]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_draid.c
MFV: expat 2.5.0
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_draid.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2018 Intel Corporation.
23  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/vdev_draid.h>
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_rebuild.h>
33 #include <sys/abd.h>
34 #include <sys/zio.h>
35 #include <sys/nvpair.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/fs/zfs.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <zfs_fletcher.h>
40
41 #ifdef ZFS_DEBUG
42 #include <sys/vdev.h>   /* For vdev_xlate() in vdev_draid_io_verify() */
43 #endif
44
45 /*
46  * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
47  * comprised of multiple raidz redundancy groups which are spread over the
48  * dRAID children. To ensure an even distribution, and avoid hot spots, a
49  * permutation mapping is applied to the order of the dRAID children.
50  * This mixing effectively distributes the parity columns evenly over all
51  * of the disks in the dRAID.
52  *
53  * This is beneficial because it means when resilvering all of the disks
54  * can participate thereby increasing the available IOPs and bandwidth.
55  * Furthermore, by reserving a small fraction of each child's total capacity
56  * virtual distributed spare disks can be created. These spares similarly
57  * benefit from the performance gains of spanning all of the children. The
58  * consequence of which is that resilvering to a distributed spare can
59  * substantially reduce the time required to restore full parity to pool
60  * with a failed disks.
61  *
62  * === dRAID group layout ===
63  *
64  * First, let's define a "row" in the configuration to be a 16M chunk from
65  * each physical drive at the same offset. This is the minimum allowable
66  * size since it must be possible to store a full 16M block when there is
67  * only a single data column. Next, we define a "group" to be a set of
68  * sequential disks containing both the parity and data columns. We allow
69  * groups to span multiple rows in order to align any group size to any
70  * number of physical drives. Finally, a "slice" is comprised of the rows
71  * which contain the target number of groups. The permutation mappings
72  * are applied in a round robin fashion to each slice.
73  *
74  * Given D+P drives in a group (including parity drives) and C-S physical
75  * drives (not including the spare drives), we can distribute the groups
76  * across R rows without remainder by selecting the least common multiple
77  * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
78  *
79  * In the example below, there are C=14 physical drives in the configuration
80  * with S=2 drives worth of spare capacity. Each group has a width of 9
81  * which includes D=8 data and P=1 parity drive. There are 4 groups and
82  * 3 rows per slice.  Each group has a size of 144M (16M * 9) and a slice
83  * size is 576M (144M * 4). When allocating from a dRAID each group is
84  * filled before moving on to the next as show in slice0 below.
85  *
86  *             data disks (8 data + 1 parity)          spares (2)
87  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
88  *  ^  | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
89  *  |  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
90  *  |  |              group 0              |  group 1..|       |
91  *  |  +-----------------------------------+-----------+-------|
92  *  |  | 0   1   2   3   4   5   6   7   8 | 36  37  38|       |  r
93  *  |  | 9   10  11  12  13  14  15  16  17| 45  46  47|       |  o
94  *  |  | 18  19  20  21  22  23  24  25  26| 54  55  56|       |  w
95  *     | 27  28  29  30  31  32  33  34  35| 63  64  65|       |  0
96  *  s  +-----------------------+-----------------------+-------+
97  *  l  |       ..group 1       |        group 2..      |       |
98  *  i  +-----------------------+-----------------------+-------+
99  *  c  | 39  40  41  42  43  44| 72  73  74  75  76  77|       |  r
100  *  e  | 48  49  50  51  52  53| 81  82  83  84  85  86|       |  o
101  *  0  | 57  58  59  60  61  62| 90  91  92  93  94  95|       |  w
102  *     | 66  67  68  69  70  71| 99 100 101 102 103 104|       |  1
103  *  |  +-----------+-----------+-----------------------+-------+
104  *  |  |..group 2  |            group 3                |       |
105  *  |  +-----------+-----------+-----------------------+-------+
106  *  |  | 78  79  80|108 109 110 111 112 113 114 115 116|       |  r
107  *  |  | 87  88  89|117 118 119 120 121 122 123 124 125|       |  o
108  *  |  | 96  97  98|126 127 128 129 130 131 132 133 134|       |  w
109  *  v  |105 106 107|135 136 137 138 139 140 141 142 143|       |  2
110  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
111  *     | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
112  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
113  *  l  |              group 4              |  group 5..|       | row 3
114  *  i  +-----------------------+-----------+-----------+-------|
115  *  c  |       ..group 5       |        group 6..      |       | row 4
116  *  e  +-----------+-----------+-----------------------+-------+
117  *  1  |..group 6  |            group 7                |       | row 5
118  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
119  *     | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
120  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
121  *  l  |              group 8              |  group 9..|       | row 6
122  *  i  +-----------------------------------------------+-------|
123  *  c  |       ..group 9       |        group 10..     |       | row 7
124  *  e  +-----------------------+-----------------------+-------+
125  *  2  |..group 10 |            group 11               |       | row 8
126  *     +-----------+-----------------------------------+-------+
127  *
128  * This layout has several advantages over requiring that each row contain
129  * a whole number of groups.
130  *
131  * 1. The group count is not a relevant parameter when defining a dRAID
132  *    layout. Only the group width is needed, and *all* groups will have
133  *    the desired size.
134  *
135  * 2. All possible group widths (<= physical disk count) can be supported.
136  *
137  * 3. The logic within vdev_draid.c is simplified when the group width is
138  *    the same for all groups (although some of the logic around computing
139  *    permutation numbers and drive offsets is more complicated).
140  *
141  * N.B. The following array describes all valid dRAID permutation maps.
142  * Each row is used to generate a permutation map for a different number
143  * of children from a unique seed. The seeds were generated and carefully
144  * evaluated by the 'draid' utility in order to provide balanced mappings.
145  * In addition to the seed a checksum of the in-memory mapping is stored
146  * for verification.
147  *
148  * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
149  * with a given permutation map) is the ratio of the amounts of I/O that will
150  * be sent to the least and most busy disks when resilvering. The average
151  * imbalance ratio (of a given number of disks and permutation map) is the
152  * average of the ratios of all possible single and double disk failures.
153  *
154  * In order to achieve a low imbalance ratio the number of permutations in
155  * the mapping must be significantly larger than the number of children.
156  * For dRAID the number of permutations has been limited to 512 to minimize
157  * the map size. This does result in a gradually increasing imbalance ratio
158  * as seen in the table below. Increasing the number of permutations for
159  * larger child counts would reduce the imbalance ratio. However, in practice
160  * when there are a large number of children each child is responsible for
161  * fewer total IOs so it's less of a concern.
162  *
163  * Note these values are hard coded and must never be changed.  Existing
164  * pools depend on the same mapping always being generated in order to
165  * read and write from the correct locations.  Any change would make
166  * existing pools completely inaccessible.
167  */
168 static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
169         {   2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d },   /* 1.000 */
170         {   3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 },   /* 1.000 */
171         {   4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 },   /* 1.000 */
172         {   5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 },   /* 1.010 */
173         {   6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 },   /* 1.031 */
174         {   7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee },   /* 1.043 */
175         {   8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 },   /* 1.059 */
176         {   9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 },   /* 1.056 */
177         {  10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 },   /* 1.072 */
178         {  11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c },   /* 1.083 */
179         {  12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e },   /* 1.097 */
180         {  13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 },   /* 1.100 */
181         {  14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 },   /* 1.121 */
182         {  15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 },   /* 1.103 */
183         {  16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 },   /* 1.111 */
184         {  17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe },   /* 1.133 */
185         {  18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 },   /* 1.131 */
186         {  19, 256, 0x892e343f2f31d690, 0x00000029eb392835 },   /* 1.130 */
187         {  20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c },   /* 1.141 */
188         {  21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 },   /* 1.139 */
189         {  22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 },   /* 1.150 */
190         {  23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f },   /* 1.174 */
191         {  24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 },   /* 1.168 */
192         {  25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 },   /* 1.180 */
193         {  26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba },   /* 1.226 */
194         {  27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 },   /* 1.228 */
195         {  28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c },   /* 1.217 */
196         {  29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c },   /* 1.239 */
197         {  30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 },   /* 1.238 */
198         {  31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f },   /* 1.273 */
199         {  32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 },   /* 1.191 */
200         {  33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 },   /* 1.199 */
201         {  34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 },   /* 1.195 */
202         {  35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 },   /* 1.201 */
203         {  36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef },   /* 1.194 */
204         {  37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 },   /* 1.237 */
205         {  38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 },   /* 1.242 */
206         {  39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd },   /* 1.231 */
207         {  40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 },   /* 1.233 */
208         {  41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 },   /* 1.271 */
209         {  42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 },   /* 1.263 */
210         {  43, 512, 0xbaa5125faa781854, 0x000001c76789e278 },   /* 1.270 */
211         {  44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb },   /* 1.281 */
212         {  45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 },   /* 1.282 */
213         {  46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b },   /* 1.286 */
214         {  47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 },   /* 1.329 */
215         {  48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b },   /* 1.286 */
216         {  49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 },   /* 1.322 */
217         {  50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 },   /* 1.335 */
218         {  51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 },   /* 1.305 */
219         {  52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf },   /* 1.330 */
220         {  53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 },   /* 1.365 */
221         {  54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 },   /* 1.334 */
222         {  55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 },   /* 1.364 */
223         {  56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e },   /* 1.374 */
224         {  57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 },   /* 1.363 */
225         {  58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 },   /* 1.401 */
226         {  59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c },   /* 1.392 */
227         {  60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 },   /* 1.360 */
228         {  61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd },   /* 1.396 */
229         {  62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c },   /* 1.453 */
230         {  63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 },   /* 1.437 */
231         {  64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 },   /* 1.402 */
232         {  65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 },   /* 1.459 */
233         {  66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 },   /* 1.423 */
234         {  67, 512, 0x910b9714f698a877, 0x00000451ea65d5db },   /* 1.447 */
235         {  68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 },   /* 1.450 */
236         {  69, 512, 0x836d4968fbaa3706, 0x000004954068a380 },   /* 1.455 */
237         {  70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d },   /* 1.463 */
238         {  71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 },   /* 1.463 */
239         {  72, 512, 0x42763a680d5bed8e, 0x000005084275c680 },   /* 1.452 */
240         {  73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab },   /* 1.498 */
241         {  74, 512, 0x9fa08548b1621a44, 0x0000054708019247 },   /* 1.526 */
242         {  75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 },   /* 1.491 */
243         {  76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 },   /* 1.470 */
244         {  77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 },   /* 1.527 */
245         {  78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 },   /* 1.509 */
246         {  79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e },   /* 1.569 */
247         {  80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c },   /* 1.555 */
248         {  81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 },   /* 1.509 */
249         {  82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 },   /* 1.596 */
250         {  83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e },   /* 1.568 */
251         {  84, 512, 0xba02545069ddc6dc, 0x000006d19861364f },   /* 1.541 */
252         {  85, 512, 0x447c73192c35073e, 0x000006fce315ce35 },   /* 1.623 */
253         {  86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b },   /* 1.620 */
254         {  87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 },   /* 1.597 */
255         {  88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b },   /* 1.575 */
256         {  89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc },   /* 1.627 */
257         {  90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb },   /* 1.596 */
258         {  91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 },   /* 1.622 */
259         {  92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e },   /* 1.695 */
260         {  93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c },   /* 1.605 */
261         {  94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc },   /* 1.625 */
262         {  95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 },   /* 1.687 */
263         {  96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a },   /* 1.621 */
264         {  97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 },   /* 1.699 */
265         {  98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b },   /* 1.688 */
266         {  99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce },   /* 1.642 */
267         { 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc },   /* 1.683 */
268         { 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 },   /* 1.755 */
269         { 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 },   /* 1.692 */
270         { 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 },   /* 1.747 */
271         { 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 },   /* 1.751 */
272         { 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 },   /* 1.751 */
273         { 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f },   /* 1.726 */
274         { 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d },   /* 1.788 */
275         { 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 },   /* 1.740 */
276         { 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 },   /* 1.780 */
277         { 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 },   /* 1.836 */
278         { 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 },   /* 1.778 */
279         { 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 },   /* 1.831 */
280         { 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df },   /* 1.825 */
281         { 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 },   /* 1.826 */
282         { 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 },   /* 1.843 */
283         { 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d },   /* 1.826 */
284         { 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b },   /* 1.803 */
285         { 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 },   /* 1.857 */
286         { 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 },   /* 1.877 */
287         { 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 },   /* 1.849 */
288         { 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d },   /* 1.867 */
289         { 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 },   /* 1.978 */
290         { 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d },   /* 1.947 */
