]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_draid.c
less: upgrade to v581.2.
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_draid.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2018 Intel Corporation.
23  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/vdev_draid.h>
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_rebuild.h>
33 #include <sys/abd.h>
34 #include <sys/zio.h>
35 #include <sys/nvpair.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/fs/zfs.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <zfs_fletcher.h>
40
41 #ifdef ZFS_DEBUG
42 #include <sys/vdev.h>   /* For vdev_xlate() in vdev_draid_io_verify() */
43 #endif
44
45 /*
46  * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
47  * comprised of multiple raidz redundancy groups which are spread over the
48  * dRAID children. To ensure an even distribution, and avoid hot spots, a
49  * permutation mapping is applied to the order of the dRAID children.
50  * This mixing effectively distributes the parity columns evenly over all
51  * of the disks in the dRAID.
52  *
53  * This is beneficial because it means when resilvering all of the disks
54  * can participate thereby increasing the available IOPs and bandwidth.
55  * Furthermore, by reserving a small fraction of each child's total capacity
56  * virtual distributed spare disks can be created. These spares similarly
57  * benefit from the performance gains of spanning all of the children. The
58  * consequence of which is that resilvering to a distributed spare can
59  * substantially reduce the time required to restore full parity to pool
60  * with a failed disks.
61  *
62  * === dRAID group layout ===
63  *
64  * First, let's define a "row" in the configuration to be a 16M chunk from
65  * each physical drive at the same offset. This is the minimum allowable
66  * size since it must be possible to store a full 16M block when there is
67  * only a single data column. Next, we define a "group" to be a set of
68  * sequential disks containing both the parity and data columns. We allow
69  * groups to span multiple rows in order to align any group size to any
70  * number of physical drives. Finally, a "slice" is comprised of the rows
71  * which contain the target number of groups. The permutation mappings
72  * are applied in a round robin fashion to each slice.
73  *
74  * Given D+P drives in a group (including parity drives) and C-S physical
75  * drives (not including the spare drives), we can distribute the groups
76  * across R rows without remainder by selecting the least common multiple
77  * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
78  *
79  * In the example below, there are C=14 physical drives in the configuration
80  * with S=2 drives worth of spare capacity. Each group has a width of 9
81  * which includes D=8 data and P=1 parity drive. There are 4 groups and
82  * 3 rows per slice.  Each group has a size of 144M (16M * 9) and a slice
83  * size is 576M (144M * 4). When allocating from a dRAID each group is
84  * filled before moving on to the next as show in slice0 below.
85  *
86  *             data disks (8 data + 1 parity)          spares (2)
87  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
88  *  ^  | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
89  *  |  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
90  *  |  |              group 0              |  group 1..|       |
91  *  |  +-----------------------------------+-----------+-------|
92  *  |  | 0   1   2   3   4   5   6   7   8 | 36  37  38|       |  r
93  *  |  | 9   10  11  12  13  14  15  16  17| 45  46  47|       |  o
94  *  |  | 18  19  20  21  22  23  24  25  26| 54  55  56|       |  w
95  *     | 27  28  29  30  31  32  33  34  35| 63  64  65|       |  0
96  *  s  +-----------------------+-----------------------+-------+
97  *  l  |       ..group 1       |        group 2..      |       |
98  *  i  +-----------------------+-----------------------+-------+
99  *  c  | 39  40  41  42  43  44| 72  73  74  75  76  77|       |  r
100  *  e  | 48  49  50  51  52  53| 81  82  83  84  85  86|       |  o
101  *  0  | 57  58  59  60  61  62| 90  91  92  93  94  95|       |  w
102  *     | 66  67  68  69  70  71| 99 100 101 102 103 104|       |  1
103  *  |  +-----------+-----------+-----------------------+-------+
104  *  |  |..group 2  |            group 3                |       |
105  *  |  +-----------+-----------+-----------------------+-------+
106  *  |  | 78  79  80|108 109 110 111 112 113 114 115 116|       |  r
107  *  |  | 87  88  89|117 118 119 120 121 122 123 124 125|       |  o
108  *  |  | 96  97  98|126 127 128 129 130 131 132 133 134|       |  w
109  *  v  |105 106 107|135 136 137 138 139 140 141 142 143|       |  2
110  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
111  *     | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
112  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
113  *  l  |              group 4              |  group 5..|       | row 3
114  *  i  +-----------------------+-----------+-----------+-------|
115  *  c  |       ..group 5       |        group 6..      |       | row 4
116  *  e  +-----------+-----------+-----------------------+-------+
117  *  1  |..group 6  |            group 7                |       | row 5
118  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
119  *     | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
120  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
121  *  l  |              group 8              |  group 9..|       | row 6
122  *  i  +-----------------------------------------------+-------|
123  *  c  |       ..group 9       |        group 10..     |       | row 7
124  *  e  +-----------------------+-----------------------+-------+
125  *  2  |..group 10 |            group 11               |       | row 8
126  *     +-----------+-----------------------------------+-------+
127  *
128  * This layout has several advantages over requiring that each row contain
129  * a whole number of groups.
130  *
131  * 1. The group count is not a relevant parameter when defining a dRAID
132  *    layout. Only the group width is needed, and *all* groups will have
133  *    the desired size.
134  *
135  * 2. All possible group widths (<= physical disk count) can be supported.
136  *
137  * 3. The logic within vdev_draid.c is simplified when the group width is
138  *    the same for all groups (although some of the logic around computing
139  *    permutation numbers and drive offsets is more complicated).
140  *
141  * N.B. The following array describes all valid dRAID permutation maps.
142  * Each row is used to generate a permutation map for a different number
143  * of children from a unique seed. The seeds were generated and carefully
144  * evaluated by the 'draid' utility in order to provide balanced mappings.
145  * In addition to the seed a checksum of the in-memory mapping is stored
146  * for verification.
147  *
148  * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
149  * with a given permutation map) is the ratio of the amounts of I/O that will
150  * be sent to the least and most busy disks when resilvering. The average
151  * imbalance ratio (of a given number of disks and permutation map) is the
152  * average of the ratios of all possible single and double disk failures.
153  *
154  * In order to achieve a low imbalance ratio the number of permutations in
155  * the mapping must be significantly larger than the number of children.
156  * For dRAID the number of permutations has been limited to 512 to minimize
157  * the map size. This does result in a gradually increasing imbalance ratio
158  * as seen in the table below. Increasing the number of permutations for
159  * larger child counts would reduce the imbalance ratio. However, in practice
160  * when there are a large number of children each child is responsible for
161  * fewer total IOs so it's less of a concern.
162  *
163  * Note these values are hard coded and must never be changed.  Existing
164  * pools depend on the same mapping always being generated in order to
165  * read and write from the correct locations.  Any change would make
166  * existing pools completely inaccessible.
167  */
168 static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
169         {   2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d },   /* 1.000 */
170         {   3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 },   /* 1.000 */
171         {   4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 },   /* 1.000 */
172         {   5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 },   /* 1.010 */
173         {   6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 },   /* 1.031 */
174         {   7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee },   /* 1.043 */
175         {   8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 },   /* 1.059 */
176         {   9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 },   /* 1.056 */
177         {  10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 },   /* 1.072 */
178         {  11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c },   /* 1.083 */
179         {  12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e },   /* 1.097 */
180         {  13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 },   /* 1.100 */
181         {  14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 },   /* 1.121 */
182         {  15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 },   /* 1.103 */
183         {  16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 },   /* 1.111 */
184         {  17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe },   /* 1.133 */
185         {  18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 },   /* 1.131 */
186         {  19, 256, 0x892e343f2f31d690, 0x00000029eb392835 },   /* 1.130 */
187         {  20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c },   /* 1.141 */
188         {  21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 },   /* 1.139 */
189         {  22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 },   /* 1.150 */
190         {  23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f },   /* 1.174 */
191         {  24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 },   /* 1.168 */
192         {  25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 },   /* 1.180 */
193         {  26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba },   /* 1.226 */
194         {  27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 },   /* 1.228 */
195         {  28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c },   /* 1.217 */
196         {  29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c },   /* 1.239 */
197         {  30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 },   /* 1.238 */
198         {  31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f },   /* 1.273 */
199         {  32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 },   /* 1.191 */
200         {  33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 },   /* 1.199 */
201         {  34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 },   /* 1.195 */
202         {  35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 },   /* 1.201 */
203         {  36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef },   /* 1.194 */
204         {  37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 },   /* 1.237 */
205         {  38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 },   /* 1.242 */
206         {  39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd },   /* 1.231 */
207         {  40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 },   /* 1.233 */
208         {  41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 },   /* 1.271 */
209         {  42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 },   /* 1.263 */
210         {  43, 512, 0xbaa5125faa781854, 0x000001c76789e278 },   /* 1.270 */
211         {  44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb },   /* 1.281 */
212         {  45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 },   /* 1.282 */
213         {  46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b },   /* 1.286 */
214         {  47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 },   /* 1.329 */
215         {  48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b },   /* 1.286 */
216         {  49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 },   /* 1.322 */
217         {  50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 },   /* 1.335 */
218         {  51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 },   /* 1.305 */
219         {  52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf },   /* 1.330 */
220         {  53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 },   /* 1.365 */
221         {  54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 },   /* 1.334 */
222         {  55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 },   /* 1.364 */
223         {  56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e },   /* 1.374 */
224         {  57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 },   /* 1.363 */
225         {  58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 },   /* 1.401 */
226         {  59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c },   /* 1.392 */
227         {  60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 },   /* 1.360 */
228         {  61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd },   /* 1.396 */
229         {  62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c },   /* 1.453 */
230         {  63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 },   /* 1.437 */
231         {  64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 },   /* 1.402 */
232         {  65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 },   /* 1.459 */
233         {  66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 },   /* 1.423 */
234         {  67, 512, 0x910b9714f698a877, 0x00000451ea65d5db },   /* 1.447 */
235         {  68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 },   /* 1.450 */
236         {  69, 512, 0x836d4968fbaa3706, 0x000004954068a380 },   /* 1.455 */
237         {  70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d },   /* 1.463 */
238         {  71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 },   /* 1.463 */
239         {  72, 512, 0x42763a680d5bed8e, 0x000005084275c680 },   /* 1.452 */
240         {  73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab },   /* 1.498 */
241         {  74, 512, 0x9fa08548b1621a44, 0x0000054708019247 },   /* 1.526 */
242         {  75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 },   /* 1.491 */
243         {  76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 },   /* 1.470 */
244         {  77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 },   /* 1.527 */
245         {  78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 },   /* 1.509 */
246         {  79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e },   /* 1.569 */
247         {  80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c },   /* 1.555 */
248         {  81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 },   /* 1.509 */
249         {  82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 },   /* 1.596 */
250         {  83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e },   /* 1.568 */
251         {  84, 512, 0xba02545069ddc6dc, 0x000006d19861364f },   /* 1.541 */
252         {  85, 512, 0x447c73192c35073e, 0x000006fce315ce35 },   /* 1.623 */
253         {  86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b },   /* 1.620 */
254         {  87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 },   /* 1.597 */
255         {  88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b },   /* 1.575 */
256         {  89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc },   /* 1.627 */
257         {  90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb },   /* 1.596 */
258         {  91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 },   /* 1.622 */
259         {  92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e },   /* 1.695 */
260         {  93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c },   /* 1.605 */
261         {  94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc },   /* 1.625 */
262         {  95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 },   /* 1.687 */
263         {  96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a },   /* 1.621 */
264         {  97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 },   /* 1.699 */
265         {  98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b },   /* 1.688 */
266         {  99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce },   /* 1.642 */
267         { 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc },   /* 1.683 */
268         { 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 },   /* 1.755 */
269         { 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 },   /* 1.692 */
270         { 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 },   /* 1.747 */
271         { 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 },   /* 1.751 */
272         { 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 },   /* 1.751 */
273         { 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f },   /* 1.726 */
274         { 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d },   /* 1.788 */
275         { 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 },   /* 1.740 */
276         { 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 },   /* 1.780 */
277         { 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 },   /* 1.836 */
278         { 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 },   /* 1.778 */
279         { 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 },   /* 1.831 */
280         { 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df },   /* 1.825 */
281         { 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 },   /* 1.826 */
282         { 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 },   /* 1.843 */
