]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_initialize.c
Update the Arm Optimized Routine library to v24.01
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_initialize.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
24  */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
35
36 /*
37  * Value that is written to disk during initialization.
38  */
39 static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
40
41 /* maximum number of I/Os outstanding per leaf vdev */
42 static const int zfs_initialize_limit = 1;
43
44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
45 static uint64_t zfs_initialize_chunk_size = 1024 * 1024;
46
47 static boolean_t
48 vdev_initialize_should_stop(vdev_t *vd)
49 {
50         return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
51             vd->vdev_detached || vd->vdev_top->vdev_removing ||
52             vd->vdev_top->vdev_rz_expanding);
53 }
54
55 static void
56 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
57 {
58         /*
59          * We pass in the guid instead of the vdev_t since the vdev may
60          * have been freed prior to the sync task being processed. This
61          * happens when a vdev is detached as we call spa_config_vdev_exit(),
62          * stop the initializing thread, schedule the sync task, and free
63          * the vdev. Later when the scheduled sync task is invoked, it would
64          * find that the vdev has been freed.
65          */
66         uint64_t guid = *(uint64_t *)arg;
67         uint64_t txg = dmu_tx_get_txg(tx);
68         kmem_free(arg, sizeof (uint64_t));
69
70         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
71         if (vd == NULL || vd->vdev_top->vdev_removing ||
72             !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
73                 return;
74
75         uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
76         vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
77
78         VERIFY(vd->vdev_leaf_zap != 0);
79
80         objset_t *mos = vd->vdev_spa->spa_meta_objset;
81
82         if (last_offset > 0) {
83                 vd->vdev_initialize_last_offset = last_offset;
84                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
85                     VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
86                     sizeof (last_offset), 1, &last_offset, tx));
87         }
88         if (vd->vdev_initialize_action_time > 0) {
89                 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
90                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
91                     VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
92                     1, &val, tx));
93         }
94
95         uint64_t initialize_state = vd->vdev_initialize_state;
96         VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
97             VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
98             &initialize_state, tx));
99 }
100
101 static void
102 vdev_initialize_zap_remove_sync(void *arg, dmu_tx_t *tx)
103 {
104         uint64_t guid = *(uint64_t *)arg;
105
106         kmem_free(arg, sizeof (uint64_t));
107
108         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
109         if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
110                 return;
111
112         ASSERT3S(vd->vdev_initialize_state, ==, VDEV_INITIALIZE_NONE);
113         ASSERT3U(vd->vdev_leaf_zap, !=, 0);
114
115         vd->vdev_initialize_last_offset = 0;
116         vd->vdev_initialize_action_time = 0;
117
118         objset_t *mos = vd->vdev_spa->spa_meta_objset;
119         int error;
120
121         error = zap_remove(mos, vd->vdev_leaf_zap,
122             VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, tx);
123         VERIFY(error == 0 || error == ENOENT);
124
125         error = zap_remove(mos, vd->vdev_leaf_zap,
126             VDEV_LEAF_ZAP_INITIALIZE_STATE, tx);
127         VERIFY(error == 0 || error == ENOENT);
128
129         error = zap_remove(mos, vd->vdev_leaf_zap,
130             VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, tx);
131         VERIFY(error == 0 || error == ENOENT);
132 }
133
134 static void
135 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
136 {
137         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
138         spa_t *spa = vd->vdev_spa;
139
140         if (new_state == vd->vdev_initialize_state)
141                 return;
142
143         /*
144          * Copy the vd's guid, this will be freed by the sync task.
145          */
146         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
147         *guid = vd->vdev_guid;
148
149         /*
150          * If we're suspending, then preserving the original start time.
