]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_mirror.c
libarchive: merge vendor bugfixes
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_mirror.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/vdev_draid.h>
37 #include <sys/zio.h>
38 #include <sys/abd.h>
39 #include <sys/fs/zfs.h>
40
41 /*
42  * Vdev mirror kstats
43  */
44 static kstat_t *mirror_ksp = NULL;
45
46 typedef struct mirror_stats {
47         kstat_named_t vdev_mirror_stat_rotating_linear;
48         kstat_named_t vdev_mirror_stat_rotating_offset;
49         kstat_named_t vdev_mirror_stat_rotating_seek;
50         kstat_named_t vdev_mirror_stat_non_rotating_linear;
51         kstat_named_t vdev_mirror_stat_non_rotating_seek;
52
53         kstat_named_t vdev_mirror_stat_preferred_found;
54         kstat_named_t vdev_mirror_stat_preferred_not_found;
55 } mirror_stats_t;
56
57 static mirror_stats_t mirror_stats = {
58         /* New I/O follows directly the last I/O */
59         { "rotating_linear",                    KSTAT_DATA_UINT64 },
60         /* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
61         { "rotating_offset",                    KSTAT_DATA_UINT64 },
62         /* New I/O requires random seek */
63         { "rotating_seek",                      KSTAT_DATA_UINT64 },
64         /* New I/O follows directly the last I/O  (nonrot) */
65         { "non_rotating_linear",                KSTAT_DATA_UINT64 },
66         /* New I/O requires random seek (nonrot) */
67         { "non_rotating_seek",                  KSTAT_DATA_UINT64 },
68         /* Preferred child vdev found */
69         { "preferred_found",                    KSTAT_DATA_UINT64 },
70         /* Preferred child vdev not found or equal load  */
71         { "preferred_not_found",                KSTAT_DATA_UINT64 },
72
73 };
74
75 #define MIRROR_STAT(stat)               (mirror_stats.stat.value.ui64)
76 #define MIRROR_INCR(stat, val)          atomic_add_64(&MIRROR_STAT(stat), val)
77 #define MIRROR_BUMP(stat)               MIRROR_INCR(stat, 1)
78
79 void
80 vdev_mirror_stat_init(void)
81 {
82         mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
83             "misc", KSTAT_TYPE_NAMED,
84             sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
85         if (mirror_ksp != NULL) {
86                 mirror_ksp->ks_data = &mirror_stats;
87                 kstat_install(mirror_ksp);
88         }
89 }
90
91 void
92 vdev_mirror_stat_fini(void)
93 {
94         if (mirror_ksp != NULL) {
95                 kstat_delete(mirror_ksp);
96                 mirror_ksp = NULL;
97         }
98 }
99
100 /*
101  * Virtual device vector for mirroring.
102  */
103 typedef struct mirror_child {
104         vdev_t          *mc_vd;
105         uint64_t        mc_offset;
106         int             mc_error;
107         int             mc_load;
108         uint8_t         mc_tried;
109         uint8_t         mc_skipped;
110         uint8_t         mc_speculative;
111         uint8_t         mc_rebuilding;
112 } mirror_child_t;
113
114 typedef struct mirror_map {
115         int             *mm_preferred;
116         int             mm_preferred_cnt;
117         int             mm_children;
118         boolean_t       mm_resilvering;
119         boolean_t       mm_rebuilding;
120         boolean_t       mm_root;
121         mirror_child_t  mm_child[];
122 } mirror_map_t;
123
124 static const int vdev_mirror_shift = 21;
125
126 /*
127  * The load configuration settings below are tuned by default for
128  * the case where all devices are of the same rotational type.
129  *
130  * If there is a mixture of rotating and non-rotating media, setting
131  * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
132  * as it will direct more reads to the non-rotating vdevs which are more likely
133  * to have a higher performance.
