removed");
161                 break;
162         case VDEV_STATE_CANT_OPEN:
163                 (void) snprintf(state, sizeof (state), "can't open");
164                 break;
165         case VDEV_STATE_FAULTED:
166                 (void) snprintf(state, sizeof (state), "faulted");
167                 break;
168         case VDEV_STATE_DEGRADED:
169                 (void) snprintf(state, sizeof (state), "degraded");
170                 break;
171         case VDEV_STATE_HEALTHY:
172                 (void) snprintf(state, sizeof (state), "healthy");
173                 break;
174         default:
175                 (void) snprintf(state, sizeof (state), "<state %u>",
176                     (uint_t)vd->vdev_state);
177         }
178
179         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
180             "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
181             vd->vdev_islog ? " (log)" : "",
182             (u_longlong_t)vd->vdev_guid,
183             vd->vdev_path ? vd->vdev_path : "N/A", state);
184
185         for (uint64_t i = 0; i < vd->vdev_children; i++)
186                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
187 }
188
189 /*
190  * Virtual device management.
191  */
192
193 static vdev_ops_t *vdev_ops_table[] = {
194         &vdev_root_ops,
195         &vdev_raidz_ops,
196         &vdev_mirror_ops,
197         &vdev_replacing_ops,
198         &vdev_spare_ops,
199         &vdev_disk_ops,
200         &vdev_file_ops,
201         &vdev_missing_ops,
202         &vdev_hole_ops,
203         &vdev_indirect_ops,
204         NULL
205 };
206
207 /*
208  * Given a vdev type, return the appropriate ops vector.
209  */
210 static vdev_ops_t *
211 vdev_getops(const char *type)
212 {
213         vdev_ops_t *ops, **opspp;
214
215         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
216                 if (strcmp(ops->vdev_op_type, type) == 0)
217                         break;
218
219         return (ops);
220 }
221
222 /* ARGSUSED */
223 void
224 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res)
225 {
226         res->rs_start = in->rs_start;
227         res->rs_end = in->rs_end;
228 }
229
230 /*
231  * Derive the enumerated allocation bias from string input.
232  * String origin is either the per-vdev zap or zpool(1M).
233  */
234 static vdev_alloc_bias_t
235 vdev_derive_alloc_bias(const char *bias)
236 {
237         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
238
239         if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
240                 alloc_bias = VDEV_BIAS_LOG;
241         else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
242                 alloc_bias = VDEV_BIAS_SPECIAL;
243         else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
244                 alloc_bias = VDEV_BIAS_DEDUP;
245
246         return (alloc_bias);
247 }
248
249 /*
250  * Default asize function: return the MAX of psize with the asize of
251  * all children.  This is what's used by anything other than RAID-Z.
252  */
253 uint64_t
254 vdev_default_asize(vdev_t *vd, uint64_t psize)
255 {
256         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
257         uint64_t csize;
258
259         for (int c = 0; c < vd->vdev_children; c++) {
260                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
261                 asize = MAX(asize, csize);
262         }
263
264         return (asize);
265 }
266
267 /*
268  * Get the minimum allocatable size. We define the allocatable size as
269  * the vdev's asize rounded to the nearest metaslab. This allows us to
270  * replace or attach devices which don't have the same physical size but
271  * can still satisfy the same number of allocations.
272  */
273 uint64_t
274 vdev_get_min_asize(vdev_t *vd)
275 {
276         vdev_t *pvd = vd->vdev_parent;
277
278         /*
279          * If our parent is NULL (inactive spare or cache) or is the root,
280          * just return our own asize.
281          */
282         if (pvd == NULL)
283                 return (vd->vdev_asize);
284
285         /*
286          * The top-level vdev just returns the allocatable size rounded
287          * to the nearest metaslab.
288          */
289         if (vd == vd->vdev_top)
290                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
291
292         /*
293          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
294          * so each child must provide at least 1/Nth of its asize.
295          */
296         if (pvd->vdev_ops == &vdev_raidz_ops)
297                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
298                     pvd->vdev_children);
299
300         return (pvd->vdev_min_asize);
301 }
302
303 void
304 vdev_set_min_asize(vdev_t *vd)
305 {
306         vd->vdev_min_asize = vdev_get_min_asize(vd);
307
308         for (int c = 0; c < vd->vdev_children; c++)
309                 vdev_set_min_asize(vd->vdev_child[c]);
310 }
311
312 vdev_t *
313 vdev_lookup_top(spa_t *spa, uint64_t vdev)
314 {
315         vdev_t *rvd = spa->spa_root_vdev;
316
317         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
318
319         if (vdev < rvd->vdev_children) {
320                 ASSERT(rvd->vdev_child[vdev] != NULL);
321                 return (rvd->vdev_child[vdev]);
322         }
323
324         return (NULL);
325 }
326
327 vdev_t *
328 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
329 {
330         vdev_t *mvd;
331
332         if (vd->vdev_guid == guid)
333                 return (vd);
334
335         for (int c = 0; c < vd->vdev_children; c++)
336                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
337                     NULL)
338                         return (mvd);
339
340         return (NULL);
341 }
342
343 static int
344 vdev_count_leaves_impl(vdev_t *vd)
345 {
346         int n = 0;
347
348         if (vd->vdev_ops->vdev_op_leaf)
349                 return (1);
350
351         for (int c = 0; c < vd->vdev_children; c++)
352                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
353
354         return (n);
355 }
356
357 int
358 vdev_count_leaves(spa_t *spa)
359 {
360         int rc;
361
362         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
363         rc = vdev_count_leaves_impl(spa->spa_root_vdev);
364         spa_config_exit(spa, SCL_VDEV, FTAG);
365
366         return (rc);
367 }
368
369 void
370 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
371 {
372         size_t oldsize, newsize;
373         uint64_t id = cvd->vdev_id;
374         vdev_t **newchild;
375
376         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
377         ASSERT(cvd->vdev_parent == NULL);
378
379         cvd->vdev_parent = pvd;
380
381         if (pvd == NULL)
382                 return;
383
384         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
385
386         oldsize = pvd->vdev_children * sizeof (vdev_t *);
387         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
388         newsize = pvd->vdev_children * sizeof (vdev_t *);
389
390         newchild = kmem_alloc(newsize, KM_SLEEP);
391         if (pvd->vdev_child != NULL) {
392                 bcopy(pvd->vdev_child, newchild, oldsize);
393                 kmem_free(pvd->vdev_child, oldsize);
394         }
395
396         pvd->vdev_child = newchild;
397         pvd->vdev_child[id] = cvd;
398
399         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
400         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
401
402         /*
403          * Walk up all ancestors to update guid sum.
404          */
405         for (; pvd != NULL; pvd = pvd->vdev_parent)
406                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
407
408         if (cvd->vdev_ops->vdev_op_leaf) {
409                 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
410                 cvd->vdev_spa->spa_leaf_list_gen++;
411         }
412 }
413
414 void
415 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
416 {
417         int c;
418         uint_t id = cvd->vdev_id;
419
420         ASSERT(cvd->vdev_parent == pvd);
421
422         if (pvd == NULL)
423                 return;
424
425         ASSERT(id < pvd->vdev_children);
426         ASSERT(pvd->vdev_child[id] == cvd);
427
428         pvd->vdev_child[id] = NULL;
429         cvd->vdev_parent = NULL;
430
431         for (c = 0; c < pvd->vdev_children; c++)
432                 if (pvd->vdev_child[c])
433                         break;
434
435         if (c == pvd->vdev_children) {
436                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
437                 pvd->vdev_child = NULL;
438                 pvd->vdev_children = 0;
439         }
440
441         if (cvd->vdev_ops->vdev_op_leaf) {
442                 spa_t *spa = cvd->vdev_spa;
443                 list_remove(&spa->spa_leaf_list, cvd);
444                 spa->spa_leaf_list_gen++;
445         }
446
447         /*
448          * Walk up all ancestors to update guid sum.
449          */
450         for (; pvd != NULL; pvd = pvd->vdev_parent)
451                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
452 }
453
454 /*
455  * Remove any holes in the child array.
456  */
457 void
458 vdev_compact_children(vdev_t *pvd)
459 {
460         vdev_t **newchild, *cvd;
461         int oldc = pvd->vdev_children;
462         int newc;
463
464         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
465
466         if (oldc == 0)
467                 return;
468
469         for (int c = newc = 0; c < oldc; c++)
470                 if (pvd->vdev_child[c])
471                         newc++;
472
473         if (newc > 0) {
474                 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
475
476                 for (int c = newc = 0; c < oldc; c++) {
477                         if ((cvd = pvd->vdev_child[c]) != NULL) {
478                                 newchild[newc] = cvd;
479                                 cvd->vdev_id = newc++;
480                         }
481                 }
482         } else {
483                 newchild = NULL;
484         }
485
486         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
487         pvd->vdev_child = newchild;
488         pvd->vdev_children = newc;
489 }
490
491 /*
492  * Allocate and minimally initialize a vdev_t.
493  */
494 vdev_t *
495 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
496 {
497         vdev_t *vd;
498         vdev_indirect_config_t *vic;
499
500         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
501         vic = &vd->vdev_indirect_config;
502
503         if (spa->spa_root_vdev == NULL) {
504                 ASSERT(ops == &vdev_root_ops);
505                 spa->spa_root_vdev = vd;
506                 spa->spa_load_guid = spa_generate_guid(NULL);
507         }
508
509         if (guid == 0 && ops != &vdev_hole_ops) {
510                 if (spa->spa_root_vdev == vd) {
511                         /*
512                          * The root vdev's guid will also be the pool guid,
513                          * which must be unique among all pools.
514                          */
515                         guid = spa_generate_guid(NULL);
516                 } else {
517                         /*
518                          * Any other vdev's guid must be unique within the pool.
519                          */
520                         guid = spa_generate_guid(spa);
521                 }
522                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
523         }
524
525         vd->vdev_spa = spa;
526         vd->vdev_id = id;
527         vd->vdev_guid = guid;
528         vd->vdev_guid_sum = guid;
529         vd->vdev_ops = ops;
530         vd->vdev_state = VDEV_STATE_CLOSED;
531         vd->vdev_ishole = (ops == &vdev_hole_ops);
532         vic->vic_prev_indirect_vdev = UINT64_MAX;
533
534         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
535         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
536         vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
537             0, 0);
538
539         /*
540          * Initialize rate limit structs for events.  We rate limit ZIO delay
541          * and checksum events so that we don't overwhelm ZED with thousands
542          * of events when a disk is acting up.
543          */
544         zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
545             1);
546         zfs_ratelimit_init(&vd->vdev_checksum_rl,
547             &zfs_checksum_events_per_second, 1);
548
549         list_link_init(&vd->vdev_config_dirty_node);
550         list_link_init(&vd->vdev_state_dirty_node);
551         list_link_init(&vd->vdev_initialize_node);
552         list_link_init(&vd->vdev_leaf_node);
553         list_link_init(&vd->vdev_trim_node);
554         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
555         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
556         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
557         mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
558
559         mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
560         mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
561         cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
562         cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
563
564         mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
565         mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
566         mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
567         cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
568         cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
569         cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
570
571         mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
572         mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL);
573         cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
574         cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL);
575
576         for (int t = 0; t < DTL_TYPES; t++) {
577                 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
578                     0);
579         }
580
581         txg_list_create(&vd->vdev_ms_list, spa,
582             offsetof(struct metaslab, ms_txg_node));
583         txg_list_create(&vd->vdev_dtl_list, spa,
584             offsetof(struct vdev, vdev_dtl_node));
585         vd->vdev_stat.vs_timestamp = gethrtime();
586         vdev_queue_init(vd);
587         vdev_cache_init(vd);
588
589         return (vd);
590 }
591
592 /*
593  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
594  * creating a new vdev or loading an existing one - the behavior is slightly
595  * different for each case.
596  */
597 int
598 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
599     int alloctype)
600 {
601         vdev_ops_t *ops;
602         char *type;
603         uint64_t guid = 0, islog, nparity;
604         vdev_t *vd;
605         vdev_indirect_config_t *vic;
606         char *tmp = NULL;
607         int rc;
608         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
609         boolean_t top_level = (parent && !parent->vdev_parent);
610
611         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
612
613         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
614                 return (SET_ERROR(EINVAL));
615
616         if ((ops = vdev_getops(type)) == NULL)
617                 return (SET_ERROR(EINVAL));
618
619         /*
620          * If this is a load, get the vdev guid from the nvlist.
621          * Otherwise, vdev_alloc_common() will generate one for us.
622          */
623         if (alloctype == VDEV_ALLOC_LOAD) {
624                 uint64_t label_id;
625
626                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
627                     label_id != id)
628                         return (SET_ERROR(EINVAL));
629
630                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
631                         return (SET_ERROR(EINVAL));
632         } else if (alloctype == VDEV_ALLOC_SPARE) {
633                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
634                         return (SET_ERROR(EINVAL));
635         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
636                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
637                         return (SET_ERROR(EINVAL));
638         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
639                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
640                         return (SET_ERROR(EINVAL));
641         }
642
643         /*
644          * The first allocated vdev must be of type 'root'.
645          */
646         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
647                 return (SET_ERROR(EINVAL));
648
649         /*
650          * Determine whether we're a log vdev.
651          */
652         islog = 0;
653         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
654         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
655                 return (SET_ERROR(ENOTSUP));
656
657         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
658                 return (SET_ERROR(ENOTSUP));
659
660         /*
661          * Set the nparity property for RAID-Z vdevs.
662          */
663         nparity = -1ULL;
664         if (ops == &vdev_raidz_ops) {
665                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
666                     &nparity) == 0) {
667                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
668                                 return (SET_ERROR(EINVAL));
669                         /*
670                          * Previous versions could only support 1 or 2 parity
671                          * device.
672                          */
673                         if (nparity > 1 &&
674                             spa_version(spa) < SPA_VERSION_RAIDZ2)
675                                 return (SET_ERROR(ENOTSUP));
676                         if (nparity > 2 &&
677                             spa_version(spa) < SPA_VERSION_RAIDZ3)
678                                 return (SET_ERROR(ENOTSUP));
679                 } else {
680                         /*
681                          * We require the parity to be specified for SPAs that
682                          * support multiple parity levels.
683                          */
684                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
685                                 return (SET_ERROR(EINVAL));
686                         /*
687                          * Otherwise, we default to 1 parity device for RAID-Z.
688                          */
689                         nparity = 1;
690                 }
691         } else {
692                 nparity = 0;
693         }
694         ASSERT(nparity != -1ULL);
695
696         /*
697          * If creating a top-level vdev, check for allocation classes input
698          */
699         if (top_level && alloctype == VDEV_ALLOC_ADD) {
700                 char *bias;
701
702                 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
703                     &bias) == 0) {
704                         alloc_bias = vdev_derive_alloc_bias(bias);
705
706                         /* spa_vdev_add() expects feature to be enabled */
707                         if (spa->spa_load_state != SPA_LOAD_CREATE &&
708                             !spa_feature_is_enabled(spa,
709                             SPA_FEATURE_ALLOCATION_CLASSES)) {
710                                 return (SET_ERROR(ENOTSUP));
711                         }
712                 }
713         }
714
715         vd = vdev_alloc_common(spa, id, guid, ops);
716         vic = &vd->vdev_indirect_config;
717
718         vd->vdev_islog = islog;
719         vd->vdev_nparity = nparity;
720         if (top_level && alloc_bias != VDEV_BIAS_NONE)
721                 vd->vdev_alloc_bias = alloc_bias;
722
723         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
724                 vd->vdev_path = spa_strdup(vd->vdev_path);
725
726         /*
727          * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
728          * fault on a vdev and want it to persist across imports (like with
729          * zpool offline -f).
730          */
731         rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
732         if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
733                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
734                 vd->vdev_faulted = 1;
735                 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
736         }
737
738         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
739                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
740         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
741             &vd->vdev_physpath) == 0)
742                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
743
744         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
745             &vd->vdev_enc_sysfs_path) == 0)
746                 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
747
748         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
749                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
750
751         /*
752          * Set the whole_disk property.  If it's not specified, leave the value
753          * as -1.
754          */
755         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
756             &vd->vdev_wholedisk) != 0)
757                 vd->vdev_wholedisk = -1ULL;
758
759         ASSERT0(vic->vic_mapping_object);
760         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
761             &vic->vic_mapping_object);
762         ASSERT0(vic->vic_births_object);
763         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
764             &vic->vic_births_object);
765         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
766         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
767             &vic->vic_prev_indirect_vdev);
768
769         /*
770          * Look for the 'not present' flag.  This will only be set if the device
771          * was not present at the time of import.
772          */
773         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
774             &vd->vdev_not_present);
775
776         /*
777          * Get the alignment requirement.
778          */
779         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
780
781         /*
782          * Retrieve the vdev creation time.
783          */
784         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
785             &vd->vdev_crtxg);
786
787         /*
788          * If we're a top-level vdev, try to load the allocation parameters.
789          */
790         if (top_level &&
791             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
792                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
793                     &vd->vdev_ms_array);
794                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
795                     &vd->vdev_ms_shift);
796                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
797                     &vd->vdev_asize);
798                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
799                     &vd->vdev_removing);
800                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
801                     &vd->vdev_top_zap);
802         } else {
803                 ASSERT0(vd->vdev_top_zap);
804         }
805
806         if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
807                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
808                     alloctype == VDEV_ALLOC_ADD ||
809                     alloctype == VDEV_ALLOC_SPLIT ||
810                     alloctype == VDEV_ALLOC_ROOTPOOL);
811                 /* Note: metaslab_group_create() is now deferred */
812         }
813
814         if (vd->vdev_ops->vdev_op_leaf &&
815             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
816                 (void) nvlist_lookup_uint64(nv,
817                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
818         } else {
819                 ASSERT0(vd->vdev_leaf_zap);
820         }
821
822         /*
823          * If we're a leaf vdev, try to load the DTL object and other state.
824          */
825
826         if (vd->vdev_ops->vdev_op_leaf &&
827             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
828             alloctype == VDEV_ALLOC_ROOTPOOL)) {
829                 if (alloctype == VDEV_ALLOC_LOAD) {
830                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
831                             &vd->vdev_dtl_object);
832                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
833                             &vd->vdev_unspare);
834                 }
835
836                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
837                         uint64_t spare = 0;
838
839                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
840                             &spare) == 0 && spare)
841                                 spa_spare_add(vd);
842                 }
843
844                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
845                     &vd->vdev_offline);
846
847                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
848                     &vd->vdev_resilver_txg);
849
850                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
851                     &vd->vdev_rebuild_txg);
852
853                 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
854                         vdev_defer_resilver(vd);
855
856                 /*
857                  * In general, when importing a pool we want to ignore the
858                  * persistent fault state, as the diagnosis made on another
859                  * system may not be valid in the current context.  The only
860                  * exception is if we forced a vdev to a persistently faulted
861                  * state with 'zpool offline -f'.  The persistent fault will
862                  * remain across imports until cleared.
863                  *
864                  * Local vdevs will remain in the faulted state.