283         { 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d },   /* 1.826 */
284         { 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b },   /* 1.803 */
285         { 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 },   /* 1.857 */
286         { 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 },   /* 1.877 */
287         { 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 },   /* 1.849 */
288         { 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d },   /* 1.867 */
289         { 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 },   /* 1.978 */
290         { 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d },   /* 1.947 */
291         { 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea },   /* 1.865 */
292         { 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f },   /* 1.881 */
293         { 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b },   /* 1.882 */
294         { 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e },   /* 1.867 */
295         { 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e },   /* 1.972 */
296         { 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 },   /* 1.896 */
297         { 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d },   /* 1.965 */
298         { 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 },   /* 1.963 */
299         { 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 },   /* 1.925 */
300         { 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 },   /* 1.862 */
301         { 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 },   /* 2.042 */
302         { 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 },   /* 1.935 */
303         { 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 },   /* 2.005 */
304         { 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c },   /* 2.041 */
305         { 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 },   /* 1.997 */
306         { 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 },   /* 1.996 */
307         { 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d },   /* 2.053 */
308         { 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a },   /* 1.971 */
309         { 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 },   /* 2.018 */
310         { 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd },   /* 1.961 */
311         { 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 },   /* 2.046 */
312         { 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb },   /* 1.968 */
313         { 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 },   /* 2.143 */
314         { 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 },   /* 2.064 */
315         { 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 },   /* 2.023 */
316         { 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c },   /* 2.136 */
317         { 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 },   /* 2.063 */
318         { 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 },   /* 1.974 */
319         { 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 },   /* 2.210 */
320         { 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a },   /* 2.006 */
321         { 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 },   /* 2.193 */
322         { 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 },   /* 2.163 */
323         { 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc },   /* 2.046 */
324         { 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 },   /* 2.084 */
325         { 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 },   /* 2.264 */
326         { 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 },   /* 2.074 */
327         { 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 },   /* 2.282 */
328         { 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf },   /* 2.148 */
329         { 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 },   /* 2.355 */
330         { 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 },   /* 2.164 */
331         { 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a },   /* 2.393 */
332         { 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 },   /* 2.178 */
333         { 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc },   /* 2.334 */
334         { 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b },   /* 2.266 */
335         { 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 },   /* 2.304 */
336         { 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d },   /* 2.218 */
337         { 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff },   /* 2.377 */
338         { 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 },   /* 2.155 */
339         { 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 },   /* 2.404 */
340         { 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 },   /* 2.205 */
341         { 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d },   /* 2.359 */
342         { 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 },   /* 2.158 */
343         { 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b },   /* 2.614 */
344         { 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc },   /* 2.239 */
345         { 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc },   /* 2.493 */
346         { 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c },   /* 2.327 */
347         { 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 },   /* 2.231 */
348         { 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c },   /* 2.237 */
349         { 182, 512, 0xe6035defea48f933, 0x00002038e3346658 },   /* 2.691 */
350         { 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e },   /* 2.170 */
351         { 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 },   /* 2.600 */
352         { 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc },   /* 2.391 */
353         { 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 },   /* 2.677 */
354         { 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c },   /* 2.410 */
355         { 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 },   /* 2.776 */
356         { 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 },   /* 2.266 */
357         { 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 },   /* 2.717 */
358         { 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c },   /* 2.474 */
359         { 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 },   /* 2.673 */
360         { 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 },   /* 2.420 */
361         { 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 },   /* 2.898 */
362         { 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c },   /* 2.363 */
363         { 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e },   /* 2.747 */
364         { 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 },   /* 2.531 */
365         { 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 },   /* 2.707 */
366         { 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 },   /* 2.315 */
367         { 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf },   /* 3.012 */
368         { 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 },   /* 2.378 */
369         { 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 },   /* 2.969 */
370         { 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d },   /* 2.594 */
371         { 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd },   /* 2.763 */
372         { 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 },   /* 2.457 */
373         { 206, 512, 0xc02fc96684715a16, 0x0000297515608601 },   /* 3.057 */
374         { 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 },   /* 2.590 */
375         { 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b },   /* 3.047 */
376         { 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 },   /* 2.676 */
377         { 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 },   /* 2.993 */
378         { 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 },   /* 2.457 */
379         { 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 },   /* 3.182 */
380         { 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 },   /* 2.563 */
381         { 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 },   /* 3.025 */
382         { 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f },   /* 2.730 */
383         { 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 },   /* 3.036 */
384         { 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 },   /* 2.722 */
385         { 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 },   /* 3.356 */
386         { 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 },   /* 2.697 */
387         { 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 },   /* 2.979 */
388         { 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 },   /* 2.858 */
389         { 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e },   /* 3.258 */
390         { 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 },   /* 2.693 */
391         { 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 },   /* 3.259 */
392         { 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c },   /* 2.733 */
393         { 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 },   /* 3.235 */
394         { 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 },   /* 2.983 */
395         { 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e },   /* 3.308 */
396         { 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 },   /* 2.715 */
397         { 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f },   /* 3.540 */
398         { 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 },   /* 2.779 */
399         { 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c },   /* 3.084 */
400         { 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc },   /* 2.987 */
401         { 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae },   /* 3.341 */
402         { 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 },   /* 2.793 */
403         { 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 },   /* 3.518 */
404         { 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 },   /* 2.962 */
405         { 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 },   /* 3.196 */
406         { 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 },   /* 2.914 */
407         { 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 },   /* 3.408 */
408         { 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 },   /* 2.903 */
409         { 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 },   /* 3.778 */
410         { 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c },   /* 3.026 */
411         { 244, 512, 0xc740263f0301efa8, 0x00003a147146512d },   /* 3.347 */
412         { 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d },   /* 3.212 */
413         { 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 },   /* 3.482 */
414         { 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 },   /* 3.146 */
415         { 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f },   /* 3.626 */
416         { 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 },   /* 2.952 */
417         { 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e },   /* 3.463 */
418         { 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 },   /* 3.131 */
419         { 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c },   /* 3.538 */
420         { 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac },   /* 2.974 */
421         { 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 },   /* 3.843 */
422         { 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 },   /* 3.088 */
423 };
424
425 /*
426  * Verify the map is valid. Each device index must appear exactly
427  * once in every row, and the permutation array checksum must match.
428  */
429 static int
430 verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
431     uint64_t checksum)
432 {
433         int countssz = sizeof (uint16_t) * children;
434         uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
435
436         for (int i = 0; i < nperms; i++) {
437                 for (int j = 0; j < children; j++) {
438                         uint8_t val = perms[(i * children) + j];
439
440                         if (val >= children || counts[val] != i) {
441                                 kmem_free(counts, countssz);
442                                 return (EINVAL);
443                         }
444
445                         counts[val]++;
446                 }
447         }
448
449         if (checksum != 0) {
450                 int permssz = sizeof (uint8_t) * children * nperms;
451                 zio_cksum_t cksum;
452
453                 fletcher_4_native_varsize(perms, permssz, &cksum);
454
455                 if (checksum != cksum.zc_word[0]) {
456                         kmem_free(counts, countssz);
457                         return (ECKSUM);
458                 }
459         }
460
461         kmem_free(counts, countssz);
462
463         return (0);
464 }
465
466 /*
467  * Generate the permutation array for the draid_map_t.  These maps control
468  * the placement of all data in a dRAID.  Therefore it's critical that the
469  * seed always generates the same mapping.  We provide our own pseudo-random
470  * number generator for this purpose.
471  */
472 int
473 vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
474 {
475         VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
476         VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
477         VERIFY3U(map->dm_seed, !=, 0);
478         VERIFY3U(map->dm_nperms, !=, 0);
479         VERIFY3P(map->dm_perms, ==, NULL);
480
481 #ifdef _KERNEL
482         /*
483          * The kernel code always provides both a map_seed and checksum.
484          * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
485          * a zero checksum when generating new candidate maps.
486          */
487         VERIFY3U(map->dm_checksum, !=, 0);
488 #endif
489         uint64_t children = map->dm_children;
490         uint64_t nperms = map->dm_nperms;
491         int rowsz = sizeof (uint8_t) * children;
492         int permssz = rowsz * nperms;
493         uint8_t *perms;
494
495         /* Allocate the permutation array */
496         perms = vmem_alloc(permssz, KM_SLEEP);
497
498         /* Setup an initial row with a known pattern */
499         uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
500         for (int i = 0; i < children; i++)
501                 initial_row[i] = i;
502
503         uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
504         uint8_t *current_row, *previous_row = initial_row;
505
506         /*
507          * Perform a Fisher-Yates shuffle of each row using the previous
508          * row as the starting point.  An initial_row with known pattern
509          * is used as the input for the first row.
510          */
511         for (int i = 0; i < nperms; i++) {
512                 current_row = &perms[i * children];
513                 memcpy(current_row, previous_row, rowsz);
514
515                 for (int j = children - 1; j > 0; j--) {
516                         uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
517                         uint8_t val = current_row[j];
518                         current_row[j] = current_row[k];
519                         current_row[k] = val;
520                 }
521
522                 previous_row = current_row;
523         }
524
525         kmem_free(initial_row, rowsz);
526
527         int error = verify_perms(perms, children, nperms, map->dm_checksum);
528         if (error) {
529                 vmem_free(perms, permssz);
530                 return (error);
531         }
532
533         *permsp = perms;
534
535         return (0);
536 }
537
538 /*
539  * Lookup the fixed draid_map_t for the requested number of children.
540  */
541 int
542 vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
543 {
544         for (int i = 0; i <= VDEV_DRAID_MAX_MAPS; i++) {
545                 if (draid_maps[i].dm_children == children) {
546                         *mapp = &draid_maps[i];
547                         return (0);
548                 }
549         }
550
551         return (ENOENT);
552 }
553
554 /*
555  * Lookup the permutation array and iteration id for the provided offset.
556  */
557 static void
558 vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
559     uint8_t **base, uint64_t *iter)
560 {
561         uint64_t ncols = vdc->vdc_children;
562         uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
563
564         *base = vdc->vdc_perms + (poff / ncols) * ncols;
565         *iter = poff % ncols;
566 }
567
568 static inline uint64_t
569 vdev_draid_permute_id(vdev_draid_config_t *vdc,
570     uint8_t *base, uint64_t iter, uint64_t index)
571 {
572         return ((base[index] + iter) % vdc->vdc_children);
573 }
574
575 /*
576  * Return the asize which is the psize rounded up to a full group width.
577  * i.e. vdev_draid_psize_to_asize().
578  */
579 static uint64_t
580 vdev_draid_asize(vdev_t *vd, uint64_t psize)
581 {
582         vdev_draid_config_t *vdc = vd->vdev_tsd;
583         uint64_t ashift = vd->vdev_ashift;
584
585         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
586
587         uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
588         uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
589
590         ASSERT3U(asize, !=, 0);
591         ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);
592
593         return (asize);
594 }
595
596 /*
597  * Deflate the asize to the psize, this includes stripping parity.
598  */
599 uint64_t
600 vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
601 {
602         vdev_draid_config_t *vdc = vd->vdev_tsd;
603
604         ASSERT0(asize % vdc->vdc_groupwidth);
605
606         return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
607 }
608
609 /*
610  * Convert a logical offset to the corresponding group number.