134  */
135
136 /* Rotating media load calculation configuration. */
137 static int zfs_vdev_mirror_rotating_inc = 0;
138 static int zfs_vdev_mirror_rotating_seek_inc = 5;
139 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
140
141 /* Non-rotating media load calculation configuration. */
142 static int zfs_vdev_mirror_non_rotating_inc = 0;
143 static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
144
145 static inline size_t
146 vdev_mirror_map_size(int children)
147 {
148         return (offsetof(mirror_map_t, mm_child[children]) +
149             sizeof (int) * children);
150 }
151
152 static inline mirror_map_t *
153 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
154 {
155         mirror_map_t *mm;
156
157         mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
158         mm->mm_children = children;
159         mm->mm_resilvering = resilvering;
160         mm->mm_root = root;
161         mm->mm_preferred = (int *)((uintptr_t)mm +
162             offsetof(mirror_map_t, mm_child[children]));
163
164         return (mm);
165 }
166
167 static void
168 vdev_mirror_map_free(zio_t *zio)
169 {
170         mirror_map_t *mm = zio->io_vsd;
171
172         kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
173 }
174
175 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
176         .vsd_free = vdev_mirror_map_free,
177 };
178
179 static int
180 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
181 {
182         uint64_t last_offset;
183         int64_t offset_diff;
184         int load;
185
186         /* All DVAs have equal weight at the root. */
187         if (mm->mm_root)
188                 return (INT_MAX);
189
190         /*
191          * We don't return INT_MAX if the device is resilvering i.e.
192          * vdev_resilver_txg != 0 as when tested performance was slightly
193          * worse overall when resilvering with compared to without.
194          */
195
196         /* Fix zio_offset for leaf vdevs */
197         if (vd->vdev_ops->vdev_op_leaf)
198                 zio_offset += VDEV_LABEL_START_SIZE;
199
200         /* Standard load based on pending queue length. */
201         load = vdev_queue_length(vd);
202         last_offset = vdev_queue_last_offset(vd);
203
204         if (vd->vdev_nonrot) {
205                 /* Non-rotating media. */
206                 if (last_offset == zio_offset) {
207                         MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
208                         return (load + zfs_vdev_mirror_non_rotating_inc);
209                 }
210
211                 /*
212                  * Apply a seek penalty even for non-rotating devices as
213                  * sequential I/O's can be aggregated into fewer operations on
214                  * the device, thus avoiding unnecessary per-command overhead
215                  * and boosting performance.
216                  */
217                 MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
218                 return (load + zfs_vdev_mirror_non_rotating_seek_inc);
219         }
220
221         /* Rotating media I/O's which directly follow the last I/O. */
222         if (last_offset == zio_offset) {
223                 MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
224                 return (load + zfs_vdev_mirror_rotating_inc);
225         }
226
227         /*
228          * Apply half the seek increment to I/O's within seek offset
229          * of the last I/O issued to this vdev as they should incur less
230          * of a seek increment.
231          */
232         offset_diff = (int64_t)(last_offset - zio_offset);
233         if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
234                 MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
235                 return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
236         }
237
238         /* Apply the full seek increment to all other I/O's. */
239         MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
240         return (load + zfs_vdev_mirror_rotating_seek_inc);
241 }
242
243 static boolean_t
244 vdev_mirror_rebuilding(vdev_t *vd)
245 {
246         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
247                 return (B_TRUE);
248
249         for (int i = 0; i < vd->vdev_children; i++) {
250                 if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
251                         return (B_TRUE);
252                 }
253         }
254
255         return (B_FALSE);
256 }
257
258 /*
259  * Avoid inlining the function to keep vdev_mirror_io_start(), which
260  * is this functions only caller, as small as possible on the stack.
261  */
262 noinline static mirror_map_t *
263 vdev_mirror_map_init(zio_t *zio)
264 {
265         mirror_map_t *mm = NULL;
266         mirror_child_t *mc;
267         vdev_t *vd = zio->io_vd;
268         int c;
269
270         if (vd == NULL) {
271                 dva_t *dva = zio->io_bp->blk_dva;
272                 spa_t *spa = zio->io_spa;
273                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
274                 dva_t dva_copy[SPA_DVAS_PER_BP];
275
276                 /*
277                  * The sequential scrub code sorts and issues all DVAs
278                  * of a bp separately. Each of these IOs includes all
279                  * original DVA copies so that repairs can be performed
280                  * in the event of an error, but we only actually want
281                  * to check the first DVA since the others will be
282                  * checked by their respective sorted IOs. Only if we
283                  * hit an error will we try all DVAs upon retrying.
