]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_initialize.c
MFV 2.0-rc2
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_initialize.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
24  */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
35
36 /*
37  * Value that is written to disk during initialization.
38  */
39 #ifdef _ILP32
40 unsigned long zfs_initialize_value = 0xdeadbeefUL;
41 #else
42 unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
43 #endif
44
45 /* maximum number of I/Os outstanding per leaf vdev */
46 int zfs_initialize_limit = 1;
47
48 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
49 unsigned long zfs_initialize_chunk_size = 1024 * 1024;
50
51 static boolean_t
52 vdev_initialize_should_stop(vdev_t *vd)
53 {
54         return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
55             vd->vdev_detached || vd->vdev_top->vdev_removing);
56 }
57
58 static void
59 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
60 {
61         /*
62          * We pass in the guid instead of the vdev_t since the vdev may
63          * have been freed prior to the sync task being processed. This
64          * happens when a vdev is detached as we call spa_config_vdev_exit(),
65          * stop the initializing thread, schedule the sync task, and free
66          * the vdev. Later when the scheduled sync task is invoked, it would
67          * find that the vdev has been freed.
68          */
69         uint64_t guid = *(uint64_t *)arg;
70         uint64_t txg = dmu_tx_get_txg(tx);
71         kmem_free(arg, sizeof (uint64_t));
72
73         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
74         if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
75                 return;
76
77         uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
78         vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
79
80         VERIFY(vd->vdev_leaf_zap != 0);
81
82         objset_t *mos = vd->vdev_spa->spa_meta_objset;
83
84         if (last_offset > 0) {
85                 vd->vdev_initialize_last_offset = last_offset;
86                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
87                     VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
88                     sizeof (last_offset), 1, &last_offset, tx));
89         }
90         if (vd->vdev_initialize_action_time > 0) {
91                 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
92                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
93                     VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
94                     1, &val, tx));
95         }
96
97         uint64_t initialize_state = vd->vdev_initialize_state;
98         VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
99             VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
100             &initialize_state, tx));
101 }
102
103 static void
104 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
105 {
106         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
107         spa_t *spa = vd->vdev_spa;
108
109         if (new_state == vd->vdev_initialize_state)
110                 return;
111
112         /*
113          * Copy the vd's guid, this will be freed by the sync task.
114          */
115         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
116         *guid = vd->vdev_guid;
117
118         /*
119          * If we're suspending, then preserving the original start time.
120          */
121         if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
122                 vd->vdev_initialize_action_time = gethrestime_sec();
123         }
124         vd->vdev_initialize_state = new_state;
125
126         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
127         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
128         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
129             guid, tx);
130
131         switch (new_state) {
132         case VDEV_INITIALIZE_ACTIVE:
133                 spa_history_log_internal(spa, "initialize", tx,
134                     "vdev=%s activated", vd->vdev_path);
135                 break;
136         case VDEV_INITIALIZE_SUSPENDED:
137                 spa_history_log_internal(spa, "initialize", tx,
138                     "vdev=%s suspended", vd->vdev_path);
139                 break;
140         case VDEV_INITIALIZE_CANCELED:
141                 spa_history_log_internal(spa, "initialize", tx,
142                     "vdev=%s canceled", vd->vdev_path);
143                 break;
144         case VDEV_INITIALIZE_COMPLETE:
145                 spa_history_log_internal(spa, "initialize", tx,
146                     "vdev=%s complete", vd->vdev_path);
147                 break;
148         default:
149                 panic("invalid state %llu", (unsigned long long)new_state);
150         }
151
152         dmu_tx_commit(tx);
153
154         if (new_state != VDEV_INITIALIZE_ACTIVE)
155                 spa_notify_waiters(spa);
156 }
157
158 static void
159 vdev_initialize_cb(zio_t *zio)
160 {
161         vdev_t *vd = zio->io_vd;
162         mutex_enter(&vd->vdev_initialize_io_lock);
163         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
164                 /*
165                  * The I/O failed because the vdev was unavailable; roll the
166                  * last offset back. (This works because spa_sync waits on
167                  * spa_txg_zio before it runs sync tasks.)
168                  */
169                 uint64_t *off =
170                     &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
171                 *off = MIN(*off, zio->io_offset);
172         } else {
173                 /*
174                  * Since initializing is best-effort, we ignore I/O errors and
175                  * rely on vdev_probe to determine if the errors are more
176                  * critical.