611  */
612 static uint64_t
613 vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
614 {
615         vdev_draid_config_t *vdc = vd->vdev_tsd;
616
617         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
618
619         return (offset / vdc->vdc_groupsz);
620 }
621
622 /*
623  * Convert a group number to the logical starting offset for that group.
624  */
625 static uint64_t
626 vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
627 {
628         vdev_draid_config_t *vdc = vd->vdev_tsd;
629
630         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
631
632         return (group * vdc->vdc_groupsz);
633 }
634
635 /*
636  * Full stripe writes.  When writing, all columns (D+P) are required.  Parity
637  * is calculated over all the columns, including empty zero filled sectors,
638  * and each is written to disk.  While only the data columns are needed for
639  * a normal read, all of the columns are required for reconstruction when
640  * performing a sequential resilver.
641  *
642  * For "big columns" it's sufficient to map the correct range of the zio ABD.
643  * Partial columns require allocating a gang ABD in order to zero fill the
644  * empty sectors.  When the column is empty a zero filled sector must be
645  * mapped.  In all cases the data ABDs must be the same size as the parity
646  * ABDs (e.g. rc->rc_size == parity_size).
647  */
648 static void
649 vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
650 {
651         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
652         uint64_t parity_size = rr->rr_col[0].rc_size;
653         uint64_t abd_off = abd_offset;
654
655         ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
656         ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
657
658         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
659                 raidz_col_t *rc = &rr->rr_col[c];
660
661                 if (rc->rc_size == 0) {
662                         /* empty data column (small write), add a skip sector */
663                         ASSERT3U(skip_size, ==, parity_size);
664                         rc->rc_abd = abd_get_zeros(skip_size);
665                 } else if (rc->rc_size == parity_size) {
666                         /* this is a "big column" */
667                         rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
668                             zio->io_abd, abd_off, rc->rc_size);
669                 } else {
670                         /* short data column, add a skip sector */
671                         ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
672                         rc->rc_abd = abd_alloc_gang();
673                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
674                             zio->io_abd, abd_off, rc->rc_size), B_TRUE);
675                         abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
676                             B_TRUE);
677                 }
678
679                 ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
680
681                 abd_off += rc->rc_size;
682                 rc->rc_size = parity_size;
683         }
684
685         IMPLY(abd_offset != 0, abd_off == zio->io_size);
686 }
687
688 /*
689  * Scrub/resilver reads.  In order to store the contents of the skip sectors
690  * an additional ABD is allocated.  The columns are handled in the same way
691  * as a full stripe write except instead of using the zero ABD the newly
692  * allocated skip ABD is used to back the skip sectors.  In all cases the
693  * data ABD must be the same size as the parity ABDs.
694  */
695 static void
696 vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
697 {
698         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
699         uint64_t parity_size = rr->rr_col[0].rc_size;
700         uint64_t abd_off = abd_offset;
701         uint64_t skip_off = 0;
702
703         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
704         ASSERT3P(rr->rr_abd_empty, ==, NULL);
705
706         if (rr->rr_nempty > 0) {
707                 rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
708                     B_FALSE);
709         }
710
711         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
712                 raidz_col_t *rc = &rr->rr_col[c];
713
714                 if (rc->rc_size == 0) {
715                         /* empty data column (small read), add a skip sector */
716                         ASSERT3U(skip_size, ==, parity_size);
717                         ASSERT3U(rr->rr_nempty, !=, 0);
718                         rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
719                             skip_off, skip_size);
720                         skip_off += skip_size;
721                 } else if (rc->rc_size == parity_size) {
722                         /* this is a "big column" */
723                         rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
724                             zio->io_abd, abd_off, rc->rc_size);
725                 } else {
726                         /* short data column, add a skip sector */
727                         ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
728                         ASSERT3U(rr->rr_nempty, !=, 0);
729                         rc->rc_abd = abd_alloc_gang();
730                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
731                             zio->io_abd, abd_off, rc->rc_size), B_TRUE);
732                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
733                             rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
734                         skip_off += skip_size;
735                 }
736
737                 uint64_t abd_size = abd_get_size(rc->rc_abd);
738                 ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
739
740                 /*
741                  * Increase rc_size so the skip ABD is included in subsequent
742                  * parity calculations.
743                  */
744                 abd_off += rc->rc_size;
745                 rc->rc_size = abd_size;
746         }
747
748         IMPLY(abd_offset != 0, abd_off == zio->io_size);
749         ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
750 }
751
752 /*
753  * Normal reads.  In this common case only the columns containing data
754  * are read in to the zio ABDs.  Neither the parity columns or empty skip
755  * sectors are read unless the checksum fails verification.  In which case
756  * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
757  * the raid map in order to allow reconstruction using the parity data and
758  * skip sectors.
759  */
760 static void
761 vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
762 {
763         uint64_t abd_off = abd_offset;
764
765         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
766
767         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
768                 raidz_col_t *rc = &rr->rr_col[c];
769
770                 if (rc->rc_size > 0) {
771                         rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
772                             zio->io_abd, abd_off, rc->rc_size);
773                         abd_off += rc->rc_size;
774                 }
775         }
776
777         IMPLY(abd_offset != 0, abd_off == zio->io_size);
778 }
779
780 /*
781  * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
782  * difference is that an ABD is allocated to back skip sectors so they may
783  * be read in to memory, verified, and repaired if needed.
784  */
785 void
786 vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
787 {
788         uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
789         uint64_t parity_size = rr->rr_col[0].rc_size;
790         uint64_t skip_off = 0;
791
792         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
793         ASSERT3P(rr->rr_abd_empty, ==, NULL);
794
795         if (rr->rr_nempty > 0) {
796                 rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
797                     B_FALSE);
798         }
799
800         for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
801                 raidz_col_t *rc = &rr->rr_col[c];
802
803                 if (rc->rc_size == 0) {
804                         /* empty data column (small read), add a skip sector */
805                         ASSERT3U(skip_size, ==, parity_size);
806                         ASSERT3U(rr->rr_nempty, !=, 0);
807                         ASSERT3P(rc->rc_abd, ==, NULL);
808                         rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
809                             skip_off, skip_size);
810                         skip_off += skip_size;
811                 } else if (rc->rc_size == parity_size) {
812                         /* this is a "big column", nothing to add */
813                         ASSERT3P(rc->rc_abd, !=, NULL);
814                 } else {
815                         /* short data column, add a skip sector */
816                         ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
817                         ASSERT3U(rr->rr_nempty, !=, 0);
818                         ASSERT3P(rc->rc_abd, !=, NULL);
819                         ASSERT(!abd_is_gang(rc->rc_abd));
820                         abd_t *read_abd = rc->rc_abd;
821                         rc->rc_abd = abd_alloc_gang();
822                         abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
823                         abd_gang_add(rc->rc_abd, abd_get_offset_size(
824                             rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
825                         skip_off += skip_size;
826                 }
827
828                 /*
829                  * Increase rc_size so the empty ABD is included in subsequent
830                  * parity calculations.
831                  */
832                 rc->rc_size = parity_size;
833         }
834
835         ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
836 }
837
838 /*
839  * Given a logical address within a dRAID configuration, return the physical
840  * address on the first drive in the group that this address maps to
841  * (at position 'start' in permutation number 'perm').
842  */
843 static uint64_t
844 vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
845     uint64_t *perm, uint64_t *start)
846 {
847         vdev_draid_config_t *vdc = vd->vdev_tsd;
848
849         /* b is the dRAID (parent) sector offset. */
850         uint64_t ashift = vd->vdev_top->vdev_ashift;
851         uint64_t b_offset = logical_offset >> ashift;
852
853         /*
854          * The height of a row in units of the vdev's minimum sector size.
855          * This is the amount of data written to each disk of each group
856          * in a given permutation.
857          */
858         uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
859
860         /*
861          * We cycle through a disk permutation every groupsz * ngroups chunk
862          * of address space. Note that ngroups * groupsz must be a multiple
863          * of the number of data drives (ndisks) in order to guarantee
864          * alignment. So, for example, if our row height is 16MB, our group
865          * size is 10, and there are 13 data drives in the draid, then ngroups
866          * will be 13, we will change permutation every 2.08GB and each
867          * disk will have 160MB of data per chunk.
868          */
869         uint64_t groupwidth = vdc->vdc_groupwidth;
870         uint64_t ngroups = vdc->vdc_ngroups;
871         uint64_t ndisks = vdc->vdc_ndisks;
872
873         /*
874          * groupstart is where the group this IO will land in "starts" in
875          * the permutation array.
876          */
877         uint64_t group = logical_offset / vdc->vdc_groupsz;
878         uint64_t groupstart = (group * groupwidth) % ndisks;
879         ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
880         *start = groupstart;
881
882         /* b_offset is the sector offset within a group chunk */
883         b_offset = b_offset % (rowheight_sectors * groupwidth);
884         ASSERT0(b_offset % groupwidth);
885
886         /*
887          * Find the starting byte offset on each child vdev:
888          * - within a permutation there are ngroups groups spread over the
889          *   rows, where each row covers a slice portion of the disk
890          * - each permutation has (groupwidth * ngroups) / ndisks rows
891          * - so each permutation covers rows * slice portion of the disk
892          * - so we need to find the row where this IO group target begins
893          */
894         *perm = group / ngroups;
895         uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
896             (((group % ngroups) * groupwidth) / ndisks);
897
898         return (((rowheight_sectors * row) +
899             (b_offset / groupwidth)) << ashift);
900 }
901
902 static uint64_t
903 vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
904     uint64_t abd_offset, uint64_t abd_size)
905 {
906         vdev_t *vd = zio->io_vd;
907         vdev_draid_config_t *vdc = vd->vdev_tsd;
908         uint64_t ashift = vd->vdev_top->vdev_ashift;
909         uint64_t io_size = abd_size;
910         uint64_t io_asize = vdev_draid_asize(vd, io_size);
911         uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
912         uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
913
914         /*
915          * Limit the io_size to the space remaining in the group.  A second
916          * row in the raidz_map_t is created for the remainder.
917          */
918         if (io_offset + io_asize > start_offset) {
919                 io_size = vdev_draid_asize_to_psize(vd,
920                     start_offset - io_offset);
921         }
922
923         /*
924          * At most a block may span the logical end of one group and the start
925          * of the next group. Therefore, at the end of a group the io_size must
926          * span the group width evenly and the remainder must be aligned to the
927          * start of the next group.
928          */
929         IMPLY(abd_offset == 0 && io_size < zio->io_size,
930             (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
931         IMPLY(abd_offset != 0,
932             vdev_draid_group_to_offset(vd, group) == io_offset);
933
934         /* Lookup starting byte offset on each child vdev */
935         uint64_t groupstart, perm;
936         uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
937             io_offset, &perm, &groupstart);
938
939         /*
940          * If there is less than groupwidth drives available after the group
941          * start, the group is going to wrap onto the next row. 'wrap' is the
942          * group disk number that starts on the next row.
943          */
944         uint64_t ndisks = vdc->vdc_ndisks;
945         uint64_t groupwidth = vdc->vdc_groupwidth;
946         uint64_t wrap = groupwidth;
947
948         if (groupstart + groupwidth > ndisks)
949                 wrap = ndisks - groupstart;
950
951         /* The io size in units of the vdev's minimum sector size. */
952         const uint64_t psize = io_size >> ashift;
953
954         /*
955          * "Quotient": The number of data sectors for this stripe on all but
956          * the "big column" child vdevs that also contain "remainder" data.
957          */
958         uint64_t q = psize / vdc->vdc_ndata;
959
960         /*
961          * "Remainder": The number of partial stripe data sectors in this I/O.
962          * This will add a sector to some, but not all, child vdevs.