151          */
152         if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
153                 vd->vdev_initialize_action_time = gethrestime_sec();
154         }
155
156         vdev_initializing_state_t old_state = vd->vdev_initialize_state;
157         vd->vdev_initialize_state = new_state;
158
159         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
160         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
161
162         if (new_state != VDEV_INITIALIZE_NONE) {
163                 dsl_sync_task_nowait(spa_get_dsl(spa),
164                     vdev_initialize_zap_update_sync, guid, tx);
165         } else {
166                 dsl_sync_task_nowait(spa_get_dsl(spa),
167                     vdev_initialize_zap_remove_sync, guid, tx);
168         }
169
170         switch (new_state) {
171         case VDEV_INITIALIZE_ACTIVE:
172                 spa_history_log_internal(spa, "initialize", tx,
173                     "vdev=%s activated", vd->vdev_path);
174                 break;
175         case VDEV_INITIALIZE_SUSPENDED:
176                 spa_history_log_internal(spa, "initialize", tx,
177                     "vdev=%s suspended", vd->vdev_path);
178                 break;
179         case VDEV_INITIALIZE_CANCELED:
180                 if (old_state == VDEV_INITIALIZE_ACTIVE ||
181                     old_state == VDEV_INITIALIZE_SUSPENDED)
182                         spa_history_log_internal(spa, "initialize", tx,
183                             "vdev=%s canceled", vd->vdev_path);
184                 break;
185         case VDEV_INITIALIZE_COMPLETE:
186                 spa_history_log_internal(spa, "initialize", tx,
187                     "vdev=%s complete", vd->vdev_path);
188                 break;
189         case VDEV_INITIALIZE_NONE:
190                 spa_history_log_internal(spa, "uninitialize", tx,
191                     "vdev=%s", vd->vdev_path);
192                 break;
193         default:
194                 panic("invalid state %llu", (unsigned long long)new_state);
195         }
196
197         dmu_tx_commit(tx);
198
199         if (new_state != VDEV_INITIALIZE_ACTIVE)
200                 spa_notify_waiters(spa);
201 }
202
203 static void
204 vdev_initialize_cb(zio_t *zio)
205 {
206         vdev_t *vd = zio->io_vd;
207         mutex_enter(&vd->vdev_initialize_io_lock);
208         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
209                 /*
210                  * The I/O failed because the vdev was unavailable; roll the
211                  * last offset back. (This works because spa_sync waits on
212                  * spa_txg_zio before it runs sync tasks.)
213                  */
214                 uint64_t *off =
215                     &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
216                 *off = MIN(*off, zio->io_offset);
217         } else {
218                 /*
219                  * Since initializing is best-effort, we ignore I/O errors and
220                  * rely on vdev_probe to determine if the errors are more
221                  * critical.
222                  */
223                 if (zio->io_error != 0)
224                         vd->vdev_stat.vs_initialize_errors++;
225
226                 vd->vdev_initialize_bytes_done += zio->io_orig_size;
227         }
228         ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229         vd->vdev_initialize_inflight--;
230         cv_broadcast(&vd->vdev_initialize_io_cv);
231         mutex_exit(&vd->vdev_initialize_io_lock);
232
233         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
234 }
235
236 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
237 static int
238 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
239 {
240         spa_t *spa = vd->vdev_spa;
241
242         /* Limit inflight initializing I/Os */
243         mutex_enter(&vd->vdev_initialize_io_lock);
244         while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
245                 cv_wait(&vd->vdev_initialize_io_cv,
246                     &vd->vdev_initialize_io_lock);
247         }
248         vd->vdev_initialize_inflight++;
249         mutex_exit(&vd->vdev_initialize_io_lock);
250
251         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
252         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
253         uint64_t txg = dmu_tx_get_txg(tx);
254
255         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
256         mutex_enter(&vd->vdev_initialize_lock);
257
258         if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
259                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
260                 *guid = vd->vdev_guid;
261
262                 /* This is the first write of this txg. */
263                 dsl_sync_task_nowait(spa_get_dsl(spa),
264                     vdev_initialize_zap_update_sync, guid, tx);
265         }
266
267         /*
268          * We know the vdev struct will still be around since all
269          * consumers of vdev_free must stop the initialization first.
270          */
271         if (vdev_initialize_should_stop(vd)) {
272                 mutex_enter(&vd->vdev_initialize_io_lock);
273                 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
274                 vd->vdev_initialize_inflight--;
275                 mutex_exit(&vd->vdev_initialize_io_lock);
276                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
277                 mutex_exit(&vd->vdev_initialize_lock);
278                 dmu_tx_commit(tx);
279                 return (SET_ERROR(EINTR));
280         }
281         mutex_exit(&vd->vdev_initialize_lock);
282
283         vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
284         zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
285             size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
286             ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
287         /* vdev_initialize_cb releases SCL_STATE_ALL */
288
289         dmu_tx_commit(tx);
290
291         return (0);
292 }
293
294 /*
295  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
296  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
297  * allocation will guarantee these for us.