291         { 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea },   /* 1.865 */
292         { 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f },   /* 1.881 */
293         { 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b },   /* 1.882 */
294         { 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e },   /* 1.867 */
295         { 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e },   /* 1.972 */
296         { 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 },   /* 1.896 */
297         { 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d },   /* 1.965 */
298         { 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 },   /* 1.963 */
299         { 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 },   /* 1.925 */
300         { 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 },   /* 1.862 */
301         { 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 },   /* 2.042 */
302         { 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 },   /* 1.935 */
303         { 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 },   /* 2.005 */
304         { 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c },   /* 2.041 */
305         { 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 },   /* 1.997 */
306         { 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 },   /* 1.996 */
307         { 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d },   /* 2.053 */
308         { 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a },   /* 1.971 */
309         { 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 },   /* 2.018 */
310         { 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd },   /* 1.961 */
311         { 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 },   /* 2.046 */
312         { 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb },   /* 1.968 */
313         { 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 },   /* 2.143 */
314         { 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 },   /* 2.064 */
315         { 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 },   /* 2.023 */
316         { 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c },   /* 2.136 */
317         { 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 },   /* 2.063 */
318         { 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 },   /* 1.974 */
319         { 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 },   /* 2.210 */
320         { 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a },   /* 2.006 */
321         { 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 },   /* 2.193 */
322         { 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 },   /* 2.163 */
323         { 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc },   /* 2.046 */
324         { 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 },   /* 2.084 */
325         { 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 },   /* 2.264 */
326         { 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 },   /* 2.074 */
327         { 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 },   /* 2.282 */
328         { 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf },   /* 2.148 */
329         { 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 },   /* 2.355 */
330         { 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 },   /* 2.164 */
331         { 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a },   /* 2.393 */
332         { 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 },   /* 2.178 */
333         { 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc },   /* 2.334 */
334         { 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b },   /* 2.266 */
335         { 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 },   /* 2.304 */
336         { 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d },   /* 2.218 */
337         { 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff },   /* 2.377 */
338         { 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 },   /* 2.155 */
339         { 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 },   /* 2.404 */
340         { 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 },   /* 2.205 */
341         { 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d },   /* 2.359 */
342         { 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 },   /* 2.158 */
343         { 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b },   /* 2.614 */
344         { 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc },   /* 2.239 */
345         { 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc },   /* 2.493 */
346         { 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c },   /* 2.327 */
347         { 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 },   /* 2.231 */
348         { 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c },   /* 2.237 */
349         { 182, 512, 0xe6035defea48f933, 0x00002038e3346658 },   /* 2.691 */
350         { 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e },   /* 2.170 */
351         { 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 },   /* 2.600 */
352         { 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc },   /* 2.391 */
353         { 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 },   /* 2.677 */
354         { 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c },   /* 2.410 */
355         { 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 },   /* 2.776 */
356         { 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 },   /* 2.266 */
357         { 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 },   /* 2.717 */
358         { 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c },   /* 2.474 */
359         { 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 },   /* 2.673 */
360         { 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 },   /* 2.420 */
361         { 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 },   /* 2.898 */
362         { 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c },   /* 2.363 */
363         { 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e },   /* 2.747 */
364         { 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 },   /* 2.531 */
365         { 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 },   /* 2.707 */
366         { 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 },   /* 2.315 */
367         { 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf },   /* 3.012 */
368         { 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 },   /* 2.378 */
369         { 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 },   /* 2.969 */
370         { 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d },   /* 2.594 */
371         { 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd },   /* 2.763 */
372         { 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 },   /* 2.457 */
373         { 206, 512, 0xc02fc96684715a16, 0x0000297515608601 },   /* 3.057 */
374         { 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 },   /* 2.590 */
375         { 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b },   /* 3.047 */
376         { 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 },   /* 2.676 */
377         { 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 },   /* 2.993 */
378         { 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 },   /* 2.457 */
379         { 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 },   /* 3.182 */
380         { 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 },   /* 2.563 */
381         { 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 },   /* 3.025 */
382         { 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f },   /* 2.730 */
383         { 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 },   /* 3.036 */
384         { 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 },   /* 2.722 */
385         { 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 },   /* 3.356 */
386         { 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 },   /* 2.697 */
387         { 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 },   /* 2.979 */
388         { 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 },   /* 2.858 */
389         { 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e },   /* 3.258 */
390         { 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 },   /* 2.693 */
391         { 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 },   /* 3.259 */
392         { 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c },   /* 2.733 */
393         { 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 },   /* 3.235 */
394         { 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 },   /* 2.983 */
395         { 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e },   /* 3.308 */
396         { 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 },   /* 2.715 */
397         { 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f },   /* 3.540 */
398         { 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 },   /* 2.779 */
399         { 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c },   /* 3.084 */
400         { 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc },   /* 2.987 */
401         { 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae },   /* 3.341 */
402         { 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 },   /* 2.793 */
403         { 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 },   /* 3.518 */
404         { 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 },   /* 2.962 */
405         { 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 },   /* 3.196 */
406         { 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 },   /* 2.914 */
407         { 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 },   /* 3.408 */
408         { 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 },   /* 2.903 */
409         { 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 },   /* 3.778 */
410         { 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c },   /* 3.026 */
411         { 244, 512, 0xc740263f0301efa8, 0x00003a147146512d },   /* 3.347 */
412         { 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d },   /* 3.212 */
413         { 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 },   /* 3.482 */
414         { 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 },   /* 3.146 */
415         { 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f },   /* 3.626 */
416         { 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 },   /* 2.952 */
417         { 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e },   /* 3.463 */
418         { 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 },   /* 3.131 */
419         { 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c },   /* 3.538 */
420         { 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac },   /* 2.974 */
421         { 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 },   /* 3.843 */
422         { 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 },   /* 3.088 */
423 };
424
425 /*
426  * Verify the map is valid. Each device index must appear exactly
427  * once in every row, and the permutation array checksum must match.
428  */
429 static int
430 verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
431     uint64_t checksum)
432 {
433         int countssz = sizeof (uint16_t) * children;
434         uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
435
436         for (int i = 0; i < nperms; i++) {
437                 for (int j = 0; j < children; j++) {
438                         uint8_t val = perms[(i * children) + j];
439
440                         if (val >= children || counts[val] != i) {
441                                 kmem_free(counts, countssz);
442                                 return (EINVAL);
443                         }
444
445                         counts[val]++;
446                 }
447         }
448
449         if (checksum != 0) {
450                 int permssz = sizeof (uint8_t) * children * nperms;
451                 zio_cksum_t cksum;
452
453                 fletcher_4_native_varsize(perms, permssz, &cksum);
454
455                 if (checksum != cksum.zc_word[0]) {
456                         kmem_free(counts, countssz);
457                         return (ECKSUM);
458                 }
459         }
460
461         kmem_free(counts, countssz);
462
463         return (0);
464 }
465
466 /*
467  * Generate the permutation array for the draid_map_t.  These maps control
468  * the placement of all data in a dRAID.  Therefore it's critical that the
469  * seed always generates the same mapping.  We provide our own pseudo-random
470  * number generator for this purpose.
471  */
472 int
473 vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
474 {
475         VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
476         VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
477         VERIFY3U(map->dm_seed, !=, 0);
478         VERIFY3U(map->dm_nperms, !=, 0);
479         VERIFY3P(map->dm_perms, ==, NULL);
480
481 #ifdef _KERNEL
482         /*
483          * The kernel code always provides both a map_seed and checksum.
484          * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
485          * a zero checksum when generating new candidate maps.
486          */
487         VERIFY3U(map->dm_checksum, !=, 0);
488 #endif
489         uint64_t children = map->dm_children;
490         uint64_t nperms = map->dm_nperms;
491         int rowsz = sizeof (uint8_t) * children;
492         int permssz = rowsz * nperms;
493         uint8_t *perms;
494
495         /* Allocate the permutation array */
496         perms = vmem_alloc(permssz, KM_SLEEP);
497
498         /* Setup an initial row with a known pattern */
499         uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
500         for (int i = 0; i < children; i++)
501                 initial_row[i] = i;
502
503         uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
504         uint8_t *current_row, *previous_row = initial_row;
505
506         /*
507          * Perform a Fisher-Yates shuffle of each row using the previous
508          * row as the starting point.  An initial_row with known pattern
509          * is used as the input for the first row.
510          */
511         for (int i = 0; i < nperms; i++) {
512                 current_row = &perms[i * children];
513                 memcpy(current_row, previous_row, rowsz);
514
515                 for (int j = children - 1; j > 0; j--) {
516                         uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
517                         uint8_t val = current_row[j];
518                         current_row[j] = current_row[k];
519                         current_row[k] = val;
520                 }
521
522                 previous_row = current_row;
523         }
524
525         kmem_free(initial_row, rowsz);
526
527         int error = verify_perms(perms, children, nperms, map->dm_checksum);
528         if (error) {
529                 vmem_free(perms, permssz);
530                 return (error);
531         }
532
533         *permsp = perms;
534
535         return (0);
536 }
537
538 /*
539  * Lookup the fixed draid_map_t for the requested number of children.
540  */
541 int
542 vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
543 {
544         for (int i = 0; i < VDEV_DRAID_MAX_MAPS; i++) {
545                 if (draid_maps[i].dm_children == children) {
546                         *mapp = &draid_maps[i];
547                         return (0);
548                 }
549         }
550
551         return (ENOENT);
552 }
553
554 /*
555  * Lookup the permutation array and iteration id for the provided offset.
556  */
557 static void
558 vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
559     uint8_t **base, uint64_t *iter)
560 {
561         uint64_t ncols = vdc->vdc_children;
562         uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
563
564         *base = vdc->vdc_perms + (poff / ncols) * ncols;
565         *iter = poff % ncols;
566 }
567
568 static inline uint64_t
569 vdev_draid_permute_id(vdev_draid_config_t *vdc,
570     uint8_t *base, uint64_t iter, uint64_t index)
571 {
572         return ((base[index] + iter) % vdc->vdc_children);
573 }
574
575 /*
576  * Return the asize which is the psize rounded up to a full group width.
577  * i.e. vdev_draid_psize_to_asize().
578  */
579 static uint64_t
580 vdev_draid_asize(vdev_t *vd, uint64_t psize)
581 {
582         vdev_draid_config_t *vdc = vd->vdev_tsd;
583         uint64_t ashift = vd->vdev_ashift;
584
585         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
586
587         uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
588         uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
589
590         ASSERT3U(asize, !=, 0);
591         ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);
592
593         return (asize);
594 }
595
596 /*
597  * Deflate the asize to the psize, this includes stripping parity.
598  */
599 uint64_t
600 vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
601 {
602         vdev_draid_config_t *vdc = vd->vdev_tsd;
603
604         ASSERT0(asize % vdc->vdc_groupwidth);
605
606         return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
607 }
608
609 /*
610  * Convert a logical offset to the corresponding group number.
611  */
612 static uint64_t
613 vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
614 {
615         vdev_draid_config_t *vdc = vd->vdev_tsd;
616
617         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
618
619         return (offset / vdc->vdc_groupsz);
620 }
621
622 /*
623  * Convert a group number to the logical starting offset for that group.
624  */
625 static uint64_t
626 vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
627 {
628         vdev_draid_config_t *vdc = vd->vdev_tsd;
629
630         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
631
632         return (group * vdc->vdc_groupsz);
633 }
634
635 /*
636  * Full stripe writes.  When writing, all columns (D+P) are required.  Parity
637  * is calculated over all the columns, including empty zero filled sectors,
638  * and each is written to disk.  While only the data columns are needed for
639  * a normal read, all of the columns are required for reconstruction when
640  * performing a sequential resilver.
641  *
642  * For "big columns" it's sufficient to map the correct range of the zio ABD.
643  * Partial columns require allocating a gang ABD in order to zero fill the
644  * empty sectors.  When the column is empty a zero filled sector must be
645  * mapped.  In all cases the data ABDs must be the same size as the parity
646  * ABDs (e.g. rc->rc_size == parity_size).