284                  *
285                  * Note: This check is safe even if the user switches
286                  * from a legacy scrub to a sequential one in the middle
287                  * of processing, since scn_is_sorted isn't updated until
288                  * all outstanding IOs from the previous scrub pass
289                  * complete.
290                  */
291                 if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
292                     !(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
293                     dsl_scan_scrubbing(spa->spa_dsl_pool) &&
294                     scn->scn_is_sorted) {
295                         c = 1;
296                 } else {
297                         c = BP_GET_NDVAS(zio->io_bp);
298                 }
299
300                 /*
301                  * If the pool cannot be written to, then infer that some
302                  * DVAs might be invalid or point to vdevs that do not exist.
303                  * We skip them.
304                  */
305                 if (!spa_writeable(spa)) {
306                         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
307                         int j = 0;
308                         for (int i = 0; i < c; i++) {
309                                 if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
310                                         dva_copy[j++] = dva[i];
311                         }
312                         if (j == 0) {
313                                 zio->io_vsd = NULL;
314                                 zio->io_error = ENXIO;
315                                 return (NULL);
316                         }
317                         if (j < c) {
318                                 dva = dva_copy;
319                                 c = j;
320                         }
321                 }
322
323                 mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
324                 for (c = 0; c < mm->mm_children; c++) {
325                         mc = &mm->mm_child[c];
326
327                         mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
328                         mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
329                         if (mc->mc_vd == NULL) {
330                                 kmem_free(mm, vdev_mirror_map_size(
331                                     mm->mm_children));
332                                 zio->io_vsd = NULL;
333                                 zio->io_error = ENXIO;
334                                 return (NULL);
335                         }
336                 }
337         } else {
338                 /*
339                  * If we are resilvering, then we should handle scrub reads
340                  * differently; we shouldn't issue them to the resilvering
341                  * device because it might not have those blocks.
342                  *
343                  * We are resilvering iff:
344                  * 1) We are a replacing vdev (ie our name is "replacing-1" or
345                  *    "spare-1" or something like that), and
346                  * 2) The pool is currently being resilvered.
347                  *
348                  * We cannot simply check vd->vdev_resilver_txg, because it's
349                  * not set in this path.
350                  *
351                  * Nor can we just check our vdev_ops; there are cases (such as
352                  * when a user types "zpool replace pool odev spare_dev" and
353                  * spare_dev is in the spare list, or when a spare device is
354                  * automatically used to replace a DEGRADED device) when
355                  * resilvering is complete but both the original vdev and the
356                  * spare vdev remain in the pool.  That behavior is intentional.
357                  * It helps implement the policy that a spare should be
358                  * automatically removed from the pool after the user replaces
359                  * the device that originally failed.
360                  *
361                  * If a spa load is in progress, then spa_dsl_pool may be
362                  * uninitialized.  But we shouldn't be resilvering during a spa
363                  * load anyway.