963          */
964         uint64_t r = psize - q * vdc->vdc_ndata;
965
966         /* The number of "big columns" - those which contain remainder data. */
967         uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
968         ASSERT3U(bc, <, groupwidth);
969
970         /* The total number of data and parity sectors for this I/O. */
971         uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
972
973         raidz_row_t *rr;
974         rr = kmem_alloc(offsetof(raidz_row_t, rr_col[groupwidth]), KM_SLEEP);
975         rr->rr_cols = groupwidth;
976         rr->rr_scols = groupwidth;
977         rr->rr_bigcols = bc;
978         rr->rr_missingdata = 0;
979         rr->rr_missingparity = 0;
980         rr->rr_firstdatacol = vdc->vdc_nparity;
981         rr->rr_abd_empty = NULL;
982 #ifdef ZFS_DEBUG
983         rr->rr_offset = io_offset;
984         rr->rr_size = io_size;
985 #endif
986         *rrp = rr;
987
988         uint8_t *base;
989         uint64_t iter, asize = 0;
990         vdev_draid_get_perm(vdc, perm, &base, &iter);
991         for (uint64_t i = 0; i < groupwidth; i++) {
992                 raidz_col_t *rc = &rr->rr_col[i];
993                 uint64_t c = (groupstart + i) % ndisks;
994
995                 /* increment the offset if we wrap to the next row */
996                 if (i == wrap)
997                         physical_offset += VDEV_DRAID_ROWHEIGHT;
998
999                 rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
1000                 rc->rc_offset = physical_offset;
1001                 rc->rc_abd = NULL;
1002                 rc->rc_orig_data = NULL;
1003                 rc->rc_error = 0;
1004                 rc->rc_tried = 0;
1005                 rc->rc_skipped = 0;
1006                 rc->rc_repair = 0;
1007                 rc->rc_need_orig_restore = B_FALSE;
1008
1009                 if (q == 0 && i >= bc)
1010                         rc->rc_size = 0;
1011                 else if (i < bc)
1012                         rc->rc_size = (q + 1) << ashift;
1013                 else
1014                         rc->rc_size = q << ashift;
1015
1016                 asize += rc->rc_size;
1017         }
1018
1019         ASSERT3U(asize, ==, tot << ashift);
1020         rr->rr_nempty = roundup(tot, groupwidth) - tot;
1021         IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
1022
1023         /* Allocate buffers for the parity columns */
1024         for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
1025                 raidz_col_t *rc = &rr->rr_col[c];
1026                 rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
1027         }
1028
1029         /*
1030          * Map buffers for data columns and allocate/map buffers for skip
1031          * sectors.  There are three distinct cases for dRAID which are
1032          * required to support sequential rebuild.
1033          */
1034         if (zio->io_type == ZIO_TYPE_WRITE) {
1035                 vdev_draid_map_alloc_write(zio, abd_offset, rr);
1036         } else if ((rr->rr_nempty > 0) &&
1037             (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1038                 vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
1039         } else {
1040                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1041                 vdev_draid_map_alloc_read(zio, abd_offset, rr);
1042         }
1043
1044         return (io_size);
1045 }
1046
1047 /*
1048  * Allocate the raidz mapping to be applied to the dRAID I/O.  The parity
1049  * calculations for dRAID are identical to raidz however there are a few
1050  * differences in the layout.
1051  *
1052  * - dRAID always allocates a full stripe width. Any extra sectors due
1053  *   this padding are zero filled and written to disk. They will be read
1054  *   back during a scrub or repair operation since they are included in
1055  *   the parity calculation. This property enables sequential resilvering.
1056  *
1057  * - When the block at the logical offset spans redundancy groups then two
1058  *   rows are allocated in the raidz_map_t. One row resides at the end of
1059  *   the first group and the other at the start of the following group.
1060  */
1061 static raidz_map_t *
1062 vdev_draid_map_alloc(zio_t *zio)
1063 {
1064         raidz_row_t *rr[2];
1065         uint64_t abd_offset = 0;
1066         uint64_t abd_size = zio->io_size;
1067         uint64_t io_offset = zio->io_offset;
1068         uint64_t size;
1069         int nrows = 1;
1070
1071         size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
1072             abd_offset, abd_size);
1073         if (size < abd_size) {
1074                 vdev_t *vd = zio->io_vd;
1075
1076                 io_offset += vdev_draid_asize(vd, size);
1077                 abd_offset += size;
1078                 abd_size -= size;
1079                 nrows++;
1080
1081                 ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
1082                     vd, vdev_draid_offset_to_group(vd, io_offset)));
1083                 ASSERT3U(abd_offset, <, zio->io_size);
1084                 ASSERT3U(abd_size, !=, 0);
1085
1086                 size = vdev_draid_map_alloc_row(zio, &rr[1],
1087                     io_offset, abd_offset, abd_size);
1088                 VERIFY3U(size, ==, abd_size);
1089         }
1090
1091         raidz_map_t *rm;
1092         rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
1093         rm->rm_ops = vdev_raidz_math_get_ops();
1094         rm->rm_nrows = nrows;
1095         rm->rm_row[0] = rr[0];
1096         if (nrows == 2)
1097                 rm->rm_row[1] = rr[1];
1098
1099         return (rm);
1100 }
1101
1102 /*
1103  * Given an offset into a dRAID return the next group width aligned offset
1104  * which can be used to start an allocation.
1105  */
1106 static uint64_t
1107 vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
1108 {
1109         vdev_draid_config_t *vdc = vd->vdev_tsd;
1110
1111         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1112
1113         return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
1114 }
1115
1116 /*
1117  * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
1118  * rounded down to the last full slice.  So each child must provide at least
1119  * 1 / (children - nspares) of its asize.
1120  */
1121 static uint64_t
1122 vdev_draid_min_asize(vdev_t *vd)
1123 {
1124         vdev_draid_config_t *vdc = vd->vdev_tsd;
1125
1126         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1127
1128         return ((vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
1129 }
1130
1131 /*
1132  * When using dRAID the minimum allocation size is determined by the number
1133  * of data disks in the redundancy group.  Full stripes are always used.
1134  */
1135 static uint64_t
1136 vdev_draid_min_alloc(vdev_t *vd)
1137 {
1138         vdev_draid_config_t *vdc = vd->vdev_tsd;
1139
1140         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1141
1142         return (vdc->vdc_ndata << vd->vdev_ashift);
1143 }
1144
1145 /*
1146  * Returns true if the txg range does not exist on any leaf vdev.
1147  *
1148  * A dRAID spare does not fit into the DTL model. While it has child vdevs
1149  * there is no redundancy among them, and the effective child vdev is
1150  * determined by offset. Essentially we do a vdev_dtl_reassess() on the
1151  * fly by replacing a dRAID spare with the child vdev under the offset.
1152  * Note that it is a recursive process because the child vdev can be
1153  * another dRAID spare and so on.
1154  */
1155 boolean_t
1156 vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1157     uint64_t size)
1158 {
1159         if (vd->vdev_ops == &vdev_spare_ops ||
1160             vd->vdev_ops == &vdev_replacing_ops) {
1161                 /*
1162                  * Check all of the readable children, if any child
1163                  * contains the txg range the data it is not missing.
1164                  */
1165                 for (int c = 0; c < vd->vdev_children; c++) {
1166                         vdev_t *cvd = vd->vdev_child[c];
1167
1168                         if (!vdev_readable(cvd))
1169                                 continue;
1170
1171                         if (!vdev_draid_missing(cvd, physical_offset,
1172                             txg, size))
1173                                 return (B_FALSE);
1174                 }
1175
1176                 return (B_TRUE);
1177         }
1178
1179         if (vd->vdev_ops == &vdev_draid_spare_ops) {
1180                 /*
1181                  * When sequentially resilvering we don't have a proper
1182                  * txg range so instead we must presume all txgs are
1183                  * missing on this vdev until the resilver completes.
1184                  */
1185                 if (vd->vdev_rebuild_txg != 0)
1186                         return (B_TRUE);
1187
1188                 /*
1189                  * DTL_MISSING is set for all prior txgs when a resilver
1190                  * is started in spa_vdev_attach().
1191                  */
1192                 if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1193                         return (B_TRUE);
1194
1195                 /*
1196                  * Consult the DTL on the relevant vdev. Either a vdev
1197                  * leaf or spare/replace mirror child may be returned so
1198                  * we must recursively call vdev_draid_missing_impl().
1199                  */
1200                 vd = vdev_draid_spare_get_child(vd, physical_offset);
1201                 if (vd == NULL)
1202                         return (B_TRUE);
1203
1204                 return (vdev_draid_missing(vd, physical_offset,
1205                     txg, size));
1206         }
1207
1208         return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1209 }
1210
1211 /*
1212  * Returns true if the txg is only partially replicated on the leaf vdevs.
1213  */
1214 static boolean_t
1215 vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1216     uint64_t size)
1217 {
1218         if (vd->vdev_ops == &vdev_spare_ops ||
1219             vd->vdev_ops == &vdev_replacing_ops) {
1220                 /*
1221                  * Check all of the readable children, if any child is
1222                  * missing the txg range then it is partially replicated.
1223                  */
1224                 for (int c = 0; c < vd->vdev_children; c++) {
1225                         vdev_t *cvd = vd->vdev_child[c];
1226
1227                         if (!vdev_readable(cvd))
1228                                 continue;
1229
1230                         if (vdev_draid_partial(cvd, physical_offset, txg, size))
1231                                 return (B_TRUE);
1232                 }
1233
1234                 return (B_FALSE);
1235         }
1236
1237         if (vd->vdev_ops == &vdev_draid_spare_ops) {
1238                 /*
1239                  * When sequentially resilvering we don't have a proper
1240                  * txg range so instead we must presume all txgs are
1241                  * missing on this vdev until the resilver completes.
1242                  */
1243                 if (vd->vdev_rebuild_txg != 0)
1244                         return (B_TRUE);
1245
1246                 /*
1247                  * DTL_MISSING is set for all prior txgs when a resilver
1248                  * is started in spa_vdev_attach().
1249                  */
1250                 if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1251                         return (B_TRUE);
1252
1253                 /*
1254                  * Consult the DTL on the relevant vdev. Either a vdev
1255                  * leaf or spare/replace mirror child may be returned so
1256                  * we must recursively call vdev_draid_missing_impl().
1257                  */
1258                 vd = vdev_draid_spare_get_child(vd, physical_offset);
1259                 if (vd == NULL)
1260                         return (B_TRUE);
1261
1262                 return (vdev_draid_partial(vd, physical_offset, txg, size));
1263         }
1264
1265         return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1266 }
1267
1268 /*
1269  * Determine if the vdev is readable at the given offset.
1270  */
1271 boolean_t
1272 vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
1273 {
1274         if (vd->vdev_ops == &vdev_draid_spare_ops) {
1275                 vd = vdev_draid_spare_get_child(vd, physical_offset);
1276                 if (vd == NULL)
1277                         return (B_FALSE);
1278         }
1279
1280         if (vd->vdev_ops == &vdev_spare_ops ||
1281             vd->vdev_ops == &vdev_replacing_ops) {
1282
1283                 for (int c = 0; c < vd->vdev_children; c++) {
1284                         vdev_t *cvd = vd->vdev_child[c];
1285
1286                         if (!vdev_readable(cvd))
1287                                 continue;
1288
1289                         if (vdev_draid_readable(cvd, physical_offset))
1290                                 return (B_TRUE);
1291                 }
1292
1293                 return (B_FALSE);
1294         }
1295
1296         return (vdev_readable(vd));
1297 }
1298
1299 /*
1300  * Returns the first distributed spare found under the provided vdev tree.
1301  */
1302 static vdev_t *
1303 vdev_draid_find_spare(vdev_t *vd)
1304 {
1305         if (vd->vdev_ops == &vdev_draid_spare_ops)
1306                 return (vd);
1307
1308         for (int c = 0; c < vd->vdev_children; c++) {
1309                 vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
1310                 if (svd != NULL)
1311                         return (svd);
1312         }
1313
1314         return (NULL);
1315 }
1316
1317 /*
1318  * Returns B_TRUE if the passed in vdev is currently "faulted".