647  */
648 static void
649 vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
650 {
651         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
652         uint64_t parity_size = rr->rr_col[0].rc_size;
653         uint64_t abd_off = abd_offset;
654
655         ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
656         ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
657
658         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
659                 raidz_col_t *rc = &rr->rr_col[c];
660
661                 if (rc->rc_size == 0) {
662                         /* empty data column (small write), add a skip sector */
663                         ASSERT3U(skip_size, ==, parity_size);
664                         rc->rc_abd = abd_get_zeros(skip_size);
665                 } else if (rc->rc_size == parity_size) {
666                         /* this is a "big column" */
667                         rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
668                             zio->io_abd, abd_off, rc->rc_size);
669                 } else {
670                         /* short data column, add a skip sector */
671                         ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
672                         rc->rc_abd = abd_alloc_gang();
673                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
674                             zio->io_abd, abd_off, rc->rc_size), B_TRUE);
675                         abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
676                             B_TRUE);
677                 }
678
679                 ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
680
681                 abd_off += rc->rc_size;
682                 rc->rc_size = parity_size;
683         }
684
685         IMPLY(abd_offset != 0, abd_off == zio->io_size);
686 }
687
688 /*
689  * Scrub/resilver reads.  In order to store the contents of the skip sectors
690  * an additional ABD is allocated.  The columns are handled in the same way
691  * as a full stripe write except instead of using the zero ABD the newly
692  * allocated skip ABD is used to back the skip sectors.  In all cases the
693  * data ABD must be the same size as the parity ABDs.
694  */
695 static void
696 vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
697 {
698         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
699         uint64_t parity_size = rr->rr_col[0].rc_size;
700         uint64_t abd_off = abd_offset;
701         uint64_t skip_off = 0;
702
703         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
704         ASSERT3P(rr->rr_abd_empty, ==, NULL);
705
706         if (rr->rr_nempty > 0) {
707                 rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
708                     B_FALSE);
709         }
710
711         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
712                 raidz_col_t *rc = &rr->rr_col[c];
713
714                 if (rc->rc_size == 0) {
715                         /* empty data column (small read), add a skip sector */
716                         ASSERT3U(skip_size, ==, parity_size);
717                         ASSERT3U(rr->rr_nempty, !=, 0);
718                         rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
719                             skip_off, skip_size);
720                         skip_off += skip_size;
721                 } else if (rc->rc_size == parity_size) {
722                         /* this is a "big column" */
723                         rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
724                             zio->io_abd, abd_off, rc->rc_size);
725                 } else {
726                         /* short data column, add a skip sector */
727                         ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
728                         ASSERT3U(rr->rr_nempty, !=, 0);
729                         rc->rc_abd = abd_alloc_gang();
730                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
731                             zio->io_abd, abd_off, rc->rc_size), B_TRUE);
732                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
733                             rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
734                         skip_off += skip_size;
735                 }
736
737                 uint64_t abd_size = abd_get_size(rc->rc_abd);
738                 ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
739
740                 /*
741                  * Increase rc_size so the skip ABD is included in subsequent
742                  * parity calculations.
743                  */
744                 abd_off += rc->rc_size;
745                 rc->rc_size = abd_size;
746         }
747
748         IMPLY(abd_offset != 0, abd_off == zio->io_size);
749         ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
750 }
751
752 /*
753  * Normal reads.  In this common case only the columns containing data
754  * are read in to the zio ABDs.  Neither the parity columns or empty skip
755  * sectors are read unless the checksum fails verification.  In which case
756  * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
757  * the raid map in order to allow reconstruction using the parity data and
758  * skip sectors.
759  */
760 static void
761 vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
762 {
763         uint64_t abd_off = abd_offset;
764
765         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
766
767         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
768                 raidz_col_t *rc = &rr->rr_col[c];
769
770                 if (rc->rc_size > 0) {
771                         rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
772                             zio->io_abd, abd_off, rc->rc_size);
773                         abd_off += rc->rc_size;
774                 }
775         }
776
777         IMPLY(abd_offset != 0, abd_off == zio->io_size);
778 }
779
780 /*
781  * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
782  * difference is that an ABD is allocated to back skip sectors so they may
783  * be read in to memory, verified, and repaired if needed.
784  */
785 void
786 vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
787 {
788         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
789         uint64_t parity_size = rr->rr_col[0].rc_size;
790         uint64_t skip_off = 0;
791
792         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
793         ASSERT3P(rr->rr_abd_empty, ==, NULL);
794
795         if (rr->rr_nempty > 0) {
796                 rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
797                     B_FALSE);
798         }
799
800         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
801                 raidz_col_t *rc = &rr->rr_col[c];
802
803                 if (rc->rc_size == 0) {
804                         /* empty data column (small read), add a skip sector */
805                         ASSERT3U(skip_size, ==, parity_size);
806                         ASSERT3U(rr->rr_nempty, !=, 0);
807                         ASSERT3P(rc->rc_abd, ==, NULL);
808                         rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
809                             skip_off, skip_size);
810                         skip_off += skip_size;
811                 } else if (rc->rc_size == parity_size) {
812                         /* this is a "big column", nothing to add */
813                         ASSERT3P(rc->rc_abd, !=, NULL);
814                 } else {
815                         /*
816                          * short data column, add a skip sector and clear
817                          * rc_tried to force the entire column to be re-read
818                          * thereby including the missing skip sector data
819                          * which is needed for reconstruction.
820                          */
821                         ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
822                         ASSERT3U(rr->rr_nempty, !=, 0);
823                         ASSERT3P(rc->rc_abd, !=, NULL);
824                         ASSERT(!abd_is_gang(rc->rc_abd));
825                         abd_t *read_abd = rc->rc_abd;
826                         rc->rc_abd = abd_alloc_gang();
827                         abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
828                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
829                             rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
830                         skip_off += skip_size;
831                         rc->rc_tried = 0;
832                 }
833
834                 /*
835                  * Increase rc_size so the empty ABD is included in subsequent
836                  * parity calculations.
837                  */
838                 rc->rc_size = parity_size;
839         }
840
841         ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
842 }
843
844 /*
845  * Verify that all empty sectors are zero filled before using them to
846  * calculate parity.  Otherwise, silent corruption in an empty sector will
847  * result in bad parity being generated.  That bad parity will then be
848  * considered authoritative and overwrite the good parity on disk.  This
849  * is possible because the checksum is only calculated over the data,
850  * thus it cannot be used to detect damage in empty sectors.
851  */
852 int
853 vdev_draid_map_verify_empty(zio_t *zio, raidz_row_t *rr)
854 {
855         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
856         uint64_t parity_size = rr->rr_col[0].rc_size;
857         uint64_t skip_off = parity_size - skip_size;
858         uint64_t empty_off = 0;
859         int ret = 0;
860
861         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
862         ASSERT3P(rr->rr_abd_empty, !=, NULL);
863         ASSERT3U(rr->rr_bigcols, >, 0);
864
865         void *zero_buf = kmem_zalloc(skip_size, KM_SLEEP);
866
867         for (int c = rr->rr_bigcols; c < rr->rr_cols; c++) {
868                 raidz_col_t *rc = &rr->rr_col[c];
869
870                 ASSERT3P(rc->rc_abd, !=, NULL);
871                 ASSERT3U(rc->rc_size, ==, parity_size);
872
873                 if (abd_cmp_buf_off(rc->rc_abd, zero_buf, skip_off,
874                     skip_size) != 0) {
875                         vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
876                         abd_zero_off(rc->rc_abd, skip_off, skip_size);
877                         rc->rc_error = SET_ERROR(ECKSUM);
878                         ret++;
879                 }
880
881                 empty_off += skip_size;
882         }
883
884         ASSERT3U(empty_off, ==, abd_get_size(rr->rr_abd_empty));
885
886         kmem_free(zero_buf, skip_size);
887
888         return (ret);
889 }
890
891 /*
892  * Given a logical address within a dRAID configuration, return the physical
893  * address on the first drive in the group that this address maps to
894  * (at position 'start' in permutation number 'perm').
895  */
896 static uint64_t
897 vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
898     uint64_t *perm, uint64_t *start)
899 {
900         vdev_draid_config_t *vdc = vd->vdev_tsd;
901
902         /* b is the dRAID (parent) sector offset. */
903         uint64_t ashift = vd->vdev_top->vdev_ashift;
904         uint64_t b_offset = logical_offset >> ashift;
905
906         /*
907          * The height of a row in units of the vdev's minimum sector size.
908          * This is the amount of data written to each disk of each group
909          * in a given permutation.
910          */
911         uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
912
913         /*
914          * We cycle through a disk permutation every groupsz * ngroups chunk
915          * of address space. Note that ngroups * groupsz must be a multiple
916          * of the number of data drives (ndisks) in order to guarantee
917          * alignment. So, for example, if our row height is 16MB, our group
918          * size is 10, and there are 13 data drives in the draid, then ngroups
919          * will be 13, we will change permutation every 2.08GB and each
920          * disk will have 160MB of data per chunk.
921          */
922         uint64_t groupwidth = vdc->vdc_groupwidth;
923         uint64_t ngroups = vdc->vdc_ngroups;
924         uint64_t ndisks = vdc->vdc_ndisks;
925
926         /*
927          * groupstart is where the group this IO will land in "starts" in
928          * the permutation array.
929          */
930         uint64_t group = logical_offset / vdc->vdc_groupsz;
931         uint64_t groupstart = (group * groupwidth) % ndisks;
932         ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
933         *start = groupstart;
934
935         /* b_offset is the sector offset within a group chunk */
936         b_offset = b_offset % (rowheight_sectors * groupwidth);
937         ASSERT0(b_offset % groupwidth);
938
939         /*
940          * Find the starting byte offset on each child vdev:
941          * - within a permutation there are ngroups groups spread over the
942          *   rows, where each row covers a slice portion of the disk
943          * - each permutation has (groupwidth * ngroups) / ndisks rows
944          * - so each permutation covers rows * slice portion of the disk
945          * - so we need to find the row where this IO group target begins
946          */
947         *perm = group / ngroups;
948         uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
949             (((group % ngroups) * groupwidth) / ndisks);
950
951         return (((rowheight_sectors * row) +
952             (b_offset / groupwidth)) << ashift);
953 }
954
955 static uint64_t
956 vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
957     uint64_t abd_offset, uint64_t abd_size)
958 {
959         vdev_t *vd = zio->io_vd;
960         vdev_draid_config_t *vdc = vd->vdev_tsd;
961         uint64_t ashift = vd->vdev_top->vdev_ashift;
962         uint64_t io_size = abd_size;
963         uint64_t io_asize = vdev_draid_asize(vd, io_size);
964         uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
965         uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
966
967         /*
968          * Limit the io_size to the space remaining in the group.  A second
969          * row in the raidz_map_t is created for the remainder.
970          */
971         if (io_offset + io_asize > start_offset) {
972                 io_size = vdev_draid_asize_to_psize(vd,
973                     start_offset - io_offset);
974         }
975
976         /*
977          * At most a block may span the logical end of one group and the start
978          * of the next group. Therefore, at the end of a group the io_size must
979          * span the group width evenly and the remainder must be aligned to the
980          * start of the next group.
981          */
982         IMPLY(abd_offset == 0 && io_size < zio->io_size,
983             (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
984         IMPLY(abd_offset != 0,
985             vdev_draid_group_to_offset(vd, group) == io_offset);
986
987         /* Lookup starting byte offset on each child vdev */
988         uint64_t groupstart, perm;
989         uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
990             io_offset, &perm, &groupstart);
991
992         /*
993          * If there is less than groupwidth drives available after the group
994          * start, the group is going to wrap onto the next row. 'wrap' is the
995          * group disk number that starts on the next row.
996          */
997         uint64_t ndisks = vdc->vdc_ndisks;
998         uint64_t groupwidth = vdc->vdc_groupwidth;
999         uint64_t wrap = groupwidth;
1000
1001         if (groupstart + groupwidth > ndisks)
1002                 wrap = ndisks - groupstart;
1003
1004         /* The io size in units of the vdev's minimum sector size. */
1005         const uint64_t psize = io_size >> ashift;
1006
1007         /*
1008          * "Quotient": The number of data sectors for this stripe on all but
1009          * the "big column" child vdevs that also contain "remainder" data.