364                  */
365                 boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
366                     vd->vdev_ops == &vdev_spare_ops) &&
367                     spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
368                     dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
369                 mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
370                     B_FALSE);
371                 for (c = 0; c < mm->mm_children; c++) {
372                         mc = &mm->mm_child[c];
373                         mc->mc_vd = vd->vdev_child[c];
374                         mc->mc_offset = zio->io_offset;
375
376                         if (vdev_mirror_rebuilding(mc->mc_vd))
377                                 mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
378                 }
379         }
380
381         return (mm);
382 }
383
384 static int
385 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
386     uint64_t *logical_ashift, uint64_t *physical_ashift)
387 {
388         int numerrors = 0;
389         int lasterror = 0;
390
391         if (vd->vdev_children == 0) {
392                 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
393                 return (SET_ERROR(EINVAL));
394         }
395
396         vdev_open_children(vd);
397
398         for (int c = 0; c < vd->vdev_children; c++) {
399                 vdev_t *cvd = vd->vdev_child[c];
400
401                 if (cvd->vdev_open_error) {
402                         lasterror = cvd->vdev_open_error;
403                         numerrors++;
404                         continue;
405                 }
406
407                 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
408                 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
409                 *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
410                 *physical_ashift = MAX(*physical_ashift,
411                     cvd->vdev_physical_ashift);
412         }
413
414         if (numerrors == vd->vdev_children) {
415                 if (vdev_children_are_offline(vd))
416                         vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
417                 else
418                         vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
419                 return (lasterror);
420         }
421
422         return (0);
423 }
424
425 static void
426 vdev_mirror_close(vdev_t *vd)
427 {
428         for (int c = 0; c < vd->vdev_children; c++)
429                 vdev_close(vd->vdev_child[c]);
430 }
431
432 static void
433 vdev_mirror_child_done(zio_t *zio)
434 {
435         mirror_child_t *mc = zio->io_private;
436
437         mc->mc_error = zio->io_error;
438         mc->mc_tried = 1;
439         mc->mc_skipped = 0;
440 }
441
442 static void
443 vdev_mirror_scrub_done(zio_t *zio)
444 {
445         mirror_child_t *mc = zio->io_private;
446
447         if (zio->io_error == 0) {
448                 zio_t *pio;
449                 zio_link_t *zl = NULL;
450
451                 mutex_enter(&zio->io_lock);
452                 while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
453                         mutex_enter(&pio->io_lock);
454                         ASSERT3U(zio->io_size, >=, pio->io_size);
455                         abd_copy(pio->io_abd, zio->io_abd, pio->io_size);
456                         mutex_exit(&pio->io_lock);
457                 }
458                 mutex_exit(&zio->io_lock);
459         }
460
461         abd_free(zio->io_abd);
462
463         mc->mc_error = zio->io_error;
464         mc->mc_tried = 1;
465         mc->mc_skipped = 0;
466 }
467
468 /*
469  * Check the other, lower-index DVAs to see if they're on the same
470  * vdev as the child we picked.  If they are, use them since they
471  * are likely to have been allocated from the primary metaslab in
472  * use at the time, and hence are more likely to have locality with
473  * single-copy data.
474  */
475 static int
476 vdev_mirror_dva_select(zio_t *zio, int p)
477 {
478         dva_t *dva = zio->io_bp->blk_dva;
479         mirror_map_t *mm = zio->io_vsd;
480         int preferred;
481         int c;
482
483         preferred = mm->mm_preferred[p];
484         for (p--; p >= 0; p--) {
485                 c = mm->mm_preferred[p];
486                 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
487                         preferred = c;
488         }
489         return (preferred);
490 }
491
492 static int
493 vdev_mirror_preferred_child_randomize(zio_t *zio)
494 {
495         mirror_map_t *mm = zio->io_vsd;
496         int p;
497
498         if (mm->mm_root) {
499                 p = random_in_range(mm->mm_preferred_cnt);
500                 return (vdev_mirror_dva_select(zio, p));
501         }
502
503         /*
504          * To ensure we don't always favour the first matching vdev,
505          * which could lead to wear leveling issues on SSD's, we
506          * use the I/O offset as a pseudo random seed into the vdevs
507          * which have the lowest load.
508          */
509         p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
510         return (mm->mm_preferred[p]);
511 }
512
513 static boolean_t
514 vdev_mirror_child_readable(mirror_child_t *mc)
515 {
516         vdev_t *vd = mc->mc_vd;
517
518         if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
519                 return (vdev_draid_readable(vd, mc->mc_offset));
520         else
521                 return (vdev_readable(vd));
522 }
523
524 static boolean_t
525 vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
526 {
527         vdev_t *vd = mc->mc_vd;
528
529         if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
530                 return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
531         else
532                 return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
533 }
534
535 /*
536  * Try to find a vdev whose DTL doesn't contain the block we want to read
537  * preferring vdevs based on determined load. If we can't, try the read on
538  * any vdev we haven't already tried.