298  */
299 static int
300 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
301 {
302         (void) unused;
303
304         ASSERT0(len % sizeof (uint64_t));
305         for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
306                 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
307         }
308         return (0);
309 }
310
311 static abd_t *
312 vdev_initialize_block_alloc(void)
313 {
314         /* Allocate ABD for filler data */
315         abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
316
317         ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
318         (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
319             vdev_initialize_block_fill, NULL);
320
321         return (data);
322 }
323
324 static void
325 vdev_initialize_block_free(abd_t *data)
326 {
327         abd_free(data);
328 }
329
330 static int
331 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
332 {
333         range_tree_t *rt = vd->vdev_initialize_tree;
334         zfs_btree_t *bt = &rt->rt_root;
335         zfs_btree_index_t where;
336
337         for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
338             rs = zfs_btree_next(bt, &where, &where)) {
339                 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
340
341                 /* Split range into legally-sized physical chunks */
342                 uint64_t writes_required =
343                     ((size - 1) / zfs_initialize_chunk_size) + 1;
344
345                 for (uint64_t w = 0; w < writes_required; w++) {
346                         int error;
347
348                         error = vdev_initialize_write(vd,
349                             VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
350                             (w * zfs_initialize_chunk_size),
351                             MIN(size - (w * zfs_initialize_chunk_size),
352                             zfs_initialize_chunk_size), data);
353                         if (error != 0)
354                                 return (error);
355                 }
356         }
357         return (0);
358 }
359
360 static void
361 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
362 {
363         uint64_t *last_rs_end = (uint64_t *)arg;
364
365         if (physical_rs->rs_end > *last_rs_end)
366                 *last_rs_end = physical_rs->rs_end;
367 }
368
369 static void
370 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
371 {
372         vdev_t *vd = (vdev_t *)arg;
373
374         uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
375         vd->vdev_initialize_bytes_est += size;
376
377         if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
378                 vd->vdev_initialize_bytes_done += size;
379         } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
380             vd->vdev_initialize_last_offset < physical_rs->rs_end) {
381                 vd->vdev_initialize_bytes_done +=
382                     vd->vdev_initialize_last_offset - physical_rs->rs_start;
383         }
384 }
385
386 static void
387 vdev_initialize_calculate_progress(vdev_t *vd)
388 {
389         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
390             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
391         ASSERT(vd->vdev_leaf_zap != 0);
392
393         vd->vdev_initialize_bytes_est = 0;
394         vd->vdev_initialize_bytes_done = 0;
395
396         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
397                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
398                 mutex_enter(&msp->ms_lock);
399
400                 uint64_t ms_free = (msp->ms_size -
401                     metaslab_allocated_space(msp)) /
402                     vdev_get_ndisks(vd->vdev_top);
403
404                 /*
405                  * Convert the metaslab range to a physical range
406                  * on our vdev. We use this to determine if we are
407                  * in the middle of this metaslab range.
408                  */
409                 range_seg64_t logical_rs, physical_rs, remain_rs;
410                 logical_rs.rs_start = msp->ms_start;
411                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
412
413                 /* Metaslab space after this offset has not been initialized */
414                 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
415                 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
416                         vd->vdev_initialize_bytes_est += ms_free;
417                         mutex_exit(&msp->ms_lock);
418                         continue;
419                 }
420
421                 /* Metaslab space before this offset has been initialized */
422                 uint64_t last_rs_end = physical_rs.rs_end;
423                 if (!vdev_xlate_is_empty(&remain_rs)) {
424                         vdev_xlate_walk(vd, &remain_rs,
425                             vdev_initialize_xlate_last_rs_end, &last_rs_end);
426                 }
427
428                 if (vd->vdev_initialize_last_offset > last_rs_end) {
429                         vd->vdev_initialize_bytes_done += ms_free;
430                         vd->vdev_initialize_bytes_est += ms_free;
431                         mutex_exit(&msp->ms_lock);
432                         continue;
433                 }
434
435                 /*
436                  * If we get here, we're in the middle of initializing this
437                  * metaslab. Load it and walk the free tree for more accurate
438                  * progress estimation.