1010          */
1011         uint64_t q = psize / vdc->vdc_ndata;
1012
1013         /*
1014          * "Remainder": The number of partial stripe data sectors in this I/O.
1015          * This will add a sector to some, but not all, child vdevs.
1016          */
1017         uint64_t r = psize - q * vdc->vdc_ndata;
1018
1019         /* The number of "big columns" - those which contain remainder data. */
1020         uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
1021         ASSERT3U(bc, <, groupwidth);
1022
1023         /* The total number of data and parity sectors for this I/O. */
1024         uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
1025
1026         raidz_row_t *rr;
1027         rr = kmem_alloc(offsetof(raidz_row_t, rr_col[groupwidth]), KM_SLEEP);
1028         rr->rr_cols = groupwidth;
1029         rr->rr_scols = groupwidth;
1030         rr->rr_bigcols = bc;
1031         rr->rr_missingdata = 0;
1032         rr->rr_missingparity = 0;
1033         rr->rr_firstdatacol = vdc->vdc_nparity;
1034         rr->rr_abd_empty = NULL;
1035 #ifdef ZFS_DEBUG
1036         rr->rr_offset = io_offset;
1037         rr->rr_size = io_size;
1038 #endif
1039         *rrp = rr;
1040
1041         uint8_t *base;
1042         uint64_t iter, asize = 0;
1043         vdev_draid_get_perm(vdc, perm, &base, &iter);
1044         for (uint64_t i = 0; i < groupwidth; i++) {
1045                 raidz_col_t *rc = &rr->rr_col[i];
1046                 uint64_t c = (groupstart + i) % ndisks;
1047
1048                 /* increment the offset if we wrap to the next row */
1049                 if (i == wrap)
1050                         physical_offset += VDEV_DRAID_ROWHEIGHT;
1051
1052                 rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
1053                 rc->rc_offset = physical_offset;
1054                 rc->rc_abd = NULL;
1055                 rc->rc_orig_data = NULL;
1056                 rc->rc_error = 0;
1057                 rc->rc_tried = 0;
1058                 rc->rc_skipped = 0;
1059                 rc->rc_force_repair = 0;
1060                 rc->rc_allow_repair = 1;
1061                 rc->rc_need_orig_restore = B_FALSE;
1062
1063                 if (q == 0 && i >= bc)
1064                         rc->rc_size = 0;
1065                 else if (i < bc)
1066                         rc->rc_size = (q + 1) << ashift;
1067                 else
1068                         rc->rc_size = q << ashift;
1069
1070                 asize += rc->rc_size;
1071         }
1072
1073         ASSERT3U(asize, ==, tot << ashift);
1074         rr->rr_nempty = roundup(tot, groupwidth) - tot;
1075         IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
1076
1077         /* Allocate buffers for the parity columns */
1078         for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
1079                 raidz_col_t *rc = &rr->rr_col[c];
1080                 rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
1081         }
1082
1083         /*
1084          * Map buffers for data columns and allocate/map buffers for skip
1085          * sectors.  There are three distinct cases for dRAID which are
1086          * required to support sequential rebuild.
1087          */
1088         if (zio->io_type == ZIO_TYPE_WRITE) {
1089                 vdev_draid_map_alloc_write(zio, abd_offset, rr);
1090         } else if ((rr->rr_nempty > 0) &&
1091             (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1092                 vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
1093         } else {
1094                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1095                 vdev_draid_map_alloc_read(zio, abd_offset, rr);
1096         }
1097
1098         return (io_size);
1099 }
1100
1101 /*
1102  * Allocate the raidz mapping to be applied to the dRAID I/O.  The parity
1103  * calculations for dRAID are identical to raidz however there are a few
1104  * differences in the layout.
1105  *
1106  * - dRAID always allocates a full stripe width. Any extra sectors due
1107  *   this padding are zero filled and written to disk. They will be read
1108  *   back during a scrub or repair operation since they are included in
1109  *   the parity calculation. This property enables sequential resilvering.
1110  *
1111  * - When the block at the logical offset spans redundancy groups then two
1112  *   rows are allocated in the raidz_map_t. One row resides at the end of
1113  *   the first group and the other at the start of the following group.
1114  */
1115 static raidz_map_t *
1116 vdev_draid_map_alloc(zio_t *zio)
1117 {
1118         raidz_row_t *rr[2];
1119         uint64_t abd_offset = 0;
1120         uint64_t abd_size = zio->io_size;
1121         uint64_t io_offset = zio->io_offset;
1122         uint64_t size;
1123         int nrows = 1;
1124
1125         size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
1126             abd_offset, abd_size);
1127         if (size < abd_size) {
1128                 vdev_t *vd = zio->io_vd;
1129
1130                 io_offset += vdev_draid_asize(vd, size);
1131                 abd_offset += size;
1132                 abd_size -= size;
1133                 nrows++;
1134
1135                 ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
1136                     vd, vdev_draid_offset_to_group(vd, io_offset)));
1137                 ASSERT3U(abd_offset, <, zio->io_size);
1138                 ASSERT3U(abd_size, !=, 0);
1139
1140                 size = vdev_draid_map_alloc_row(zio, &rr[1],
1141                     io_offset, abd_offset, abd_size);
1142                 VERIFY3U(size, ==, abd_size);
1143         }
1144
1145         raidz_map_t *rm;
1146         rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
1147         rm->rm_ops = vdev_raidz_math_get_ops();
1148         rm->rm_nrows = nrows;
1149         rm->rm_row[0] = rr[0];
1150         if (nrows == 2)
1151                 rm->rm_row[1] = rr[1];
1152
1153         return (rm);
1154 }
1155
1156 /*
1157  * Given an offset into a dRAID return the next group width aligned offset
1158  * which can be used to start an allocation.
1159  */
1160 static uint64_t
1161 vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
1162 {
1163         vdev_draid_config_t *vdc = vd->vdev_tsd;
1164
1165         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1166
1167         return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
1168 }
1169
1170 /*
1171  * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
1172  * rounded down to the last full slice.  So each child must provide at least
1173  * 1 / (children - nspares) of its asize.
1174  */
1175 static uint64_t
1176 vdev_draid_min_asize(vdev_t *vd)
1177 {
1178         vdev_draid_config_t *vdc = vd->vdev_tsd;
1179
1180         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1181
1182         return (VDEV_DRAID_REFLOW_RESERVE +
1183             (vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
1184 }
1185
1186 /*
1187  * When using dRAID the minimum allocation size is determined by the number
1188  * of data disks in the redundancy group.  Full stripes are always used.
1189  */
1190 static uint64_t
1191 vdev_draid_min_alloc(vdev_t *vd)
1192 {
1193         vdev_draid_config_t *vdc = vd->vdev_tsd;
1194
1195         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1196
1197         return (vdc->vdc_ndata << vd->vdev_ashift);
1198 }
1199
1200 /*
1201  * Returns true if the txg range does not exist on any leaf vdev.
1202  *
1203  * A dRAID spare does not fit into the DTL model. While it has child vdevs
1204  * there is no redundancy among them, and the effective child vdev is
1205  * determined by offset. Essentially we do a vdev_dtl_reassess() on the
1206  * fly by replacing a dRAID spare with the child vdev under the offset.
1207  * Note that it is a recursive process because the child vdev can be
1208  * another dRAID spare and so on.
1209  */
1210 boolean_t
1211 vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1212     uint64_t size)
1213 {
1214         if (vd->vdev_ops == &vdev_spare_ops ||
1215             vd->vdev_ops == &vdev_replacing_ops) {
1216                 /*
1217                  * Check all of the readable children, if any child
1218                  * contains the txg range the data it is not missing.
1219                  */
1220                 for (int c = 0; c < vd->vdev_children; c++) {
1221                         vdev_t *cvd = vd->vdev_child[c];
1222
1223                         if (!vdev_readable(cvd))
1224                                 continue;
1225
1226                         if (!vdev_draid_missing(cvd, physical_offset,
1227                             txg, size))
1228                                 return (B_FALSE);
1229                 }
1230
1231                 return (B_TRUE);
1232         }
1233
1234         if (vd->vdev_ops == &vdev_draid_spare_ops) {
1235                 /*
1236                  * When sequentially resilvering we don't have a proper
1237                  * txg range so instead we must presume all txgs are
1238                  * missing on this vdev until the resilver completes.
1239                  */
1240                 if (vd->vdev_rebuild_txg != 0)
1241                         return (B_TRUE);
1242
1243                 /*
1244                  * DTL_MISSING is set for all prior txgs when a resilver
1245                  * is started in spa_vdev_attach().
1246                  */
1247                 if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1248                         return (B_TRUE);
1249
1250                 /*
1251                  * Consult the DTL on the relevant vdev. Either a vdev
1252                  * leaf or spare/replace mirror child may be returned so
1253                  * we must recursively call vdev_draid_missing_impl().
1254                  */
1255                 vd = vdev_draid_spare_get_child(vd, physical_offset);
1256                 if (vd == NULL)
1257                         return (B_TRUE);
1258
1259                 return (vdev_draid_missing(vd, physical_offset,
1260                     txg, size));
1261         }
1262
1263         return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1264 }
1265
1266 /*
1267  * Returns true if the txg is only partially replicated on the leaf vdevs.
1268  */
1269 static boolean_t
1270 vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1271     uint64_t size)
1272 {
1273         if (vd->vdev_ops == &vdev_spare_ops ||
1274             vd->vdev_ops == &vdev_replacing_ops) {
1275                 /*
1276                  * Check all of the readable children, if any child is
1277                  * missing the txg range then it is partially replicated.
1278                  */
1279                 for (int c = 0; c < vd->vdev_children; c++) {
1280                         vdev_t *cvd = vd->vdev_child[c];
1281
1282                         if (!vdev_readable(cvd))
1283                                 continue;
1284
1285                         if (vdev_draid_partial(cvd, physical_offset, txg, size))
1286                                 return (B_TRUE);
1287                 }
1288
1289                 return (B_FALSE);
1290         }
1291
1292         if (vd->vdev_ops == &vdev_draid_spare_ops) {
1293                 /*
1294                  * When sequentially resilvering we don't have a proper
1295                  * txg range so instead we must presume all txgs are
1296                  * missing on this vdev until the resilver completes.
1297                  */
1298                 if (vd->vdev_rebuild_txg != 0)
1299                         return (B_TRUE);
1300
1301                 /*
1302                  * DTL_MISSING is set for all prior txgs when a resilver
1303                  * is started in spa_vdev_attach().
1304                  */
1305                 if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1306                         return (B_TRUE);
1307
1308                 /*
1309                  * Consult the DTL on the relevant vdev. Either a vdev
1310                  * leaf or spare/replace mirror child may be returned so
1311                  * we must recursively call vdev_draid_missing_impl().
1312                  */
1313                 vd = vdev_draid_spare_get_child(vd, physical_offset);
1314                 if (vd == NULL)
1315                         return (B_TRUE);
1316
1317                 return (vdev_draid_partial(vd, physical_offset, txg, size));
1318         }
1319
1320         return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1321 }
1322
1323 /*
1324  * Determine if the vdev is readable at the given offset.
1325  */
1326 boolean_t
1327 vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
1328 {
1329         if (vd->vdev_ops == &vdev_draid_spare_ops) {
1330                 vd = vdev_draid_spare_get_child(vd, physical_offset);
1331                 if (vd == NULL)
1332                         return (B_FALSE);
1333         }
1334
1335         if (vd->vdev_ops == &vdev_spare_ops ||
1336             vd->vdev_ops == &vdev_replacing_ops) {
1337
1338                 for (int c = 0; c < vd->vdev_children; c++) {
1339                         vdev_t *cvd = vd->vdev_child[c];
1340
1341                         if (!vdev_readable(cvd))
1342                                 continue;
1343
1344                         if (vdev_draid_readable(cvd, physical_offset))
1345                                 return (B_TRUE);
1346                 }
1347
1348                 return (B_FALSE);
1349         }
1350
1351         return (vdev_readable(vd));
1352 }
1353
1354 /*
1355  * Returns the first distributed spare found under the provided vdev tree.