539  *
540  * Distributed spares are an exception to the above load rule. They are
541  * always preferred in order to detect gaps in the distributed spare which
542  * are created when another disk in the dRAID fails. In order to restore
543  * redundancy those gaps must be read to trigger the required repair IO.
544  */
545 static int
546 vdev_mirror_child_select(zio_t *zio)
547 {
548         mirror_map_t *mm = zio->io_vsd;
549         uint64_t txg = zio->io_txg;
550         int c, lowest_load;
551
552         ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
553
554         lowest_load = INT_MAX;
555         mm->mm_preferred_cnt = 0;
556         for (c = 0; c < mm->mm_children; c++) {
557                 mirror_child_t *mc;
558
559                 mc = &mm->mm_child[c];
560                 if (mc->mc_tried || mc->mc_skipped)
561                         continue;
562
563                 if (mc->mc_vd == NULL ||
564                     !vdev_mirror_child_readable(mc)) {
565                         mc->mc_error = SET_ERROR(ENXIO);
566                         mc->mc_tried = 1;       /* don't even try */
567                         mc->mc_skipped = 1;
568                         continue;
569                 }
570
571                 if (vdev_mirror_child_missing(mc, txg, 1)) {
572                         mc->mc_error = SET_ERROR(ESTALE);
573                         mc->mc_skipped = 1;
574                         mc->mc_speculative = 1;
575                         continue;
576                 }
577
578                 if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
579                         mm->mm_preferred[0] = c;
580                         mm->mm_preferred_cnt = 1;
581                         break;
582                 }
583
584                 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
585                 if (mc->mc_load > lowest_load)
586                         continue;
587
588                 if (mc->mc_load < lowest_load) {
589                         lowest_load = mc->mc_load;
590                         mm->mm_preferred_cnt = 0;
591                 }
592                 mm->mm_preferred[mm->mm_preferred_cnt] = c;
593                 mm->mm_preferred_cnt++;
594         }
595
596         if (mm->mm_preferred_cnt == 1) {
597                 MIRROR_BUMP(vdev_mirror_stat_preferred_found);
598                 return (mm->mm_preferred[0]);
599         }
600
601         if (mm->mm_preferred_cnt > 1) {
602                 MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
603                 return (vdev_mirror_preferred_child_randomize(zio));
604         }
605
606         /*
607          * Every device is either missing or has this txg in its DTL.
608          * Look for any child we haven't already tried before giving up.
609          */
610         for (c = 0; c < mm->mm_children; c++) {
611                 if (!mm->mm_child[c].mc_tried)
612                         return (c);
613         }
614
615         /*
616          * Every child failed.  There's no place left to look.
617          */
618         return (-1);
619 }
620
621 static void
622 vdev_mirror_io_start(zio_t *zio)
623 {
624         mirror_map_t *mm;
625         mirror_child_t *mc;
626         int c, children;
627
628         mm = vdev_mirror_map_init(zio);
629         zio->io_vsd = mm;
630         zio->io_vsd_ops = &vdev_mirror_vsd_ops;
631
632         if (mm == NULL) {
633                 ASSERT(!spa_trust_config(zio->io_spa));
634                 ASSERT(zio->io_type == ZIO_TYPE_READ);
635                 zio_execute(zio);
636                 return;
637         }
638
639         if (zio->io_type == ZIO_TYPE_READ) {
640                 if (zio->io_bp != NULL &&
641                     (zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
642                         /*
643                          * For scrubbing reads (if we can verify the
644                          * checksum here, as indicated by io_bp being
645                          * non-NULL) we need to allocate a read buffer for
646                          * each child and issue reads to all children.  If
647                          * any child succeeds, it will copy its data into
648                          * zio->io_data in vdev_mirror_scrub_done.