177                  */
178                 if (zio->io_error != 0)
179                         vd->vdev_stat.vs_initialize_errors++;
180
181                 vd->vdev_initialize_bytes_done += zio->io_orig_size;
182         }
183         ASSERT3U(vd->vdev_initialize_inflight, >, 0);
184         vd->vdev_initialize_inflight--;
185         cv_broadcast(&vd->vdev_initialize_io_cv);
186         mutex_exit(&vd->vdev_initialize_io_lock);
187
188         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
189 }
190
191 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
192 static int
193 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
194 {
195         spa_t *spa = vd->vdev_spa;
196
197         /* Limit inflight initializing I/Os */
198         mutex_enter(&vd->vdev_initialize_io_lock);
199         while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
200                 cv_wait(&vd->vdev_initialize_io_cv,
201                     &vd->vdev_initialize_io_lock);
202         }
203         vd->vdev_initialize_inflight++;
204         mutex_exit(&vd->vdev_initialize_io_lock);
205
206         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
207         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
208         uint64_t txg = dmu_tx_get_txg(tx);
209
210         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
211         mutex_enter(&vd->vdev_initialize_lock);
212
213         if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
214                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
215                 *guid = vd->vdev_guid;
216
217                 /* This is the first write of this txg. */
218                 dsl_sync_task_nowait(spa_get_dsl(spa),
219                     vdev_initialize_zap_update_sync, guid, tx);
220         }
221
222         /*
223          * We know the vdev struct will still be around since all
224          * consumers of vdev_free must stop the initialization first.
225          */
226         if (vdev_initialize_should_stop(vd)) {
227                 mutex_enter(&vd->vdev_initialize_io_lock);
228                 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229                 vd->vdev_initialize_inflight--;
230                 mutex_exit(&vd->vdev_initialize_io_lock);
231                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
232                 mutex_exit(&vd->vdev_initialize_lock);
233                 dmu_tx_commit(tx);
234                 return (SET_ERROR(EINTR));
235         }
236         mutex_exit(&vd->vdev_initialize_lock);
237
238         vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
239         zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
240             size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
241             ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
242         /* vdev_initialize_cb releases SCL_STATE_ALL */
243
244         dmu_tx_commit(tx);
245
246         return (0);
247 }
248
249 /*
250  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
251  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
252  * allocation will guarantee these for us.
253  */
254 /* ARGSUSED */
255 static int
256 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
257 {
258         ASSERT0(len % sizeof (uint64_t));
259 #ifdef _ILP32
260         for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
261                 *(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
262         }
263 #else
264         for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
265                 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
266         }
267 #endif
268         return (0);
269 }
270
271 static abd_t *
272 vdev_initialize_block_alloc(void)
273 {
274         /* Allocate ABD for filler data */
275         abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
276
277         ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
278         (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
279             vdev_initialize_block_fill, NULL);
280
281         return (data);
282 }
283
284 static void
285 vdev_initialize_block_free(abd_t *data)
286 {
287         abd_free(data);
288 }
289
290 static int
291 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
292 {
293         range_tree_t *rt = vd->vdev_initialize_tree;
294         zfs_btree_t *bt = &rt->rt_root;
295         zfs_btree_index_t where;
296
297         for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
298             rs = zfs_btree_next(bt, &where, &where)) {
299                 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
300
301                 /* Split range into legally-sized physical chunks */
302                 uint64_t writes_required =
303                     ((size - 1) / zfs_initialize_chunk_size) + 1;
304
305                 for (uint64_t w = 0; w < writes_required; w++) {
306                         int error;
307
308                         error = vdev_initialize_write(vd,
309                             VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
310                             (w * zfs_initialize_chunk_size),
311                             MIN(size - (w * zfs_initialize_chunk_size),
312                             zfs_initialize_chunk_size), data);
313                         if (error != 0)
314                                 return (error);
315                 }
316         }
317         return (0);
318 }
319
320 static void
321 vdev_initialize_calculate_progress(vdev_t *vd)
322 {
323         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
324             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
325         ASSERT(vd->vdev_leaf_zap != 0);
326
327         vd->vdev_initialize_bytes_est = 0;
328         vd->vdev_initialize_bytes_done = 0;
329
330         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
331                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
332                 mutex_enter(&msp->ms_lock);
333
334                 uint64_t ms_free = msp->ms_size -
335                     metaslab_allocated_space(msp);
336
337                 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
338                         ms_free /= vd->vdev_top->vdev_children;
339
340                 /*
341                  * Convert the metaslab range to a physical range
342                  * on our vdev. We use this to determine if we are
343                  * in the middle of this metaslab range.