1356  */
1357 static vdev_t *
1358 vdev_draid_find_spare(vdev_t *vd)
1359 {
1360         if (vd->vdev_ops == &vdev_draid_spare_ops)
1361                 return (vd);
1362
1363         for (int c = 0; c < vd->vdev_children; c++) {
1364                 vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
1365                 if (svd != NULL)
1366                         return (svd);
1367         }
1368
1369         return (NULL);
1370 }
1371
1372 /*
1373  * Returns B_TRUE if the passed in vdev is currently "faulted".
1374  * Faulted, in this context, means that the vdev represents a
1375  * replacing or sparing vdev tree.
1376  */
1377 static boolean_t
1378 vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
1379 {
1380         if (vd->vdev_ops == &vdev_draid_spare_ops) {
1381                 vd = vdev_draid_spare_get_child(vd, physical_offset);
1382                 if (vd == NULL)
1383                         return (B_FALSE);
1384
1385                 /*
1386                  * After resolving the distributed spare to a leaf vdev
1387                  * check the parent to determine if it's "faulted".
1388                  */
1389                 vd = vd->vdev_parent;
1390         }
1391
1392         return (vd->vdev_ops == &vdev_replacing_ops ||
1393             vd->vdev_ops == &vdev_spare_ops);
1394 }
1395
1396 /*
1397  * Determine if the dRAID block at the logical offset is degraded.
1398  * Used by sequential resilver.
1399  */
1400 static boolean_t
1401 vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
1402 {
1403         vdev_draid_config_t *vdc = vd->vdev_tsd;
1404
1405         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1406         ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1407
1408         uint64_t groupstart, perm;
1409         uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1410             offset, &perm, &groupstart);
1411
1412         uint8_t *base;
1413         uint64_t iter;
1414         vdev_draid_get_perm(vdc, perm, &base, &iter);
1415
1416         for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1417                 uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1418                 uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1419                 vdev_t *cvd = vd->vdev_child[cid];
1420
1421                 /* Group contains a faulted vdev. */
1422                 if (vdev_draid_faulted(cvd, physical_offset))
1423                         return (B_TRUE);
1424
1425                 /*
1426                  * Always check groups with active distributed spares
1427                  * because any vdev failure in the pool will affect them.
1428                  */
1429                 if (vdev_draid_find_spare(cvd) != NULL)
1430                         return (B_TRUE);
1431         }
1432
1433         return (B_FALSE);
1434 }
1435
1436 /*
1437  * Determine if the txg is missing.  Used by healing resilver.
1438  */
1439 static boolean_t
1440 vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
1441     uint64_t size)
1442 {
1443         vdev_draid_config_t *vdc = vd->vdev_tsd;
1444
1445         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1446         ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1447
1448         uint64_t groupstart, perm;
1449         uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1450             offset, &perm, &groupstart);
1451
1452         uint8_t *base;
1453         uint64_t iter;
1454         vdev_draid_get_perm(vdc, perm, &base, &iter);
1455
1456         for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1457                 uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1458                 uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1459                 vdev_t *cvd = vd->vdev_child[cid];
1460
1461                 /* Transaction group is known to be partially replicated. */
1462                 if (vdev_draid_partial(cvd, physical_offset, txg, size))
1463                         return (B_TRUE);
1464
1465                 /*
1466                  * Always check groups with active distributed spares
1467                  * because any vdev failure in the pool will affect them.
1468                  */
1469                 if (vdev_draid_find_spare(cvd) != NULL)
1470                         return (B_TRUE);
1471         }
1472
1473         return (B_FALSE);
1474 }
1475
1476 /*
1477  * Find the smallest child asize and largest sector size to calculate the
1478  * available capacity.  Distributed spares are ignored since their capacity
1479  * is also based of the minimum child size in the top-level dRAID.
1480  */
1481 static void
1482 vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
1483     uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
1484 {
1485         uint64_t logical_ashift = 0, physical_ashift = 0;
1486         uint64_t asize = 0, max_asize = 0;
1487
1488         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1489
1490         for (int c = 0; c < vd->vdev_children; c++) {
1491                 vdev_t *cvd = vd->vdev_child[c];
1492
1493                 if (cvd->vdev_ops == &vdev_draid_spare_ops)
1494                         continue;
1495
1496                 asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
1497                 max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1498                 logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
1499         }
1500         for (int c = 0; c < vd->vdev_children; c++) {
1501                 vdev_t *cvd = vd->vdev_child[c];
1502
1503                 if (cvd->vdev_ops == &vdev_draid_spare_ops)
1504                         continue;
1505                 physical_ashift = vdev_best_ashift(logical_ashift,
1506                     physical_ashift, cvd->vdev_physical_ashift);
1507         }
1508
1509         *asizep = asize;
1510         *max_asizep = max_asize;
1511         *logical_ashiftp = logical_ashift;
1512         *physical_ashiftp = physical_ashift;
1513 }
1514
1515 /*
1516  * Open spare vdevs.
1517  */
1518 static boolean_t
1519 vdev_draid_open_spares(vdev_t *vd)
1520 {
1521         return (vd->vdev_ops == &vdev_draid_spare_ops ||
1522             vd->vdev_ops == &vdev_replacing_ops ||
1523             vd->vdev_ops == &vdev_spare_ops);
1524 }
1525
1526 /*
1527  * Open all children, excluding spares.
1528  */
1529 static boolean_t
1530 vdev_draid_open_children(vdev_t *vd)
1531 {
1532         return (!vdev_draid_open_spares(vd));
1533 }
1534
1535 /*
1536  * Open a top-level dRAID vdev.
1537  */
1538 static int
1539 vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1540     uint64_t *logical_ashift, uint64_t *physical_ashift)
1541 {
1542         vdev_draid_config_t *vdc =  vd->vdev_tsd;
1543         uint64_t nparity = vdc->vdc_nparity;
1544         int open_errors = 0;
1545
1546         if (nparity > VDEV_DRAID_MAXPARITY ||
1547             vd->vdev_children < nparity + 1) {
1548                 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1549                 return (SET_ERROR(EINVAL));
1550         }
1551
1552         /*
1553          * First open the normal children then the distributed spares.  This
1554          * ordering is important to ensure the distributed spares calculate
1555          * the correct psize in the event that the dRAID vdevs were expanded.
1556          */
1557         vdev_open_children_subset(vd, vdev_draid_open_children);
1558         vdev_open_children_subset(vd, vdev_draid_open_spares);
1559
1560         /* Verify enough of the children are available to continue. */
1561         for (int c = 0; c < vd->vdev_children; c++) {
1562                 if (vd->vdev_child[c]->vdev_open_error != 0) {
1563                         if ((++open_errors) > nparity) {
1564                                 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1565                                 return (SET_ERROR(ENXIO));
1566                         }
1567                 }
1568         }
1569
1570         /*
1571          * Allocatable capacity is the sum of the space on all children less
1572          * the number of distributed spares rounded down to last full row
1573          * and then to the last full group. An additional 32MB of scratch
1574          * space is reserved at the end of each child for use by the dRAID
1575          * expansion feature.
1576          */
1577         uint64_t child_asize, child_max_asize;
1578         vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
1579             logical_ashift, physical_ashift);
1580
1581         /*
1582          * Should be unreachable since the minimum child size is 64MB, but
1583          * we want to make sure an underflow absolutely cannot occur here.
1584          */
1585         if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
1586             child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
1587                 return (SET_ERROR(ENXIO));
1588         }
1589
1590         child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
1591             VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1592         child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
1593             VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1594
1595         *asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1596             vdc->vdc_groupsz);
1597         *max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1598             vdc->vdc_groupsz);
1599
1600         return (0);
1601 }
1602
1603 /*
1604  * Close a top-level dRAID vdev.
1605  */
1606 static void
1607 vdev_draid_close(vdev_t *vd)
1608 {
1609         for (int c = 0; c < vd->vdev_children; c++) {
1610                 if (vd->vdev_child[c] != NULL)
1611                         vdev_close(vd->vdev_child[c]);
1612         }
1613 }
1614
1615 /*
1616  * Return the maximum asize for a rebuild zio in the provided range
1617  * given the following constraints.  A dRAID chunks may not:
1618  *
1619  * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
1620  * - Span dRAID redundancy groups.
1621  */
1622 static uint64_t
1623 vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
1624     uint64_t max_segment)
1625 {
1626         vdev_draid_config_t *vdc = vd->vdev_tsd;
1627
1628         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1629
1630         uint64_t ashift = vd->vdev_ashift;
1631         uint64_t ndata = vdc->vdc_ndata;
1632         uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
1633             SPA_MAXBLOCKSIZE);
1634
1635         ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
1636         ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);
1637
1638         /* Chunks must evenly span all data columns in the group. */
1639         psize = (((psize >> ashift) / ndata) * ndata) << ashift;
1640         uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
1641
1642         /* Reduce the chunk size to the group space remaining. */
1643         uint64_t group = vdev_draid_offset_to_group(vd, start);
1644         uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
1645         chunk_size = MIN(chunk_size, left);
1646
1647         ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
1648         ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
1649             vdev_draid_offset_to_group(vd, start + chunk_size - 1));
1650
1651         return (chunk_size);
1652 }
1653
1654 /*
1655  * Align the start of the metaslab to the group width and slightly reduce
1656  * its size to a multiple of the group width.  Since full stripe writes are
1657  * required by dRAID this space is unallocable.  Furthermore, aligning the
1658  * metaslab start is important for vdev initialize and TRIM which both operate
1659  * on metaslab boundaries which vdev_xlate() expects to be aligned.
1660  */
1661 static void
1662 vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
1663 {
1664         vdev_draid_config_t *vdc = vd->vdev_tsd;
1665
1666         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1667
1668         uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
1669         uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
1670         uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
1671
1672         *ms_start = astart;
1673         *ms_size = asize;
1674
1675         ASSERT0(*ms_start % sz);
1676         ASSERT0(*ms_size % sz);
1677 }
1678
1679 /*
1680  * Add virtual dRAID spares to the list of valid spares. In order to accomplish
1681  * this the existing array must be freed and reallocated with the additional
1682  * entries.
1683  */
1684 int
1685 vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
1686     uint64_t next_vdev_id)
1687 {
1688         uint64_t draid_nspares = 0;
1689         uint64_t ndraid = 0;
1690         int error;
1691
1692         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1693                 vdev_t *cvd = vd->vdev_child[i];
1694
1695                 if (cvd->vdev_ops == &vdev_draid_ops) {
1696                         vdev_draid_config_t *vdc = cvd->vdev_tsd;
1697                         draid_nspares += vdc->vdc_nspares;
1698                         ndraid++;
1699                 }
1700         }
1701
1702         if (draid_nspares == 0) {
1703                 *ndraidp = ndraid;
1704                 return (0);
1705         }
1706
1707         nvlist_t **old_spares, **new_spares;
1708         uint_t old_nspares;
1709         error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1710             &old_spares, &old_nspares);
1711         if (error)
1712                 old_nspares = 0;
1713
1714         /* Allocate memory and copy of the existing spares. */
1715         new_spares = kmem_alloc(sizeof (nvlist_t *) *
1716             (draid_nspares + old_nspares), KM_SLEEP);
1717         for (uint_t i = 0; i < old_nspares; i++)
1718                 new_spares[i] = fnvlist_dup(old_spares[i]);
1719
1720         /* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
1721         uint64_t n = old_nspares;
1722         for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
1723                 vdev_t *cvd = vd->vdev_child[vdev_id];
1724                 char path[64];
1725
1726                 if (cvd->vdev_ops != &vdev_draid_ops)
1727                         continue;
1728
1729                 vdev_draid_config_t *vdc = cvd->vdev_tsd;
1730                 uint64_t nspares = vdc->vdc_nspares;
1731                 uint64_t nparity = vdc->vdc_nparity;
1732
1733                 for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
1734                         memset(path, 0, sizeof (path));
1735                         (void) snprintf(path, sizeof (path) - 1,
1736                             "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
1737                             (u_longlong_t)nparity,
1738                             (u_longlong_t)next_vdev_id + vdev_id,
1739                             (u_longlong_t)spare_id);
1740
1741                         nvlist_t *spare = fnvlist_alloc();
1742                         fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
1743                         fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
1744                             VDEV_TYPE_DRAID_SPARE);
1745                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
1746                             cvd->vdev_guid);
1747                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
1748                             spare_id);
1749                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
1750                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
1751                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
1752                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
1753                             cvd->vdev_ashift);
1754
1755                         new_spares[n] = spare;
1756                         n++;
1757                 }
1758         }
1759
1760         if (n > 0) {
1761                 (void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
1762                 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1763                     (const nvlist_t **)new_spares, n);
1764         }
1765
1766         for (int i = 0; i < n; i++)
1767                 nvlist_free(new_spares[i]);
1768
1769         kmem_free(new_spares, sizeof (*new_spares) * n);
1770         *ndraidp = ndraid;
1771
1772         return (0);
1773 }
1774
1775 /*
1776  * Determine if any portion of the provided block resides on a child vdev
1777  * with a dirty DTL and therefore needs to be resilvered.