1319  * Faulted, in this context, means that the vdev represents a
1320  * replacing or sparing vdev tree.
1321  */
1322 static boolean_t
1323 vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
1324 {
1325         if (vd->vdev_ops == &vdev_draid_spare_ops) {
1326                 vd = vdev_draid_spare_get_child(vd, physical_offset);
1327                 if (vd == NULL)
1328                         return (B_FALSE);
1329
1330                 /*
1331                  * After resolving the distributed spare to a leaf vdev
1332                  * check the parent to determine if it's "faulted".
1333                  */
1334                 vd = vd->vdev_parent;
1335         }
1336
1337         return (vd->vdev_ops == &vdev_replacing_ops ||
1338             vd->vdev_ops == &vdev_spare_ops);
1339 }
1340
1341 /*
1342  * Determine if the dRAID block at the logical offset is degraded.
1343  * Used by sequential resilver.
1344  */
1345 static boolean_t
1346 vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
1347 {
1348         vdev_draid_config_t *vdc = vd->vdev_tsd;
1349
1350         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1351         ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1352
1353         uint64_t groupstart, perm;
1354         uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1355             offset, &perm, &groupstart);
1356
1357         uint8_t *base;
1358         uint64_t iter;
1359         vdev_draid_get_perm(vdc, perm, &base, &iter);
1360
1361         for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1362                 uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1363                 uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1364                 vdev_t *cvd = vd->vdev_child[cid];
1365
1366                 /* Group contains a faulted vdev. */
1367                 if (vdev_draid_faulted(cvd, physical_offset))
1368                         return (B_TRUE);
1369
1370                 /*
1371                  * Always check groups with active distributed spares
1372                  * because any vdev failure in the pool will affect them.
1373                  */
1374                 if (vdev_draid_find_spare(cvd) != NULL)
1375                         return (B_TRUE);
1376         }
1377
1378         return (B_FALSE);
1379 }
1380
1381 /*
1382  * Determine if the txg is missing.  Used by healing resilver.
1383  */
1384 static boolean_t
1385 vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
1386     uint64_t size)
1387 {
1388         vdev_draid_config_t *vdc = vd->vdev_tsd;
1389
1390         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1391         ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1392
1393         uint64_t groupstart, perm;
1394         uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1395             offset, &perm, &groupstart);
1396
1397         uint8_t *base;
1398         uint64_t iter;
1399         vdev_draid_get_perm(vdc, perm, &base, &iter);
1400
1401         for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1402                 uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1403                 uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1404                 vdev_t *cvd = vd->vdev_child[cid];
1405
1406                 /* Transaction group is known to be partially replicated. */
1407                 if (vdev_draid_partial(cvd, physical_offset, txg, size))
1408                         return (B_TRUE);
1409
1410                 /*
1411                  * Always check groups with active distributed spares
1412                  * because any vdev failure in the pool will affect them.
1413                  */
1414                 if (vdev_draid_find_spare(cvd) != NULL)
1415                         return (B_TRUE);
1416         }
1417
1418         return (B_FALSE);
1419 }
1420
1421 /*
1422  * Find the smallest child asize and largest sector size to calculate the
1423  * available capacity.  Distributed spares are ignored since their capacity
1424  * is also based of the minimum child size in the top-level dRAID.
1425  */
1426 static void
1427 vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
1428     uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
1429 {
1430         uint64_t logical_ashift = 0, physical_ashift = 0;
1431         uint64_t asize = 0, max_asize = 0;
1432
1433         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1434
1435         for (int c = 0; c < vd->vdev_children; c++) {
1436                 vdev_t *cvd = vd->vdev_child[c];
1437
1438                 if (cvd->vdev_ops == &vdev_draid_spare_ops)
1439                         continue;
1440
1441                 asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
1442                 max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1443                 logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
1444                 physical_ashift = MAX(physical_ashift,
1445                     cvd->vdev_physical_ashift);
1446         }
1447
1448         *asizep = asize;
1449         *max_asizep = max_asize;
1450         *logical_ashiftp = logical_ashift;
1451         *physical_ashiftp = physical_ashift;
1452 }
1453
1454 /*
1455  * Open spare vdevs.
1456  */
1457 static boolean_t
1458 vdev_draid_open_spares(vdev_t *vd)
1459 {
1460         return (vd->vdev_ops == &vdev_draid_spare_ops ||
1461             vd->vdev_ops == &vdev_replacing_ops ||
1462             vd->vdev_ops == &vdev_spare_ops);
1463 }
1464
1465 /*
1466  * Open all children, excluding spares.
1467  */
1468 static boolean_t
1469 vdev_draid_open_children(vdev_t *vd)
1470 {
1471         return (!vdev_draid_open_spares(vd));
1472 }
1473
1474 /*
1475  * Open a top-level dRAID vdev.
1476  */
1477 static int
1478 vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1479     uint64_t *logical_ashift, uint64_t *physical_ashift)
1480 {
1481         vdev_draid_config_t *vdc =  vd->vdev_tsd;
1482         uint64_t nparity = vdc->vdc_nparity;
1483         int open_errors = 0;
1484
1485         if (nparity > VDEV_DRAID_MAXPARITY ||
1486             vd->vdev_children < nparity + 1) {
1487                 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1488                 return (SET_ERROR(EINVAL));
1489         }
1490
1491         /*
1492          * First open the normal children then the distributed spares.  This
1493          * ordering is important to ensure the distributed spares calculate
1494          * the correct psize in the event that the dRAID vdevs were expanded.
1495          */
1496         vdev_open_children_subset(vd, vdev_draid_open_children);
1497         vdev_open_children_subset(vd, vdev_draid_open_spares);
1498
1499         /* Verify enough of the children are available to continue. */
1500         for (int c = 0; c < vd->vdev_children; c++) {
1501                 if (vd->vdev_child[c]->vdev_open_error != 0) {
1502                         if ((++open_errors) > nparity) {
1503                                 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1504                                 return (SET_ERROR(ENXIO));
1505                         }
1506                 }
1507         }
1508
1509         /*
1510          * Allocatable capacity is the sum of the space on all children less
1511          * the number of distributed spares rounded down to last full row
1512          * and then to the last full group. An additional 32MB of scratch
1513          * space is reserved at the end of each child for use by the dRAID
1514          * expansion feature.
1515          */
1516         uint64_t child_asize, child_max_asize;
1517         vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
1518             logical_ashift, physical_ashift);
1519
1520         /*
1521          * Should be unreachable since the minimum child size is 64MB, but
1522          * we want to make sure an underflow absolutely cannot occur here.
1523          */
1524         if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
1525             child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
1526                 return (SET_ERROR(ENXIO));
1527         }
1528
1529         child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
1530             VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1531         child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
1532             VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1533
1534         *asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1535             vdc->vdc_groupsz);
1536         *max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1537             vdc->vdc_groupsz);
1538
1539         return (0);
1540 }
1541
1542 /*
1543  * Close a top-level dRAID vdev.
1544  */
1545 static void
1546 vdev_draid_close(vdev_t *vd)
1547 {
1548         for (int c = 0; c < vd->vdev_children; c++) {
1549                 if (vd->vdev_child[c] != NULL)
1550                         vdev_close(vd->vdev_child[c]);
1551         }
1552 }
1553
1554 /*
1555  * Return the maximum asize for a rebuild zio in the provided range
1556  * given the following constraints.  A dRAID chunks may not:
1557  *
1558  * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
1559  * - Span dRAID redundancy groups.
1560  */
1561 static uint64_t
1562 vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
1563     uint64_t max_segment)
1564 {
1565         vdev_draid_config_t *vdc = vd->vdev_tsd;
1566
1567         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1568
1569         uint64_t ashift = vd->vdev_ashift;
1570         uint64_t ndata = vdc->vdc_ndata;
1571         uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
1572             SPA_MAXBLOCKSIZE);
1573
1574         ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
1575         ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);
1576
1577         /* Chunks must evenly span all data columns in the group. */
1578         psize = (((psize >> ashift) / ndata) * ndata) << ashift;
1579         uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
1580
1581         /* Reduce the chunk size to the group space remaining. */
1582         uint64_t group = vdev_draid_offset_to_group(vd, start);
1583         uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
1584         chunk_size = MIN(chunk_size, left);
1585
1586         ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
1587         ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
1588             vdev_draid_offset_to_group(vd, start + chunk_size - 1));
1589
1590         return (chunk_size);
1591 }
1592
1593 /*
1594  * Align the start of the metaslab to the group width and slightly reduce
1595  * its size to a multiple of the group width.  Since full stripe writes are
1596  * required by dRAID this space is unallocable.  Furthermore, aligning the
1597  * metaslab start is important for vdev initialize and TRIM which both operate
1598  * on metaslab boundaries which vdev_xlate() expects to be aligned.
1599  */
1600 static void
1601 vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
1602 {
1603         vdev_draid_config_t *vdc = vd->vdev_tsd;
1604
1605         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1606
1607         uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
1608         uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
1609         uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
1610
1611         *ms_start = astart;
1612         *ms_size = asize;
1613
1614         ASSERT0(*ms_start % sz);
1615         ASSERT0(*ms_size % sz);
1616 }
1617
1618 /*
1619  * Add virtual dRAID spares to the list of valid spares. In order to accomplish
1620  * this the existing array must be freed and reallocated with the additional
1621  * entries.
1622  */
1623 int
1624 vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
1625     uint64_t next_vdev_id)
1626 {
1627         uint64_t draid_nspares = 0;
1628         uint64_t ndraid = 0;
1629         int error;
1630
1631         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1632                 vdev_t *cvd = vd->vdev_child[i];
1633
1634                 if (cvd->vdev_ops == &vdev_draid_ops) {
1635                         vdev_draid_config_t *vdc = cvd->vdev_tsd;
1636                         draid_nspares += vdc->vdc_nspares;
1637                         ndraid++;
1638                 }
1639         }
1640
1641         if (draid_nspares == 0) {
1642                 *ndraidp = ndraid;
1643                 return (0);
1644         }
1645
1646         nvlist_t **old_spares, **new_spares;
1647         uint_t old_nspares;
1648         error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1649             &old_spares, &old_nspares);
1650         if (error)
1651                 old_nspares = 0;
1652
1653         /* Allocate memory and copy of the existing spares. */
1654         new_spares = kmem_alloc(sizeof (nvlist_t *) *
1655             (draid_nspares + old_nspares), KM_SLEEP);
1656         for (uint_t i = 0; i < old_nspares; i++)
1657                 new_spares[i] = fnvlist_dup(old_spares[i]);
1658
1659         /* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
1660         uint64_t n = old_nspares;
1661         for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
1662                 vdev_t *cvd = vd->vdev_child[vdev_id];
1663                 char path[64];
1664
1665                 if (cvd->vdev_ops != &vdev_draid_ops)
1666                         continue;
1667
1668                 vdev_draid_config_t *vdc = cvd->vdev_tsd;
1669                 uint64_t nspares = vdc->vdc_nspares;
1670                 uint64_t nparity = vdc->vdc_nparity;
1671
1672                 for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
1673                         bzero(path, sizeof (path));
1674                         (void) snprintf(path, sizeof (path) - 1,
1675                             "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
1676                             (u_longlong_t)nparity,
1677                             (u_longlong_t)next_vdev_id + vdev_id,
1678                             (u_longlong_t)spare_id);
1679
1680                         nvlist_t *spare = fnvlist_alloc();
1681                         fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
1682                         fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
1683                             VDEV_TYPE_DRAID_SPARE);
1684                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
1685                             cvd->vdev_guid);
1686                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
1687                             spare_id);
1688                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
1689                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
1690                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
1691                         fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
1692                             cvd->vdev_ashift);
1693
1694                         new_spares[n] = spare;
1695                         n++;
1696                 }
1697         }
1698
1699         if (n > 0) {
1700                 (void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
1701                 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1702                     new_spares, n);
1703         }
1704
1705         for (int i = 0; i < n; i++)
1706                 nvlist_free(new_spares[i]);
1707
1708         kmem_free(new_spares, sizeof (*new_spares) * n);
1709         *ndraidp = ndraid;
1710
1711         return (0);
1712 }
1713
1714 /*
1715  * Determine if any portion of the provided block resides on a child vdev
1716  * with a dirty DTL and therefore needs to be resilvered.