344                  */
345                 range_seg64_t logical_rs, physical_rs;
346                 logical_rs.rs_start = msp->ms_start;
347                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
348                 vdev_xlate(vd, &logical_rs, &physical_rs);
349
350                 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
351                         vd->vdev_initialize_bytes_est += ms_free;
352                         mutex_exit(&msp->ms_lock);
353                         continue;
354                 } else if (vd->vdev_initialize_last_offset >
355                     physical_rs.rs_end) {
356                         vd->vdev_initialize_bytes_done += ms_free;
357                         vd->vdev_initialize_bytes_est += ms_free;
358                         mutex_exit(&msp->ms_lock);
359                         continue;
360                 }
361
362                 /*
363                  * If we get here, we're in the middle of initializing this
364                  * metaslab. Load it and walk the free tree for more accurate
365                  * progress estimation.
366                  */
367                 VERIFY0(metaslab_load(msp));
368
369                 zfs_btree_index_t where;
370                 range_tree_t *rt = msp->ms_allocatable;
371                 for (range_seg_t *rs =
372                     zfs_btree_first(&rt->rt_root, &where); rs;
373                     rs = zfs_btree_next(&rt->rt_root, &where,
374                     &where)) {
375                         logical_rs.rs_start = rs_get_start(rs, rt);
376                         logical_rs.rs_end = rs_get_end(rs, rt);
377                         vdev_xlate(vd, &logical_rs, &physical_rs);
378
379                         uint64_t size = physical_rs.rs_end -
380                             physical_rs.rs_start;
381                         vd->vdev_initialize_bytes_est += size;
382                         if (vd->vdev_initialize_last_offset >
383                             physical_rs.rs_end) {
384                                 vd->vdev_initialize_bytes_done += size;
385                         } else if (vd->vdev_initialize_last_offset >
386                             physical_rs.rs_start &&
387                             vd->vdev_initialize_last_offset <
388                             physical_rs.rs_end) {
389                                 vd->vdev_initialize_bytes_done +=
390                                     vd->vdev_initialize_last_offset -
391                                     physical_rs.rs_start;
392                         }
393                 }
394                 mutex_exit(&msp->ms_lock);
395         }
396 }
397
398 static int
399 vdev_initialize_load(vdev_t *vd)
400 {
401         int err = 0;
402         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
403             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
404         ASSERT(vd->vdev_leaf_zap != 0);
405
406         if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
407             vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
408                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
409                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
410                     sizeof (vd->vdev_initialize_last_offset), 1,
411                     &vd->vdev_initialize_last_offset);
412                 if (err == ENOENT) {
413                         vd->vdev_initialize_last_offset = 0;
414                         err = 0;
415                 }
416         }
417
418         vdev_initialize_calculate_progress(vd);
419         return (err);
420 }
421
422 /*
423  * Convert the logical range into a physical range and add it to our
424  * avl tree.
425  */
426 static void
427 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
428 {
429         vdev_t *vd = arg;
430         range_seg64_t logical_rs, physical_rs;
431         logical_rs.rs_start = start;
432         logical_rs.rs_end = start + size;
433
434         ASSERT(vd->vdev_ops->vdev_op_leaf);
435         vdev_xlate(vd, &logical_rs, &physical_rs);
436
437         IMPLY(vd->vdev_top == vd,
438             logical_rs.rs_start == physical_rs.rs_start);
439         IMPLY(vd->vdev_top == vd,
440             logical_rs.rs_end == physical_rs.rs_end);
441
442         /* Only add segments that we have not visited yet */
443         if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
444                 return;
445
446         /* Pick up where we left off mid-range. */
447         if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
448                 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
449                     "(%llu, %llu)", vd->vdev_path,
450                     (u_longlong_t)physical_rs.rs_start,
451                     (u_longlong_t)physical_rs.rs_end,
452                     (u_longlong_t)vd->vdev_initialize_last_offset,
453                     (u_longlong_t)physical_rs.rs_end);
454                 ASSERT3U(physical_rs.rs_end, >,
455                     vd->vdev_initialize_last_offset);
456                 physical_rs.rs_start = vd->vdev_initialize_last_offset;
457         }
458         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
459
460         /*
461          * With raidz, it's possible that the logical range does not live on
462          * this leaf vdev. We only add the physical range to this vdev's if it
463          * has a length greater than 0.