1778  */
1779 static boolean_t
1780 vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
1781     uint64_t phys_birth)
1782 {
1783         uint64_t offset = DVA_GET_OFFSET(dva);
1784         uint64_t asize = vdev_draid_asize(vd, psize);
1785
1786         if (phys_birth == TXG_UNKNOWN) {
1787                 /*
1788                  * Sequential resilver.  There is no meaningful phys_birth
1789                  * for this block, we can only determine if block resides
1790                  * in a degraded group in which case it must be resilvered.
1791                  */
1792                 ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
1793                     vdev_draid_offset_to_group(vd, offset + asize - 1));
1794
1795                 return (vdev_draid_group_degraded(vd, offset));
1796         } else {
1797                 /*
1798                  * Healing resilver.  TXGs not in DTL_PARTIAL are intact,
1799                  * as are blocks in non-degraded groups.
1800                  */
1801                 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
1802                         return (B_FALSE);
1803
1804                 if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
1805                         return (B_TRUE);
1806
1807                 /* The block may span groups in which case check both. */
1808                 if (vdev_draid_offset_to_group(vd, offset) !=
1809                     vdev_draid_offset_to_group(vd, offset + asize - 1)) {
1810                         if (vdev_draid_group_missing(vd,
1811                             offset + asize, phys_birth, 1))
1812                                 return (B_TRUE);
1813                 }
1814
1815                 return (B_FALSE);
1816         }
1817 }
1818
1819 static boolean_t
1820 vdev_draid_rebuilding(vdev_t *vd)
1821 {
1822         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
1823                 return (B_TRUE);
1824
1825         for (int i = 0; i < vd->vdev_children; i++) {
1826                 if (vdev_draid_rebuilding(vd->vdev_child[i])) {
1827                         return (B_TRUE);
1828                 }
1829         }
1830
1831         return (B_FALSE);
1832 }
1833
1834 static void
1835 vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
1836 {
1837 #ifdef ZFS_DEBUG
1838         range_seg64_t logical_rs, physical_rs, remain_rs;
1839         logical_rs.rs_start = rr->rr_offset;
1840         logical_rs.rs_end = logical_rs.rs_start +
1841             vdev_draid_asize(vd, rr->rr_size);
1842
1843         raidz_col_t *rc = &rr->rr_col[col];
1844         vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1845
1846         vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
1847         ASSERT(vdev_xlate_is_empty(&remain_rs));
1848         ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1849         ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1850         ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
1851 #endif
1852 }
1853
1854 /*
1855  * For write operations:
1856  * 1. Generate the parity data
1857  * 2. Create child zio write operations to each column's vdev, for both
1858  *    data and parity.  A gang ABD is allocated by vdev_draid_map_alloc()
1859  *    if a skip sector needs to be added to a column.
1860  */
1861 static void
1862 vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
1863 {
1864         vdev_t *vd = zio->io_vd;
1865         raidz_map_t *rm = zio->io_vsd;
1866
1867         vdev_raidz_generate_parity_row(rm, rr);
1868
1869         for (int c = 0; c < rr->rr_cols; c++) {
1870                 raidz_col_t *rc = &rr->rr_col[c];
1871
1872                 /*
1873                  * Empty columns are zero filled and included in the parity
1874                  * calculation and therefore must be written.
1875                  */
1876                 ASSERT3U(rc->rc_size, !=, 0);
1877
1878                 /* Verify physical to logical translation */
1879                 vdev_draid_io_verify(vd, rr, c);
1880
1881                 zio_nowait(zio_vdev_child_io(zio, NULL,
1882                     vd->vdev_child[rc->rc_devidx], rc->rc_offset,
1883                     rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
1884                     0, vdev_raidz_child_done, rc));
1885         }
1886 }
1887
1888 /*
1889  * For read operations:
1890  * 1. The vdev_draid_map_alloc() function will create a minimal raidz
1891  *    mapping for the read based on the zio->io_flags.  There are two
1892  *    possible mappings either 1) a normal read, or 2) a scrub/resilver.
1893  * 2. Create the zio read operations.  This will include all parity
1894  *    columns and skip sectors for a scrub/resilver.
1895  */
1896 static void
1897 vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
1898 {
1899         vdev_t *vd = zio->io_vd;
1900
1901         /* Sequential rebuild must do IO at redundancy group boundary. */
1902         IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
1903
1904         /*
1905          * Iterate over the columns in reverse order so that we hit the parity
1906          * last.  Any errors along the way will force us to read the parity.
1907          * For scrub/resilver IOs which verify skip sectors, a gang ABD will
1908          * have been allocated to store them and rc->rc_size is increased.
1909          */
1910         for (int c = rr->rr_cols - 1; c >= 0; c--) {
1911                 raidz_col_t *rc = &rr->rr_col[c];
1912                 vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1913
1914                 if (!vdev_draid_readable(cvd, rc->rc_offset)) {
1915                         if (c >= rr->rr_firstdatacol)
1916                                 rr->rr_missingdata++;
1917                         else
1918                                 rr->rr_missingparity++;
1919                         rc->rc_error = SET_ERROR(ENXIO);
1920                         rc->rc_tried = 1;
1921                         rc->rc_skipped = 1;
1922                         continue;
1923                 }
1924
1925                 if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
1926                         if (c >= rr->rr_firstdatacol)
1927                                 rr->rr_missingdata++;
1928                         else
1929                                 rr->rr_missingparity++;
1930                         rc->rc_error = SET_ERROR(ESTALE);
1931                         rc->rc_skipped = 1;
1932                         continue;
1933                 }
1934
1935                 /*
1936                  * Empty columns may be read during vdev_draid_io_done().
1937                  * Only skip them after the readable and missing checks
1938                  * verify they are available.
1939                  */
1940                 if (rc->rc_size == 0) {
1941                         rc->rc_skipped = 1;
1942                         continue;
1943                 }
1944
1945                 if (zio->io_flags & ZIO_FLAG_RESILVER) {
1946                         vdev_t *svd;
1947
1948                         /*
1949                          * Sequential rebuilds need to always consider the data
1950                          * on the child being rebuilt to be stale.  This is
1951                          * important when all columns are available to aid
1952                          * known reconstruction in identifing which columns
1953                          * contain incorrect data.
1954                          *
1955                          * Furthermore, all repairs need to be constrained to
1956                          * the devices being rebuilt because without a checksum
1957                          * we cannot verify the data is actually correct and
1958                          * performing an incorrect repair could result in
1959                          * locking in damage and making the data unrecoverable.
1960                          */
1961                         if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
1962                                 if (vdev_draid_rebuilding(cvd)) {
1963                                         if (c >= rr->rr_firstdatacol)
1964                                                 rr->rr_missingdata++;
1965                                         else
1966                                                 rr->rr_missingparity++;
1967                                         rc->rc_error = SET_ERROR(ESTALE);
1968                                         rc->rc_skipped = 1;
1969                                         rc->rc_allow_repair = 1;
1970                                         continue;
1971                                 } else {
1972                                         rc->rc_allow_repair = 0;
1973                                 }
1974                         } else {
1975                                 rc->rc_allow_repair = 1;
1976                         }
1977
1978                         /*
1979                          * If this child is a distributed spare then the
1980                          * offset might reside on the vdev being replaced.
1981                          * In which case this data must be written to the
1982                          * new device.  Failure to do so would result in
1983                          * checksum errors when the old device is detached
1984                          * and the pool is scrubbed.
1985                          */
1986                         if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
1987                                 svd = vdev_draid_spare_get_child(svd,
1988                                     rc->rc_offset);
1989                                 if (svd && (svd->vdev_ops == &vdev_spare_ops ||
1990                                     svd->vdev_ops == &vdev_replacing_ops)) {
1991                                         rc->rc_force_repair = 1;
1992
1993                                         if (vdev_draid_rebuilding(svd))
1994                                                 rc->rc_allow_repair = 1;
1995                                 }
1996                         }
1997
1998                         /*
1999                          * Always issue a repair IO to this child when its
2000                          * a spare or replacing vdev with an active rebuild.
2001                          */
2002                         if ((cvd->vdev_ops == &vdev_spare_ops ||
2003                             cvd->vdev_ops == &vdev_replacing_ops) &&
2004                             vdev_draid_rebuilding(cvd)) {
2005                                 rc->rc_force_repair = 1;
2006                                 rc->rc_allow_repair = 1;
2007                         }
2008                 }
2009         }
2010
2011         /*
2012          * Either a parity or data column is missing this means a repair
2013          * may be attempted by vdev_draid_io_done().  Expand the raid map
2014          * to read in empty columns which are needed along with the parity
2015          * during reconstruction.
2016          */
2017         if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
2018             rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
2019                 vdev_draid_map_alloc_empty(zio, rr);
2020         }
2021
2022         for (int c = rr->rr_cols - 1; c >= 0; c--) {
2023                 raidz_col_t *rc = &rr->rr_col[c];
2024                 vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2025
2026                 if (rc->rc_error || rc->rc_size == 0)
2027                         continue;
2028
2029                 if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
2030                     (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
2031                         zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2032                             rc->rc_offset, rc->rc_abd, rc->rc_size,
2033                             zio->io_type, zio->io_priority, 0,
2034                             vdev_raidz_child_done, rc));
2035                 }
2036         }
2037 }
2038
2039 /*
2040  * Start an IO operation to a dRAID vdev.
2041  */
2042 static void
2043 vdev_draid_io_start(zio_t *zio)
2044 {
2045         vdev_t *vd __maybe_unused = zio->io_vd;
2046
2047         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2048         ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
2049
2050         raidz_map_t *rm = vdev_draid_map_alloc(zio);
2051         zio->io_vsd = rm;
2052         zio->io_vsd_ops = &vdev_raidz_vsd_ops;
2053
2054         if (zio->io_type == ZIO_TYPE_WRITE) {
2055                 for (int i = 0; i < rm->rm_nrows; i++) {
2056                         vdev_draid_io_start_write(zio, rm->rm_row[i]);
2057                 }
2058         } else {
2059                 ASSERT(zio->io_type == ZIO_TYPE_READ);
2060
2061                 for (int i = 0; i < rm->rm_nrows; i++) {
2062                         vdev_draid_io_start_read(zio, rm->rm_row[i]);
2063                 }
2064         }
2065
2066         zio_execute(zio);
2067 }
2068
2069 /*
2070  * Complete an IO operation on a dRAID vdev.  The raidz logic can be applied
2071  * to dRAID since the layout is fully described by the raidz_map_t.
2072  */
2073 static void
2074 vdev_draid_io_done(zio_t *zio)
2075 {
2076         vdev_raidz_io_done(zio);
2077 }
2078
2079 static void
2080 vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
2081 {
2082         vdev_draid_config_t *vdc = vd->vdev_tsd;
2083         ASSERT(vd->vdev_ops == &vdev_draid_ops);
2084
2085         if (faulted > vdc->vdc_nparity)
2086                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2087                     VDEV_AUX_NO_REPLICAS);
2088         else if (degraded + faulted != 0)
2089                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2090         else
2091                 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2092 }
2093
2094 static void
2095 vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
2096     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
2097 {
2098         vdev_t *raidvd = cvd->vdev_parent;
2099         ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
2100
2101         vdev_draid_config_t *vdc = raidvd->vdev_tsd;
2102         uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2103
2104         /* Make sure the offsets are block-aligned */
2105         ASSERT0(logical_rs->rs_start % (1 << ashift));
2106         ASSERT0(logical_rs->rs_end % (1 << ashift));
2107
2108         uint64_t logical_start = logical_rs->rs_start;
2109         uint64_t logical_end = logical_rs->rs_end;
2110
2111         /*
2112          * Unaligned ranges must be skipped. All metaslabs are correctly
2113          * aligned so this should not happen, but this case is handled in
2114          * case it's needed by future callers.