865                  */
866                 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
867                     spa_load_state(spa) == SPA_LOAD_IMPORT) {
868                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
869                             &vd->vdev_faulted);
870                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
871                             &vd->vdev_degraded);
872                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
873                             &vd->vdev_removed);
874
875                         if (vd->vdev_faulted || vd->vdev_degraded) {
876                                 char *aux;
877
878                                 vd->vdev_label_aux =
879                                     VDEV_AUX_ERR_EXCEEDED;
880                                 if (nvlist_lookup_string(nv,
881                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
882                                     strcmp(aux, "external") == 0)
883                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
884                                 else
885                                         vd->vdev_faulted = 0ULL;
886                         }
887                 }
888         }
889
890         /*
891          * Add ourselves to the parent's list of children.
892          */
893         vdev_add_child(parent, vd);
894
895         *vdp = vd;
896
897         return (0);
898 }
899
900 void
901 vdev_free(vdev_t *vd)
902 {
903         spa_t *spa = vd->vdev_spa;
904
905         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
906         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
907         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
908         ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
909
910         /*
911          * Scan queues are normally destroyed at the end of a scan. If the
912          * queue exists here, that implies the vdev is being removed while
913          * the scan is still running.
914          */
915         if (vd->vdev_scan_io_queue != NULL) {
916                 mutex_enter(&vd->vdev_scan_io_queue_lock);
917                 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
918                 vd->vdev_scan_io_queue = NULL;
919                 mutex_exit(&vd->vdev_scan_io_queue_lock);
920         }
921
922         /*
923          * vdev_free() implies closing the vdev first.  This is simpler than
924          * trying to ensure complicated semantics for all callers.
925          */
926         vdev_close(vd);
927
928         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
929         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
930
931         /*
932          * Free all children.
933          */
934         for (int c = 0; c < vd->vdev_children; c++)
935                 vdev_free(vd->vdev_child[c]);
936
937         ASSERT(vd->vdev_child == NULL);
938         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
939
940         /*
941          * Discard allocation state.
942          */
943         if (vd->vdev_mg != NULL) {
944                 vdev_metaslab_fini(vd);
945                 metaslab_group_destroy(vd->vdev_mg);
946                 vd->vdev_mg = NULL;
947         }
948
949         ASSERT0(vd->vdev_stat.vs_space);
950         ASSERT0(vd->vdev_stat.vs_dspace);
951         ASSERT0(vd->vdev_stat.vs_alloc);
952
953         /*
954          * Remove this vdev from its parent's child list.
955          */
956         vdev_remove_child(vd->vdev_parent, vd);
957
958         ASSERT(vd->vdev_parent == NULL);
959         ASSERT(!list_link_active(&vd->vdev_leaf_node));
960
961         /*
962          * Clean up vdev structure.
963          */
964         vdev_queue_fini(vd);
965         vdev_cache_fini(vd);
966
967         if (vd->vdev_path)
968                 spa_strfree(vd->vdev_path);
969         if (vd->vdev_devid)
970                 spa_strfree(vd->vdev_devid);
971         if (vd->vdev_physpath)
972                 spa_strfree(vd->vdev_physpath);
973
974         if (vd->vdev_enc_sysfs_path)
975                 spa_strfree(vd->vdev_enc_sysfs_path);
976
977         if (vd->vdev_fru)
978                 spa_strfree(vd->vdev_fru);
979
980         if (vd->vdev_isspare)
981                 spa_spare_remove(vd);
982         if (vd->vdev_isl2cache)
983                 spa_l2cache_remove(vd);
984
985         txg_list_destroy(&vd->vdev_ms_list);
986         txg_list_destroy(&vd->vdev_dtl_list);
987
988         mutex_enter(&vd->vdev_dtl_lock);
989         space_map_close(vd->vdev_dtl_sm);
990         for (int t = 0; t < DTL_TYPES; t++) {
991                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
992                 range_tree_destroy(vd->vdev_dtl[t]);
993         }
994         mutex_exit(&vd->vdev_dtl_lock);
995
996         EQUIV(vd->vdev_indirect_births != NULL,
997             vd->vdev_indirect_mapping != NULL);
998         if (vd->vdev_indirect_births != NULL) {
999                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1000                 vdev_indirect_births_close(vd->vdev_indirect_births);
1001         }
1002
1003         if (vd->vdev_obsolete_sm != NULL) {
1004                 ASSERT(vd->vdev_removing ||
1005                     vd->vdev_ops == &vdev_indirect_ops);
1006                 space_map_close(vd->vdev_obsolete_sm);
1007                 vd->vdev_obsolete_sm = NULL;
1008         }
1009         range_tree_destroy(vd->vdev_obsolete_segments);
1010         rw_destroy(&vd->vdev_indirect_rwlock);
1011         mutex_destroy(&vd->vdev_obsolete_lock);
1012
1013         mutex_destroy(&vd->vdev_dtl_lock);
1014         mutex_destroy(&vd->vdev_stat_lock);
1015         mutex_destroy(&vd->vdev_probe_lock);
1016         mutex_destroy(&vd->vdev_scan_io_queue_lock);
1017
1018         mutex_destroy(&vd->vdev_initialize_lock);
1019         mutex_destroy(&vd->vdev_initialize_io_lock);
1020         cv_destroy(&vd->vdev_initialize_io_cv);
1021         cv_destroy(&vd->vdev_initialize_cv);
1022
1023         mutex_destroy(&vd->vdev_trim_lock);
1024         mutex_destroy(&vd->vdev_autotrim_lock);
1025         mutex_destroy(&vd->vdev_trim_io_lock);
1026         cv_destroy(&vd->vdev_trim_cv);
1027         cv_destroy(&vd->vdev_autotrim_cv);
1028         cv_destroy(&vd->vdev_trim_io_cv);
1029
1030         mutex_destroy(&vd->vdev_rebuild_lock);
1031         mutex_destroy(&vd->vdev_rebuild_io_lock);
1032         cv_destroy(&vd->vdev_rebuild_cv);
1033         cv_destroy(&vd->vdev_rebuild_io_cv);
1034
1035         zfs_ratelimit_fini(&vd->vdev_delay_rl);
1036         zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1037
1038         if (vd == spa->spa_root_vdev)
1039                 spa->spa_root_vdev = NULL;
1040
1041         kmem_free(vd, sizeof (vdev_t));
1042 }
1043
1044 /*
1045  * Transfer top-level vdev state from svd to tvd.
1046  */
1047 static void
1048 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1049 {
1050         spa_t *spa = svd->vdev_spa;
1051         metaslab_t *msp;
1052         vdev_t *vd;
1053         int t;
1054
1055         ASSERT(tvd == tvd->vdev_top);
1056
1057         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1058         tvd->vdev_ms_array = svd->vdev_ms_array;
1059         tvd->vdev_ms_shift = svd->vdev_ms_shift;
1060         tvd->vdev_ms_count = svd->vdev_ms_count;
1061         tvd->vdev_top_zap = svd->vdev_top_zap;
1062
1063         svd->vdev_ms_array = 0;
1064         svd->vdev_ms_shift = 0;
1065         svd->vdev_ms_count = 0;
1066         svd->vdev_top_zap = 0;
1067
1068         if (tvd->vdev_mg)
1069                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1070         tvd->vdev_mg = svd->vdev_mg;
1071         tvd->vdev_ms = svd->vdev_ms;
1072
1073         svd->vdev_mg = NULL;
1074         svd->vdev_ms = NULL;
1075
1076         if (tvd->vdev_mg != NULL)
1077                 tvd->vdev_mg->mg_vd = tvd;
1078
1079         tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1080         svd->vdev_checkpoint_sm = NULL;
1081
1082         tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1083         svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1084
1085         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1086         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1087         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1088
1089         svd->vdev_stat.vs_alloc = 0;
1090         svd->vdev_stat.vs_space = 0;
1091         svd->vdev_stat.vs_dspace = 0;
1092
1093         /*
1094          * State which may be set on a top-level vdev that's in the
1095          * process of being removed.
1096          */
1097         ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1098         ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1099         ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1100         ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1101         ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1102         ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1103         ASSERT0(tvd->vdev_removing);
1104         ASSERT0(tvd->vdev_rebuilding);
1105         tvd->vdev_removing = svd->vdev_removing;
1106         tvd->vdev_rebuilding = svd->vdev_rebuilding;
1107         tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1108         tvd->vdev_indirect_config = svd->vdev_indirect_config;
1109         tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1110         tvd->vdev_indirect_births = svd->vdev_indirect_births;
1111         range_tree_swap(&svd->vdev_obsolete_segments,
1112             &tvd->vdev_obsolete_segments);
1113         tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1114         svd->vdev_indirect_config.vic_mapping_object = 0;
1115         svd->vdev_indirect_config.vic_births_object = 0;
1116         svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1117         svd->vdev_indirect_mapping = NULL;
1118         svd->vdev_indirect_births = NULL;
1119         svd->vdev_obsolete_sm = NULL;
1120         svd->vdev_removing = 0;
1121         svd->vdev_rebuilding = 0;
1122
1123         for (t = 0; t < TXG_SIZE; t++) {
1124                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1125                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1126                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1127                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1128                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1129                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1130         }
1131
1132         if (list_link_active(&svd->vdev_config_dirty_node)) {
1133                 vdev_config_clean(svd);
1134                 vdev_config_dirty(tvd);
1135         }
1136
1137         if (list_link_active(&svd->vdev_state_dirty_node)) {
1138                 vdev_state_clean(svd);
1139                 vdev_state_dirty(tvd);
1140         }
1141
1142         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1143         svd->vdev_deflate_ratio = 0;
1144
1145         tvd->vdev_islog = svd->vdev_islog;
1146         svd->vdev_islog = 0;
1147
1148         dsl_scan_io_queue_vdev_xfer(svd, tvd);
1149 }
1150
1151 static void
1152 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1153 {
1154         if (vd == NULL)
1155                 return;
1156
1157         vd->vdev_top = tvd;
1158
1159         for (int c = 0; c < vd->vdev_children; c++)
1160                 vdev_top_update(tvd, vd->vdev_child[c]);
1161 }
1162
1163 /*
1164  * Add a mirror/replacing vdev above an existing vdev.
1165  */
1166 vdev_t *
1167 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1168 {
1169         spa_t *spa = cvd->vdev_spa;
1170         vdev_t *pvd = cvd->vdev_parent;
1171         vdev_t *mvd;
1172
1173         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1174
1175         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1176
1177         mvd->vdev_asize = cvd->vdev_asize;
1178         mvd->vdev_min_asize = cvd->vdev_min_asize;
1179         mvd->vdev_max_asize = cvd->vdev_max_asize;
1180         mvd->vdev_psize = cvd->vdev_psize;
1181         mvd->vdev_ashift = cvd->vdev_ashift;
1182         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1183         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1184         mvd->vdev_state = cvd->vdev_state;
1185         mvd->vdev_crtxg = cvd->vdev_crtxg;
1186
1187         vdev_remove_child(pvd, cvd);
1188         vdev_add_child(pvd, mvd);
1189         cvd->vdev_id = mvd->vdev_children;
1190         vdev_add_child(mvd, cvd);
1191         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1192
1193         if (mvd == mvd->vdev_top)
1194                 vdev_top_transfer(cvd, mvd);
1195
1196         return (mvd);
1197 }
1198
1199 /*
1200  * Remove a 1-way mirror/replacing vdev from the tree.
1201  */
1202 void
1203 vdev_remove_parent(vdev_t *cvd)
1204 {
1205         vdev_t *mvd = cvd->vdev_parent;
1206         vdev_t *pvd = mvd->vdev_parent;
1207
1208         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1209
1210         ASSERT(mvd->vdev_children == 1);
1211         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1212             mvd->vdev_ops == &vdev_replacing_ops ||
1213             mvd->vdev_ops == &vdev_spare_ops);
1214         cvd->vdev_ashift = mvd->vdev_ashift;
1215         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1216         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1217         vdev_remove_child(mvd, cvd);
1218         vdev_remove_child(pvd, mvd);
1219
1220         /*
1221          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1222          * Otherwise, we could have detached an offline device, and when we
1223          * go to import the pool we'll think we have two top-level vdevs,
1224          * instead of a different version of the same top-level vdev.
1225          */
1226         if (mvd->vdev_top == mvd) {
1227                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1228                 cvd->vdev_orig_guid = cvd->vdev_guid;
1229                 cvd->vdev_guid += guid_delta;
1230                 cvd->vdev_guid_sum += guid_delta;
1231
1232                 /*
1233                  * If pool not set for autoexpand, we need to also preserve
1234                  * mvd's asize to prevent automatic expansion of cvd.
1235                  * Otherwise if we are adjusting the mirror by attaching and
1236                  * detaching children of non-uniform sizes, the mirror could
1237                  * autoexpand, unexpectedly requiring larger devices to
1238                  * re-establish the mirror.
1239                  */
1240                 if (!cvd->vdev_spa->spa_autoexpand)
1241                         cvd->vdev_asize = mvd->vdev_asize;
1242         }
1243         cvd->vdev_id = mvd->vdev_id;
1244         vdev_add_child(pvd, cvd);
1245         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1246
1247         if (cvd == cvd->vdev_top)
1248                 vdev_top_transfer(mvd, cvd);
1249
1250         ASSERT(mvd->vdev_children == 0);
1251         vdev_free(mvd);
1252 }
1253
1254 static void
1255 vdev_metaslab_group_create(vdev_t *vd)
1256 {
1257         spa_t *spa = vd->vdev_spa;
1258
1259         /*
1260          * metaslab_group_create was delayed until allocation bias was available
1261          */
1262         if (vd->vdev_mg == NULL) {
1263                 metaslab_class_t *mc;
1264
1265                 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1266                         vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1267
1268                 ASSERT3U(vd->vdev_islog, ==,
1269                     (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1270
1271                 switch (vd->vdev_alloc_bias) {
1272                 case VDEV_BIAS_LOG:
1273                         mc = spa_log_class(spa);
1274                         break;
1275                 case VDEV_BIAS_SPECIAL:
1276                         mc = spa_special_class(spa);
1277                         break;
1278                 case VDEV_BIAS_DEDUP:
1279                         mc = spa_dedup_class(spa);
1280                         break;
1281                 default:
1282                         mc = spa_normal_class(spa);
1283                 }
1284
1285                 vd->vdev_mg = metaslab_group_create(mc, vd,
1286                     spa->spa_alloc_count);
1287
1288                 /*
1289                  * The spa ashift min/max only apply for the normal metaslab
1290                  * class. Class destination is late binding so ashift boundry
1291                  * setting had to wait until now.
1292                  */
1293                 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1294                     mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1295                         if (vd->vdev_ashift > spa->spa_max_ashift)
1296                                 spa->spa_max_ashift = vd->vdev_ashift;
1297                         if (vd->vdev_ashift < spa->spa_min_ashift)
1298                                 spa->spa_min_ashift = vd->vdev_ashift;
1299                 }
1300         }
1301 }
1302
1303 int
1304 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1305 {
1306         spa_t *spa = vd->vdev_spa;
1307         objset_t *mos = spa->spa_meta_objset;
1308         uint64_t m;
1309         uint64_t oldc = vd->vdev_ms_count;
1310         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1311         metaslab_t **mspp;
1312         int error;
1313         boolean_t expanding = (oldc != 0);
1314
1315         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1316
1317         /*
1318          * This vdev is not being allocated from yet or is a hole.
1319          */
1320         if (vd->vdev_ms_shift == 0)
1321                 return (0);
1322
1323         ASSERT(!vd->vdev_ishole);
1324
1325         ASSERT(oldc <= newc);
1326
1327         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1328
1329         if (expanding) {
1330                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1331                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1332         }
1333
1334         vd->vdev_ms = mspp;
1335         vd->vdev_ms_count = newc;
1336         for (m = oldc; m < newc; m++) {
1337                 uint64_t object = 0;
1338
1339                 /*
1340                  * vdev_ms_array may be 0 if we are creating the "fake"
1341                  * metaslabs for an indirect vdev for zdb's leak detection.
1342                  * See zdb_leak_init().
1343                  */
1344                 if (txg == 0 && vd->vdev_ms_array != 0) {
1345                         error = dmu_read(mos, vd->vdev_ms_array,
1346                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1347                             DMU_READ_PREFETCH);
1348                         if (error != 0) {
1349                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1350                                     "array [error=%d]", error);
1351                                 return (error);
1352                         }
1353                 }
1354
1355 #ifndef _KERNEL
1356                 /*
1357                  * To accommodate zdb_leak_init() fake indirect
1358                  * metaslabs, we allocate a metaslab group for
1359                  * indirect vdevs which normally don't have one.
1360                  */
1361                 if (vd->vdev_mg == NULL) {
1362                         ASSERT0(vdev_is_concrete(vd));
1363                         vdev_metaslab_group_create(vd);
1364                 }
1365 #endif
1366                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1367                     &(vd->vdev_ms[m]));
1368                 if (error != 0) {
1369                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1370                             error);
1371                         return (error);
1372                 }
1373         }
1374
1375         if (txg == 0)
1376                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1377
1378         /*
1379          * If the vdev is being removed we don't activate
1380          * the metaslabs since we want to ensure that no new
1381          * allocations are performed on this device.
1382          */
1383         if (!expanding && !vd->vdev_removing) {
1384                 metaslab_group_activate(vd->vdev_mg);
1385         }
1386
1387         if (txg == 0)
1388                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1389
1390         /*
1391          * Regardless whether this vdev was just added or it is being
1392          * expanded, the metaslab count has changed. Recalculate the
1393          * block limit.
1394          */
1395         spa_log_sm_set_blocklimit(spa);
1396
1397         return (0);
1398 }
1399
1400 void
1401 vdev_metaslab_fini(vdev_t *vd)
1402 {
1403         if (vd->vdev_checkpoint_sm != NULL) {
1404                 ASSERT(spa_feature_is_active(vd->vdev_spa,
1405                     SPA_FEATURE_POOL_CHECKPOINT));
1406                 space_map_close(vd->vdev_checkpoint_sm);
1407                 /*
1408                  * Even though we close the space map, we need to set its
1409                  * pointer to NULL. The reason is that vdev_metaslab_fini()
1410                  * may be called multiple times for certain operations
1411                  * (i.e. when destroying a pool) so we need to ensure that
1412                  * this clause never executes twice. This logic is similar
1413                  * to the one used for the vdev_ms clause below.