1717  */
1718 static boolean_t
1719 vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
1720     uint64_t phys_birth)
1721 {
1722         uint64_t offset = DVA_GET_OFFSET(dva);
1723         uint64_t asize = vdev_draid_asize(vd, psize);
1724
1725         if (phys_birth == TXG_UNKNOWN) {
1726                 /*
1727                  * Sequential resilver.  There is no meaningful phys_birth
1728                  * for this block, we can only determine if block resides
1729                  * in a degraded group in which case it must be resilvered.
1730                  */
1731                 ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
1732                     vdev_draid_offset_to_group(vd, offset + asize - 1));
1733
1734                 return (vdev_draid_group_degraded(vd, offset));
1735         } else {
1736                 /*
1737                  * Healing resilver.  TXGs not in DTL_PARTIAL are intact,
1738                  * as are blocks in non-degraded groups.
1739                  */
1740                 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
1741                         return (B_FALSE);
1742
1743                 if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
1744                         return (B_TRUE);
1745
1746                 /* The block may span groups in which case check both. */
1747                 if (vdev_draid_offset_to_group(vd, offset) !=
1748                     vdev_draid_offset_to_group(vd, offset + asize - 1)) {
1749                         if (vdev_draid_group_missing(vd,
1750                             offset + asize, phys_birth, 1))
1751                                 return (B_TRUE);
1752                 }
1753
1754                 return (B_FALSE);
1755         }
1756 }
1757
1758 static boolean_t
1759 vdev_draid_rebuilding(vdev_t *vd)
1760 {
1761         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
1762                 return (B_TRUE);
1763
1764         for (int i = 0; i < vd->vdev_children; i++) {
1765                 if (vdev_draid_rebuilding(vd->vdev_child[i])) {
1766                         return (B_TRUE);
1767                 }
1768         }
1769
1770         return (B_FALSE);
1771 }
1772
1773 static void
1774 vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
1775 {
1776 #ifdef ZFS_DEBUG
1777         range_seg64_t logical_rs, physical_rs, remain_rs;
1778         logical_rs.rs_start = rr->rr_offset;
1779         logical_rs.rs_end = logical_rs.rs_start +
1780             vdev_draid_asize(vd, rr->rr_size);
1781
1782         raidz_col_t *rc = &rr->rr_col[col];
1783         vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1784
1785         vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
1786         ASSERT(vdev_xlate_is_empty(&remain_rs));
1787         ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1788         ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1789         ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
1790 #endif
1791 }
1792
1793 /*
1794  * For write operations:
1795  * 1. Generate the parity data
1796  * 2. Create child zio write operations to each column's vdev, for both
1797  *    data and parity.  A gang ABD is allocated by vdev_draid_map_alloc()
1798  *    if a skip sector needs to be added to a column.
1799  */
1800 static void
1801 vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
1802 {
1803         vdev_t *vd = zio->io_vd;
1804         raidz_map_t *rm = zio->io_vsd;
1805
1806         vdev_raidz_generate_parity_row(rm, rr);
1807
1808         for (int c = 0; c < rr->rr_cols; c++) {
1809                 raidz_col_t *rc = &rr->rr_col[c];
1810
1811                 /*
1812                  * Empty columns are zero filled and included in the parity
1813                  * calculation and therefore must be written.
1814                  */
1815                 ASSERT3U(rc->rc_size, !=, 0);
1816
1817                 /* Verify physical to logical translation */
1818                 vdev_draid_io_verify(vd, rr, c);
1819
1820                 zio_nowait(zio_vdev_child_io(zio, NULL,
1821                     vd->vdev_child[rc->rc_devidx], rc->rc_offset,
1822                     rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
1823                     0, vdev_raidz_child_done, rc));
1824         }
1825 }
1826
1827 /*
1828  * For read operations:
1829  * 1. The vdev_draid_map_alloc() function will create a minimal raidz
1830  *    mapping for the read based on the zio->io_flags.  There are two
1831  *    possible mappings either 1) a normal read, or 2) a scrub/resilver.
1832  * 2. Create the zio read operations.  This will include all parity
1833  *    columns and skip sectors for a scrub/resilver.
1834  */
1835 static void
1836 vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
1837 {
1838         vdev_t *vd = zio->io_vd;
1839
1840         /* Sequential rebuild must do IO at redundancy group boundary. */
1841         IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
1842
1843         /*
1844          * Iterate over the columns in reverse order so that we hit the parity
1845          * last.  Any errors along the way will force us to read the parity.
1846          * For scrub/resilver IOs which verify skip sectors, a gang ABD will
1847          * have been allocated to store them and rc->rc_size is increased.
1848          */
1849         for (int c = rr->rr_cols - 1; c >= 0; c--) {
1850                 raidz_col_t *rc = &rr->rr_col[c];
1851                 vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1852
1853                 if (!vdev_draid_readable(cvd, rc->rc_offset)) {
1854                         if (c >= rr->rr_firstdatacol)
1855                                 rr->rr_missingdata++;
1856                         else
1857                                 rr->rr_missingparity++;
1858                         rc->rc_error = SET_ERROR(ENXIO);
1859                         rc->rc_tried = 1;
1860                         rc->rc_skipped = 1;
1861                         continue;
1862                 }
1863
1864                 if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
1865                         if (c >= rr->rr_firstdatacol)
1866                                 rr->rr_missingdata++;
1867                         else
1868                                 rr->rr_missingparity++;
1869                         rc->rc_error = SET_ERROR(ESTALE);
1870                         rc->rc_skipped = 1;
1871                         continue;
1872                 }
1873
1874                 /*
1875                  * Empty columns may be read during vdev_draid_io_done().
1876                  * Only skip them after the readable and missing checks
1877                  * verify they are available.
1878                  */
1879                 if (rc->rc_size == 0) {
1880                         rc->rc_skipped = 1;
1881                         continue;
1882                 }
1883
1884                 if (zio->io_flags & ZIO_FLAG_RESILVER) {
1885                         vdev_t *svd;
1886
1887                         /*
1888                          * If this child is a distributed spare then the
1889                          * offset might reside on the vdev being replaced.
1890                          * In which case this data must be written to the
1891                          * new device.  Failure to do so would result in
1892                          * checksum errors when the old device is detached
1893                          * and the pool is scrubbed.
1894                          */
1895                         if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
1896                                 svd = vdev_draid_spare_get_child(svd,
1897                                     rc->rc_offset);
1898                                 if (svd && (svd->vdev_ops == &vdev_spare_ops ||
1899                                     svd->vdev_ops == &vdev_replacing_ops)) {
1900                                         rc->rc_repair = 1;
1901                                 }
1902                         }
1903
1904                         /*
1905                          * Always issue a repair IO to this child when its
1906                          * a spare or replacing vdev with an active rebuild.
1907                          */
1908                         if ((cvd->vdev_ops == &vdev_spare_ops ||
1909                             cvd->vdev_ops == &vdev_replacing_ops) &&
1910                             vdev_draid_rebuilding(cvd)) {
1911                                 rc->rc_repair = 1;
1912                         }
1913                 }
1914         }
1915
1916         /*
1917          * Either a parity or data column is missing this means a repair
1918          * may be attempted by vdev_draid_io_done().  Expand the raid map
1919          * to read in empty columns which are needed along with the parity
1920          * during reconstruction.
1921          */
1922         if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
1923             rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
1924                 vdev_draid_map_alloc_empty(zio, rr);
1925         }
1926
1927         for (int c = rr->rr_cols - 1; c >= 0; c--) {
1928                 raidz_col_t *rc = &rr->rr_col[c];
1929                 vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1930
1931                 if (rc->rc_error || rc->rc_size == 0)
1932                         continue;
1933
1934                 if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
1935                     (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1936                         zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1937                             rc->rc_offset, rc->rc_abd, rc->rc_size,
1938                             zio->io_type, zio->io_priority, 0,
1939                             vdev_raidz_child_done, rc));
1940                 }
1941         }
1942 }
1943
1944 /*
1945  * Start an IO operation to a dRAID vdev.
1946  */
1947 static void
1948 vdev_draid_io_start(zio_t *zio)
1949 {
1950         vdev_t *vd __maybe_unused = zio->io_vd;
1951
1952         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1953         ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
1954
1955         raidz_map_t *rm = vdev_draid_map_alloc(zio);
1956         zio->io_vsd = rm;
1957         zio->io_vsd_ops = &vdev_raidz_vsd_ops;
1958
1959         if (zio->io_type == ZIO_TYPE_WRITE) {
1960                 for (int i = 0; i < rm->rm_nrows; i++) {
1961                         vdev_draid_io_start_write(zio, rm->rm_row[i]);
1962                 }
1963         } else {
1964                 ASSERT(zio->io_type == ZIO_TYPE_READ);
1965
1966                 for (int i = 0; i < rm->rm_nrows; i++) {
1967                         vdev_draid_io_start_read(zio, rm->rm_row[i]);
1968                 }
1969         }
1970
1971         zio_execute(zio);
1972 }
1973
1974 /*
1975  * Complete an IO operation on a dRAID vdev.  The raidz logic can be applied
1976  * to dRAID since the layout is fully described by the raidz_map_t.
1977  */
1978 static void
1979 vdev_draid_io_done(zio_t *zio)
1980 {
1981         vdev_raidz_io_done(zio);
1982 }
1983
1984 static void
1985 vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
1986 {
1987         vdev_draid_config_t *vdc = vd->vdev_tsd;
1988         ASSERT(vd->vdev_ops == &vdev_draid_ops);
1989
1990         if (faulted > vdc->vdc_nparity)
1991                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1992                     VDEV_AUX_NO_REPLICAS);
1993         else if (degraded + faulted != 0)
1994                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
1995         else
1996                 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
1997 }
1998
1999 static void
2000 vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
2001     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
2002 {
2003         vdev_t *raidvd = cvd->vdev_parent;
2004         ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
2005
2006         vdev_draid_config_t *vdc = raidvd->vdev_tsd;
2007         uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2008
2009         /* Make sure the offsets are block-aligned */
2010         ASSERT0(logical_rs->rs_start % (1 << ashift));
2011         ASSERT0(logical_rs->rs_end % (1 << ashift));
2012
2013         uint64_t logical_start = logical_rs->rs_start;
2014         uint64_t logical_end = logical_rs->rs_end;
2015
2016         /*
2017          * Unaligned ranges must be skipped. All metaslabs are correctly
2018          * aligned so this should not happen, but this case is handled in
2019          * case it's needed by future callers.
2020          */
2021         uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
2022         if (astart != logical_start) {
2023                 physical_rs->rs_start = logical_start;
2024                 physical_rs->rs_end = logical_start;
2025                 remain_rs->rs_start = MIN(astart, logical_end);
2026                 remain_rs->rs_end = logical_end;
2027                 return;
2028         }
2029
2030         /*
2031          * Unlike with mirrors and raidz a dRAID logical range can map
2032          * to multiple non-contiguous physical ranges. This is handled by
2033          * limiting the size of the logical range to a single group and
2034          * setting the remain argument such that it describes the remaining
2035          * unmapped logical range. This is stricter than absolutely
2036          * necessary but helps simplify the logic below.