464          */
465         if (physical_rs.rs_end > physical_rs.rs_start) {
466                 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
467                     physical_rs.rs_end - physical_rs.rs_start);
468         } else {
469                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
470         }
471 }
472
473 static void
474 vdev_initialize_thread(void *arg)
475 {
476         vdev_t *vd = arg;
477         spa_t *spa = vd->vdev_spa;
478         int error = 0;
479         uint64_t ms_count = 0;
480
481         ASSERT(vdev_is_concrete(vd));
482         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
483
484         vd->vdev_initialize_last_offset = 0;
485         VERIFY0(vdev_initialize_load(vd));
486
487         abd_t *deadbeef = vdev_initialize_block_alloc();
488
489         vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
490             0, 0);
491
492         for (uint64_t i = 0; !vd->vdev_detached &&
493             i < vd->vdev_top->vdev_ms_count; i++) {
494                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
495                 boolean_t unload_when_done = B_FALSE;
496
497                 /*
498                  * If we've expanded the top-level vdev or it's our
499                  * first pass, calculate our progress.
500                  */
501                 if (vd->vdev_top->vdev_ms_count != ms_count) {
502                         vdev_initialize_calculate_progress(vd);
503                         ms_count = vd->vdev_top->vdev_ms_count;
504                 }
505
506                 spa_config_exit(spa, SCL_CONFIG, FTAG);
507                 metaslab_disable(msp);
508                 mutex_enter(&msp->ms_lock);
509                 if (!msp->ms_loaded && !msp->ms_loading)
510                         unload_when_done = B_TRUE;
511                 VERIFY0(metaslab_load(msp));
512
513                 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
514                     vd);
515                 mutex_exit(&msp->ms_lock);
516
517                 error = vdev_initialize_ranges(vd, deadbeef);
518                 metaslab_enable(msp, B_TRUE, unload_when_done);
519                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
520
521                 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
522                 if (error != 0)
523                         break;
524         }
525
526         spa_config_exit(spa, SCL_CONFIG, FTAG);
527         mutex_enter(&vd->vdev_initialize_io_lock);
528         while (vd->vdev_initialize_inflight > 0) {
529                 cv_wait(&vd->vdev_initialize_io_cv,
530                     &vd->vdev_initialize_io_lock);
531         }
532         mutex_exit(&vd->vdev_initialize_io_lock);
533
534         range_tree_destroy(vd->vdev_initialize_tree);
535         vdev_initialize_block_free(deadbeef);
536         vd->vdev_initialize_tree = NULL;
537
538         mutex_enter(&vd->vdev_initialize_lock);
539         if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
540                 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
541         }
542         ASSERT(vd->vdev_initialize_thread != NULL ||
543             vd->vdev_initialize_inflight == 0);
544
545         /*
546          * Drop the vdev_initialize_lock while we sync out the
547          * txg since it's possible that a device might be trying to
548          * come online and must check to see if it needs to restart an
549          * initialization. That thread will be holding the spa_config_lock
550          * which would prevent the txg_wait_synced from completing.
551          */
552         mutex_exit(&vd->vdev_initialize_lock);
553         txg_wait_synced(spa_get_dsl(spa), 0);
554         mutex_enter(&vd->vdev_initialize_lock);
555
556         vd->vdev_initialize_thread = NULL;
557         cv_broadcast(&vd->vdev_initialize_cv);
558         mutex_exit(&vd->vdev_initialize_lock);
559
560         thread_exit();
561 }
562
563 /*
564  * Initiates a device. Caller must hold vdev_initialize_lock.
565  * Device must be a leaf and not already be initializing.
566  */
567 void
568 vdev_initialize(vdev_t *vd)
569 {
570         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
571         ASSERT(vd->vdev_ops->vdev_op_leaf);
572         ASSERT(vdev_is_concrete(vd));
573         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
574         ASSERT(!vd->vdev_detached);
575         ASSERT(!vd->vdev_initialize_exit_wanted);
576         ASSERT(!vd->vdev_top->vdev_removing);
577
578         vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
579         vd->vdev_initialize_thread = thread_create(NULL, 0,
580             vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
581 }
582
583 /*
584  * Wait for the initialize thread to be terminated (cancelled or stopped).
585  */
586 static void
587 vdev_initialize_stop_wait_impl(vdev_t *vd)
588 {
589         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
590
591         while (vd->vdev_initialize_thread != NULL)
592                 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
593
594         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
595         vd->vdev_initialize_exit_wanted = B_FALSE;
596 }
597
598 /*
599  * Wait for vdev initialize threads which were either to cleanly exit.