1414                  */
1415                 vd->vdev_checkpoint_sm = NULL;
1416         }
1417
1418         if (vd->vdev_ms != NULL) {
1419                 metaslab_group_t *mg = vd->vdev_mg;
1420                 metaslab_group_passivate(mg);
1421
1422                 uint64_t count = vd->vdev_ms_count;
1423                 for (uint64_t m = 0; m < count; m++) {
1424                         metaslab_t *msp = vd->vdev_ms[m];
1425                         if (msp != NULL)
1426                                 metaslab_fini(msp);
1427                 }
1428                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1429                 vd->vdev_ms = NULL;
1430
1431                 vd->vdev_ms_count = 0;
1432
1433                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1434                         ASSERT0(mg->mg_histogram[i]);
1435         }
1436         ASSERT0(vd->vdev_ms_count);
1437         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1438 }
1439
1440 typedef struct vdev_probe_stats {
1441         boolean_t       vps_readable;
1442         boolean_t       vps_writeable;
1443         int             vps_flags;
1444 } vdev_probe_stats_t;
1445
1446 static void
1447 vdev_probe_done(zio_t *zio)
1448 {
1449         spa_t *spa = zio->io_spa;
1450         vdev_t *vd = zio->io_vd;
1451         vdev_probe_stats_t *vps = zio->io_private;
1452
1453         ASSERT(vd->vdev_probe_zio != NULL);
1454
1455         if (zio->io_type == ZIO_TYPE_READ) {
1456                 if (zio->io_error == 0)
1457                         vps->vps_readable = 1;
1458                 if (zio->io_error == 0 && spa_writeable(spa)) {
1459                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1460                             zio->io_offset, zio->io_size, zio->io_abd,
1461                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1462                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1463                 } else {
1464                         abd_free(zio->io_abd);
1465                 }
1466         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1467                 if (zio->io_error == 0)
1468                         vps->vps_writeable = 1;
1469                 abd_free(zio->io_abd);
1470         } else if (zio->io_type == ZIO_TYPE_NULL) {
1471                 zio_t *pio;
1472                 zio_link_t *zl;
1473
1474                 vd->vdev_cant_read |= !vps->vps_readable;
1475                 vd->vdev_cant_write |= !vps->vps_writeable;
1476
1477                 if (vdev_readable(vd) &&
1478                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1479                         zio->io_error = 0;
1480                 } else {
1481                         ASSERT(zio->io_error != 0);
1482                         vdev_dbgmsg(vd, "failed probe");
1483                         (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1484                             spa, vd, NULL, NULL, 0);
1485                         zio->io_error = SET_ERROR(ENXIO);
1486                 }
1487
1488                 mutex_enter(&vd->vdev_probe_lock);
1489                 ASSERT(vd->vdev_probe_zio == zio);
1490                 vd->vdev_probe_zio = NULL;
1491                 mutex_exit(&vd->vdev_probe_lock);
1492
1493                 zl = NULL;
1494                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1495                         if (!vdev_accessible(vd, pio))
1496                                 pio->io_error = SET_ERROR(ENXIO);
1497
1498                 kmem_free(vps, sizeof (*vps));
1499         }
1500 }
1501
1502 /*
1503  * Determine whether this device is accessible.
1504  *
1505  * Read and write to several known locations: the pad regions of each
1506  * vdev label but the first, which we leave alone in case it contains
1507  * a VTOC.
1508  */
1509 zio_t *
1510 vdev_probe(vdev_t *vd, zio_t *zio)
1511 {
1512         spa_t *spa = vd->vdev_spa;
1513         vdev_probe_stats_t *vps = NULL;
1514         zio_t *pio;
1515
1516         ASSERT(vd->vdev_ops->vdev_op_leaf);
1517
1518         /*
1519          * Don't probe the probe.
1520          */
1521         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1522                 return (NULL);
1523
1524         /*
1525          * To prevent 'probe storms' when a device fails, we create
1526          * just one probe i/o at a time.  All zios that want to probe
1527          * this vdev will become parents of the probe io.
1528          */
1529         mutex_enter(&vd->vdev_probe_lock);
1530
1531         if ((pio = vd->vdev_probe_zio) == NULL) {
1532                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1533
1534                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1535                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1536                     ZIO_FLAG_TRYHARD;
1537
1538                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1539                         /*
1540                          * vdev_cant_read and vdev_cant_write can only
1541                          * transition from TRUE to FALSE when we have the
1542                          * SCL_ZIO lock as writer; otherwise they can only
1543                          * transition from FALSE to TRUE.  This ensures that
1544                          * any zio looking at these values can assume that
1545                          * failures persist for the life of the I/O.  That's
1546                          * important because when a device has intermittent
1547                          * connectivity problems, we want to ensure that
1548                          * they're ascribed to the device (ENXIO) and not
1549                          * the zio (EIO).
1550                          *
1551                          * Since we hold SCL_ZIO as writer here, clear both
1552                          * values so the probe can reevaluate from first
1553                          * principles.
1554                          */
1555                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1556                         vd->vdev_cant_read = B_FALSE;
1557                         vd->vdev_cant_write = B_FALSE;
1558                 }
1559
1560                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1561                     vdev_probe_done, vps,
1562                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1563
1564                 /*
1565                  * We can't change the vdev state in this context, so we
1566                  * kick off an async task to do it on our behalf.
1567                  */
1568                 if (zio != NULL) {
1569                         vd->vdev_probe_wanted = B_TRUE;
1570                         spa_async_request(spa, SPA_ASYNC_PROBE);
1571                 }
1572         }
1573
1574         if (zio != NULL)
1575                 zio_add_child(zio, pio);
1576
1577         mutex_exit(&vd->vdev_probe_lock);
1578
1579         if (vps == NULL) {
1580                 ASSERT(zio != NULL);
1581                 return (NULL);
1582         }
1583
1584         for (int l = 1; l < VDEV_LABELS; l++) {
1585                 zio_nowait(zio_read_phys(pio, vd,
1586                     vdev_label_offset(vd->vdev_psize, l,
1587                     offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1588                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1589                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1590                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1591         }
1592
1593         if (zio == NULL)
1594                 return (pio);
1595
1596         zio_nowait(pio);
1597         return (NULL);
1598 }
1599
1600 static void
1601 vdev_open_child(void *arg)
1602 {
1603         vdev_t *vd = arg;
1604
1605         vd->vdev_open_thread = curthread;
1606         vd->vdev_open_error = vdev_open(vd);
1607         vd->vdev_open_thread = NULL;
1608 }
1609
1610 static boolean_t
1611 vdev_uses_zvols(vdev_t *vd)
1612 {
1613 #ifdef _KERNEL
1614         if (zvol_is_zvol(vd->vdev_path))
1615                 return (B_TRUE);
1616 #endif
1617
1618         for (int c = 0; c < vd->vdev_children; c++)
1619                 if (vdev_uses_zvols(vd->vdev_child[c]))
1620                         return (B_TRUE);
1621
1622         return (B_FALSE);
1623 }
1624
1625 void
1626 vdev_open_children(vdev_t *vd)
1627 {
1628         taskq_t *tq;
1629         int children = vd->vdev_children;
1630
1631         /*
1632          * in order to handle pools on top of zvols, do the opens
1633          * in a single thread so that the same thread holds the
1634          * spa_namespace_lock
1635          */
1636         if (vdev_uses_zvols(vd)) {
1637 retry_sync:
1638                 for (int c = 0; c < children; c++)
1639                         vd->vdev_child[c]->vdev_open_error =
1640                             vdev_open(vd->vdev_child[c]);
1641         } else {
1642                 tq = taskq_create("vdev_open", children, minclsyspri,
1643                     children, children, TASKQ_PREPOPULATE);
1644                 if (tq == NULL)
1645                         goto retry_sync;
1646
1647                 for (int c = 0; c < children; c++)
1648                         VERIFY(taskq_dispatch(tq, vdev_open_child,
1649                             vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1650
1651                 taskq_destroy(tq);
1652         }
1653
1654         vd->vdev_nonrot = B_TRUE;
1655
1656         for (int c = 0; c < children; c++)
1657                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1658 }
1659
1660 /*
1661  * Compute the raidz-deflation ratio.  Note, we hard-code
1662  * in 128k (1 << 17) because it is the "typical" blocksize.
1663  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1664  * otherwise it would inconsistently account for existing bp's.
1665  */
1666 static void
1667 vdev_set_deflate_ratio(vdev_t *vd)
1668 {
1669         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1670                 vd->vdev_deflate_ratio = (1 << 17) /
1671                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1672         }
1673 }
1674
1675 /*
1676  * Maximize performance by inflating the configured ashift for top level
1677  * vdevs to be as close to the physical ashift as possible while maintaining
1678  * administrator defined limits and ensuring it doesn't go below the
1679  * logical ashift.
1680  */
1681 static void
1682 vdev_ashift_optimize(vdev_t *vd)
1683 {
1684         ASSERT(vd == vd->vdev_top);
1685
1686         if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1687                 vd->vdev_ashift = MIN(
1688                     MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1689                     MAX(zfs_vdev_min_auto_ashift,
1690                     vd->vdev_physical_ashift));
1691         } else {
1692                 /*
1693                  * If the logical and physical ashifts are the same, then
1694                  * we ensure that the top-level vdev's ashift is not smaller
1695                  * than our minimum ashift value. For the unusual case
1696                  * where logical ashift > physical ashift, we can't cap
1697                  * the calculated ashift based on max ashift as that
1698                  * would cause failures.
1699                  * We still check if we need to increase it to match
1700                  * the min ashift.
1701                  */
1702                 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1703                     vd->vdev_ashift);
1704         }
1705 }
1706
1707 /*
1708  * Prepare a virtual device for access.
1709  */
1710 int
1711 vdev_open(vdev_t *vd)
1712 {
1713         spa_t *spa = vd->vdev_spa;
1714         int error;
1715         uint64_t osize = 0;
1716         uint64_t max_osize = 0;
1717         uint64_t asize, max_asize, psize;
1718         uint64_t logical_ashift = 0;
1719         uint64_t physical_ashift = 0;
1720
1721         ASSERT(vd->vdev_open_thread == curthread ||
1722             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1723         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1724             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1725             vd->vdev_state == VDEV_STATE_OFFLINE);
1726
1727         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1728         vd->vdev_cant_read = B_FALSE;
1729         vd->vdev_cant_write = B_FALSE;
1730         vd->vdev_min_asize = vdev_get_min_asize(vd);
1731
1732         /*
1733          * If this vdev is not removed, check its fault status.  If it's
1734          * faulted, bail out of the open.
1735          */
1736         if (!vd->vdev_removed && vd->vdev_faulted) {
1737                 ASSERT(vd->vdev_children == 0);
1738                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1739                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1740                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1741                     vd->vdev_label_aux);
1742                 return (SET_ERROR(ENXIO));
1743         } else if (vd->vdev_offline) {
1744                 ASSERT(vd->vdev_children == 0);
1745                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1746                 return (SET_ERROR(ENXIO));
1747         }
1748
1749         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1750             &logical_ashift, &physical_ashift);
1751         /*
1752          * Physical volume size should never be larger than its max size, unless
1753          * the disk has shrunk while we were reading it or the device is buggy
1754          * or damaged: either way it's not safe for use, bail out of the open.
1755          */
1756         if (osize > max_osize) {
1757                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1758                     VDEV_AUX_OPEN_FAILED);
1759                 return (SET_ERROR(ENXIO));
1760         }
1761
1762         /*
1763          * Reset the vdev_reopening flag so that we actually close
1764          * the vdev on error.
1765          */
1766         vd->vdev_reopening = B_FALSE;
1767         if (zio_injection_enabled && error == 0)
1768                 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1769
1770         if (error) {
1771                 if (vd->vdev_removed &&
1772                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1773                         vd->vdev_removed = B_FALSE;
1774
1775                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1776                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1777                             vd->vdev_stat.vs_aux);
1778                 } else {
1779                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1780                             vd->vdev_stat.vs_aux);
1781                 }
1782                 return (error);
1783         }
1784
1785         vd->vdev_removed = B_FALSE;
1786
1787         /*
1788          * Recheck the faulted flag now that we have confirmed that
1789          * the vdev is accessible.  If we're faulted, bail.
1790          */
1791         if (vd->vdev_faulted) {
1792                 ASSERT(vd->vdev_children == 0);
1793                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1794                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1795                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1796                     vd->vdev_label_aux);
1797                 return (SET_ERROR(ENXIO));
1798         }
1799
1800         if (vd->vdev_degraded) {
1801                 ASSERT(vd->vdev_children == 0);
1802                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1803                     VDEV_AUX_ERR_EXCEEDED);
1804         } else {
1805                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1806         }
1807
1808         /*
1809          * For hole or missing vdevs we just return success.
1810          */
1811         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1812                 return (0);
1813
1814         for (int c = 0; c < vd->vdev_children; c++) {
1815                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1816                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1817                             VDEV_AUX_NONE);
1818                         break;
1819                 }
1820         }
1821
1822         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1823         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1824
1825         if (vd->vdev_children == 0) {
1826                 if (osize < SPA_MINDEVSIZE) {
1827                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1828                             VDEV_AUX_TOO_SMALL);
1829                         return (SET_ERROR(EOVERFLOW));
1830                 }
1831                 psize = osize;
1832                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1833                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1834                     VDEV_LABEL_END_SIZE);
1835         } else {
1836                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1837                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1838                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1839                             VDEV_AUX_TOO_SMALL);
1840                         return (SET_ERROR(EOVERFLOW));
1841                 }
1842                 psize = 0;
1843                 asize = osize;
1844                 max_asize = max_osize;
1845         }
1846
1847         /*
1848          * If the vdev was expanded, record this so that we can re-create the
1849          * uberblock rings in labels {2,3}, during the next sync.
1850          */
1851         if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1852                 vd->vdev_copy_uberblocks = B_TRUE;
1853
1854         vd->vdev_psize = psize;
1855
1856         /*
1857          * Make sure the allocatable size hasn't shrunk too much.
1858          */
1859         if (asize < vd->vdev_min_asize) {
1860                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1861                     VDEV_AUX_BAD_LABEL);
1862                 return (SET_ERROR(EINVAL));
1863         }
1864
1865         /*
1866          * We can always set the logical/physical ashift members since
1867          * their values are only used to calculate the vdev_ashift when
1868          * the device is first added to the config. These values should
1869          * not be used for anything else since they may change whenever
1870          * the device is reopened and we don't store them in the label.
1871          */
1872         vd->vdev_physical_ashift =
1873             MAX(physical_ashift, vd->vdev_physical_ashift);
1874         vd->vdev_logical_ashift = MAX(logical_ashift,
1875             vd->vdev_logical_ashift);
1876
1877         if (vd->vdev_asize == 0) {
1878                 /*
1879                  * This is the first-ever open, so use the computed values.
1880                  * For compatibility, a different ashift can be requested.
1881                  */
1882                 vd->vdev_asize = asize;
1883                 vd->vdev_max_asize = max_asize;
1884
1885                 /*
1886                  * If the vdev_ashift was not overriden at creation time,
1887                  * then set it the logical ashift and optimize the ashift.
1888                  */
1889                 if (vd->vdev_ashift == 0) {
1890                         vd->vdev_ashift = vd->vdev_logical_ashift;
1891
1892                         if (vd->vdev_logical_ashift > ASHIFT_MAX) {
1893                                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1894                                     VDEV_AUX_ASHIFT_TOO_BIG);
1895                                 return (SET_ERROR(EDOM));
1896                         }
1897
1898                         if (vd->vdev_top == vd) {
1899                                 vdev_ashift_optimize(vd);
1900                         }
1901                 }
1902                 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1903                     vd->vdev_ashift > ASHIFT_MAX)) {
1904                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1905                             VDEV_AUX_BAD_ASHIFT);
1906                         return (SET_ERROR(EDOM));
1907                 }
1908         } else {
1909                 /*
1910                  * Make sure the alignment required hasn't increased.
1911                  */
1912                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1913                     vd->vdev_ops->vdev_op_leaf) {
1914                         (void) zfs_ereport_post(
1915                             FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1916                             spa, vd, NULL, NULL, 0);
1917                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1918                             VDEV_AUX_BAD_LABEL);
1919                         return (SET_ERROR(EDOM));
1920                 }
1921                 vd->vdev_max_asize = max_asize;
1922         }
1923
1924         /*
1925          * If all children are healthy we update asize if either:
1926          * The asize has increased, due to a device expansion caused by dynamic
1927          * LUN growth or vdev replacement, and automatic expansion is enabled;
1928          * making the additional space available.
1929          *
1930          * The asize has decreased, due to a device shrink usually caused by a
1931          * vdev replace with a smaller device. This ensures that calculations
1932          * based of max_asize and asize e.g. esize are always valid. It's safe
1933          * to do this as we've already validated that asize is greater than
1934          * vdev_min_asize.
1935          */
1936         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1937             ((asize > vd->vdev_asize &&
1938             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1939             (asize < vd->vdev_asize)))
1940                 vd->vdev_asize = asize;
1941
1942         vdev_set_min_asize(vd);
1943
1944         /*
1945          * Ensure we can issue some IO before declaring the
1946          * vdev open for business.
1947          */
1948         if (vd->vdev_ops->vdev_op_leaf &&
1949             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1950                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1951                     VDEV_AUX_ERR_EXCEEDED);
1952                 return (error);
1953         }
1954
1955         /*
1956          * If this is a leaf vdev, assess whether a resilver is needed.
1957          * But don't do this if we are doing a reopen for a scrub, since
1958          * this would just restart the scrub we are already doing.
1959          */
1960         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
1961                 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
1962
1963         return (0);
1964 }
1965
1966 /*
1967  * Called once the vdevs are all opened, this routine validates the label
1968  * contents. This needs to be done before vdev_load() so that we don't
1969  * inadvertently do repair I/Os to the wrong device.
1970  *
1971  * This function will only return failure if one of the vdevs indicates that it
1972  * has since been destroyed or exported.  This is only possible if
1973  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1974  * will be updated but the function will return 0.
1975  */
1976 int
1977 vdev_validate(vdev_t *vd)
1978 {
1979         spa_t *spa = vd->vdev_spa;
1980         nvlist_t *label;
1981         uint64_t guid = 0, aux_guid = 0, top_guid;
1982         uint64_t state;
1983         nvlist_t *nvl;
1984         uint64_t txg;
1985
1986         if (vdev_validate_skip)
1987                 return (0);
1988
1989         for (uint64_t c = 0; c < vd->vdev_children; c++)
1990                 if (vdev_validate(vd->vdev_child[c]) != 0)
1991                         return (SET_ERROR(EBADF));
1992
1993         /*
1994          * If the device has already failed, or was marked offline, don't do
1995          * any further validation.  Otherwise, label I/O will fail and we will
1996          * overwrite the previous state.
1997          */
1998         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1999                 return (0);
2000
2001         /*
2002          * If we are performing an extreme rewind, we allow for a label that
2003          * was modified at a point after the current txg.
2004          * If config lock is not held do not check for the txg. spa_sync could
2005          * be updating the vdev's label before updating spa_last_synced_txg.
2006          */
2007         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2008             spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2009                 txg = UINT64_MAX;
2010         else
2011                 txg = spa_last_synced_txg(spa);
2012
2013         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2014                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2015                     VDEV_AUX_BAD_LABEL);
2016                 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2017                     "txg %llu", (u_longlong_t)txg);
2018                 return (0);
2019         }
2020
2021         /*
2022          * Determine if this vdev has been split off into another
2023          * pool.  If so, then refuse to open it.