649                          */
650                         for (c = 0; c < mm->mm_children; c++) {
651                                 mc = &mm->mm_child[c];
652
653                                 /* Don't issue ZIOs to offline children */
654                                 if (!vdev_mirror_child_readable(mc)) {
655                                         mc->mc_error = SET_ERROR(ENXIO);
656                                         mc->mc_tried = 1;
657                                         mc->mc_skipped = 1;
658                                         continue;
659                                 }
660
661                                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
662                                     mc->mc_vd, mc->mc_offset,
663                                     abd_alloc_sametype(zio->io_abd,
664                                     zio->io_size), zio->io_size,
665                                     zio->io_type, zio->io_priority, 0,
666                                     vdev_mirror_scrub_done, mc));
667                         }
668                         zio_execute(zio);
669                         return;
670                 }
671                 /*
672                  * For normal reads just pick one child.
673                  */
674                 c = vdev_mirror_child_select(zio);
675                 children = (c >= 0);
676         } else {
677                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
678
679                 /*
680                  * Writes go to all children.
681                  */
682                 c = 0;
683                 children = mm->mm_children;
684         }
685
686         while (children--) {
687                 mc = &mm->mm_child[c];
688                 c++;
689
690                 /*
691                  * When sequentially resilvering only issue write repair
692                  * IOs to the vdev which is being rebuilt since performance
693                  * is limited by the slowest child.  This is an issue for
694                  * faster replacement devices such as distributed spares.
695                  */
696                 if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
697                     (zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
698                     !(zio->io_flags & ZIO_FLAG_SCRUB) &&
699                     mm->mm_rebuilding && !mc->mc_rebuilding) {
700                         continue;
701                 }
702
703                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
704                     mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
705                     zio->io_type, zio->io_priority, 0,
706                     vdev_mirror_child_done, mc));
707         }
708
709         zio_execute(zio);
710 }
711
712 static int
713 vdev_mirror_worst_error(mirror_map_t *mm)
714 {
715         int error[2] = { 0, 0 };
716
717         for (int c = 0; c < mm->mm_children; c++) {
718                 mirror_child_t *mc = &mm->mm_child[c];
719                 int s = mc->mc_speculative;
720                 error[s] = zio_worst_error(error[s], mc->mc_error);
721         }
722
723         return (error[0] ? error[0] : error[1]);
724 }
725
726 static void
727 vdev_mirror_io_done(zio_t *zio)
728 {
729         mirror_map_t *mm = zio->io_vsd;
730         mirror_child_t *mc;
731         int c;
732         int good_copies = 0;
733         int unexpected_errors = 0;
734
735         if (mm == NULL)
736                 return;
737
738         for (c = 0; c < mm->mm_children; c++) {
739                 mc = &mm->mm_child[c];
740
741                 if (mc->mc_error) {
742                         if (!mc->mc_skipped)
743                                 unexpected_errors++;
744                 } else if (mc->mc_tried) {
745                         good_copies++;
746                 }
747         }
748
749         if (zio->io_type == ZIO_TYPE_WRITE) {
750                 /*
751                  * XXX -- for now, treat partial writes as success.
752                  *
753                  * Now that we support write reallocation, it would be better
754                  * to treat partial failure as real failure unless there are
755                  * no non-degraded top-level vdevs left, and not update DTLs
756                  * if we intend to reallocate.
757                  */
758                 /* XXPOLICY */
759                 if (good_copies != mm->mm_children) {
760                         /*
761                          * Always require at least one good copy.
762                          *
763                          * For ditto blocks (io_vd == NULL), require
764                          * all copies to be good.
765                          *
766                          * XXX -- for replacing vdevs, there's no great answer.
767                          * If the old device is really dead, we may not even
768                          * be able to access it -- so we only want to
769                          * require good writes to the new device.  But if
770                          * the new device turns out to be flaky, we want
771                          * to be able to detach it -- which requires all
772                          * writes to the old device to have succeeded.