2115          */
2116         uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
2117         if (astart != logical_start) {
2118                 physical_rs->rs_start = logical_start;
2119                 physical_rs->rs_end = logical_start;
2120                 remain_rs->rs_start = MIN(astart, logical_end);
2121                 remain_rs->rs_end = logical_end;
2122                 return;
2123         }
2124
2125         /*
2126          * Unlike with mirrors and raidz a dRAID logical range can map
2127          * to multiple non-contiguous physical ranges. This is handled by
2128          * limiting the size of the logical range to a single group and
2129          * setting the remain argument such that it describes the remaining
2130          * unmapped logical range. This is stricter than absolutely
2131          * necessary but helps simplify the logic below.
2132          */
2133         uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
2134         uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
2135         if (logical_end > nextstart)
2136                 logical_end = nextstart;
2137
2138         /* Find the starting offset for each vdev in the group */
2139         uint64_t perm, groupstart;
2140         uint64_t start = vdev_draid_logical_to_physical(raidvd,
2141             logical_start, &perm, &groupstart);
2142         uint64_t end = start;
2143
2144         uint8_t *base;
2145         uint64_t iter, id;
2146         vdev_draid_get_perm(vdc, perm, &base, &iter);
2147
2148         /*
2149          * Check if the passed child falls within the group.  If it does
2150          * update the start and end to reflect the physical range.
2151          * Otherwise, leave them unmodified which will result in an empty
2152          * (zero-length) physical range being returned.
2153          */
2154         for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
2155                 uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
2156
2157                 if (c == 0 && i != 0) {
2158                         /* the group wrapped, increment the start */
2159                         start += VDEV_DRAID_ROWHEIGHT;
2160                         end = start;
2161                 }
2162
2163                 id = vdev_draid_permute_id(vdc, base, iter, c);
2164                 if (id == cvd->vdev_id) {
2165                         uint64_t b_size = (logical_end >> ashift) -
2166                             (logical_start >> ashift);
2167                         ASSERT3U(b_size, >, 0);
2168                         end = start + ((((b_size - 1) /
2169                             vdc->vdc_groupwidth) + 1) << ashift);
2170                         break;
2171                 }
2172         }
2173         physical_rs->rs_start = start;
2174         physical_rs->rs_end = end;
2175
2176         /*
2177          * Only top-level vdevs are allowed to set remain_rs because
2178          * when .vdev_op_xlate() is called for their children the full
2179          * logical range is not provided by vdev_xlate().
2180          */
2181         remain_rs->rs_start = logical_end;
2182         remain_rs->rs_end = logical_rs->rs_end;
2183
2184         ASSERT3U(physical_rs->rs_start, <=, logical_start);
2185         ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
2186             logical_end - logical_start);
2187 }
2188
2189 /*
2190  * Add dRAID specific fields to the config nvlist.
2191  */
2192 static void
2193 vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
2194 {
2195         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2196         vdev_draid_config_t *vdc = vd->vdev_tsd;
2197
2198         fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
2199         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
2200         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
2201         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
2202 }
2203
2204 /*
2205  * Initialize private dRAID specific fields from the nvlist.
2206  */
2207 static int
2208 vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
2209 {
2210         (void) spa;
2211         uint64_t ndata, nparity, nspares, ngroups;
2212         int error;
2213
2214         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
2215                 return (SET_ERROR(EINVAL));
2216
2217         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
2218             nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
2219                 return (SET_ERROR(EINVAL));
2220         }
2221
2222         uint_t children;
2223         nvlist_t **child;
2224         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2225             &child, &children) != 0 || children == 0 ||
2226             children > VDEV_DRAID_MAX_CHILDREN) {
2227                 return (SET_ERROR(EINVAL));
2228         }
2229
2230         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
2231             nspares > 100 || nspares > (children - (ndata + nparity))) {
2232                 return (SET_ERROR(EINVAL));
2233         }
2234
2235         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
2236             ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
2237                 return (SET_ERROR(EINVAL));
2238         }
2239
2240         /*
2241          * Validate the minimum number of children exist per group for the
2242          * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
2243          */
2244         if (children < (ndata + nparity + nspares))
2245                 return (SET_ERROR(EINVAL));
2246
2247         /*
2248          * Create the dRAID configuration using the pool nvlist configuration
2249          * and the fixed mapping for the correct number of children.
2250          */
2251         vdev_draid_config_t *vdc;
2252         const draid_map_t *map;
2253
2254         error = vdev_draid_lookup_map(children, &map);
2255         if (error)
2256                 return (SET_ERROR(EINVAL));
2257
2258         vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
2259         vdc->vdc_ndata = ndata;
2260         vdc->vdc_nparity = nparity;
2261         vdc->vdc_nspares = nspares;
2262         vdc->vdc_children = children;
2263         vdc->vdc_ngroups = ngroups;
2264         vdc->vdc_nperms = map->dm_nperms;
2265
2266         error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
2267         if (error) {
2268                 kmem_free(vdc, sizeof (*vdc));
2269                 return (SET_ERROR(EINVAL));
2270         }
2271
2272         /*
2273          * Derived constants.
2274          */
2275         vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
2276         vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
2277         vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
2278         vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
2279             vdc->vdc_ndisks;
2280
2281         ASSERT3U(vdc->vdc_groupwidth, >=, 2);
2282         ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
2283         ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
2284         ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
2285         ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
2286         ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
2287             vdc->vdc_ndisks, ==, 0);
2288
2289         *tsd = vdc;
2290
2291         return (0);
2292 }
2293
2294 static void
2295 vdev_draid_fini(vdev_t *vd)
2296 {
2297         vdev_draid_config_t *vdc = vd->vdev_tsd;
2298
2299         vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
2300             vdc->vdc_children * vdc->vdc_nperms);
2301         kmem_free(vdc, sizeof (*vdc));
2302 }
2303
2304 static uint64_t
2305 vdev_draid_nparity(vdev_t *vd)
2306 {
2307         vdev_draid_config_t *vdc = vd->vdev_tsd;
2308
2309         return (vdc->vdc_nparity);
2310 }
2311
2312 static uint64_t
2313 vdev_draid_ndisks(vdev_t *vd)
2314 {
2315         vdev_draid_config_t *vdc = vd->vdev_tsd;
2316
2317         return (vdc->vdc_ndisks);
2318 }
2319
2320 vdev_ops_t vdev_draid_ops = {
2321         .vdev_op_init = vdev_draid_init,
2322         .vdev_op_fini = vdev_draid_fini,
2323         .vdev_op_open = vdev_draid_open,
2324         .vdev_op_close = vdev_draid_close,
2325         .vdev_op_asize = vdev_draid_asize,
2326         .vdev_op_min_asize = vdev_draid_min_asize,
2327         .vdev_op_min_alloc = vdev_draid_min_alloc,
2328         .vdev_op_io_start = vdev_draid_io_start,
2329         .vdev_op_io_done = vdev_draid_io_done,
2330         .vdev_op_state_change = vdev_draid_state_change,
2331         .vdev_op_need_resilver = vdev_draid_need_resilver,
2332         .vdev_op_hold = NULL,
2333         .vdev_op_rele = NULL,
2334         .vdev_op_remap = NULL,
2335         .vdev_op_xlate = vdev_draid_xlate,
2336         .vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
2337         .vdev_op_metaslab_init = vdev_draid_metaslab_init,
2338         .vdev_op_config_generate = vdev_draid_config_generate,
2339         .vdev_op_nparity = vdev_draid_nparity,
2340         .vdev_op_ndisks = vdev_draid_ndisks,
2341         .vdev_op_type = VDEV_TYPE_DRAID,
2342         .vdev_op_leaf = B_FALSE,
2343 };
2344
2345
2346 /*
2347  * A dRAID distributed spare is a virtual leaf vdev which is included in the
2348  * parent dRAID configuration.  The last N columns of the dRAID permutation
2349  * table are used to determine on which dRAID children a specific offset
2350  * should be written.  These spare leaf vdevs can only be used to replace
2351  * faulted children in the same dRAID configuration.
2352  */
2353
2354 /*
2355  * Distributed spare state.  All fields are set when the distributed spare is
2356  * first opened and are immutable.
2357  */
2358 typedef struct {
2359         vdev_t *vds_draid_vdev;         /* top-level parent dRAID vdev */
2360         uint64_t vds_top_guid;          /* top-level parent dRAID guid */
2361         uint64_t vds_spare_id;          /* spare id (0 - vdc->vdc_nspares-1) */
2362 } vdev_draid_spare_t;
2363
2364 /*
2365  * Returns the parent dRAID vdev to which the distributed spare belongs.
2366  * This may be safely called even when the vdev is not open.
2367  */
2368 vdev_t *
2369 vdev_draid_spare_get_parent(vdev_t *vd)
2370 {
2371         vdev_draid_spare_t *vds = vd->vdev_tsd;
2372
2373         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2374
2375         if (vds->vds_draid_vdev != NULL)
2376                 return (vds->vds_draid_vdev);
2377
2378         return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
2379             vds->vds_top_guid));
2380 }
2381
2382 /*
2383  * A dRAID space is active when it's the child of a vdev using the
2384  * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
2385  */
2386 static boolean_t
2387 vdev_draid_spare_is_active(vdev_t *vd)
2388 {
2389         vdev_t *pvd = vd->vdev_parent;
2390
2391         if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
2392             pvd->vdev_ops == &vdev_replacing_ops ||
2393             pvd->vdev_ops == &vdev_draid_ops)) {
2394                 return (B_TRUE);
2395         } else {
2396                 return (B_FALSE);
2397         }
2398 }
2399
2400 /*
2401  * Given a dRAID distribute spare vdev, returns the physical child vdev
2402  * on which the provided offset resides.  This may involve recursing through
2403  * multiple layers of distributed spares.  Note that offset is relative to
2404  * this vdev.
2405  */
2406 vdev_t *
2407 vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
2408 {
2409         vdev_draid_spare_t *vds = vd->vdev_tsd;
2410
2411         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2412
2413         /* The vdev is closed */
2414         if (vds->vds_draid_vdev == NULL)
2415                 return (NULL);
2416
2417         vdev_t *tvd = vds->vds_draid_vdev;
2418         vdev_draid_config_t *vdc = tvd->vdev_tsd;
2419
2420         ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
2421         ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
2422
2423         uint8_t *base;
2424         uint64_t iter;
2425         uint64_t perm = physical_offset / vdc->vdc_devslicesz;
2426
2427         vdev_draid_get_perm(vdc, perm, &base, &iter);
2428
2429         uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
2430             (tvd->vdev_children - 1) - vds->vds_spare_id);
2431         vdev_t *cvd = tvd->vdev_child[cid];
2432
2433         if (cvd->vdev_ops == &vdev_draid_spare_ops)
2434                 return (vdev_draid_spare_get_child(cvd, physical_offset));
2435
2436         return (cvd);
2437 }
2438
2439 static void
2440 vdev_draid_spare_close(vdev_t *vd)
2441 {
2442         vdev_draid_spare_t *vds = vd->vdev_tsd;
2443         vds->vds_draid_vdev = NULL;
2444 }
2445
2446 /*
2447  * Opening a dRAID spare device is done by looking up the associated dRAID
2448  * top-level vdev guid from the spare configuration.
2449  */
2450 static int
2451 vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
2452     uint64_t *logical_ashift, uint64_t *physical_ashift)
2453 {
2454         vdev_draid_spare_t *vds = vd->vdev_tsd;
2455         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2456         uint64_t asize, max_asize;
2457
2458         vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
2459         if (tvd == NULL) {
2460                 /*
2461                  * When spa_vdev_add() is labeling new spares the
2462                  * associated dRAID is not attached to the root vdev
2463                  * nor does this spare have a parent.  Simulate a valid
2464                  * device in order to allow the label to be initialized
2465                  * and the distributed spare added to the configuration.