2024          */
2025         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2026             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2027                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2028                     VDEV_AUX_SPLIT_POOL);
2029                 nvlist_free(label);
2030                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2031                 return (0);
2032         }
2033
2034         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2035                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2036                     VDEV_AUX_CORRUPT_DATA);
2037                 nvlist_free(label);
2038                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2039                     ZPOOL_CONFIG_POOL_GUID);
2040                 return (0);
2041         }
2042
2043         /*
2044          * If config is not trusted then ignore the spa guid check. This is
2045          * necessary because if the machine crashed during a re-guid the new
2046          * guid might have been written to all of the vdev labels, but not the
2047          * cached config. The check will be performed again once we have the
2048          * trusted config from the MOS.
2049          */
2050         if (spa->spa_trust_config && guid != spa_guid(spa)) {
2051                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2052                     VDEV_AUX_CORRUPT_DATA);
2053                 nvlist_free(label);
2054                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2055                     "match config (%llu != %llu)", (u_longlong_t)guid,
2056                     (u_longlong_t)spa_guid(spa));
2057                 return (0);
2058         }
2059
2060         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2061             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2062             &aux_guid) != 0)
2063                 aux_guid = 0;
2064
2065         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2066                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2067                     VDEV_AUX_CORRUPT_DATA);
2068                 nvlist_free(label);
2069                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2070                     ZPOOL_CONFIG_GUID);
2071                 return (0);
2072         }
2073
2074         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2075             != 0) {
2076                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2077                     VDEV_AUX_CORRUPT_DATA);
2078                 nvlist_free(label);
2079                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2080                     ZPOOL_CONFIG_TOP_GUID);
2081                 return (0);
2082         }
2083
2084         /*
2085          * If this vdev just became a top-level vdev because its sibling was
2086          * detached, it will have adopted the parent's vdev guid -- but the
2087          * label may or may not be on disk yet. Fortunately, either version
2088          * of the label will have the same top guid, so if we're a top-level
2089          * vdev, we can safely compare to that instead.
2090          * However, if the config comes from a cachefile that failed to update
2091          * after the detach, a top-level vdev will appear as a non top-level
2092          * vdev in the config. Also relax the constraints if we perform an
2093          * extreme rewind.
2094          *
2095          * If we split this vdev off instead, then we also check the
2096          * original pool's guid. We don't want to consider the vdev
2097          * corrupt if it is partway through a split operation.
2098          */
2099         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2100                 boolean_t mismatch = B_FALSE;
2101                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2102                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2103                                 mismatch = B_TRUE;
2104                 } else {
2105                         if (vd->vdev_guid != top_guid &&
2106                             vd->vdev_top->vdev_guid != guid)
2107                                 mismatch = B_TRUE;
2108                 }
2109
2110                 if (mismatch) {
2111                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2112                             VDEV_AUX_CORRUPT_DATA);
2113                         nvlist_free(label);
2114                         vdev_dbgmsg(vd, "vdev_validate: config guid "
2115                             "doesn't match label guid");
2116                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2117                             (u_longlong_t)vd->vdev_guid,
2118                             (u_longlong_t)vd->vdev_top->vdev_guid);
2119                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2120                             "aux_guid %llu", (u_longlong_t)guid,
2121                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2122                         return (0);
2123                 }
2124         }
2125
2126         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2127             &state) != 0) {
2128                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2129                     VDEV_AUX_CORRUPT_DATA);
2130                 nvlist_free(label);
2131                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2132                     ZPOOL_CONFIG_POOL_STATE);
2133                 return (0);
2134         }
2135
2136         nvlist_free(label);
2137
2138         /*
2139          * If this is a verbatim import, no need to check the
2140          * state of the pool.
2141          */
2142         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2143             spa_load_state(spa) == SPA_LOAD_OPEN &&
2144             state != POOL_STATE_ACTIVE) {
2145                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2146                     "for spa %s", (u_longlong_t)state, spa->spa_name);
2147                 return (SET_ERROR(EBADF));
2148         }
2149
2150         /*
2151          * If we were able to open and validate a vdev that was
2152          * previously marked permanently unavailable, clear that state
2153          * now.
2154          */
2155         if (vd->vdev_not_present)
2156                 vd->vdev_not_present = 0;
2157
2158         return (0);
2159 }
2160
2161 static void
2162 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2163 {
2164         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2165                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2166                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2167                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2168                             dvd->vdev_path, svd->vdev_path);
2169                         spa_strfree(dvd->vdev_path);
2170                         dvd->vdev_path = spa_strdup(svd->vdev_path);
2171                 }
2172         } else if (svd->vdev_path != NULL) {
2173                 dvd->vdev_path = spa_strdup(svd->vdev_path);
2174                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2175                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2176         }
2177 }
2178
2179 /*
2180  * Recursively copy vdev paths from one vdev to another. Source and destination
2181  * vdev trees must have same geometry otherwise return error. Intended to copy
2182  * paths from userland config into MOS config.
2183  */
2184 int
2185 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2186 {
2187         if ((svd->vdev_ops == &vdev_missing_ops) ||
2188             (svd->vdev_ishole && dvd->vdev_ishole) ||
2189             (dvd->vdev_ops == &vdev_indirect_ops))
2190                 return (0);
2191
2192         if (svd->vdev_ops != dvd->vdev_ops) {
2193                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2194                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2195                 return (SET_ERROR(EINVAL));
2196         }
2197
2198         if (svd->vdev_guid != dvd->vdev_guid) {
2199                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2200                     "%llu)", (u_longlong_t)svd->vdev_guid,
2201                     (u_longlong_t)dvd->vdev_guid);
2202                 return (SET_ERROR(EINVAL));
2203         }
2204
2205         if (svd->vdev_children != dvd->vdev_children) {
2206                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2207                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
2208                     (u_longlong_t)dvd->vdev_children);
2209                 return (SET_ERROR(EINVAL));
2210         }
2211
2212         for (uint64_t i = 0; i < svd->vdev_children; i++) {
2213                 int error = vdev_copy_path_strict(svd->vdev_child[i],
2214                     dvd->vdev_child[i]);
2215                 if (error != 0)
2216                         return (error);
2217         }
2218
2219         if (svd->vdev_ops->vdev_op_leaf)
2220                 vdev_copy_path_impl(svd, dvd);
2221
2222         return (0);
2223 }
2224
2225 static void
2226 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2227 {
2228         ASSERT(stvd->vdev_top == stvd);
2229         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2230
2231         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2232                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2233         }
2234
2235         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2236                 return;
2237
2238         /*
2239          * The idea here is that while a vdev can shift positions within
2240          * a top vdev (when replacing, attaching mirror, etc.) it cannot
2241          * step outside of it.
2242          */
2243         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2244
2245         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2246                 return;
2247
2248         ASSERT(vd->vdev_ops->vdev_op_leaf);
2249
2250         vdev_copy_path_impl(vd, dvd);
2251 }
2252
2253 /*
2254  * Recursively copy vdev paths from one root vdev to another. Source and
2255  * destination vdev trees may differ in geometry. For each destination leaf
2256  * vdev, search a vdev with the same guid and top vdev id in the source.
2257  * Intended to copy paths from userland config into MOS config.
2258  */
2259 void
2260 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2261 {
2262         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2263         ASSERT(srvd->vdev_ops == &vdev_root_ops);
2264         ASSERT(drvd->vdev_ops == &vdev_root_ops);
2265
2266         for (uint64_t i = 0; i < children; i++) {
2267                 vdev_copy_path_search(srvd->vdev_child[i],
2268                     drvd->vdev_child[i]);
2269         }
2270 }
2271
2272 /*
2273  * Close a virtual device.
2274  */
2275 void
2276 vdev_close(vdev_t *vd)
2277 {
2278         vdev_t *pvd = vd->vdev_parent;
2279         spa_t *spa __maybe_unused = vd->vdev_spa;
2280
2281         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2282
2283         /*
2284          * If our parent is reopening, then we are as well, unless we are
2285          * going offline.
2286          */
2287         if (pvd != NULL && pvd->vdev_reopening)
2288                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2289
2290         vd->vdev_ops->vdev_op_close(vd);
2291
2292         vdev_cache_purge(vd);
2293
2294         /*
2295          * We record the previous state before we close it, so that if we are
2296          * doing a reopen(), we don't generate FMA ereports if we notice that
2297          * it's still faulted.
2298          */
2299         vd->vdev_prevstate = vd->vdev_state;
2300
2301         if (vd->vdev_offline)
2302                 vd->vdev_state = VDEV_STATE_OFFLINE;
2303         else
2304                 vd->vdev_state = VDEV_STATE_CLOSED;
2305         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2306 }
2307
2308 void
2309 vdev_hold(vdev_t *vd)
2310 {
2311         spa_t *spa = vd->vdev_spa;
2312
2313         ASSERT(spa_is_root(spa));
2314         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2315                 return;
2316
2317         for (int c = 0; c < vd->vdev_children; c++)
2318                 vdev_hold(vd->vdev_child[c]);
2319
2320         if (vd->vdev_ops->vdev_op_leaf)
2321                 vd->vdev_ops->vdev_op_hold(vd);
2322 }
2323
2324 void
2325 vdev_rele(vdev_t *vd)
2326 {
2327         ASSERT(spa_is_root(vd->vdev_spa));
2328         for (int c = 0; c < vd->vdev_children; c++)
2329                 vdev_rele(vd->vdev_child[c]);
2330
2331         if (vd->vdev_ops->vdev_op_leaf)
2332                 vd->vdev_ops->vdev_op_rele(vd);
2333 }
2334
2335 /*
2336  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2337  * reopen leaf vdevs which had previously been opened as they might deadlock
2338  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2339  * If the leaf has never been opened then open it, as usual.
2340  */
2341 void
2342 vdev_reopen(vdev_t *vd)
2343 {
2344         spa_t *spa = vd->vdev_spa;
2345
2346         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2347
2348         /* set the reopening flag unless we're taking the vdev offline */
2349         vd->vdev_reopening = !vd->vdev_offline;
2350         vdev_close(vd);
2351         (void) vdev_open(vd);
2352
2353         /*
2354          * Call vdev_validate() here to make sure we have the same device.
2355          * Otherwise, a device with an invalid label could be successfully
2356          * opened in response to vdev_reopen().
2357          */
2358         if (vd->vdev_aux) {
2359                 (void) vdev_validate_aux(vd);
2360                 if (vdev_readable(vd) && vdev_writeable(vd) &&
2361                     vd->vdev_aux == &spa->spa_l2cache) {
2362                         /*
2363                          * In case the vdev is present we should evict all ARC
2364                          * buffers and pointers to log blocks and reclaim their
2365                          * space before restoring its contents to L2ARC.
2366                          */
2367                         if (l2arc_vdev_present(vd)) {
2368                                 l2arc_rebuild_vdev(vd, B_TRUE);
2369                         } else {
2370                                 l2arc_add_vdev(spa, vd);
2371                         }
2372                         spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2373                         spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2374                 }
2375         } else {
2376                 (void) vdev_validate(vd);
2377         }
2378
2379         /*
2380          * Reassess parent vdev's health.
2381          */
2382         vdev_propagate_state(vd);
2383 }
2384
2385 int
2386 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2387 {
2388         int error;
2389
2390         /*
2391          * Normally, partial opens (e.g. of a mirror) are allowed.
2392          * For a create, however, we want to fail the request if
2393          * there are any components we can't open.
2394          */
2395         error = vdev_open(vd);
2396
2397         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2398                 vdev_close(vd);
2399                 return (error ? error : SET_ERROR(ENXIO));
2400         }
2401
2402         /*
2403          * Recursively load DTLs and initialize all labels.
2404          */
2405         if ((error = vdev_dtl_load(vd)) != 0 ||
2406             (error = vdev_label_init(vd, txg, isreplacing ?
2407             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2408                 vdev_close(vd);
2409                 return (error);
2410         }
2411
2412         return (0);
2413 }
2414
2415 void
2416 vdev_metaslab_set_size(vdev_t *vd)
2417 {
2418         uint64_t asize = vd->vdev_asize;
2419         uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2420         uint64_t ms_shift;
2421
2422         /*
2423          * There are two dimensions to the metaslab sizing calculation:
2424          * the size of the metaslab and the count of metaslabs per vdev.
2425          *
2426          * The default values used below are a good balance between memory
2427          * usage (larger metaslab size means more memory needed for loaded
2428          * metaslabs; more metaslabs means more memory needed for the
2429          * metaslab_t structs), metaslab load time (larger metaslabs take
2430          * longer to load), and metaslab sync time (more metaslabs means
2431          * more time spent syncing all of them).
2432          *
2433          * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2434          * The range of the dimensions are as follows:
2435          *
2436          *      2^29 <= ms_size  <= 2^34
2437          *        16 <= ms_count <= 131,072
2438          *
2439          * On the lower end of vdev sizes, we aim for metaslabs sizes of
2440          * at least 512MB (2^29) to minimize fragmentation effects when
2441          * testing with smaller devices.  However, the count constraint
2442          * of at least 16 metaslabs will override this minimum size goal.
2443          *
2444          * On the upper end of vdev sizes, we aim for a maximum metaslab
2445          * size of 16GB.  However, we will cap the total count to 2^17
2446          * metaslabs to keep our memory footprint in check and let the
2447          * metaslab size grow from there if that limit is hit.
2448          *
2449          * The net effect of applying above constrains is summarized below.
2450          *
2451          *   vdev size       metaslab count
2452          *  --------------|-----------------
2453          *      < 8GB        ~16
2454          *  8GB   - 100GB   one per 512MB
2455          *  100GB - 3TB     ~200
2456          *  3TB   - 2PB     one per 16GB
2457          *      > 2PB       ~131,072
2458          *  --------------------------------
2459          *
2460          *  Finally, note that all of the above calculate the initial
2461          *  number of metaslabs. Expanding a top-level vdev will result
2462          *  in additional metaslabs being allocated making it possible
2463          *  to exceed the zfs_vdev_ms_count_limit.
2464          */
2465
2466         if (ms_count < zfs_vdev_min_ms_count)
2467                 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2468         else if (ms_count > zfs_vdev_default_ms_count)
2469                 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2470         else
2471                 ms_shift = zfs_vdev_default_ms_shift;
2472
2473         if (ms_shift < SPA_MAXBLOCKSHIFT) {
2474                 ms_shift = SPA_MAXBLOCKSHIFT;
2475         } else if (ms_shift > zfs_vdev_max_ms_shift) {
2476                 ms_shift = zfs_vdev_max_ms_shift;
2477                 /* cap the total count to constrain memory footprint */
2478                 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2479                         ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2480         }
2481
2482         vd->vdev_ms_shift = ms_shift;
2483         ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2484 }
2485
2486 void
2487 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2488 {
2489         ASSERT(vd == vd->vdev_top);
2490         /* indirect vdevs don't have metaslabs or dtls */
2491         ASSERT(vdev_is_concrete(vd) || flags == 0);
2492         ASSERT(ISP2(flags));
2493         ASSERT(spa_writeable(vd->vdev_spa));
2494
2495         if (flags & VDD_METASLAB)
2496                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2497
2498         if (flags & VDD_DTL)
2499                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2500
2501         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2502 }
2503
2504 void
2505 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2506 {
2507         for (int c = 0; c < vd->vdev_children; c++)
2508                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2509
2510         if (vd->vdev_ops->vdev_op_leaf)
2511                 vdev_dirty(vd->vdev_top, flags, vd, txg);
2512 }
2513
2514 /*
2515  * DTLs.
2516  *
2517  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2518  * the vdev has less than perfect replication.  There are four kinds of DTL:
2519  *
2520  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2521  *
2522  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2523  *
2524  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2525  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2526  *      txgs that was scrubbed.
2527  *
2528  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2529  *      persistent errors or just some device being offline.
2530  *      Unlike the other three, the DTL_OUTAGE map is not generally
2531  *      maintained; it's only computed when needed, typically to
2532  *      determine whether a device can be detached.
2533  *
2534  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2535  * either has the data or it doesn't.
2536  *
2537  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2538  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2539  * if any child is less than fully replicated, then so is its parent.
2540  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2541  * comprising only those txgs which appear in 'maxfaults' or more children;
2542  * those are the txgs we don't have enough replication to read.  For example,
2543  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2544  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2545  * two child DTL_MISSING maps.
2546  *
2547  * It should be clear from the above that to compute the DTLs and outage maps
2548  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2549  * Therefore, that is all we keep on disk.  When loading the pool, or after
2550  * a configuration change, we generate all other DTLs from first principles.
2551  */
2552 void
2553 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2554 {
2555         range_tree_t *rt = vd->vdev_dtl[t];
2556
2557         ASSERT(t < DTL_TYPES);
2558         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2559         ASSERT(spa_writeable(vd->vdev_spa));
2560
2561         mutex_enter(&vd->vdev_dtl_lock);
2562         if (!range_tree_contains(rt, txg, size))
2563                 range_tree_add(rt, txg, size);
2564         mutex_exit(&vd->vdev_dtl_lock);
2565 }
2566
2567 boolean_t
2568 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2569 {
2570         range_tree_t *rt = vd->vdev_dtl[t];
2571         boolean_t dirty = B_FALSE;
2572
2573         ASSERT(t < DTL_TYPES);
2574         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2575
2576         /*
2577          * While we are loading the pool, the DTLs have not been loaded yet.
2578          * Ignore the DTLs and try all devices.  This avoids a recursive
2579          * mutex enter on the vdev_dtl_lock, and also makes us try hard
2580          * when loading the pool (relying on the checksum to ensure that
2581          * we get the right data -- note that we while loading, we are
2582          * only reading the MOS, which is always checksummed).
2583          */
2584         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2585                 return (B_FALSE);
2586
2587         mutex_enter(&vd->vdev_dtl_lock);
2588         if (!range_tree_is_empty(rt))
2589                 dirty = range_tree_contains(rt, txg, size);
2590         mutex_exit(&vd->vdev_dtl_lock);
2591
2592         return (dirty);
2593 }
2594
2595 boolean_t
2596 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2597 {
2598         range_tree_t *rt = vd->vdev_dtl[t];
2599         boolean_t empty;
2600
2601         mutex_enter(&vd->vdev_dtl_lock);
2602         empty = range_tree_is_empty(rt);
2603         mutex_exit(&vd->vdev_dtl_lock);
2604
2605         return (empty);
2606 }
2607
2608 /*
2609  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2610  */
2611 boolean_t
2612 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2613 {
2614         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2615
2616         if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2617             vd->vdev_ops->vdev_op_leaf)
2618                 return (B_TRUE);
2619
2620         return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2621 }
2622
2623 /*
2624  * Returns the lowest txg in the DTL range.
2625  */
2626 static uint64_t
2627 vdev_dtl_min(vdev_t *vd)
2628 {
2629         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2630         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2631         ASSERT0(vd->vdev_children);
2632
2633         return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2634 }
2635
2636 /*
2637  * Returns the highest txg in the DTL.
2638  */
2639 static uint64_t
2640 vdev_dtl_max(vdev_t *vd)
2641 {
2642         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2643         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2644         ASSERT0(vd->vdev_children);
2645
2646         return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2647 }
2648
2649 /*
2650  * Determine if a resilvering vdev should remove any DTL entries from
2651  * its range. If the vdev was resilvering for the entire duration of the
2652  * scan then it should excise that range from its DTLs. Otherwise, this
2653  * vdev is considered partially resilvered and should leave its DTL
2654  * entries intact. The comment in vdev_dtl_reassess() describes how we
2655  * excise the DTLs.