2037          */
2038         uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
2039         uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
2040         if (logical_end > nextstart)
2041                 logical_end = nextstart;
2042
2043         /* Find the starting offset for each vdev in the group */
2044         uint64_t perm, groupstart;
2045         uint64_t start = vdev_draid_logical_to_physical(raidvd,
2046             logical_start, &perm, &groupstart);
2047         uint64_t end = start;
2048
2049         uint8_t *base;
2050         uint64_t iter, id;
2051         vdev_draid_get_perm(vdc, perm, &base, &iter);
2052
2053         /*
2054          * Check if the passed child falls within the group.  If it does
2055          * update the start and end to reflect the physical range.
2056          * Otherwise, leave them unmodified which will result in an empty
2057          * (zero-length) physical range being returned.
2058          */
2059         for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
2060                 uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
2061
2062                 if (c == 0 && i != 0) {
2063                         /* the group wrapped, increment the start */
2064                         start += VDEV_DRAID_ROWHEIGHT;
2065                         end = start;
2066                 }
2067
2068                 id = vdev_draid_permute_id(vdc, base, iter, c);
2069                 if (id == cvd->vdev_id) {
2070                         uint64_t b_size = (logical_end >> ashift) -
2071                             (logical_start >> ashift);
2072                         ASSERT3U(b_size, >, 0);
2073                         end = start + ((((b_size - 1) /
2074                             vdc->vdc_groupwidth) + 1) << ashift);
2075                         break;
2076                 }
2077         }
2078         physical_rs->rs_start = start;
2079         physical_rs->rs_end = end;
2080
2081         /*
2082          * Only top-level vdevs are allowed to set remain_rs because
2083          * when .vdev_op_xlate() is called for their children the full
2084          * logical range is not provided by vdev_xlate().
2085          */
2086         remain_rs->rs_start = logical_end;
2087         remain_rs->rs_end = logical_rs->rs_end;
2088
2089         ASSERT3U(physical_rs->rs_start, <=, logical_start);
2090         ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
2091             logical_end - logical_start);
2092 }
2093
2094 /*
2095  * Add dRAID specific fields to the config nvlist.
2096  */
2097 static void
2098 vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
2099 {
2100         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2101         vdev_draid_config_t *vdc = vd->vdev_tsd;
2102
2103         fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
2104         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
2105         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
2106         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
2107 }
2108
2109 /*
2110  * Initialize private dRAID specific fields from the nvlist.
2111  */
2112 static int
2113 vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
2114 {
2115         uint64_t ndata, nparity, nspares, ngroups;
2116         int error;
2117
2118         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
2119                 return (SET_ERROR(EINVAL));
2120
2121         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
2122             nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
2123                 return (SET_ERROR(EINVAL));
2124         }
2125
2126         uint_t children;
2127         nvlist_t **child;
2128         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2129             &child, &children) != 0 || children == 0 ||
2130             children > VDEV_DRAID_MAX_CHILDREN) {
2131                 return (SET_ERROR(EINVAL));
2132         }
2133
2134         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
2135             nspares > 100 || nspares > (children - (ndata + nparity))) {
2136                 return (SET_ERROR(EINVAL));
2137         }
2138
2139         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
2140             ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
2141                 return (SET_ERROR(EINVAL));
2142         }
2143
2144         /*
2145          * Validate the minimum number of children exist per group for the
2146          * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
2147          */
2148         if (children < (ndata + nparity + nspares))
2149                 return (SET_ERROR(EINVAL));
2150
2151         /*
2152          * Create the dRAID configuration using the pool nvlist configuration
2153          * and the fixed mapping for the correct number of children.
2154          */
2155         vdev_draid_config_t *vdc;
2156         const draid_map_t *map;
2157
2158         error = vdev_draid_lookup_map(children, &map);
2159         if (error)
2160                 return (SET_ERROR(EINVAL));
2161
2162         vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
2163         vdc->vdc_ndata = ndata;
2164         vdc->vdc_nparity = nparity;
2165         vdc->vdc_nspares = nspares;
2166         vdc->vdc_children = children;
2167         vdc->vdc_ngroups = ngroups;
2168         vdc->vdc_nperms = map->dm_nperms;
2169
2170         error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
2171         if (error) {
2172                 kmem_free(vdc, sizeof (*vdc));
2173                 return (SET_ERROR(EINVAL));
2174         }
2175
2176         /*
2177          * Derived constants.
2178          */
2179         vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
2180         vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
2181         vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
2182         vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
2183             vdc->vdc_ndisks;
2184
2185         ASSERT3U(vdc->vdc_groupwidth, >=, 2);
2186         ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
2187         ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
2188         ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
2189         ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
2190         ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
2191             vdc->vdc_ndisks, ==, 0);
2192
2193         *tsd = vdc;
2194
2195         return (0);
2196 }
2197
2198 static void
2199 vdev_draid_fini(vdev_t *vd)
2200 {
2201         vdev_draid_config_t *vdc = vd->vdev_tsd;
2202
2203         vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
2204             vdc->vdc_children * vdc->vdc_nperms);
2205         kmem_free(vdc, sizeof (*vdc));
2206 }
2207
2208 static uint64_t
2209 vdev_draid_nparity(vdev_t *vd)
2210 {
2211         vdev_draid_config_t *vdc = vd->vdev_tsd;
2212
2213         return (vdc->vdc_nparity);
2214 }
2215
2216 static uint64_t
2217 vdev_draid_ndisks(vdev_t *vd)
2218 {
2219         vdev_draid_config_t *vdc = vd->vdev_tsd;
2220
2221         return (vdc->vdc_ndisks);
2222 }
2223
2224 vdev_ops_t vdev_draid_ops = {
2225         .vdev_op_init = vdev_draid_init,
2226         .vdev_op_fini = vdev_draid_fini,
2227         .vdev_op_open = vdev_draid_open,
2228         .vdev_op_close = vdev_draid_close,
2229         .vdev_op_asize = vdev_draid_asize,
2230         .vdev_op_min_asize = vdev_draid_min_asize,
2231         .vdev_op_min_alloc = vdev_draid_min_alloc,
2232         .vdev_op_io_start = vdev_draid_io_start,
2233         .vdev_op_io_done = vdev_draid_io_done,
2234         .vdev_op_state_change = vdev_draid_state_change,
2235         .vdev_op_need_resilver = vdev_draid_need_resilver,
2236         .vdev_op_hold = NULL,
2237         .vdev_op_rele = NULL,
2238         .vdev_op_remap = NULL,
2239         .vdev_op_xlate = vdev_draid_xlate,
2240         .vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
2241         .vdev_op_metaslab_init = vdev_draid_metaslab_init,
2242         .vdev_op_config_generate = vdev_draid_config_generate,
2243         .vdev_op_nparity = vdev_draid_nparity,
2244         .vdev_op_ndisks = vdev_draid_ndisks,
2245         .vdev_op_type = VDEV_TYPE_DRAID,
2246         .vdev_op_leaf = B_FALSE,
2247 };
2248
2249
2250 /*
2251  * A dRAID distributed spare is a virtual leaf vdev which is included in the
2252  * parent dRAID configuration.  The last N columns of the dRAID permutation
2253  * table are used to determine on which dRAID children a specific offset
2254  * should be written.  These spare leaf vdevs can only be used to replace
2255  * faulted children in the same dRAID configuration.
2256  */
2257
2258 /*
2259  * Distributed spare state.  All fields are set when the distributed spare is
2260  * first opened and are immutable.
2261  */
2262 typedef struct {
2263         vdev_t *vds_draid_vdev;         /* top-level parent dRAID vdev */
2264         uint64_t vds_top_guid;          /* top-level parent dRAID guid */
2265         uint64_t vds_spare_id;          /* spare id (0 - vdc->vdc_nspares-1) */
2266 } vdev_draid_spare_t;
2267
2268 /*
2269  * Returns the parent dRAID vdev to which the distributed spare belongs.
2270  * This may be safely called even when the vdev is not open.
2271  */
2272 vdev_t *
2273 vdev_draid_spare_get_parent(vdev_t *vd)
2274 {
2275         vdev_draid_spare_t *vds = vd->vdev_tsd;
2276
2277         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2278
2279         if (vds->vds_draid_vdev != NULL)
2280                 return (vds->vds_draid_vdev);
2281
2282         return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
2283             vds->vds_top_guid));
2284 }
2285
2286 /*
2287  * A dRAID space is active when it's the child of a vdev using the
2288  * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
2289  */
2290 static boolean_t
2291 vdev_draid_spare_is_active(vdev_t *vd)
2292 {
2293         vdev_t *pvd = vd->vdev_parent;
2294
2295         if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
2296             pvd->vdev_ops == &vdev_replacing_ops ||
2297             pvd->vdev_ops == &vdev_draid_ops)) {
2298                 return (B_TRUE);
2299         } else {
2300                 return (B_FALSE);
2301         }
2302 }
2303
2304 /*
2305  * Given a dRAID distribute spare vdev, returns the physical child vdev
2306  * on which the provided offset resides.  This may involve recursing through
2307  * multiple layers of distributed spares.  Note that offset is relative to
2308  * this vdev.
2309  */
2310 vdev_t *
2311 vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
2312 {
2313         vdev_draid_spare_t *vds = vd->vdev_tsd;
2314
2315         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2316
2317         /* The vdev is closed */
2318         if (vds->vds_draid_vdev == NULL)
2319                 return (NULL);
2320
2321         vdev_t *tvd = vds->vds_draid_vdev;
2322         vdev_draid_config_t *vdc = tvd->vdev_tsd;
2323
2324         ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
2325         ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
2326
2327         uint8_t *base;
2328         uint64_t iter;
2329         uint64_t perm = physical_offset / vdc->vdc_devslicesz;
2330
2331         vdev_draid_get_perm(vdc, perm, &base, &iter);
2332
2333         uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
2334             (tvd->vdev_children - 1) - vds->vds_spare_id);
2335         vdev_t *cvd = tvd->vdev_child[cid];
2336
2337         if (cvd->vdev_ops == &vdev_draid_spare_ops)
2338                 return (vdev_draid_spare_get_child(cvd, physical_offset));
2339
2340         return (cvd);
2341 }
2342
2343 /* ARGSUSED */
2344 static void
2345 vdev_draid_spare_close(vdev_t *vd)
2346 {
2347         vdev_draid_spare_t *vds = vd->vdev_tsd;
2348         vds->vds_draid_vdev = NULL;
2349 }
2350
2351 /*
2352  * Opening a dRAID spare device is done by looking up the associated dRAID
2353  * top-level vdev guid from the spare configuration.
2354  */
2355 static int
2356 vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
2357     uint64_t *logical_ashift, uint64_t *physical_ashift)
2358 {
2359         vdev_draid_spare_t *vds = vd->vdev_tsd;
2360         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2361         uint64_t asize, max_asize;
2362
2363         vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
2364         if (tvd == NULL) {
2365                 /*
2366                  * When spa_vdev_add() is labeling new spares the
2367                  * associated dRAID is not attached to the root vdev
2368                  * nor does this spare have a parent.  Simulate a valid
2369                  * device in order to allow the label to be initialized
2370                  * and the distributed spare added to the configuration.
2371                  */
2372                 if (vd->vdev_parent == NULL) {
2373                         *psize = *max_psize = SPA_MINDEVSIZE;
2374                         *logical_ashift = *physical_ashift = ASHIFT_MIN;
2375                         return (0);
2376                 }
2377
2378                 return (SET_ERROR(EINVAL));
2379         }
2380
2381         vdev_draid_config_t *vdc = tvd->vdev_tsd;
2382         if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
2383                 return (SET_ERROR(EINVAL));
2384
2385         if (vds->vds_spare_id >= vdc->vdc_nspares)
2386                 return (SET_ERROR(EINVAL));
2387
2388         /*
2389          * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
2390          * because the caller may be vdev_draid_open() in which case the
2391          * values are stale as they haven't yet been updated by vdev_open().
2392          * To avoid this always recalculate the dRAID asize and max_asize.