773                          */
774                         if (good_copies == 0 || zio->io_vd == NULL)
775                                 zio->io_error = vdev_mirror_worst_error(mm);
776                 }
777                 return;
778         }
779
780         ASSERT(zio->io_type == ZIO_TYPE_READ);
781
782         /*
783          * If we don't have a good copy yet, keep trying other children.
784          */
785         /* XXPOLICY */
786         if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
787                 ASSERT(c >= 0 && c < mm->mm_children);
788                 mc = &mm->mm_child[c];
789                 zio_vdev_io_redone(zio);
790                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
791                     mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
792                     ZIO_TYPE_READ, zio->io_priority, 0,
793                     vdev_mirror_child_done, mc));
794                 return;
795         }
796
797         /* XXPOLICY */
798         if (good_copies == 0) {
799                 zio->io_error = vdev_mirror_worst_error(mm);
800                 ASSERT(zio->io_error != 0);
801         }
802
803         if (good_copies && spa_writeable(zio->io_spa) &&
804             (unexpected_errors ||
805             (zio->io_flags & ZIO_FLAG_RESILVER) ||
806             ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
807                 /*
808                  * Use the good data we have in hand to repair damaged children.
809                  */
810                 for (c = 0; c < mm->mm_children; c++) {
811                         /*
812                          * Don't rewrite known good children.
813                          * Not only is it unnecessary, it could
814                          * actually be harmful: if the system lost
815                          * power while rewriting the only good copy,
816                          * there would be no good copies left!
817                          */
818                         mc = &mm->mm_child[c];
819
820                         if (mc->mc_error == 0) {
821                                 vdev_ops_t *ops = mc->mc_vd->vdev_ops;
822
823                                 if (mc->mc_tried)
824                                         continue;
825                                 /*
826                                  * We didn't try this child.  We need to
827                                  * repair it if:
828                                  * 1. it's a scrub (in which case we have
829                                  * tried everything that was healthy)
830                                  *  - or -
831                                  * 2. it's an indirect or distributed spare
832                                  * vdev (in which case it could point to any
833                                  * other vdev, which might have a bad DTL)
834                                  *  - or -
835                                  * 3. the DTL indicates that this data is
836                                  * missing from this vdev
837                                  */
838                                 if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
839                                     ops != &vdev_indirect_ops &&
840                                     ops != &vdev_draid_spare_ops &&
841                                     !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
842                                     zio->io_txg, 1))
843                                         continue;
844                                 mc->mc_error = SET_ERROR(ESTALE);
845                         }
846
847                         zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
848                             mc->mc_vd, mc->mc_offset,
849                             zio->io_abd, zio->io_size, ZIO_TYPE_WRITE,
850                             zio->io_priority == ZIO_PRIORITY_REBUILD ?
851                             ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
852                             ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
853                             ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
854                 }
855         }
856 }
857
858 static void
859 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
860 {
861         if (faulted == vd->vdev_children) {
862                 if (vdev_children_are_offline(vd)) {
863                         vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
864                             VDEV_AUX_CHILDREN_OFFLINE);
865                 } else {
866                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
867                             VDEV_AUX_NO_REPLICAS);
868                 }
869         } else if (degraded + faulted != 0) {
870                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
871         } else {
872                 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
873         }
874 }
875
876 /*
877  * Return the maximum asize for a rebuild zio in the provided range.