439                  */
440                 VERIFY0(metaslab_load(msp));
441
442                 zfs_btree_index_t where;
443                 range_tree_t *rt = msp->ms_allocatable;
444                 for (range_seg_t *rs =
445                     zfs_btree_first(&rt->rt_root, &where); rs;
446                     rs = zfs_btree_next(&rt->rt_root, &where,
447                     &where)) {
448                         logical_rs.rs_start = rs_get_start(rs, rt);
449                         logical_rs.rs_end = rs_get_end(rs, rt);
450
451                         vdev_xlate_walk(vd, &logical_rs,
452                             vdev_initialize_xlate_progress, vd);
453                 }
454                 mutex_exit(&msp->ms_lock);
455         }
456 }
457
458 static int
459 vdev_initialize_load(vdev_t *vd)
460 {
461         int err = 0;
462         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
463             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
464         ASSERT(vd->vdev_leaf_zap != 0);
465
466         if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
467             vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
468                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
469                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
470                     sizeof (vd->vdev_initialize_last_offset), 1,
471                     &vd->vdev_initialize_last_offset);
472                 if (err == ENOENT) {
473                         vd->vdev_initialize_last_offset = 0;
474                         err = 0;
475                 }
476         }
477
478         vdev_initialize_calculate_progress(vd);
479         return (err);
480 }
481
482 static void
483 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
484 {
485         vdev_t *vd = arg;
486
487         /* Only add segments that we have not visited yet */
488         if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
489                 return;
490
491         /* Pick up where we left off mid-range. */
492         if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
493                 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
494                     "(%llu, %llu)", vd->vdev_path,
495                     (u_longlong_t)physical_rs->rs_start,
496                     (u_longlong_t)physical_rs->rs_end,
497                     (u_longlong_t)vd->vdev_initialize_last_offset,
498                     (u_longlong_t)physical_rs->rs_end);
499                 ASSERT3U(physical_rs->rs_end, >,
500                     vd->vdev_initialize_last_offset);
501                 physical_rs->rs_start = vd->vdev_initialize_last_offset;
502         }
503
504         ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
505
506         range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
507             physical_rs->rs_end - physical_rs->rs_start);
508 }
509
510 /*
511  * Convert the logical range into a physical range and add it to our
512  * avl tree.
513  */
514 static void
515 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
516 {
517         vdev_t *vd = arg;
518         range_seg64_t logical_rs;
519         logical_rs.rs_start = start;
520         logical_rs.rs_end = start + size;
521
522         ASSERT(vd->vdev_ops->vdev_op_leaf);
523         vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
524 }
525
526 static __attribute__((noreturn)) void
527 vdev_initialize_thread(void *arg)
528 {
529         vdev_t *vd = arg;
530         spa_t *spa = vd->vdev_spa;
531         int error = 0;
532         uint64_t ms_count = 0;
533
534         ASSERT(vdev_is_concrete(vd));
535         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
536
537         vd->vdev_initialize_last_offset = 0;
538         VERIFY0(vdev_initialize_load(vd));
539
540         abd_t *deadbeef = vdev_initialize_block_alloc();
541
542         vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
543             0, 0);
544
545         for (uint64_t i = 0; !vd->vdev_detached &&
546             i < vd->vdev_top->vdev_ms_count; i++) {
547                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
548                 boolean_t unload_when_done = B_FALSE;
549
550                 /*
551                  * If we've expanded the top-level vdev or it's our
552                  * first pass, calculate our progress.