2656  */
2657 static boolean_t
2658 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2659 {
2660         ASSERT0(vd->vdev_children);
2661
2662         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2663                 return (B_FALSE);
2664
2665         if (vd->vdev_resilver_deferred)
2666                 return (B_FALSE);
2667
2668         if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2669                 return (B_TRUE);
2670
2671         if (rebuild_done) {
2672                 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2673                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2674
2675                 /* Rebuild not initiated by attach */
2676                 if (vd->vdev_rebuild_txg == 0)
2677                         return (B_TRUE);
2678
2679                 /*
2680                  * When a rebuild completes without error then all missing data
2681                  * up to the rebuild max txg has been reconstructed and the DTL
2682                  * is eligible for excision.
2683                  */
2684                 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2685                     vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2686                         ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2687                         ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2688                         ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2689                         return (B_TRUE);
2690                 }
2691         } else {
2692                 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2693                 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2694
2695                 /* Resilver not initiated by attach */
2696                 if (vd->vdev_resilver_txg == 0)
2697                         return (B_TRUE);
2698
2699                 /*
2700                  * When a resilver is initiated the scan will assign the
2701                  * scn_max_txg value to the highest txg value that exists
2702                  * in all DTLs. If this device's max DTL is not part of this
2703                  * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2704                  * then it is not eligible for excision.
2705                  */
2706                 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2707                         ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2708                         ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2709                         ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2710                         return (B_TRUE);
2711                 }
2712         }
2713
2714         return (B_FALSE);
2715 }
2716
2717 /*
2718  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2719  * write operations will be issued to the pool.
2720  */
2721 void
2722 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2723     boolean_t scrub_done, boolean_t rebuild_done)
2724 {
2725         spa_t *spa = vd->vdev_spa;
2726         avl_tree_t reftree;
2727         int minref;
2728
2729         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2730
2731         for (int c = 0; c < vd->vdev_children; c++)
2732                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2733                     scrub_txg, scrub_done, rebuild_done);
2734
2735         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2736                 return;
2737
2738         if (vd->vdev_ops->vdev_op_leaf) {
2739                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2740                 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2741                 boolean_t check_excise = B_FALSE;
2742                 boolean_t wasempty = B_TRUE;
2743
2744                 mutex_enter(&vd->vdev_dtl_lock);
2745
2746                 /*
2747                  * If requested, pretend the scan or rebuild completed cleanly.
2748                  */
2749                 if (zfs_scan_ignore_errors) {
2750                         if (scn != NULL)
2751                                 scn->scn_phys.scn_errors = 0;
2752                         if (vr != NULL)
2753                                 vr->vr_rebuild_phys.vrp_errors = 0;
2754                 }
2755
2756                 if (scrub_txg != 0 &&
2757                     !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2758                         wasempty = B_FALSE;
2759                         zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
2760                             "dtl:%llu/%llu errors:%llu",
2761                             (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
2762                             (u_longlong_t)scrub_txg, spa->spa_scrub_started,
2763                             (u_longlong_t)vdev_dtl_min(vd),
2764                             (u_longlong_t)vdev_dtl_max(vd),
2765                             (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
2766                 }
2767
2768                 /*
2769                  * If we've completed a scrub/resilver or a rebuild cleanly
2770                  * then determine if this vdev should remove any DTLs. We
2771                  * only want to excise regions on vdevs that were available
2772                  * during the entire duration of this scan.
2773                  */
2774                 if (rebuild_done &&
2775                     vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
2776                         check_excise = B_TRUE;
2777                 } else {
2778                         if (spa->spa_scrub_started ||
2779                             (scn != NULL && scn->scn_phys.scn_errors == 0)) {
2780                                 check_excise = B_TRUE;
2781                         }
2782                 }
2783
2784                 if (scrub_txg && check_excise &&
2785                     vdev_dtl_should_excise(vd, rebuild_done)) {
2786                         /*
2787                          * We completed a scrub, resilver or rebuild up to
2788                          * scrub_txg.  If we did it without rebooting, then
2789                          * the scrub dtl will be valid, so excise the old
2790                          * region and fold in the scrub dtl.  Otherwise,
2791                          * leave the dtl as-is if there was an error.
2792                          *
2793                          * There's little trick here: to excise the beginning
2794                          * of the DTL_MISSING map, we put it into a reference
2795                          * tree and then add a segment with refcnt -1 that
2796                          * covers the range [0, scrub_txg).  This means
2797                          * that each txg in that range has refcnt -1 or 0.
2798                          * We then add DTL_SCRUB with a refcnt of 2, so that
2799                          * entries in the range [0, scrub_txg) will have a
2800                          * positive refcnt -- either 1 or 2.  We then convert
2801                          * the reference tree into the new DTL_MISSING map.
2802                          */
2803                         space_reftree_create(&reftree);
2804                         space_reftree_add_map(&reftree,
2805                             vd->vdev_dtl[DTL_MISSING], 1);
2806                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2807                         space_reftree_add_map(&reftree,
2808                             vd->vdev_dtl[DTL_SCRUB], 2);
2809                         space_reftree_generate_map(&reftree,
2810                             vd->vdev_dtl[DTL_MISSING], 1);
2811                         space_reftree_destroy(&reftree);
2812
2813                         if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2814                                 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
2815                                     (u_longlong_t)vdev_dtl_min(vd),
2816                                     (u_longlong_t)vdev_dtl_max(vd));
2817                         } else if (!wasempty) {
2818                                 zfs_dbgmsg("DTL_MISSING is now empty");
2819                         }
2820                 }
2821                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2822                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2823                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2824                 if (scrub_done)
2825                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2826                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2827                 if (!vdev_readable(vd))
2828                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2829                 else
2830                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2831                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2832
2833                 /*
2834                  * If the vdev was resilvering or rebuilding and no longer
2835                  * has any DTLs then reset the appropriate flag and dirty
2836                  * the top level so that we persist the change.
2837                  */
2838                 if (txg != 0 &&
2839                     range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2840                     range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2841                         if (vd->vdev_rebuild_txg != 0) {
2842                                 vd->vdev_rebuild_txg = 0;
2843                                 vdev_config_dirty(vd->vdev_top);
2844                         } else if (vd->vdev_resilver_txg != 0) {
2845                                 vd->vdev_resilver_txg = 0;
2846                                 vdev_config_dirty(vd->vdev_top);
2847                         }
2848                 }
2849
2850                 mutex_exit(&vd->vdev_dtl_lock);
2851
2852                 if (txg != 0)
2853                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2854                 return;
2855         }
2856
2857         mutex_enter(&vd->vdev_dtl_lock);
2858         for (int t = 0; t < DTL_TYPES; t++) {
2859                 /* account for child's outage in parent's missing map */
2860                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2861                 if (t == DTL_SCRUB)
2862                         continue;                       /* leaf vdevs only */
2863                 if (t == DTL_PARTIAL)
2864                         minref = 1;                     /* i.e. non-zero */
2865                 else if (vd->vdev_nparity != 0)
2866                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2867                 else
2868                         minref = vd->vdev_children;     /* any kind of mirror */
2869                 space_reftree_create(&reftree);
2870                 for (int c = 0; c < vd->vdev_children; c++) {
2871                         vdev_t *cvd = vd->vdev_child[c];
2872                         mutex_enter(&cvd->vdev_dtl_lock);
2873                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2874                         mutex_exit(&cvd->vdev_dtl_lock);
2875                 }
2876                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2877                 space_reftree_destroy(&reftree);
2878         }
2879         mutex_exit(&vd->vdev_dtl_lock);
2880 }
2881
2882 int
2883 vdev_dtl_load(vdev_t *vd)
2884 {
2885         spa_t *spa = vd->vdev_spa;
2886         objset_t *mos = spa->spa_meta_objset;
2887         int error = 0;
2888
2889         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2890                 ASSERT(vdev_is_concrete(vd));
2891
2892                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2893                     vd->vdev_dtl_object, 0, -1ULL, 0);
2894                 if (error)
2895                         return (error);
2896                 ASSERT(vd->vdev_dtl_sm != NULL);
2897
2898                 mutex_enter(&vd->vdev_dtl_lock);
2899                 error = space_map_load(vd->vdev_dtl_sm,
2900                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2901                 mutex_exit(&vd->vdev_dtl_lock);
2902
2903                 return (error);
2904         }
2905
2906         for (int c = 0; c < vd->vdev_children; c++) {
2907                 error = vdev_dtl_load(vd->vdev_child[c]);
2908                 if (error != 0)
2909                         break;
2910         }
2911
2912         return (error);
2913 }
2914
2915 static void
2916 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2917 {
2918         spa_t *spa = vd->vdev_spa;
2919         objset_t *mos = spa->spa_meta_objset;
2920         vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2921         const char *string;
2922
2923         ASSERT(alloc_bias != VDEV_BIAS_NONE);
2924
2925         string =
2926             (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2927             (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2928             (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2929
2930         ASSERT(string != NULL);
2931         VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2932             1, strlen(string) + 1, string, tx));
2933
2934         if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2935                 spa_activate_allocation_classes(spa, tx);
2936         }
2937 }
2938
2939 void
2940 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2941 {
2942         spa_t *spa = vd->vdev_spa;
2943
2944         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2945         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2946             zapobj, tx));
2947 }
2948
2949 uint64_t
2950 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2951 {
2952         spa_t *spa = vd->vdev_spa;
2953         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2954             DMU_OT_NONE, 0, tx);
2955
2956         ASSERT(zap != 0);
2957         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2958             zap, tx));
2959
2960         return (zap);
2961 }
2962
2963 void
2964 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2965 {
2966         if (vd->vdev_ops != &vdev_hole_ops &&
2967             vd->vdev_ops != &vdev_missing_ops &&
2968             vd->vdev_ops != &vdev_root_ops &&
2969             !vd->vdev_top->vdev_removing) {
2970                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2971                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2972                 }
2973                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2974                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2975                         if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2976                                 vdev_zap_allocation_data(vd, tx);
2977                 }
2978         }
2979
2980         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2981                 vdev_construct_zaps(vd->vdev_child[i], tx);
2982         }
2983 }
2984
2985 static void
2986 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2987 {
2988         spa_t *spa = vd->vdev_spa;
2989         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2990         objset_t *mos = spa->spa_meta_objset;
2991         range_tree_t *rtsync;
2992         dmu_tx_t *tx;
2993         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2994
2995         ASSERT(vdev_is_concrete(vd));
2996         ASSERT(vd->vdev_ops->vdev_op_leaf);
2997
2998         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2999
3000         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3001                 mutex_enter(&vd->vdev_dtl_lock);
3002                 space_map_free(vd->vdev_dtl_sm, tx);
3003                 space_map_close(vd->vdev_dtl_sm);
3004                 vd->vdev_dtl_sm = NULL;
3005                 mutex_exit(&vd->vdev_dtl_lock);
3006
3007                 /*
3008                  * We only destroy the leaf ZAP for detached leaves or for
3009                  * removed log devices. Removed data devices handle leaf ZAP
3010                  * cleanup later, once cancellation is no longer possible.
3011                  */
3012                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3013                     vd->vdev_top->vdev_islog)) {
3014                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3015                         vd->vdev_leaf_zap = 0;
3016                 }
3017
3018                 dmu_tx_commit(tx);
3019                 return;
3020         }
3021
3022         if (vd->vdev_dtl_sm == NULL) {
3023                 uint64_t new_object;
3024
3025                 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3026                 VERIFY3U(new_object, !=, 0);
3027
3028                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3029                     0, -1ULL, 0));
3030                 ASSERT(vd->vdev_dtl_sm != NULL);
3031         }
3032
3033         rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3034
3035         mutex_enter(&vd->vdev_dtl_lock);
3036         range_tree_walk(rt, range_tree_add, rtsync);
3037         mutex_exit(&vd->vdev_dtl_lock);
3038
3039         space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3040         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3041         range_tree_vacate(rtsync, NULL, NULL);
3042
3043         range_tree_destroy(rtsync);
3044
3045         /*
3046          * If the object for the space map has changed then dirty
3047          * the top level so that we update the config.
3048          */
3049         if (object != space_map_object(vd->vdev_dtl_sm)) {
3050                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3051                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
3052                     (u_longlong_t)object,
3053                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3054                 vdev_config_dirty(vd->vdev_top);
3055         }
3056
3057         dmu_tx_commit(tx);
3058 }
3059
3060 /*
3061  * Determine whether the specified vdev can be offlined/detached/removed
3062  * without losing data.
3063  */
3064 boolean_t
3065 vdev_dtl_required(vdev_t *vd)
3066 {
3067         spa_t *spa = vd->vdev_spa;
3068         vdev_t *tvd = vd->vdev_top;
3069         uint8_t cant_read = vd->vdev_cant_read;
3070         boolean_t required;
3071
3072         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3073
3074         if (vd == spa->spa_root_vdev || vd == tvd)
3075                 return (B_TRUE);
3076
3077         /*
3078          * Temporarily mark the device as unreadable, and then determine
3079          * whether this results in any DTL outages in the top-level vdev.
3080          * If not, we can safely offline/detach/remove the device.
3081          */
3082         vd->vdev_cant_read = B_TRUE;
3083         vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3084         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3085         vd->vdev_cant_read = cant_read;
3086         vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3087
3088         if (!required && zio_injection_enabled) {
3089                 required = !!zio_handle_device_injection(vd, NULL,
3090                     SET_ERROR(ECHILD));
3091         }
3092
3093         return (required);
3094 }
3095
3096 /*
3097  * Determine if resilver is needed, and if so the txg range.
3098  */
3099 boolean_t
3100 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3101 {
3102         boolean_t needed = B_FALSE;
3103         uint64_t thismin = UINT64_MAX;
3104         uint64_t thismax = 0;
3105
3106         if (vd->vdev_children == 0) {
3107                 mutex_enter(&vd->vdev_dtl_lock);
3108                 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3109                     vdev_writeable(vd)) {
3110
3111                         thismin = vdev_dtl_min(vd);
3112                         thismax = vdev_dtl_max(vd);
3113                         needed = B_TRUE;
3114                 }
3115                 mutex_exit(&vd->vdev_dtl_lock);
3116         } else {
3117                 for (int c = 0; c < vd->vdev_children; c++) {
3118                         vdev_t *cvd = vd->vdev_child[c];
3119                         uint64_t cmin, cmax;
3120
3121                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3122                                 thismin = MIN(thismin, cmin);
3123                                 thismax = MAX(thismax, cmax);
3124                                 needed = B_TRUE;
3125                         }
3126                 }
3127         }
3128
3129         if (needed && minp) {
3130                 *minp = thismin;
3131                 *maxp = thismax;
3132         }
3133         return (needed);
3134 }
3135
3136 /*
3137  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3138  * will contain either the checkpoint spacemap object or zero if none exists.
3139  * All other errors are returned to the caller.
3140  */
3141 int
3142 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3143 {
3144         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3145
3146         if (vd->vdev_top_zap == 0) {
3147                 *sm_obj = 0;
3148                 return (0);
3149         }
3150
3151         int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3152             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3153         if (error == ENOENT) {
3154                 *sm_obj = 0;
3155                 error = 0;
3156         }
3157
3158         return (error);
3159 }
3160
3161 int
3162 vdev_load(vdev_t *vd)
3163 {
3164         int error = 0;
3165
3166         /*
3167          * Recursively load all children.
3168          */
3169         for (int c = 0; c < vd->vdev_children; c++) {
3170                 error = vdev_load(vd->vdev_child[c]);
3171                 if (error != 0) {
3172                         return (error);
3173                 }
3174         }
3175
3176         vdev_set_deflate_ratio(vd);
3177
3178         /*
3179          * On spa_load path, grab the allocation bias from our zap
3180          */
3181         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3182                 spa_t *spa = vd->vdev_spa;
3183                 char bias_str[64];
3184
3185                 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3186                     VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3187                     bias_str);
3188                 if (error == 0) {
3189                         ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3190                         vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3191                 } else if (error != ENOENT) {
3192                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3193                             VDEV_AUX_CORRUPT_DATA);
3194                         vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3195                             "failed [error=%d]", vd->vdev_top_zap, error);
3196                         return (error);
3197                 }
3198         }
3199
3200         /*
3201          * Load any rebuild state from the top-level vdev zap.
3202          */
3203         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3204                 error = vdev_rebuild_load(vd);
3205                 if (error && error != ENOTSUP) {
3206                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3207                             VDEV_AUX_CORRUPT_DATA);
3208                         vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3209                             "failed [error=%d]", error);
3210                         return (error);
3211                 }
3212         }
3213
3214         /*
3215          * If this is a top-level vdev, initialize its metaslabs.
3216          */
3217         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3218                 vdev_metaslab_group_create(vd);
3219
3220                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3221                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3222                             VDEV_AUX_CORRUPT_DATA);
3223                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3224                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3225                             (u_longlong_t)vd->vdev_asize);
3226                         return (SET_ERROR(ENXIO));
3227                 }
3228
3229                 error = vdev_metaslab_init(vd, 0);
3230                 if (error != 0) {
3231                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3232                             "[error=%d]", error);
3233                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3234                             VDEV_AUX_CORRUPT_DATA);
3235                         return (error);
3236                 }
3237
3238                 uint64_t checkpoint_sm_obj;
3239                 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3240                 if (error == 0 && checkpoint_sm_obj != 0) {
3241                         objset_t *mos = spa_meta_objset(vd->vdev_spa);
3242                         ASSERT(vd->vdev_asize != 0);
3243                         ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3244
3245                         error = space_map_open(&vd->vdev_checkpoint_sm,
3246                             mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3247                             vd->vdev_ashift);
3248                         if (error != 0) {
3249                                 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3250                                     "failed for checkpoint spacemap (obj %llu) "
3251                                     "[error=%d]",
3252                                     (u_longlong_t)checkpoint_sm_obj, error);
3253                                 return (error);
3254                         }
3255                         ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3256
3257                         /*
3258                          * Since the checkpoint_sm contains free entries
3259                          * exclusively we can use space_map_allocated() to
3260                          * indicate the cumulative checkpointed space that
3261                          * has been freed.
3262                          */
3263                         vd->vdev_stat.vs_checkpoint_space =
3264                             -space_map_allocated(vd->vdev_checkpoint_sm);
3265                         vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3266                             vd->vdev_stat.vs_checkpoint_space;
3267                 } else if (error != 0) {
3268                         vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3269                             "checkpoint space map object from vdev ZAP "
3270                             "[error=%d]", error);
3271                         return (error);
3272                 }
3273         }
3274
3275         /*
3276          * If this is a leaf vdev, load its DTL.