600  */
601 void
602 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
603 {
604         vdev_t *vd;
605
606         ASSERT(MUTEX_HELD(&spa_namespace_lock));
607
608         while ((vd = list_remove_head(vd_list)) != NULL) {
609                 mutex_enter(&vd->vdev_initialize_lock);
610                 vdev_initialize_stop_wait_impl(vd);
611                 mutex_exit(&vd->vdev_initialize_lock);
612         }
613 }
614
615 /*
616  * Stop initializing a device, with the resultant initializing state being
617  * tgt_state.  For blocking behavior pass NULL for vd_list.  Otherwise, when
618  * a list_t is provided the stopping vdev is inserted in to the list.  Callers
619  * are then required to call vdev_initialize_stop_wait() to block for all the
620  * initialization threads to exit.  The caller must hold vdev_initialize_lock
621  * and must not be writing to the spa config, as the initializing thread may
622  * try to enter the config as a reader before exiting.
623  */
624 void
625 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
626     list_t *vd_list)
627 {
628         ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
629         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
630         ASSERT(vd->vdev_ops->vdev_op_leaf);
631         ASSERT(vdev_is_concrete(vd));
632
633         /*
634          * Allow cancel requests to proceed even if the initialize thread
635          * has stopped.
636          */
637         if (vd->vdev_initialize_thread == NULL &&
638             tgt_state != VDEV_INITIALIZE_CANCELED) {
639                 return;
640         }
641
642         vdev_initialize_change_state(vd, tgt_state);
643         vd->vdev_initialize_exit_wanted = B_TRUE;
644
645         if (vd_list == NULL) {
646                 vdev_initialize_stop_wait_impl(vd);
647         } else {
648                 ASSERT(MUTEX_HELD(&spa_namespace_lock));
649                 list_insert_tail(vd_list, vd);
650         }
651 }
652
653 static void
654 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
655     list_t *vd_list)
656 {
657         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
658                 mutex_enter(&vd->vdev_initialize_lock);
659                 vdev_initialize_stop(vd, tgt_state, vd_list);
660                 mutex_exit(&vd->vdev_initialize_lock);
661                 return;
662         }
663
664         for (uint64_t i = 0; i < vd->vdev_children; i++) {
665                 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
666                     vd_list);
667         }
668 }
669
670 /*
671  * Convenience function to stop initializing of a vdev tree and set all
672  * initialize thread pointers to NULL.
673  */
674 void
675 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
676 {
677         spa_t *spa = vd->vdev_spa;
678         list_t vd_list;
679
680         ASSERT(MUTEX_HELD(&spa_namespace_lock));
681
682         list_create(&vd_list, sizeof (vdev_t),
683             offsetof(vdev_t, vdev_initialize_node));
684
685         vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
686         vdev_initialize_stop_wait(spa, &vd_list);
687
688         if (vd->vdev_spa->spa_sync_on) {
689                 /* Make sure that our state has been synced to disk */
690                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
691         }
692
693         list_destroy(&vd_list);
694 }
695
696 void
697 vdev_initialize_restart(vdev_t *vd)
698 {
699         ASSERT(MUTEX_HELD(&spa_namespace_lock));
700         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
701
702         if (vd->vdev_leaf_zap != 0) {
703                 mutex_enter(&vd->vdev_initialize_lock);
704                 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
705                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
706                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
707                     sizeof (initialize_state), 1, &initialize_state);
708                 ASSERT(err == 0 || err == ENOENT);
709                 vd->vdev_initialize_state = initialize_state;
710
711                 uint64_t timestamp = 0;
712                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
713                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
714                     sizeof (timestamp), 1, &timestamp);
715                 ASSERT(err == 0 || err == ENOENT);
716                 vd->vdev_initialize_action_time = timestamp;
717
718                 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
719                     vd->vdev_offline) {
720                         /* load progress for reporting, but don't resume */
721                         VERIFY0(vdev_initialize_load(vd));
722                 } else if (vd->vdev_initialize_state ==
723                     VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
724                     !vd->vdev_top->vdev_removing &&
725                     vd->vdev_initialize_thread == NULL) {
726                         vdev_initialize(vd);
727                 }
728
729                 mutex_exit(&vd->vdev_initialize_lock);
730         }
731
732         for (uint64_t i = 0; i < vd->vdev_children; i++) {
733                 vdev_initialize_restart(vd->vdev_child[i]);
734         }
735 }
736
737 EXPORT_SYMBOL(vdev_initialize);
738 EXPORT_SYMBOL(vdev_initialize_stop);
739 EXPORT_SYMBOL(vdev_initialize_stop_all);
740 EXPORT_SYMBOL(vdev_initialize_stop_wait);
741 EXPORT_SYMBOL(vdev_initialize_restart);
742
743 /* BEGIN CSTYLED */
744 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW,
745         "Value written during zpool initialize");
746
747 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW,
748         "Size in bytes of writes by zpool initialize");
749 /* END CSTYLED */