553                  */
554                 if (vd->vdev_top->vdev_ms_count != ms_count) {
555                         vdev_initialize_calculate_progress(vd);
556                         ms_count = vd->vdev_top->vdev_ms_count;
557                 }
558
559                 spa_config_exit(spa, SCL_CONFIG, FTAG);
560                 metaslab_disable(msp);
561                 mutex_enter(&msp->ms_lock);
562                 if (!msp->ms_loaded && !msp->ms_loading)
563                         unload_when_done = B_TRUE;
564                 VERIFY0(metaslab_load(msp));
565
566                 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
567                     vd);
568                 mutex_exit(&msp->ms_lock);
569
570                 error = vdev_initialize_ranges(vd, deadbeef);
571                 metaslab_enable(msp, B_TRUE, unload_when_done);
572                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
573
574                 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
575                 if (error != 0)
576                         break;
577         }
578
579         spa_config_exit(spa, SCL_CONFIG, FTAG);
580         mutex_enter(&vd->vdev_initialize_io_lock);
581         while (vd->vdev_initialize_inflight > 0) {
582                 cv_wait(&vd->vdev_initialize_io_cv,
583                     &vd->vdev_initialize_io_lock);
584         }
585         mutex_exit(&vd->vdev_initialize_io_lock);
586
587         range_tree_destroy(vd->vdev_initialize_tree);
588         vdev_initialize_block_free(deadbeef);
589         vd->vdev_initialize_tree = NULL;
590
591         mutex_enter(&vd->vdev_initialize_lock);
592         if (!vd->vdev_initialize_exit_wanted) {
593                 if (vdev_writeable(vd)) {
594                         vdev_initialize_change_state(vd,
595                             VDEV_INITIALIZE_COMPLETE);
596                 } else if (vd->vdev_faulted) {
597                         vdev_initialize_change_state(vd,
598                             VDEV_INITIALIZE_CANCELED);
599                 }
600         }
601         ASSERT(vd->vdev_initialize_thread != NULL ||
602             vd->vdev_initialize_inflight == 0);
603
604         /*
605          * Drop the vdev_initialize_lock while we sync out the
606          * txg since it's possible that a device might be trying to
607          * come online and must check to see if it needs to restart an
608          * initialization. That thread will be holding the spa_config_lock
609          * which would prevent the txg_wait_synced from completing.
610          */
611         mutex_exit(&vd->vdev_initialize_lock);
612         txg_wait_synced(spa_get_dsl(spa), 0);
613         mutex_enter(&vd->vdev_initialize_lock);
614
615         vd->vdev_initialize_thread = NULL;
616         cv_broadcast(&vd->vdev_initialize_cv);
617         mutex_exit(&vd->vdev_initialize_lock);
618
619         thread_exit();
620 }
621
622 /*
623  * Initiates a device. Caller must hold vdev_initialize_lock.
624  * Device must be a leaf and not already be initializing.
625  */
626 void
627 vdev_initialize(vdev_t *vd)
628 {
629         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
630         ASSERT(vd->vdev_ops->vdev_op_leaf);
631         ASSERT(vdev_is_concrete(vd));
632         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
633         ASSERT(!vd->vdev_detached);
634         ASSERT(!vd->vdev_initialize_exit_wanted);
635         ASSERT(!vd->vdev_top->vdev_removing);
636         ASSERT(!vd->vdev_top->vdev_rz_expanding);
637
638         vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
639         vd->vdev_initialize_thread = thread_create(NULL, 0,
640             vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
641 }
642
643 /*
644  * Uninitializes a device. Caller must hold vdev_initialize_lock.
645  * Device must be a leaf and not already be initializing.
646  */
647 void
648 vdev_uninitialize(vdev_t *vd)
649 {
650         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
651         ASSERT(vd->vdev_ops->vdev_op_leaf);
652         ASSERT(vdev_is_concrete(vd));
653         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
654         ASSERT(!vd->vdev_detached);
655         ASSERT(!vd->vdev_initialize_exit_wanted);
656         ASSERT(!vd->vdev_top->vdev_removing);
657
658         vdev_initialize_change_state(vd, VDEV_INITIALIZE_NONE);
659 }
660
661 /*
662  * Wait for the initialize thread to be terminated (cancelled or stopped).
663  */
664 static void
665 vdev_initialize_stop_wait_impl(vdev_t *vd)
666 {
667         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
668
669         while (vd->vdev_initialize_thread != NULL)
670                 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
671
672         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
673         vd->vdev_initialize_exit_wanted = B_FALSE;
674 }
675
676 /*
677  * Wait for vdev initialize threads which were either to cleanly exit.
678  */
679 void
680 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
681 {
682         (void) spa;
683         vdev_t *vd;
684
685         ASSERT(MUTEX_HELD(&spa_namespace_lock));
686
687         while ((vd = list_remove_head(vd_list)) != NULL) {
688                 mutex_enter(&vd->vdev_initialize_lock);
689                 vdev_initialize_stop_wait_impl(vd);
690                 mutex_exit(&vd->vdev_initialize_lock);
691         }
692 }
693
694 /*
695  * Stop initializing a device, with the resultant initializing state being
696  * tgt_state.  For blocking behavior pass NULL for vd_list.  Otherwise, when
697  * a list_t is provided the stopping vdev is inserted in to the list.  Callers
698  * are then required to call vdev_initialize_stop_wait() to block for all the
699  * initialization threads to exit.  The caller must hold vdev_initialize_lock
700  * and must not be writing to the spa config, as the initializing thread may
701  * try to enter the config as a reader before exiting.