3277          */
3278         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3279                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3280                     VDEV_AUX_CORRUPT_DATA);
3281                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3282                     "[error=%d]", error);
3283                 return (error);
3284         }
3285
3286         uint64_t obsolete_sm_object;
3287         error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3288         if (error == 0 && obsolete_sm_object != 0) {
3289                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3290                 ASSERT(vd->vdev_asize != 0);
3291                 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3292
3293                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3294                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3295                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3296                             VDEV_AUX_CORRUPT_DATA);
3297                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3298                             "obsolete spacemap (obj %llu) [error=%d]",
3299                             (u_longlong_t)obsolete_sm_object, error);
3300                         return (error);
3301                 }
3302         } else if (error != 0) {
3303                 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3304                     "space map object from vdev ZAP [error=%d]", error);
3305                 return (error);
3306         }
3307
3308         return (0);
3309 }
3310
3311 /*
3312  * The special vdev case is used for hot spares and l2cache devices.  Its
3313  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3314  * we make sure that we can open the underlying device, then try to read the
3315  * label, and make sure that the label is sane and that it hasn't been
3316  * repurposed to another pool.
3317  */
3318 int
3319 vdev_validate_aux(vdev_t *vd)
3320 {
3321         nvlist_t *label;
3322         uint64_t guid, version;
3323         uint64_t state;
3324
3325         if (!vdev_readable(vd))
3326                 return (0);
3327
3328         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3329                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3330                     VDEV_AUX_CORRUPT_DATA);
3331                 return (-1);
3332         }
3333
3334         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3335             !SPA_VERSION_IS_SUPPORTED(version) ||
3336             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3337             guid != vd->vdev_guid ||
3338             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3339                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3340                     VDEV_AUX_CORRUPT_DATA);
3341                 nvlist_free(label);
3342                 return (-1);
3343         }
3344
3345         /*
3346          * We don't actually check the pool state here.  If it's in fact in
3347          * use by another pool, we update this fact on the fly when requested.
3348          */
3349         nvlist_free(label);
3350         return (0);
3351 }
3352
3353 static void
3354 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3355 {
3356         objset_t *mos = spa_meta_objset(vd->vdev_spa);
3357
3358         if (vd->vdev_top_zap == 0)
3359                 return;
3360
3361         uint64_t object = 0;
3362         int err = zap_lookup(mos, vd->vdev_top_zap,
3363             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3364         if (err == ENOENT)
3365                 return;
3366         VERIFY0(err);
3367
3368         VERIFY0(dmu_object_free(mos, object, tx));
3369         VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3370             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3371 }
3372
3373 /*
3374  * Free the objects used to store this vdev's spacemaps, and the array
3375  * that points to them.
3376  */
3377 void
3378 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3379 {
3380         if (vd->vdev_ms_array == 0)
3381                 return;
3382
3383         objset_t *mos = vd->vdev_spa->spa_meta_objset;
3384         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3385         size_t array_bytes = array_count * sizeof (uint64_t);
3386         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3387         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3388             array_bytes, smobj_array, 0));
3389
3390         for (uint64_t i = 0; i < array_count; i++) {
3391                 uint64_t smobj = smobj_array[i];
3392                 if (smobj == 0)
3393                         continue;
3394
3395                 space_map_free_obj(mos, smobj, tx);
3396         }
3397
3398         kmem_free(smobj_array, array_bytes);
3399         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3400         vdev_destroy_ms_flush_data(vd, tx);
3401         vd->vdev_ms_array = 0;
3402 }
3403
3404 static void
3405 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3406 {
3407         spa_t *spa = vd->vdev_spa;
3408
3409         ASSERT(vd->vdev_islog);
3410         ASSERT(vd == vd->vdev_top);
3411         ASSERT3U(txg, ==, spa_syncing_txg(spa));
3412
3413         dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3414
3415         vdev_destroy_spacemaps(vd, tx);
3416         if (vd->vdev_top_zap != 0) {
3417                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3418                 vd->vdev_top_zap = 0;
3419         }
3420
3421         dmu_tx_commit(tx);
3422 }
3423
3424 void
3425 vdev_sync_done(vdev_t *vd, uint64_t txg)
3426 {
3427         metaslab_t *msp;
3428         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3429
3430         ASSERT(vdev_is_concrete(vd));
3431
3432         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3433             != NULL)
3434                 metaslab_sync_done(msp, txg);
3435
3436         if (reassess)
3437                 metaslab_sync_reassess(vd->vdev_mg);
3438 }
3439
3440 void
3441 vdev_sync(vdev_t *vd, uint64_t txg)
3442 {
3443         spa_t *spa = vd->vdev_spa;
3444         vdev_t *lvd;
3445         metaslab_t *msp;
3446
3447         ASSERT3U(txg, ==, spa->spa_syncing_txg);
3448         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3449         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3450                 ASSERT(vd->vdev_removing ||
3451                     vd->vdev_ops == &vdev_indirect_ops);
3452
3453                 vdev_indirect_sync_obsolete(vd, tx);
3454
3455                 /*
3456                  * If the vdev is indirect, it can't have dirty
3457                  * metaslabs or DTLs.
3458                  */
3459                 if (vd->vdev_ops == &vdev_indirect_ops) {
3460                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3461                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3462                         dmu_tx_commit(tx);
3463                         return;
3464                 }
3465         }
3466
3467         ASSERT(vdev_is_concrete(vd));
3468
3469         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3470             !vd->vdev_removing) {
3471                 ASSERT(vd == vd->vdev_top);
3472                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3473                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3474                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3475                 ASSERT(vd->vdev_ms_array != 0);
3476                 vdev_config_dirty(vd);
3477         }
3478
3479         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3480                 metaslab_sync(msp, txg);
3481                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3482         }
3483
3484         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3485                 vdev_dtl_sync(lvd, txg);
3486
3487         /*
3488          * If this is an empty log device being removed, destroy the
3489          * metadata associated with it.
3490          */
3491         if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3492                 vdev_remove_empty_log(vd, txg);
3493
3494         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3495         dmu_tx_commit(tx);
3496 }
3497
3498 uint64_t
3499 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3500 {
3501         return (vd->vdev_ops->vdev_op_asize(vd, psize));
3502 }
3503
3504 /*
3505  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3506  * not be opened, and no I/O is attempted.
3507  */
3508 int
3509 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3510 {
3511         vdev_t *vd, *tvd;
3512
3513         spa_vdev_state_enter(spa, SCL_NONE);
3514
3515         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3516                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3517
3518         if (!vd->vdev_ops->vdev_op_leaf)
3519                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3520
3521         tvd = vd->vdev_top;
3522
3523         /*
3524          * If user did a 'zpool offline -f' then make the fault persist across
3525          * reboots.
3526          */
3527         if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3528                 /*
3529                  * There are two kinds of forced faults: temporary and
3530                  * persistent.  Temporary faults go away at pool import, while
3531                  * persistent faults stay set.  Both types of faults can be
3532                  * cleared with a zpool clear.
3533                  *
3534                  * We tell if a vdev is persistently faulted by looking at the
3535                  * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3536                  * import then it's a persistent fault.  Otherwise, it's
3537                  * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3538                  * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3539                  * tells vdev_config_generate() (which gets run later) to set
3540                  * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3541                  */
3542                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3543                 vd->vdev_tmpoffline = B_FALSE;
3544                 aux = VDEV_AUX_EXTERNAL;
3545         } else {
3546                 vd->vdev_tmpoffline = B_TRUE;
3547         }
3548
3549         /*
3550          * We don't directly use the aux state here, but if we do a
3551          * vdev_reopen(), we need this value to be present to remember why we
3552          * were faulted.
3553          */
3554         vd->vdev_label_aux = aux;
3555
3556         /*
3557          * Faulted state takes precedence over degraded.
3558          */
3559         vd->vdev_delayed_close = B_FALSE;
3560         vd->vdev_faulted = 1ULL;
3561         vd->vdev_degraded = 0ULL;
3562         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3563
3564         /*
3565          * If this device has the only valid copy of the data, then
3566          * back off and simply mark the vdev as degraded instead.
3567          */
3568         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3569                 vd->vdev_degraded = 1ULL;
3570                 vd->vdev_faulted = 0ULL;
3571
3572                 /*
3573                  * If we reopen the device and it's not dead, only then do we
3574                  * mark it degraded.
3575                  */
3576                 vdev_reopen(tvd);
3577
3578                 if (vdev_readable(vd))
3579                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3580         }
3581
3582         return (spa_vdev_state_exit(spa, vd, 0));
3583 }
3584
3585 /*
3586  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3587  * user that something is wrong.  The vdev continues to operate as normal as far
3588  * as I/O is concerned.
3589  */
3590 int
3591 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3592 {
3593         vdev_t *vd;
3594
3595         spa_vdev_state_enter(spa, SCL_NONE);
3596
3597         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3598                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3599
3600         if (!vd->vdev_ops->vdev_op_leaf)
3601                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3602
3603         /*
3604          * If the vdev is already faulted, then don't do anything.
3605          */
3606         if (vd->vdev_faulted || vd->vdev_degraded)
3607                 return (spa_vdev_state_exit(spa, NULL, 0));
3608
3609         vd->vdev_degraded = 1ULL;
3610         if (!vdev_is_dead(vd))
3611                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3612                     aux);
3613
3614         return (spa_vdev_state_exit(spa, vd, 0));
3615 }
3616
3617 /*
3618  * Online the given vdev.
3619  *
3620  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3621  * spare device should be detached when the device finishes resilvering.
3622  * Second, the online should be treated like a 'test' online case, so no FMA
3623  * events are generated if the device fails to open.
3624  */
3625 int
3626 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3627 {
3628         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3629         boolean_t wasoffline;
3630         vdev_state_t oldstate;
3631
3632         spa_vdev_state_enter(spa, SCL_NONE);
3633
3634         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3635                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3636
3637         if (!vd->vdev_ops->vdev_op_leaf)
3638                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3639
3640         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3641         oldstate = vd->vdev_state;
3642
3643         tvd = vd->vdev_top;
3644         vd->vdev_offline = B_FALSE;
3645         vd->vdev_tmpoffline = B_FALSE;
3646         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3647         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3648
3649         /* XXX - L2ARC 1.0 does not support expansion */
3650         if (!vd->vdev_aux) {
3651                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3652                         pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3653                             spa->spa_autoexpand);
3654                 vd->vdev_expansion_time = gethrestime_sec();
3655         }
3656
3657         vdev_reopen(tvd);
3658         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3659
3660         if (!vd->vdev_aux) {
3661                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3662                         pvd->vdev_expanding = B_FALSE;
3663         }
3664
3665         if (newstate)
3666                 *newstate = vd->vdev_state;
3667         if ((flags & ZFS_ONLINE_UNSPARE) &&
3668             !vdev_is_dead(vd) && vd->vdev_parent &&
3669             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3670             vd->vdev_parent->vdev_child[0] == vd)
3671                 vd->vdev_unspare = B_TRUE;
3672
3673         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3674
3675                 /* XXX - L2ARC 1.0 does not support expansion */
3676                 if (vd->vdev_aux)
3677                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3678                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3679         }
3680
3681         /* Restart initializing if necessary */
3682         mutex_enter(&vd->vdev_initialize_lock);
3683         if (vdev_writeable(vd) &&
3684             vd->vdev_initialize_thread == NULL &&
3685             vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3686                 (void) vdev_initialize(vd);
3687         }
3688         mutex_exit(&vd->vdev_initialize_lock);
3689
3690         /*
3691          * Restart trimming if necessary. We do not restart trimming for cache
3692          * devices here. This is triggered by l2arc_rebuild_vdev()
3693          * asynchronously for the whole device or in l2arc_evict() as it evicts
3694          * space for upcoming writes.
3695          */
3696         mutex_enter(&vd->vdev_trim_lock);
3697         if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3698             vd->vdev_trim_thread == NULL &&
3699             vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3700                 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3701                     vd->vdev_trim_secure);
3702         }
3703         mutex_exit(&vd->vdev_trim_lock);
3704
3705         if (wasoffline ||
3706             (oldstate < VDEV_STATE_DEGRADED &&
3707             vd->vdev_state >= VDEV_STATE_DEGRADED))
3708                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3709
3710         return (spa_vdev_state_exit(spa, vd, 0));
3711 }
3712
3713 static int
3714 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3715 {
3716         vdev_t *vd, *tvd;
3717         int error = 0;
3718         uint64_t generation;
3719         metaslab_group_t *mg;
3720
3721 top:
3722         spa_vdev_state_enter(spa, SCL_ALLOC);
3723
3724         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3725                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3726
3727         if (!vd->vdev_ops->vdev_op_leaf)
3728                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3729
3730         tvd = vd->vdev_top;
3731         mg = tvd->vdev_mg;
3732         generation = spa->spa_config_generation + 1;
3733
3734         /*
3735          * If the device isn't already offline, try to offline it.
3736          */
3737         if (!vd->vdev_offline) {
3738                 /*
3739                  * If this device has the only valid copy of some data,
3740                  * don't allow it to be offlined. Log devices are always
3741                  * expendable.
3742                  */
3743                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3744                     vdev_dtl_required(vd))
3745                         return (spa_vdev_state_exit(spa, NULL,
3746                             SET_ERROR(EBUSY)));
3747
3748                 /*
3749                  * If the top-level is a slog and it has had allocations
3750                  * then proceed.  We check that the vdev's metaslab group
3751                  * is not NULL since it's possible that we may have just
3752                  * added this vdev but not yet initialized its metaslabs.
3753                  */
3754                 if (tvd->vdev_islog && mg != NULL) {
3755                         /*
3756                          * Prevent any future allocations.
3757                          */
3758                         metaslab_group_passivate(mg);
3759                         (void) spa_vdev_state_exit(spa, vd, 0);
3760
3761                         error = spa_reset_logs(spa);
3762
3763                         /*
3764                          * If the log device was successfully reset but has
3765                          * checkpointed data, do not offline it.
3766                          */
3767                         if (error == 0 &&
3768                             tvd->vdev_checkpoint_sm != NULL) {
3769                                 ASSERT3U(space_map_allocated(
3770                                     tvd->vdev_checkpoint_sm), !=, 0);
3771                                 error = ZFS_ERR_CHECKPOINT_EXISTS;
3772                         }
3773
3774                         spa_vdev_state_enter(spa, SCL_ALLOC);
3775
3776                         /*
3777                          * Check to see if the config has changed.
3778                          */
3779                         if (error || generation != spa->spa_config_generation) {
3780                                 metaslab_group_activate(mg);
3781                                 if (error)
3782                                         return (spa_vdev_state_exit(spa,
3783                                             vd, error));
3784                                 (void) spa_vdev_state_exit(spa, vd, 0);
3785                                 goto top;
3786                         }
3787                         ASSERT0(tvd->vdev_stat.vs_alloc);
3788                 }
3789
3790                 /*
3791                  * Offline this device and reopen its top-level vdev.
3792                  * If the top-level vdev is a log device then just offline
3793                  * it. Otherwise, if this action results in the top-level
3794                  * vdev becoming unusable, undo it and fail the request.
3795                  */
3796                 vd->vdev_offline = B_TRUE;
3797                 vdev_reopen(tvd);
3798
3799                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3800                     vdev_is_dead(tvd)) {
3801                         vd->vdev_offline = B_FALSE;
3802                         vdev_reopen(tvd);
3803                         return (spa_vdev_state_exit(spa, NULL,
3804                             SET_ERROR(EBUSY)));
3805                 }
3806
3807                 /*
3808                  * Add the device back into the metaslab rotor so that
3809                  * once we online the device it's open for business.
3810                  */
3811                 if (tvd->vdev_islog && mg != NULL)
3812                         metaslab_group_activate(mg);
3813         }
3814
3815         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3816
3817         return (spa_vdev_state_exit(spa, vd, 0));
3818 }
3819
3820 int
3821 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3822 {
3823         int error;
3824
3825         mutex_enter(&spa->spa_vdev_top_lock);
3826         error = vdev_offline_locked(spa, guid, flags);
3827         mutex_exit(&spa->spa_vdev_top_lock);
3828
3829         return (error);
3830 }
3831
3832 /*
3833  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3834  * vdev_offline(), we assume the spa config is locked.  We also clear all
3835  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3836  */
3837 void
3838 vdev_clear(spa_t *spa, vdev_t *vd)
3839 {
3840         vdev_t *rvd = spa->spa_root_vdev;
3841
3842         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3843
3844         if (vd == NULL)
3845                 vd = rvd;
3846
3847         vd->vdev_stat.vs_read_errors = 0;
3848         vd->vdev_stat.vs_write_errors = 0;
3849         vd->vdev_stat.vs_checksum_errors = 0;
3850         vd->vdev_stat.vs_slow_ios = 0;
3851
3852         for (int c = 0; c < vd->vdev_children; c++)
3853                 vdev_clear(spa, vd->vdev_child[c]);
3854
3855         /*
3856          * It makes no sense to "clear" an indirect vdev.
3857          */
3858         if (!vdev_is_concrete(vd))
3859                 return;
3860
3861         /*
3862          * If we're in the FAULTED state or have experienced failed I/O, then
3863          * clear the persistent state and attempt to reopen the device.  We
3864          * also mark the vdev config dirty, so that the new faulted state is
3865          * written out to disk.
3866          */
3867         if (vd->vdev_faulted || vd->vdev_degraded ||
3868             !vdev_readable(vd) || !vdev_writeable(vd)) {
3869                 /*
3870                  * When reopening in response to a clear event, it may be due to
3871                  * a fmadm repair request.  In this case, if the device is
3872                  * still broken, we want to still post the ereport again.
3873                  */
3874                 vd->vdev_forcefault = B_TRUE;
3875
3876                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3877                 vd->vdev_cant_read = B_FALSE;
3878                 vd->vdev_cant_write = B_FALSE;
3879                 vd->vdev_stat.vs_aux = 0;
3880
3881                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3882
3883                 vd->vdev_forcefault = B_FALSE;
3884
3885                 if (vd != rvd && vdev_writeable(vd->vdev_top))
3886                         vdev_state_dirty(vd->vdev_top);
3887
3888                 /* If a resilver isn't required, check if vdevs can be culled */
3889                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
3890                     !dsl_scan_resilvering(spa->spa_dsl_pool) &&
3891                     !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
3892                         spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3893
3894                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3895         }
3896
3897         /*
3898          * When clearing a FMA-diagnosed fault, we always want to
3899          * unspare the device, as we assume that the original spare was
3900          * done in response to the FMA fault.
3901          */
3902         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3903             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3904             vd->vdev_parent->vdev_child[0] == vd)
3905                 vd->vdev_unspare = B_TRUE;
3906 }
3907
3908 boolean_t
3909 vdev_is_dead(vdev_t *vd)
3910 {
3911         /*
3912          * Holes and missing devices are always considered "dead".
3913          * This simplifies the code since we don't have to check for
3914          * these types of devices in the various code paths.
3915          * Instead we rely on the fact that we skip over dead devices
3916          * before issuing I/O to them.
3917          */
3918         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3919             vd->vdev_ops == &vdev_hole_ops ||
3920             vd->vdev_ops == &vdev_missing_ops);
3921 }
3922
3923 boolean_t
3924 vdev_readable(vdev_t *vd)
3925 {
3926         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3927 }
3928
3929 boolean_t
3930 vdev_writeable(vdev_t *vd)
3931 {
3932         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3933             vdev_is_concrete(vd));
3934 }
3935
3936 boolean_t
3937 vdev_allocatable(vdev_t *vd)
3938 {
3939         uint64_t state = vd->vdev_state;
3940
3941         /*
3942          * We currently allow allocations from vdevs which may be in the
3943          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3944          * fails to reopen then we'll catch it later when we're holding
3945          * the proper locks.  Note that we have to get the vdev state
3946          * in a local variable because although it changes atomically,
3947          * we're asking two separate questions about it.