2393          */
2394         vdev_draid_calculate_asize(tvd, &asize, &max_asize,
2395             logical_ashift, physical_ashift);
2396
2397         *psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2398         *max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2399
2400         vds->vds_draid_vdev = tvd;
2401
2402         return (0);
2403 }
2404
2405 /*
2406  * Completed distributed spare IO.  Store the result in the parent zio
2407  * as if it had performed the operation itself.  Only the first error is
2408  * preserved if there are multiple errors.
2409  */
2410 static void
2411 vdev_draid_spare_child_done(zio_t *zio)
2412 {
2413         zio_t *pio = zio->io_private;
2414
2415         /*
2416          * IOs are issued to non-writable vdevs in order to keep their
2417          * DTLs accurate.  However, we don't want to propagate the
2418          * error in to the distributed spare's DTL.  When resilvering
2419          * vdev_draid_need_resilver() will consult the relevant DTL
2420          * to determine if the data is missing and must be repaired.
2421          */
2422         if (!vdev_writeable(zio->io_vd))
2423                 return;
2424
2425         if (pio->io_error == 0)
2426                 pio->io_error = zio->io_error;
2427 }
2428
2429 /*
2430  * Returns a valid label nvlist for the distributed spare vdev.  This is
2431  * used to bypass the IO pipeline to avoid the complexity of constructing
2432  * a complete label with valid checksum to return when read.
2433  */
2434 nvlist_t *
2435 vdev_draid_read_config_spare(vdev_t *vd)
2436 {
2437         spa_t *spa = vd->vdev_spa;
2438         spa_aux_vdev_t *sav = &spa->spa_spares;
2439         uint64_t guid = vd->vdev_guid;
2440
2441         nvlist_t *nv = fnvlist_alloc();
2442         fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
2443         fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
2444         fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
2445         fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
2446         fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
2447         fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
2448         fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
2449         fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
2450             vdev_draid_spare_is_active(vd) ?
2451             POOL_STATE_ACTIVE : POOL_STATE_SPARE);
2452
2453         /* Set the vdev guid based on the vdev list in sav_count. */
2454         for (int i = 0; i < sav->sav_count; i++) {
2455                 if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
2456                     strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
2457                         guid = sav->sav_vdevs[i]->vdev_guid;
2458                         break;
2459                 }
2460         }
2461
2462         fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
2463
2464         return (nv);
2465 }
2466
2467 /*
2468  * Handle any ioctl requested of the distributed spare.  Only flushes
2469  * are supported in which case all children must be flushed.
2470  */
2471 static int
2472 vdev_draid_spare_ioctl(zio_t *zio)
2473 {
2474         vdev_t *vd = zio->io_vd;
2475         int error = 0;
2476
2477         if (zio->io_cmd == DKIOCFLUSHWRITECACHE) {
2478                 for (int c = 0; c < vd->vdev_children; c++) {
2479                         zio_nowait(zio_vdev_child_io(zio, NULL,
2480                             vd->vdev_child[c], zio->io_offset, zio->io_abd,
2481                             zio->io_size, zio->io_type, zio->io_priority, 0,
2482                             vdev_draid_spare_child_done, zio));
2483                 }
2484         } else {
2485                 error = SET_ERROR(ENOTSUP);
2486         }
2487
2488         return (error);
2489 }
2490
2491 /*
2492  * Initiate an IO to the distributed spare.  For normal IOs this entails using
2493  * the zio->io_offset and permutation table to calculate which child dRAID vdev
2494  * is responsible for the data.  Then passing along the zio to that child to
2495  * perform the actual IO.  The label ranges are not stored on disk and require
2496  * some special handling which is described below.
2497  */
2498 static void
2499 vdev_draid_spare_io_start(zio_t *zio)
2500 {
2501         vdev_t *cvd = NULL, *vd = zio->io_vd;
2502         vdev_draid_spare_t *vds = vd->vdev_tsd;
2503         uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
2504
2505         /*
2506          * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
2507          * Nothing to be done here but return failure.
2508          */
2509         if (vds == NULL) {
2510                 zio->io_error = ENXIO;
2511                 zio_interrupt(zio);
2512                 return;
2513         }
2514
2515         switch (zio->io_type) {
2516         case ZIO_TYPE_IOCTL:
2517                 zio->io_error = vdev_draid_spare_ioctl(zio);
2518                 break;
2519
2520         case ZIO_TYPE_WRITE:
2521                 if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2522                         /*
2523                          * Accept probe IOs and config writers to simulate the
2524                          * existence of an on disk label.  vdev_label_sync(),
2525                          * vdev_uberblock_sync() and vdev_copy_uberblocks()
2526                          * skip the distributed spares.  This only leaves
2527                          * vdev_label_init() which is allowed to succeed to
2528                          * avoid adding special cases the function.
2529                          */
2530                         if (zio->io_flags & ZIO_FLAG_PROBE ||
2531                             zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
2532                                 zio->io_error = 0;
2533                         } else {
2534                                 zio->io_error = SET_ERROR(EIO);
2535                         }
2536                 } else {
2537                         cvd = vdev_draid_spare_get_child(vd, offset);
2538
2539                         if (cvd == NULL) {
2540                                 zio->io_error = SET_ERROR(ENXIO);
2541                         } else {
2542                                 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2543                                     offset, zio->io_abd, zio->io_size,
2544                                     zio->io_type, zio->io_priority, 0,
2545                                     vdev_draid_spare_child_done, zio));
2546                         }
2547                 }
2548                 break;
2549
2550         case ZIO_TYPE_READ:
2551                 if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2552                         /*
2553                          * Accept probe IOs to simulate the existence of a
2554                          * label.  vdev_label_read_config() bypasses the
2555                          * pipeline to read the label configuration and
2556                          * vdev_uberblock_load() skips distributed spares
2557                          * when attempting to locate the best uberblock.
2558                          */
2559                         if (zio->io_flags & ZIO_FLAG_PROBE) {
2560                                 zio->io_error = 0;
2561                         } else {
2562                                 zio->io_error = SET_ERROR(EIO);
2563                         }
2564                 } else {
2565                         cvd = vdev_draid_spare_get_child(vd, offset);
2566
2567                         if (cvd == NULL || !vdev_readable(cvd)) {
2568                                 zio->io_error = SET_ERROR(ENXIO);
2569                         } else {
2570                                 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2571                                     offset, zio->io_abd, zio->io_size,
2572                                     zio->io_type, zio->io_priority, 0,
2573                                     vdev_draid_spare_child_done, zio));
2574                         }
2575                 }
2576                 break;
2577
2578         case ZIO_TYPE_TRIM:
2579                 /* The vdev label ranges are never trimmed */
2580                 ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
2581
2582                 cvd = vdev_draid_spare_get_child(vd, offset);
2583
2584                 if (cvd == NULL || !cvd->vdev_has_trim) {
2585                         zio->io_error = SET_ERROR(ENXIO);
2586                 } else {
2587                         zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2588                             offset, zio->io_abd, zio->io_size,
2589                             zio->io_type, zio->io_priority, 0,
2590                             vdev_draid_spare_child_done, zio));
2591                 }
2592                 break;
2593
2594         default:
2595                 zio->io_error = SET_ERROR(ENOTSUP);
2596                 break;
2597         }
2598
2599         zio_execute(zio);
2600 }
2601
2602 /* ARGSUSED */
2603 static void
2604 vdev_draid_spare_io_done(zio_t *zio)
2605 {
2606 }
2607
2608 /*
2609  * Lookup the full spare config in spa->spa_spares.sav_config and
2610  * return the top_guid and spare_id for the named spare.
2611  */
2612 static int
2613 vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
2614     uint64_t *spare_idp)
2615 {
2616         nvlist_t **spares;
2617         uint_t nspares;
2618         int error;
2619
2620         if ((spa->spa_spares.sav_config == NULL) ||
2621             (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2622             ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
2623                 return (SET_ERROR(ENOENT));
2624         }
2625
2626         char *spare_name;
2627         error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
2628         if (error != 0)
2629                 return (SET_ERROR(EINVAL));
2630
2631         for (int i = 0; i < nspares; i++) {
2632                 nvlist_t *spare = spares[i];
2633                 uint64_t top_guid, spare_id;
2634                 char *type, *path;
2635
2636                 /* Skip non-distributed spares */
2637                 error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
2638                 if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
2639                         continue;
2640
2641                 /* Skip spares with the wrong name */
2642                 error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
2643                 if (error != 0 || strcmp(path, spare_name) != 0)
2644                         continue;
2645
2646                 /* Found the matching spare */
2647                 error = nvlist_lookup_uint64(spare,
2648                     ZPOOL_CONFIG_TOP_GUID, &top_guid);
2649                 if (error == 0) {
2650                         error = nvlist_lookup_uint64(spare,
2651                             ZPOOL_CONFIG_SPARE_ID, &spare_id);
2652                 }
2653
2654                 if (error != 0) {
2655                         return (SET_ERROR(EINVAL));
2656                 } else {
2657                         *top_guidp = top_guid;
2658                         *spare_idp = spare_id;
2659                         return (0);
2660                 }
2661         }
2662
2663         return (SET_ERROR(ENOENT));
2664 }
2665
2666 /*
2667  * Initialize private dRAID spare specific fields from the nvlist.
2668  */
2669 static int
2670 vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
2671 {
2672         vdev_draid_spare_t *vds;
2673         uint64_t top_guid = 0;
2674         uint64_t spare_id;
2675
2676         /*
2677          * In the normal case check the list of spares stored in the spa
2678          * to lookup the top_guid and spare_id for provided spare config.
2679          * When creating a new pool or adding vdevs the spare list is not
2680          * yet populated and the values are provided in the passed config.
2681          */
2682         if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
2683                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
2684                     &top_guid) != 0)
2685                         return (SET_ERROR(EINVAL));
2686
2687                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
2688                     &spare_id) != 0)
2689                         return (SET_ERROR(EINVAL));
2690         }
2691
2692         vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
2693         vds->vds_draid_vdev = NULL;
2694         vds->vds_top_guid = top_guid;
2695         vds->vds_spare_id = spare_id;
2696
2697         *tsd = vds;
2698
2699         return (0);
2700 }
2701
2702 static void
2703 vdev_draid_spare_fini(vdev_t *vd)
2704 {
2705         kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
2706 }
2707
2708 static void
2709 vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
2710 {
2711         vdev_draid_spare_t *vds = vd->vdev_tsd;
2712
2713         ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2714
2715         fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
2716         fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
2717 }
2718
2719 vdev_ops_t vdev_draid_spare_ops = {
2720         .vdev_op_init = vdev_draid_spare_init,
2721         .vdev_op_fini = vdev_draid_spare_fini,
2722         .vdev_op_open = vdev_draid_spare_open,
2723         .vdev_op_close = vdev_draid_spare_close,
2724         .vdev_op_asize = vdev_default_asize,
2725         .vdev_op_min_asize = vdev_default_min_asize,
2726         .vdev_op_min_alloc = NULL,
2727         .vdev_op_io_start = vdev_draid_spare_io_start,
2728         .vdev_op_io_done = vdev_draid_spare_io_done,
2729         .vdev_op_state_change = NULL,
2730         .vdev_op_need_resilver = NULL,
2731         .vdev_op_hold = NULL,
2732         .vdev_op_rele = NULL,
2733         .vdev_op_remap = NULL,
2734         .vdev_op_xlate = vdev_default_xlate,
2735         .vdev_op_rebuild_asize = NULL,
2736         .vdev_op_metaslab_init = NULL,
2737         .vdev_op_config_generate = vdev_draid_spare_config_generate,
2738         .vdev_op_nparity = NULL,
2739         .vdev_op_ndisks = NULL,
2740         .vdev_op_type = VDEV_TYPE_DRAID_SPARE,
2741         .vdev_op_leaf = B_TRUE,
2742 };