702  */
703 void
704 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
705     list_t *vd_list)
706 {
707         ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
708         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
709         ASSERT(vd->vdev_ops->vdev_op_leaf);
710         ASSERT(vdev_is_concrete(vd));
711
712         /*
713          * Allow cancel requests to proceed even if the initialize thread
714          * has stopped.
715          */
716         if (vd->vdev_initialize_thread == NULL &&
717             tgt_state != VDEV_INITIALIZE_CANCELED) {
718                 return;
719         }
720
721         vdev_initialize_change_state(vd, tgt_state);
722         vd->vdev_initialize_exit_wanted = B_TRUE;
723
724         if (vd_list == NULL) {
725                 vdev_initialize_stop_wait_impl(vd);
726         } else {
727                 ASSERT(MUTEX_HELD(&spa_namespace_lock));
728                 list_insert_tail(vd_list, vd);
729         }
730 }
731
732 static void
733 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
734     list_t *vd_list)
735 {
736         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
737                 mutex_enter(&vd->vdev_initialize_lock);
738                 vdev_initialize_stop(vd, tgt_state, vd_list);
739                 mutex_exit(&vd->vdev_initialize_lock);
740                 return;
741         }
742
743         for (uint64_t i = 0; i < vd->vdev_children; i++) {
744                 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
745                     vd_list);
746         }
747 }
748
749 /*
750  * Convenience function to stop initializing of a vdev tree and set all
751  * initialize thread pointers to NULL.
752  */
753 void
754 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
755 {
756         spa_t *spa = vd->vdev_spa;
757         list_t vd_list;
758
759         ASSERT(MUTEX_HELD(&spa_namespace_lock));
760
761         list_create(&vd_list, sizeof (vdev_t),
762             offsetof(vdev_t, vdev_initialize_node));
763
764         vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
765         vdev_initialize_stop_wait(spa, &vd_list);
766
767         if (vd->vdev_spa->spa_sync_on) {
768                 /* Make sure that our state has been synced to disk */
769                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
770         }
771
772         list_destroy(&vd_list);
773 }
774
775 void
776 vdev_initialize_restart(vdev_t *vd)
777 {
778         ASSERT(MUTEX_HELD(&spa_namespace_lock));
779         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
780
781         if (vd->vdev_leaf_zap != 0) {
782                 mutex_enter(&vd->vdev_initialize_lock);
783                 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
784                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
785                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
786                     sizeof (initialize_state), 1, &initialize_state);
787                 ASSERT(err == 0 || err == ENOENT);
788                 vd->vdev_initialize_state = initialize_state;
789
790                 uint64_t timestamp = 0;
791                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
792                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
793                     sizeof (timestamp), 1, &timestamp);
794                 ASSERT(err == 0 || err == ENOENT);
795                 vd->vdev_initialize_action_time = timestamp;
796
797                 if ((vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
798                     vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
799                         /* load progress for reporting, but don't resume */
800                         VERIFY0(vdev_initialize_load(vd));
801                 } else if (vd->vdev_initialize_state ==
802                     VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
803                     !vd->vdev_top->vdev_removing &&
804                     !vd->vdev_top->vdev_rz_expanding &&
805                     vd->vdev_initialize_thread == NULL) {
806                         vdev_initialize(vd);
807                 }
808
809                 mutex_exit(&vd->vdev_initialize_lock);
810         }
811
812         for (uint64_t i = 0; i < vd->vdev_children; i++) {
813                 vdev_initialize_restart(vd->vdev_child[i]);
814         }
815 }
816
817 EXPORT_SYMBOL(vdev_initialize);
818 EXPORT_SYMBOL(vdev_uninitialize);
819 EXPORT_SYMBOL(vdev_initialize_stop);
820 EXPORT_SYMBOL(vdev_initialize_stop_all);
821 EXPORT_SYMBOL(vdev_initialize_stop_wait);
822 EXPORT_SYMBOL(vdev_initialize_restart);
823
824 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW,
825         "Value written during zpool initialize");
826
827 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW,
828         "Size in bytes of writes by zpool initialize");