3948          */
3949         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3950             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3951             vd->vdev_mg->mg_initialized);
3952 }
3953
3954 boolean_t
3955 vdev_accessible(vdev_t *vd, zio_t *zio)
3956 {
3957         ASSERT(zio->io_vd == vd);
3958
3959         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3960                 return (B_FALSE);
3961
3962         if (zio->io_type == ZIO_TYPE_READ)
3963                 return (!vd->vdev_cant_read);
3964
3965         if (zio->io_type == ZIO_TYPE_WRITE)
3966                 return (!vd->vdev_cant_write);
3967
3968         return (B_TRUE);
3969 }
3970
3971 static void
3972 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3973 {
3974         for (int t = 0; t < VS_ZIO_TYPES; t++) {
3975                 vs->vs_ops[t] += cvs->vs_ops[t];
3976                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3977         }
3978
3979         cvs->vs_scan_removing = cvd->vdev_removing;
3980 }
3981
3982 /*
3983  * Get extended stats
3984  */
3985 static void
3986 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3987 {
3988         int t, b;
3989         for (t = 0; t < ZIO_TYPES; t++) {
3990                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3991                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3992
3993                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3994                         vsx->vsx_total_histo[t][b] +=
3995                             cvsx->vsx_total_histo[t][b];
3996                 }
3997         }
3998
3999         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4000                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4001                         vsx->vsx_queue_histo[t][b] +=
4002                             cvsx->vsx_queue_histo[t][b];
4003                 }
4004                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4005                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4006
4007                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4008                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4009
4010                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4011                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4012         }
4013
4014 }
4015
4016 boolean_t
4017 vdev_is_spacemap_addressable(vdev_t *vd)
4018 {
4019         if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4020                 return (B_TRUE);
4021
4022         /*
4023          * If double-word space map entries are not enabled we assume
4024          * 47 bits of the space map entry are dedicated to the entry's
4025          * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4026          * to calculate the maximum address that can be described by a
4027          * space map entry for the given device.
4028          */
4029         uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4030
4031         if (shift >= 63) /* detect potential overflow */
4032                 return (B_TRUE);
4033
4034         return (vd->vdev_asize < (1ULL << shift));
4035 }
4036
4037 /*
4038  * Get statistics for the given vdev.
4039  */
4040 static void
4041 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4042 {
4043         int t;
4044         /*
4045          * If we're getting stats on the root vdev, aggregate the I/O counts
4046          * over all top-level vdevs (i.e. the direct children of the root).
4047          */
4048         if (!vd->vdev_ops->vdev_op_leaf) {
4049                 if (vs) {
4050                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4051                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4052                 }
4053                 if (vsx)
4054                         memset(vsx, 0, sizeof (*vsx));
4055
4056                 for (int c = 0; c < vd->vdev_children; c++) {
4057                         vdev_t *cvd = vd->vdev_child[c];
4058                         vdev_stat_t *cvs = &cvd->vdev_stat;
4059                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4060
4061                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4062                         if (vs)
4063                                 vdev_get_child_stat(cvd, vs, cvs);
4064                         if (vsx)
4065                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4066
4067                 }
4068         } else {
4069                 /*
4070                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
4071                  * other leaf stats are updated in vdev_stat_update().
4072                  */
4073                 if (!vsx)
4074                         return;
4075
4076                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4077
4078                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4079                         vsx->vsx_active_queue[t] =
4080                             vd->vdev_queue.vq_class[t].vqc_active;
4081                         vsx->vsx_pend_queue[t] = avl_numnodes(
4082                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4083                 }
4084         }
4085 }
4086
4087 void
4088 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4089 {
4090         vdev_t *tvd = vd->vdev_top;
4091         mutex_enter(&vd->vdev_stat_lock);
4092         if (vs) {
4093                 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4094                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4095                 vs->vs_state = vd->vdev_state;
4096                 vs->vs_rsize = vdev_get_min_asize(vd);
4097
4098                 if (vd->vdev_ops->vdev_op_leaf) {
4099                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
4100                             VDEV_LABEL_END_SIZE;
4101                         /*
4102                          * Report initializing progress. Since we don't
4103                          * have the initializing locks held, this is only
4104                          * an estimate (although a fairly accurate one).
4105                          */
4106                         vs->vs_initialize_bytes_done =
4107                             vd->vdev_initialize_bytes_done;
4108                         vs->vs_initialize_bytes_est =
4109                             vd->vdev_initialize_bytes_est;
4110                         vs->vs_initialize_state = vd->vdev_initialize_state;
4111                         vs->vs_initialize_action_time =
4112                             vd->vdev_initialize_action_time;
4113
4114                         /*
4115                          * Report manual TRIM progress. Since we don't have
4116                          * the manual TRIM locks held, this is only an
4117                          * estimate (although fairly accurate one).
4118                          */
4119                         vs->vs_trim_notsup = !vd->vdev_has_trim;
4120                         vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4121                         vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4122                         vs->vs_trim_state = vd->vdev_trim_state;
4123                         vs->vs_trim_action_time = vd->vdev_trim_action_time;
4124
4125                         /* Set when there is a deferred resilver. */
4126                         vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4127                 }
4128
4129                 /*
4130                  * Report expandable space on top-level, non-auxiliary devices
4131                  * only. The expandable space is reported in terms of metaslab
4132                  * sized units since that determines how much space the pool
4133                  * can expand.
4134                  */
4135                 if (vd->vdev_aux == NULL && tvd != NULL) {
4136                         vs->vs_esize = P2ALIGN(
4137                             vd->vdev_max_asize - vd->vdev_asize,
4138                             1ULL << tvd->vdev_ms_shift);
4139                 }
4140
4141                 vs->vs_configured_ashift = vd->vdev_top != NULL
4142                     ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4143                 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4144                 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4145
4146                 /*
4147                  * Report fragmentation and rebuild progress for top-level,
4148                  * non-auxiliary, concrete devices.
4149                  */
4150                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4151                     vdev_is_concrete(vd)) {
4152                         vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4153                             vd->vdev_mg->mg_fragmentation : 0;
4154                 }
4155         }
4156
4157         vdev_get_stats_ex_impl(vd, vs, vsx);
4158         mutex_exit(&vd->vdev_stat_lock);
4159 }
4160
4161 void
4162 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4163 {
4164         return (vdev_get_stats_ex(vd, vs, NULL));
4165 }
4166
4167 void
4168 vdev_clear_stats(vdev_t *vd)
4169 {
4170         mutex_enter(&vd->vdev_stat_lock);
4171         vd->vdev_stat.vs_space = 0;
4172         vd->vdev_stat.vs_dspace = 0;
4173         vd->vdev_stat.vs_alloc = 0;
4174         mutex_exit(&vd->vdev_stat_lock);
4175 }
4176
4177 void
4178 vdev_scan_stat_init(vdev_t *vd)
4179 {
4180         vdev_stat_t *vs = &vd->vdev_stat;
4181
4182         for (int c = 0; c < vd->vdev_children; c++)
4183                 vdev_scan_stat_init(vd->vdev_child[c]);
4184
4185         mutex_enter(&vd->vdev_stat_lock);
4186         vs->vs_scan_processed = 0;
4187         mutex_exit(&vd->vdev_stat_lock);
4188 }
4189
4190 void
4191 vdev_stat_update(zio_t *zio, uint64_t psize)
4192 {
4193         spa_t *spa = zio->io_spa;
4194         vdev_t *rvd = spa->spa_root_vdev;
4195         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4196         vdev_t *pvd;
4197         uint64_t txg = zio->io_txg;
4198         vdev_stat_t *vs = &vd->vdev_stat;
4199         vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4200         zio_type_t type = zio->io_type;
4201         int flags = zio->io_flags;
4202
4203         /*
4204          * If this i/o is a gang leader, it didn't do any actual work.
4205          */
4206         if (zio->io_gang_tree)
4207                 return;
4208
4209         if (zio->io_error == 0) {
4210                 /*
4211                  * If this is a root i/o, don't count it -- we've already
4212                  * counted the top-level vdevs, and vdev_get_stats() will
4213                  * aggregate them when asked.  This reduces contention on
4214                  * the root vdev_stat_lock and implicitly handles blocks
4215                  * that compress away to holes, for which there is no i/o.
4216                  * (Holes never create vdev children, so all the counters
4217                  * remain zero, which is what we want.)
4218                  *
4219                  * Note: this only applies to successful i/o (io_error == 0)
4220                  * because unlike i/o counts, errors are not additive.
4221                  * When reading a ditto block, for example, failure of
4222                  * one top-level vdev does not imply a root-level error.
4223                  */
4224                 if (vd == rvd)
4225                         return;
4226
4227                 ASSERT(vd == zio->io_vd);
4228
4229                 if (flags & ZIO_FLAG_IO_BYPASS)
4230                         return;
4231
4232                 mutex_enter(&vd->vdev_stat_lock);
4233
4234                 if (flags & ZIO_FLAG_IO_REPAIR) {
4235                         /*
4236                          * Repair is the result of a resilver issued by the
4237                          * scan thread (spa_sync).
4238                          */
4239                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4240                                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4241                                 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4242                                 uint64_t *processed = &scn_phys->scn_processed;
4243
4244                                 if (vd->vdev_ops->vdev_op_leaf)
4245                                         atomic_add_64(processed, psize);
4246                                 vs->vs_scan_processed += psize;
4247                         }
4248
4249                         /*
4250                          * Repair is the result of a rebuild issued by the
4251                          * rebuild thread (vdev_rebuild_thread).
4252                          */
4253                         if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4254                                 vdev_t *tvd = vd->vdev_top;
4255                                 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4256                                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4257                                 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4258
4259                                 if (vd->vdev_ops->vdev_op_leaf)
4260                                         atomic_add_64(rebuilt, psize);
4261                                 vs->vs_rebuild_processed += psize;
4262                         }
4263
4264                         if (flags & ZIO_FLAG_SELF_HEAL)
4265                                 vs->vs_self_healed += psize;
4266                 }
4267
4268                 /*
4269                  * The bytes/ops/histograms are recorded at the leaf level and
4270                  * aggregated into the higher level vdevs in vdev_get_stats().
4271                  */
4272                 if (vd->vdev_ops->vdev_op_leaf &&
4273                     (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4274                         zio_type_t vs_type = type;
4275                         zio_priority_t priority = zio->io_priority;
4276
4277                         /*
4278                          * TRIM ops and bytes are reported to user space as
4279                          * ZIO_TYPE_IOCTL.  This is done to preserve the
4280                          * vdev_stat_t structure layout for user space.
4281                          */
4282                         if (type == ZIO_TYPE_TRIM)
4283                                 vs_type = ZIO_TYPE_IOCTL;
4284
4285                         /*
4286                          * Solely for the purposes of 'zpool iostat -lqrw'
4287                          * reporting use the priority to catagorize the IO.
4288                          * Only the following are reported to user space:
4289                          *
4290                          *   ZIO_PRIORITY_SYNC_READ,
4291                          *   ZIO_PRIORITY_SYNC_WRITE,
4292                          *   ZIO_PRIORITY_ASYNC_READ,
4293                          *   ZIO_PRIORITY_ASYNC_WRITE,
4294                          *   ZIO_PRIORITY_SCRUB,
4295                          *   ZIO_PRIORITY_TRIM.
4296                          */
4297                         if (priority == ZIO_PRIORITY_REBUILD) {
4298                                 priority = ((type == ZIO_TYPE_WRITE) ?
4299                                     ZIO_PRIORITY_ASYNC_WRITE :
4300                                     ZIO_PRIORITY_SCRUB);
4301                         } else if (priority == ZIO_PRIORITY_INITIALIZING) {
4302                                 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4303                                 priority = ZIO_PRIORITY_ASYNC_WRITE;
4304                         } else if (priority == ZIO_PRIORITY_REMOVAL) {
4305                                 priority = ((type == ZIO_TYPE_WRITE) ?
4306                                     ZIO_PRIORITY_ASYNC_WRITE :
4307                                     ZIO_PRIORITY_ASYNC_READ);
4308                         }
4309
4310                         vs->vs_ops[vs_type]++;
4311                         vs->vs_bytes[vs_type] += psize;
4312
4313                         if (flags & ZIO_FLAG_DELEGATED) {
4314                                 vsx->vsx_agg_histo[priority]
4315                                     [RQ_HISTO(zio->io_size)]++;
4316                         } else {
4317                                 vsx->vsx_ind_histo[priority]
4318                                     [RQ_HISTO(zio->io_size)]++;
4319                         }
4320
4321                         if (zio->io_delta && zio->io_delay) {
4322                                 vsx->vsx_queue_histo[priority]
4323                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
4324                                 vsx->vsx_disk_histo[type]
4325                                     [L_HISTO(zio->io_delay)]++;
4326                                 vsx->vsx_total_histo[type]
4327                                     [L_HISTO(zio->io_delta)]++;
4328                         }
4329                 }
4330
4331                 mutex_exit(&vd->vdev_stat_lock);
4332                 return;
4333         }
4334
4335         if (flags & ZIO_FLAG_SPECULATIVE)
4336                 return;
4337
4338         /*
4339          * If this is an I/O error that is going to be retried, then ignore the
4340          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4341          * hard errors, when in reality they can happen for any number of
4342          * innocuous reasons (bus resets, MPxIO link failure, etc).
4343          */
4344         if (zio->io_error == EIO &&
4345             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4346                 return;
4347
4348         /*
4349          * Intent logs writes won't propagate their error to the root
4350          * I/O so don't mark these types of failures as pool-level
4351          * errors.
4352          */
4353         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4354                 return;
4355
4356         if (spa->spa_load_state == SPA_LOAD_NONE &&
4357             type == ZIO_TYPE_WRITE && txg != 0 &&
4358             (!(flags & ZIO_FLAG_IO_REPAIR) ||
4359             (flags & ZIO_FLAG_SCAN_THREAD) ||
4360             spa->spa_claiming)) {
4361                 /*
4362                  * This is either a normal write (not a repair), or it's
4363                  * a repair induced by the scrub thread, or it's a repair
4364                  * made by zil_claim() during spa_load() in the first txg.
4365                  * In the normal case, we commit the DTL change in the same
4366                  * txg as the block was born.  In the scrub-induced repair
4367                  * case, we know that scrubs run in first-pass syncing context,
4368                  * so we commit the DTL change in spa_syncing_txg(spa).
4369                  * In the zil_claim() case, we commit in spa_first_txg(spa).
4370                  *
4371                  * We currently do not make DTL entries for failed spontaneous
4372                  * self-healing writes triggered by normal (non-scrubbing)
4373                  * reads, because we have no transactional context in which to
4374                  * do so -- and it's not clear that it'd be desirable anyway.
4375                  */
4376                 if (vd->vdev_ops->vdev_op_leaf) {
4377                         uint64_t commit_txg = txg;
4378                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4379                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4380                                 ASSERT(spa_sync_pass(spa) == 1);
4381                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4382                                 commit_txg = spa_syncing_txg(spa);
4383                         } else if (spa->spa_claiming) {
4384                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4385                                 commit_txg = spa_first_txg(spa);
4386                         }
4387                         ASSERT(commit_txg >= spa_syncing_txg(spa));
4388                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4389                                 return;
4390                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4391                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4392                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4393                 }
4394                 if (vd != rvd)
4395                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4396         }
4397 }
4398
4399 int64_t
4400 vdev_deflated_space(vdev_t *vd, int64_t space)
4401 {
4402         ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4403         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4404
4405         return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4406 }
4407
4408 /*
4409  * Update the in-core space usage stats for this vdev, its metaslab class,
4410  * and the root vdev.
4411  */
4412 void
4413 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4414     int64_t space_delta)
4415 {
4416         int64_t dspace_delta;
4417         spa_t *spa = vd->vdev_spa;
4418         vdev_t *rvd = spa->spa_root_vdev;
4419
4420         ASSERT(vd == vd->vdev_top);
4421
4422         /*
4423          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4424          * factor.  We must calculate this here and not at the root vdev
4425          * because the root vdev's psize-to-asize is simply the max of its
4426          * children's, thus not accurate enough for us.
4427          */
4428         dspace_delta = vdev_deflated_space(vd, space_delta);
4429
4430         mutex_enter(&vd->vdev_stat_lock);
4431         /* ensure we won't underflow */
4432         if (alloc_delta < 0) {
4433                 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4434         }
4435
4436         vd->vdev_stat.vs_alloc += alloc_delta;
4437         vd->vdev_stat.vs_space += space_delta;
4438         vd->vdev_stat.vs_dspace += dspace_delta;
4439         mutex_exit(&vd->vdev_stat_lock);
4440
4441         /* every class but log contributes to root space stats */
4442         if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4443                 ASSERT(!vd->vdev_isl2cache);
4444                 mutex_enter(&rvd->vdev_stat_lock);
4445                 rvd->vdev_stat.vs_alloc += alloc_delta;
4446                 rvd->vdev_stat.vs_space += space_delta;
4447                 rvd->vdev_stat.vs_dspace += dspace_delta;
4448                 mutex_exit(&rvd->vdev_stat_lock);
4449         }
4450         /* Note: metaslab_class_space_update moved to metaslab_space_update */
4451 }
4452
4453 /*
4454  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4455  * so that it will be written out next time the vdev configuration is synced.
4456  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4457  */
4458 void
4459 vdev_config_dirty(vdev_t *vd)
4460 {
4461         spa_t *spa = vd->vdev_spa;
4462         vdev_t *rvd = spa->spa_root_vdev;
4463         int c;
4464
4465         ASSERT(spa_writeable(spa));
4466
4467         /*
4468          * If this is an aux vdev (as with l2cache and spare devices), then we
4469          * update the vdev config manually and set the sync flag.
4470          */
4471         if (vd->vdev_aux != NULL) {
4472                 spa_aux_vdev_t *sav = vd->vdev_aux;
4473                 nvlist_t **aux;
4474                 uint_t naux;
4475
4476                 for (c = 0; c < sav->sav_count; c++) {
4477                         if (sav->sav_vdevs[c] == vd)
4478                                 break;
4479                 }
4480
4481                 if (c == sav->sav_count) {
4482                         /*
4483                          * We're being removed.  There's nothing more to do.
4484                          */
4485                         ASSERT(sav->sav_sync == B_TRUE);
4486                         return;
4487                 }
4488
4489                 sav->sav_sync = B_TRUE;
4490
4491                 if (nvlist_lookup_nvlist_array(sav->sav_config,
4492                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4493                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4494                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4495                 }
4496
4497                 ASSERT(c < naux);
4498
4499                 /*
4500                  * Setting the nvlist in the middle if the array is a little
4501                  * sketchy, but it will work.