878  */
879 static uint64_t
880 vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
881     uint64_t max_segment)
882 {
883         (void) start;
884
885         uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
886             SPA_MAXBLOCKSIZE);
887
888         return (MIN(asize, vdev_psize_to_asize(vd, psize)));
889 }
890
891 vdev_ops_t vdev_mirror_ops = {
892         .vdev_op_init = NULL,
893         .vdev_op_fini = NULL,
894         .vdev_op_open = vdev_mirror_open,
895         .vdev_op_close = vdev_mirror_close,
896         .vdev_op_asize = vdev_default_asize,
897         .vdev_op_min_asize = vdev_default_min_asize,
898         .vdev_op_min_alloc = NULL,
899         .vdev_op_io_start = vdev_mirror_io_start,
900         .vdev_op_io_done = vdev_mirror_io_done,
901         .vdev_op_state_change = vdev_mirror_state_change,
902         .vdev_op_need_resilver = vdev_default_need_resilver,
903         .vdev_op_hold = NULL,
904         .vdev_op_rele = NULL,
905         .vdev_op_remap = NULL,
906         .vdev_op_xlate = vdev_default_xlate,
907         .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
908         .vdev_op_metaslab_init = NULL,
909         .vdev_op_config_generate = NULL,
910         .vdev_op_nparity = NULL,
911         .vdev_op_ndisks = NULL,
912         .vdev_op_type = VDEV_TYPE_MIRROR,       /* name of this vdev type */
913         .vdev_op_leaf = B_FALSE                 /* not a leaf vdev */
914 };
915
916 vdev_ops_t vdev_replacing_ops = {
917         .vdev_op_init = NULL,
918         .vdev_op_fini = NULL,
919         .vdev_op_open = vdev_mirror_open,
920         .vdev_op_close = vdev_mirror_close,
921         .vdev_op_asize = vdev_default_asize,
922         .vdev_op_min_asize = vdev_default_min_asize,
923         .vdev_op_min_alloc = NULL,
924         .vdev_op_io_start = vdev_mirror_io_start,
925         .vdev_op_io_done = vdev_mirror_io_done,
926         .vdev_op_state_change = vdev_mirror_state_change,
927         .vdev_op_need_resilver = vdev_default_need_resilver,
928         .vdev_op_hold = NULL,
929         .vdev_op_rele = NULL,
930         .vdev_op_remap = NULL,
931         .vdev_op_xlate = vdev_default_xlate,
932         .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
933         .vdev_op_metaslab_init = NULL,
934         .vdev_op_config_generate = NULL,
935         .vdev_op_nparity = NULL,
936         .vdev_op_ndisks = NULL,
937         .vdev_op_type = VDEV_TYPE_REPLACING,    /* name of this vdev type */
938         .vdev_op_leaf = B_FALSE                 /* not a leaf vdev */
939 };
940
941 vdev_ops_t vdev_spare_ops = {
942         .vdev_op_init = NULL,
943         .vdev_op_fini = NULL,
944         .vdev_op_open = vdev_mirror_open,
945         .vdev_op_close = vdev_mirror_close,
946         .vdev_op_asize = vdev_default_asize,
947         .vdev_op_min_asize = vdev_default_min_asize,
948         .vdev_op_min_alloc = NULL,
949         .vdev_op_io_start = vdev_mirror_io_start,
950         .vdev_op_io_done = vdev_mirror_io_done,
951         .vdev_op_state_change = vdev_mirror_state_change,
952         .vdev_op_need_resilver = vdev_default_need_resilver,
953         .vdev_op_hold = NULL,
954         .vdev_op_rele = NULL,
955         .vdev_op_remap = NULL,
956         .vdev_op_xlate = vdev_default_xlate,
957         .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
958         .vdev_op_metaslab_init = NULL,
959         .vdev_op_config_generate = NULL,
960         .vdev_op_nparity = NULL,
961         .vdev_op_ndisks = NULL,
962         .vdev_op_type = VDEV_TYPE_SPARE,        /* name of this vdev type */
963         .vdev_op_leaf = B_FALSE                 /* not a leaf vdev */
964 };
965
966 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW,
967         "Rotating media load increment for non-seeking I/Os");
968
969 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT,
970         ZMOD_RW, "Rotating media load increment for seeking I/Os");
971
972 /* BEGIN CSTYLED */
973 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT,
974         ZMOD_RW,
975         "Offset in bytes from the last I/O which triggers "
976         "a reduced rotating media seek increment");
977 /* END CSTYLED */
978
979 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT,
980         ZMOD_RW, "Non-rotating media load increment for non-seeking I/Os");
981
982 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT,
983         ZMOD_RW, "Non-rotating media load increment for seeking I/Os");