2466                  */
2467                 if (vd->vdev_parent == NULL) {
2468                         *psize = *max_psize = SPA_MINDEVSIZE;
2469                         *logical_ashift = *physical_ashift = ASHIFT_MIN;
2470                         return (0);
2471                 }
2472
2473                 return (SET_ERROR(EINVAL));
2474         }
2475
2476         vdev_draid_config_t *vdc = tvd->vdev_tsd;
2477         if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
2478                 return (SET_ERROR(EINVAL));
2479
2480         if (vds->vds_spare_id >= vdc->vdc_nspares)
2481                 return (SET_ERROR(EINVAL));
2482
2483         /*
2484          * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
2485          * because the caller may be vdev_draid_open() in which case the
2486          * values are stale as they haven't yet been updated by vdev_open().
2487          * To avoid this always recalculate the dRAID asize and max_asize.
2488          */
2489         vdev_draid_calculate_asize(tvd, &asize, &max_asize,
2490             logical_ashift, physical_ashift);
2491
2492         *psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2493         *max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2494
2495         vds->vds_draid_vdev = tvd;
2496
2497         return (0);
2498 }
2499
2500 /*
2501  * Completed distributed spare IO.  Store the result in the parent zio
2502  * as if it had performed the operation itself.  Only the first error is
2503  * preserved if there are multiple errors.
2504  */
2505 static void
2506 vdev_draid_spare_child_done(zio_t *zio)
2507 {
2508         zio_t *pio = zio->io_private;
2509
2510         /*
2511          * IOs are issued to non-writable vdevs in order to keep their
2512          * DTLs accurate.  However, we don't want to propagate the
2513          * error in to the distributed spare's DTL.  When resilvering
2514          * vdev_draid_need_resilver() will consult the relevant DTL
2515          * to determine if the data is missing and must be repaired.
2516          */
2517         if (!vdev_writeable(zio->io_vd))
2518                 return;
2519
2520         if (pio->io_error == 0)
2521                 pio->io_error = zio->io_error;
2522 }
2523
2524 /*
2525  * Returns a valid label nvlist for the distributed spare vdev.  This is
2526  * used to bypass the IO pipeline to avoid the complexity of constructing
2527  * a complete label with valid checksum to return when read.
2528  */
2529 nvlist_t *
2530 vdev_draid_read_config_spare(vdev_t *vd)
2531 {
2532         spa_t *spa = vd->vdev_spa;
2533         spa_aux_vdev_t *sav = &spa->spa_spares;
2534         uint64_t guid = vd->vdev_guid;
2535
2536         nvlist_t *nv = fnvlist_alloc();
2537         fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
2538         fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
2539         fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
2540         fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
2541         fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
2542         fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
2543         fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
2544         fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
2545             vdev_draid_spare_is_active(vd) ?
2546             POOL_STATE_ACTIVE : POOL_STATE_SPARE);
2547
2548         /* Set the vdev guid based on the vdev list in sav_count. */
2549         for (int i = 0; i < sav->sav_count; i++) {
2550                 if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
2551                     strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
2552                         guid = sav->sav_vdevs[i]->vdev_guid;
2553                         break;
2554                 }
2555         }
2556
2557         fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
2558
2559         return (nv);
2560 }
2561
2562 /*
2563  * Handle any ioctl requested of the distributed spare.  Only flushes
2564  * are supported in which case all children must be flushed.
2565  */
2566 static int
2567 vdev_draid_spare_ioctl(zio_t *zio)
2568 {
2569         vdev_t *vd = zio->io_vd;
2570         int error = 0;
2571
2572         if (zio->io_cmd == DKIOCFLUSHWRITECACHE) {
2573                 for (int c = 0; c < vd->vdev_children; c++) {
2574                         zio_nowait(zio_vdev_child_io(zio, NULL,
2575                             vd->vdev_child[c], zio->io_offset, zio->io_abd,
2576                             zio->io_size, zio->io_type, zio->io_priority, 0,
2577                             vdev_draid_spare_child_done, zio));
2578                 }
2579         } else {
2580                 error = SET_ERROR(ENOTSUP);
2581         }
2582
2583         return (error);
2584 }
2585
2586 /*
2587  * Initiate an IO to the distributed spare.  For normal IOs this entails using
2588  * the zio->io_offset and permutation table to calculate which child dRAID vdev
2589  * is responsible for the data.  Then passing along the zio to that child to
2590  * perform the actual IO.  The label ranges are not stored on disk and require
2591  * some special handling which is described below.
2592  */
2593 static void
2594 vdev_draid_spare_io_start(zio_t *zio)
2595 {
2596         vdev_t *cvd = NULL, *vd = zio->io_vd;
2597         vdev_draid_spare_t *vds = vd->vdev_tsd;
2598         uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
2599
2600         /*
2601          * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
2602          * Nothing to be done here but return failure.
2603          */
2604         if (vds == NULL) {
2605                 zio->io_error = ENXIO;
2606                 zio_interrupt(zio);
2607                 return;
2608         }
2609
2610         switch (zio->io_type) {
2611         case ZIO_TYPE_IOCTL:
2612                 zio->io_error = vdev_draid_spare_ioctl(zio);
2613                 break;
2614
2615         case ZIO_TYPE_WRITE:
2616                 if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2617                         /*
2618                          * Accept probe IOs and config writers to simulate the
2619                          * existence of an on disk label.  vdev_label_sync(),
2620                          * vdev_uberblock_sync() and vdev_copy_uberblocks()
2621                          * skip the distributed spares.  This only leaves
2622                          * vdev_label_init() which is allowed to succeed to
2623                          * avoid adding special cases the function.
2624                          */
2625                         if (zio->io_flags & ZIO_FLAG_PROBE ||
2626                             zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
2627                                 zio->io_error = 0;
2628                         } else {
2629                                 zio->io_error = SET_ERROR(EIO);
2630                         }
2631                 } else {
2632                         cvd = vdev_draid_spare_get_child(vd, offset);
2633
2634                         if (cvd == NULL) {
2635                                 zio->io_error = SET_ERROR(ENXIO);
2636                         } else {
2637                                 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2638                                     offset, zio->io_abd, zio->io_size,
2639                                     zio->io_type, zio->io_priority, 0,
2640                                     vdev_draid_spare_child_done, zio));
2641                         }
2642                 }
2643                 break;
2644
2645         case ZIO_TYPE_READ:
2646                 if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2647                         /*
2648                          * Accept probe IOs to simulate the existence of a
2649                          * label.  vdev_label_read_config() bypasses the
2650                          * pipeline to read the label configuration and
2651                          * vdev_uberblock_load() skips distributed spares
2652                          * when attempting to locate the best uberblock.
2653                          */
2654                         if (zio->io_flags & ZIO_FLAG_PROBE) {
2655                                 zio->io_error = 0;
2656                         } else {
2657                                 zio->io_error = SET_ERROR(EIO);
2658                         }
2659                 } else {
2660                         cvd = vdev_draid_spare_get_child(vd, offset);
2661
2662                         if (cvd == NULL || !vdev_readable(cvd)) {
2663                                 zio->io_error = SET_ERROR(ENXIO);
2664                         } else {
2665                                 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2666                                     offset, zio->io_abd, zio->io_size,
2667                                     zio->io_type, zio->io_priority, 0,
2668                                     vdev_draid_spare_child_done, zio));
2669                         }
2670                 }
2671                 break;
2672
2673         case ZIO_TYPE_TRIM:
2674                 /* The vdev label ranges are never trimmed */
2675                 ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
2676
2677                 cvd = vdev_draid_spare_get_child(vd, offset);
2678
2679                 if (cvd == NULL || !cvd->vdev_has_trim) {
2680                         zio->io_error = SET_ERROR(ENXIO);
2681                 } else {
2682                         zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2683                             offset, zio->io_abd, zio->io_size,
2684                             zio->io_type, zio->io_priority, 0,
2685                             vdev_draid_spare_child_done, zio));
2686                 }
2687                 break;
2688
2689         default:
2690                 zio->io_error = SET_ERROR(ENOTSUP);
2691                 break;
2692         }
2693
2694         zio_execute(zio);
2695 }
2696
2697 static void
2698 vdev_draid_spare_io_done(zio_t *zio)
2699 {
2700         (void) zio;
2701 }
2702
2703 /*
2704  * Lookup the full spare config in spa->spa_spares.sav_config and
2705  * return the top_guid and spare_id for the named spare.
2706  */
2707 static int
2708 vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
2709     uint64_t *spare_idp)
2710 {
2711         nvlist_t **spares;
2712         uint_t nspares;
2713         int error;
2714
2715         if ((spa->spa_spares.sav_config == NULL) ||
2716             (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2717             ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
2718                 return (SET_ERROR(ENOENT));
2719         }
2720
2721         char *spare_name;
2722         error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
2723         if (error != 0)
2724                 return (SET_ERROR(EINVAL));
2725
2726         for (int i = 0; i < nspares; i++) {
2727                 nvlist_t *spare = spares[i];
2728                 uint64_t top_guid, spare_id;
2729                 char *type, *path;
2730
2731                 /* Skip non-distributed spares */
2732                 error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
2733                 if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
2734                         continue;
2735
2736                 /* Skip spares with the wrong name */
2737                 error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
2738                 if (error != 0 || strcmp(path, spare_name) != 0)
2739                         continue;
2740
2741                 /* Found the matching spare */
2742                 error = nvlist_lookup_uint64(spare,
2743                     ZPOOL_CONFIG_TOP_GUID, &top_guid);
2744                 if (error == 0) {
2745                         error = nvlist_lookup_uint64(spare,
2746                             ZPOOL_CONFIG_SPARE_ID, &spare_id);
2747                 }
2748
2749                 if (error != 0) {
2750                         return (SET_ERROR(EINVAL));
2751                 } else {
2752                         *top_guidp = top_guid;
2753                         *spare_idp = spare_id;
2754                         return (0);
2755                 }
2756         }
2757
2758         return (SET_ERROR(ENOENT));
2759 }
2760
2761 /*
2762  * Initialize private dRAID spare specific fields from the nvlist.
2763  */
2764 static int
2765 vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
2766 {
2767         vdev_draid_spare_t *vds;
2768         uint64_t top_guid = 0;
2769         uint64_t spare_id;
2770
2771         /*
2772          * In the normal case check the list of spares stored in the spa
2773          * to lookup the top_guid and spare_id for provided spare config.
2774          * When creating a new pool or adding vdevs the spare list is not
2775          * yet populated and the values are provided in the passed config.
2776          */
2777         if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
2778                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
2779                     &top_guid) != 0)
2780                         return (SET_ERROR(EINVAL));
2781
2782                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
2783                     &spare_id) != 0)
2784                         return (SET_ERROR(EINVAL));
2785         }
2786
2787         vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
2788         vds->vds_draid_vdev = NULL;
2789         vds->vds_top_guid = top_guid;
2790         vds->vds_spare_id = spare_id;
2791
2792         *tsd = vds;
2793
2794         return (0);
2795 }
2796
2797 static void
2798 vdev_draid_spare_fini(vdev_t *vd)
2799 {
2800         kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
2801 }
2802
2803 static void
2804 vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
2805 {
2806         vdev_draid_spare_t *vds = vd->vdev_tsd;
2807
2808         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2809
2810         fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
2811         fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
2812 }
2813
2814 vdev_ops_t vdev_draid_spare_ops = {
2815         .vdev_op_init = vdev_draid_spare_init,
2816         .vdev_op_fini = vdev_draid_spare_fini,
2817         .vdev_op_open = vdev_draid_spare_open,
2818         .vdev_op_close = vdev_draid_spare_close,
2819         .vdev_op_asize = vdev_default_asize,
2820         .vdev_op_min_asize = vdev_default_min_asize,
2821         .vdev_op_min_alloc = NULL,
2822         .vdev_op_io_start = vdev_draid_spare_io_start,
2823         .vdev_op_io_done = vdev_draid_spare_io_done,
2824         .vdev_op_state_change = NULL,
2825         .vdev_op_need_resilver = NULL,
2826         .vdev_op_hold = NULL,
2827         .vdev_op_rele = NULL,
2828         .vdev_op_remap = NULL,
2829         .vdev_op_xlate = vdev_default_xlate,
2830         .vdev_op_rebuild_asize = NULL,
2831         .vdev_op_metaslab_init = NULL,
2832         .vdev_op_config_generate = vdev_draid_spare_config_generate,
2833         .vdev_op_nparity = NULL,
2834         .vdev_op_ndisks = NULL,
2835         .vdev_op_type = VDEV_TYPE_DRAID_SPARE,
2836         .vdev_op_leaf = B_TRUE,
2837 };