4502                  */
4503                 nvlist_free(aux[c]);
4504                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4505
4506                 return;
4507         }
4508
4509         /*
4510          * The dirty list is protected by the SCL_CONFIG lock.  The caller
4511          * must either hold SCL_CONFIG as writer, or must be the sync thread
4512          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4513          * so this is sufficient to ensure mutual exclusion.
4514          */
4515         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4516             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4517             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4518
4519         if (vd == rvd) {
4520                 for (c = 0; c < rvd->vdev_children; c++)
4521                         vdev_config_dirty(rvd->vdev_child[c]);
4522         } else {
4523                 ASSERT(vd == vd->vdev_top);
4524
4525                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4526                     vdev_is_concrete(vd)) {
4527                         list_insert_head(&spa->spa_config_dirty_list, vd);
4528                 }
4529         }
4530 }
4531
4532 void
4533 vdev_config_clean(vdev_t *vd)
4534 {
4535         spa_t *spa = vd->vdev_spa;
4536
4537         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4538             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4539             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4540
4541         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4542         list_remove(&spa->spa_config_dirty_list, vd);
4543 }
4544
4545 /*
4546  * Mark a top-level vdev's state as dirty, so that the next pass of
4547  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4548  * the state changes from larger config changes because they require
4549  * much less locking, and are often needed for administrative actions.
4550  */
4551 void
4552 vdev_state_dirty(vdev_t *vd)
4553 {
4554         spa_t *spa = vd->vdev_spa;
4555
4556         ASSERT(spa_writeable(spa));
4557         ASSERT(vd == vd->vdev_top);
4558
4559         /*
4560          * The state list is protected by the SCL_STATE lock.  The caller
4561          * must either hold SCL_STATE as writer, or must be the sync thread
4562          * (which holds SCL_STATE as reader).  There's only one sync thread,
4563          * so this is sufficient to ensure mutual exclusion.
4564          */
4565         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4566             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4567             spa_config_held(spa, SCL_STATE, RW_READER)));
4568
4569         if (!list_link_active(&vd->vdev_state_dirty_node) &&
4570             vdev_is_concrete(vd))
4571                 list_insert_head(&spa->spa_state_dirty_list, vd);
4572 }
4573
4574 void
4575 vdev_state_clean(vdev_t *vd)
4576 {
4577         spa_t *spa = vd->vdev_spa;
4578
4579         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4580             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4581             spa_config_held(spa, SCL_STATE, RW_READER)));
4582
4583         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4584         list_remove(&spa->spa_state_dirty_list, vd);
4585 }
4586
4587 /*
4588  * Propagate vdev state up from children to parent.
4589  */
4590 void
4591 vdev_propagate_state(vdev_t *vd)
4592 {
4593         spa_t *spa = vd->vdev_spa;
4594         vdev_t *rvd = spa->spa_root_vdev;
4595         int degraded = 0, faulted = 0;
4596         int corrupted = 0;
4597         vdev_t *child;
4598
4599         if (vd->vdev_children > 0) {
4600                 for (int c = 0; c < vd->vdev_children; c++) {
4601                         child = vd->vdev_child[c];
4602
4603                         /*
4604                          * Don't factor holes or indirect vdevs into the
4605                          * decision.
4606                          */
4607                         if (!vdev_is_concrete(child))
4608                                 continue;
4609
4610                         if (!vdev_readable(child) ||
4611                             (!vdev_writeable(child) && spa_writeable(spa))) {
4612                                 /*
4613                                  * Root special: if there is a top-level log
4614                                  * device, treat the root vdev as if it were
4615                                  * degraded.
4616                                  */
4617                                 if (child->vdev_islog && vd == rvd)
4618                                         degraded++;
4619                                 else
4620                                         faulted++;
4621                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4622                                 degraded++;
4623                         }
4624
4625                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4626                                 corrupted++;
4627                 }
4628
4629                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4630
4631                 /*
4632                  * Root special: if there is a top-level vdev that cannot be
4633                  * opened due to corrupted metadata, then propagate the root
4634                  * vdev's aux state as 'corrupt' rather than 'insufficient
4635                  * replicas'.
4636                  */
4637                 if (corrupted && vd == rvd &&
4638                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4639                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4640                             VDEV_AUX_CORRUPT_DATA);
4641         }
4642
4643         if (vd->vdev_parent)
4644                 vdev_propagate_state(vd->vdev_parent);
4645 }
4646
4647 /*
4648  * Set a vdev's state.  If this is during an open, we don't update the parent
4649  * state, because we're in the process of opening children depth-first.
4650  * Otherwise, we propagate the change to the parent.
4651  *
4652  * If this routine places a device in a faulted state, an appropriate ereport is
4653  * generated.
4654  */
4655 void
4656 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4657 {
4658         uint64_t save_state;
4659         spa_t *spa = vd->vdev_spa;
4660
4661         if (state == vd->vdev_state) {
4662                 /*
4663                  * Since vdev_offline() code path is already in an offline
4664                  * state we can miss a statechange event to OFFLINE. Check
4665                  * the previous state to catch this condition.
4666                  */
4667                 if (vd->vdev_ops->vdev_op_leaf &&
4668                     (state == VDEV_STATE_OFFLINE) &&
4669                     (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4670                         /* post an offline state change */
4671                         zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4672                 }
4673                 vd->vdev_stat.vs_aux = aux;
4674                 return;
4675         }
4676
4677         save_state = vd->vdev_state;
4678
4679         vd->vdev_state = state;
4680         vd->vdev_stat.vs_aux = aux;
4681
4682         /*
4683          * If we are setting the vdev state to anything but an open state, then
4684          * always close the underlying device unless the device has requested
4685          * a delayed close (i.e. we're about to remove or fault the device).
4686          * Otherwise, we keep accessible but invalid devices open forever.
4687          * We don't call vdev_close() itself, because that implies some extra
4688          * checks (offline, etc) that we don't want here.  This is limited to
4689          * leaf devices, because otherwise closing the device will affect other
4690          * children.
4691          */
4692         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4693             vd->vdev_ops->vdev_op_leaf)
4694                 vd->vdev_ops->vdev_op_close(vd);
4695
4696         if (vd->vdev_removed &&
4697             state == VDEV_STATE_CANT_OPEN &&
4698             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4699                 /*
4700                  * If the previous state is set to VDEV_STATE_REMOVED, then this
4701                  * device was previously marked removed and someone attempted to
4702                  * reopen it.  If this failed due to a nonexistent device, then
4703                  * keep the device in the REMOVED state.  We also let this be if
4704                  * it is one of our special test online cases, which is only
4705                  * attempting to online the device and shouldn't generate an FMA
4706                  * fault.
4707                  */
4708                 vd->vdev_state = VDEV_STATE_REMOVED;
4709                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4710         } else if (state == VDEV_STATE_REMOVED) {
4711                 vd->vdev_removed = B_TRUE;
4712         } else if (state == VDEV_STATE_CANT_OPEN) {
4713                 /*
4714                  * If we fail to open a vdev during an import or recovery, we
4715                  * mark it as "not available", which signifies that it was
4716                  * never there to begin with.  Failure to open such a device
4717                  * is not considered an error.
4718                  */
4719                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4720                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4721                     vd->vdev_ops->vdev_op_leaf)
4722                         vd->vdev_not_present = 1;
4723
4724                 /*
4725                  * Post the appropriate ereport.  If the 'prevstate' field is
4726                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
4727                  * that this is part of a vdev_reopen().  In this case, we don't
4728                  * want to post the ereport if the device was already in the
4729                  * CANT_OPEN state beforehand.
4730                  *
4731                  * If the 'checkremove' flag is set, then this is an attempt to
4732                  * online the device in response to an insertion event.  If we
4733                  * hit this case, then we have detected an insertion event for a
4734                  * faulted or offline device that wasn't in the removed state.
4735                  * In this scenario, we don't post an ereport because we are
4736                  * about to replace the device, or attempt an online with
4737                  * vdev_forcefault, which will generate the fault for us.
4738                  */
4739                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4740                     !vd->vdev_not_present && !vd->vdev_checkremove &&
4741                     vd != spa->spa_root_vdev) {
4742                         const char *class;
4743
4744                         switch (aux) {
4745                         case VDEV_AUX_OPEN_FAILED:
4746                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4747                                 break;
4748                         case VDEV_AUX_CORRUPT_DATA:
4749                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4750                                 break;
4751                         case VDEV_AUX_NO_REPLICAS:
4752                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4753                                 break;
4754                         case VDEV_AUX_BAD_GUID_SUM:
4755                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4756                                 break;
4757                         case VDEV_AUX_TOO_SMALL:
4758                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4759                                 break;
4760                         case VDEV_AUX_BAD_LABEL:
4761                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4762                                 break;
4763                         case VDEV_AUX_BAD_ASHIFT:
4764                                 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4765                                 break;
4766                         default:
4767                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4768                         }
4769
4770                         (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
4771                             save_state);
4772                 }
4773
4774                 /* Erase any notion of persistent removed state */
4775                 vd->vdev_removed = B_FALSE;
4776         } else {
4777                 vd->vdev_removed = B_FALSE;
4778         }
4779
4780         /*
4781          * Notify ZED of any significant state-change on a leaf vdev.
4782          *
4783          */
4784         if (vd->vdev_ops->vdev_op_leaf) {
4785                 /* preserve original state from a vdev_reopen() */
4786                 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4787                     (vd->vdev_prevstate != vd->vdev_state) &&
4788                     (save_state <= VDEV_STATE_CLOSED))
4789                         save_state = vd->vdev_prevstate;
4790
4791                 /* filter out state change due to initial vdev_open */
4792                 if (save_state > VDEV_STATE_CLOSED)
4793                         zfs_post_state_change(spa, vd, save_state);
4794         }
4795
4796         if (!isopen && vd->vdev_parent)
4797                 vdev_propagate_state(vd->vdev_parent);
4798 }
4799
4800 boolean_t
4801 vdev_children_are_offline(vdev_t *vd)
4802 {
4803         ASSERT(!vd->vdev_ops->vdev_op_leaf);
4804
4805         for (uint64_t i = 0; i < vd->vdev_children; i++) {
4806                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4807                         return (B_FALSE);
4808         }
4809
4810         return (B_TRUE);
4811 }
4812
4813 /*
4814  * Check the vdev configuration to ensure that it's capable of supporting
4815  * a root pool. We do not support partial configuration.
4816  */
4817 boolean_t
4818 vdev_is_bootable(vdev_t *vd)
4819 {
4820         if (!vd->vdev_ops->vdev_op_leaf) {
4821                 const char *vdev_type = vd->vdev_ops->vdev_op_type;
4822
4823                 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4824                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4825                         return (B_FALSE);
4826                 }
4827         }
4828
4829         for (int c = 0; c < vd->vdev_children; c++) {
4830                 if (!vdev_is_bootable(vd->vdev_child[c]))
4831                         return (B_FALSE);
4832         }
4833         return (B_TRUE);
4834 }
4835
4836 boolean_t
4837 vdev_is_concrete(vdev_t *vd)
4838 {
4839         vdev_ops_t *ops = vd->vdev_ops;
4840         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4841             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4842                 return (B_FALSE);
4843         } else {
4844                 return (B_TRUE);
4845         }
4846 }
4847
4848 /*
4849  * Determine if a log device has valid content.  If the vdev was
4850  * removed or faulted in the MOS config then we know that
4851  * the content on the log device has already been written to the pool.
4852  */
4853 boolean_t
4854 vdev_log_state_valid(vdev_t *vd)
4855 {
4856         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4857             !vd->vdev_removed)
4858                 return (B_TRUE);
4859
4860         for (int c = 0; c < vd->vdev_children; c++)
4861                 if (vdev_log_state_valid(vd->vdev_child[c]))
4862                         return (B_TRUE);
4863
4864         return (B_FALSE);
4865 }
4866
4867 /*
4868  * Expand a vdev if possible.
4869  */
4870 void
4871 vdev_expand(vdev_t *vd, uint64_t txg)
4872 {
4873         ASSERT(vd->vdev_top == vd);
4874         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4875         ASSERT(vdev_is_concrete(vd));
4876
4877         vdev_set_deflate_ratio(vd);
4878
4879         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4880             vdev_is_concrete(vd)) {
4881                 vdev_metaslab_group_create(vd);
4882                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4883                 vdev_config_dirty(vd);
4884         }
4885 }
4886
4887 /*
4888  * Split a vdev.
4889  */
4890 void
4891 vdev_split(vdev_t *vd)
4892 {
4893         vdev_t *cvd, *pvd = vd->vdev_parent;
4894
4895         vdev_remove_child(pvd, vd);
4896         vdev_compact_children(pvd);
4897
4898         cvd = pvd->vdev_child[0];
4899         if (pvd->vdev_children == 1) {
4900                 vdev_remove_parent(cvd);
4901                 cvd->vdev_splitting = B_TRUE;
4902         }
4903         vdev_propagate_state(cvd);
4904 }
4905
4906 void
4907 vdev_deadman(vdev_t *vd, char *tag)
4908 {
4909         for (int c = 0; c < vd->vdev_children; c++) {
4910                 vdev_t *cvd = vd->vdev_child[c];
4911
4912                 vdev_deadman(cvd, tag);
4913         }
4914
4915         if (vd->vdev_ops->vdev_op_leaf) {
4916                 vdev_queue_t *vq = &vd->vdev_queue;
4917
4918                 mutex_enter(&vq->vq_lock);
4919                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4920                         spa_t *spa = vd->vdev_spa;
4921                         zio_t *fio;
4922                         uint64_t delta;
4923
4924                         zfs_dbgmsg("slow vdev: %s has %d active IOs",
4925                             vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4926
4927                         /*
4928                          * Look at the head of all the pending queues,
4929                          * if any I/O has been outstanding for longer than
4930                          * the spa_deadman_synctime invoke the deadman logic.
4931                          */
4932                         fio = avl_first(&vq->vq_active_tree);
4933                         delta = gethrtime() - fio->io_timestamp;
4934                         if (delta > spa_deadman_synctime(spa))
4935                                 zio_deadman(fio, tag);
4936                 }
4937                 mutex_exit(&vq->vq_lock);
4938         }
4939 }
4940
4941 void
4942 vdev_defer_resilver(vdev_t *vd)
4943 {
4944         ASSERT(vd->vdev_ops->vdev_op_leaf);
4945
4946         vd->vdev_resilver_deferred = B_TRUE;
4947         vd->vdev_spa->spa_resilver_deferred = B_TRUE;
4948 }
4949
4950 /*
4951  * Clears the resilver deferred flag on all leaf devs under vd. Returns
4952  * B_TRUE if we have devices that need to be resilvered and are available to
4953  * accept resilver I/Os.
4954  */
4955 boolean_t
4956 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
4957 {
4958         boolean_t resilver_needed = B_FALSE;
4959         spa_t *spa = vd->vdev_spa;
4960
4961         for (int c = 0; c < vd->vdev_children; c++) {
4962                 vdev_t *cvd = vd->vdev_child[c];
4963                 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
4964         }
4965
4966         if (vd == spa->spa_root_vdev &&
4967             spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
4968                 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4969                 vdev_config_dirty(vd);
4970                 spa->spa_resilver_deferred = B_FALSE;
4971                 return (resilver_needed);
4972         }
4973
4974         if (!vdev_is_concrete(vd) || vd->vdev_aux ||
4975             !vd->vdev_ops->vdev_op_leaf)
4976                 return (resilver_needed);
4977
4978         vd->vdev_resilver_deferred = B_FALSE;
4979
4980         return (!vdev_is_dead(vd) && !vd->vdev_offline &&
4981             vdev_resilver_needed(vd, NULL, NULL));
4982 }
4983
4984 /*
4985  * Translate a logical range to the physical range for the specified vdev_t.
4986  * This function is initially called with a leaf vdev and will walk each
4987  * parent vdev until it reaches a top-level vdev. Once the top-level is
4988  * reached the physical range is initialized and the recursive function
4989  * begins to unwind. As it unwinds it calls the parent's vdev specific
4990  * translation function to do the real conversion.
4991  */
4992 void
4993 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
4994     range_seg64_t *physical_rs)
4995 {
4996         /*
4997          * Walk up the vdev tree
4998          */
4999         if (vd != vd->vdev_top) {
5000                 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
5001         } else {
5002                 /*
5003                  * We've reached the top-level vdev, initialize the
5004                  * physical range to the logical range and start to
5005                  * unwind.
5006                  */
5007                 physical_rs->rs_start = logical_rs->rs_start;
5008                 physical_rs->rs_end = logical_rs->rs_end;
5009                 return;
5010         }
5011
5012         vdev_t *pvd = vd->vdev_parent;
5013         ASSERT3P(pvd, !=, NULL);
5014         ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5015
5016         /*
5017          * As this recursive function unwinds, translate the logical
5018          * range into its physical components by calling the
5019          * vdev specific translate function.
5020          */
5021         range_seg64_t intermediate = { 0 };
5022         pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
5023
5024         physical_rs->rs_start = intermediate.rs_start;
5025         physical_rs->rs_end = intermediate.rs_end;
5026 }
5027
5028 /*
5029  * Look at the vdev tree and determine whether any devices are currently being
5030  * replaced.
5031  */
5032 boolean_t
5033 vdev_replace_in_progress(vdev_t *vdev)
5034 {
5035         ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5036
5037         if (vdev->vdev_ops == &vdev_replacing_ops)
5038                 return (B_TRUE);
5039
5040         /*
5041          * A 'spare' vdev indicates that we have a replace in progress, unless
5042          * it has exactly two children, and the second, the hot spare, has
5043          * finished being resilvered.
5044          */
5045         if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5046             !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5047                 return (B_TRUE);
5048
5049         for (int i = 0; i < vdev->vdev_children; i++) {
5050                 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5051                         return (B_TRUE);
5052         }
5053
5054         return (B_FALSE);
5055 }
5056
5057 EXPORT_SYMBOL(vdev_fault);
5058 EXPORT_SYMBOL(vdev_degrade);
5059 EXPORT_SYMBOL(vdev_online);
5060 EXPORT_SYMBOL(vdev_offline);
5061 EXPORT_SYMBOL(vdev_clear);
5062
5063 /* BEGIN CSTYLED */
5064 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5065         "Target number of metaslabs per top-level vdev");
5066
5067 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5068         "Default limit for metaslab size");
5069
5070 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5071         "Minimum number of metaslabs per top-level vdev");
5072
5073 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5074         "Practical upper limit of total metaslabs per top-level vdev");
5075
5076 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5077         "Rate limit slow IO (delay) events to this many per second");
5078
5079 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5080         "Rate limit checksum events to this many checksum errors per second "
5081         "(do not set below zed threshold).");
5082
5083 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5084         "Ignore errors during resilver/scrub");
5085
5086 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5087         "Bypass vdev_validate()");
5088
5089 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5090         "Disable cache flushes");
5091
5092 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5093         param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5094         "Minimum ashift used when creating new top-level vdevs");
5095
5096 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5097         param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5098         "Maximum ashift used when optimizing for logical -> physical sector "
5099         "size on new top-level vdevs");
5100 /* END CSTYLED */