]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_mirror.c
Merge bmake-20230510
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_mirror.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/vdev_draid.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/abd.h>
40 #include <sys/fs/zfs.h>
41
42 /*
43  * Vdev mirror kstats
44  */
45 static kstat_t *mirror_ksp = NULL;
46
47 typedef struct mirror_stats {
48         kstat_named_t vdev_mirror_stat_rotating_linear;
49         kstat_named_t vdev_mirror_stat_rotating_offset;
50         kstat_named_t vdev_mirror_stat_rotating_seek;
51         kstat_named_t vdev_mirror_stat_non_rotating_linear;
52         kstat_named_t vdev_mirror_stat_non_rotating_seek;
53
54         kstat_named_t vdev_mirror_stat_preferred_found;
55         kstat_named_t vdev_mirror_stat_preferred_not_found;
56 } mirror_stats_t;
57
58 static mirror_stats_t mirror_stats = {
59         /* New I/O follows directly the last I/O */
60         { "rotating_linear",                    KSTAT_DATA_UINT64 },
61         /* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
62         { "rotating_offset",                    KSTAT_DATA_UINT64 },
63         /* New I/O requires random seek */
64         { "rotating_seek",                      KSTAT_DATA_UINT64 },
65         /* New I/O follows directly the last I/O  (nonrot) */
66         { "non_rotating_linear",                KSTAT_DATA_UINT64 },
67         /* New I/O requires random seek (nonrot) */
68         { "non_rotating_seek",                  KSTAT_DATA_UINT64 },
69         /* Preferred child vdev found */
70         { "preferred_found",                    KSTAT_DATA_UINT64 },
71         /* Preferred child vdev not found or equal load  */
72         { "preferred_not_found",                KSTAT_DATA_UINT64 },
73
74 };
75
76 #define MIRROR_STAT(stat)               (mirror_stats.stat.value.ui64)
77 #define MIRROR_INCR(stat, val)          atomic_add_64(&MIRROR_STAT(stat), val)
78 #define MIRROR_BUMP(stat)               MIRROR_INCR(stat, 1)
79
80 void
81 vdev_mirror_stat_init(void)
82 {
83         mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
84             "misc", KSTAT_TYPE_NAMED,
85             sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
86         if (mirror_ksp != NULL) {
87                 mirror_ksp->ks_data = &mirror_stats;
88                 kstat_install(mirror_ksp);
89         }
90 }
91
92 void
93 vdev_mirror_stat_fini(void)
94 {
95         if (mirror_ksp != NULL) {
96                 kstat_delete(mirror_ksp);
97                 mirror_ksp = NULL;
98         }
99 }
100
101 /*
102  * Virtual device vector for mirroring.
103  */
104 typedef struct mirror_child {
105         vdev_t          *mc_vd;
106         abd_t           *mc_abd;
107         uint64_t        mc_offset;
108         int             mc_error;
109         int             mc_load;
110         uint8_t         mc_tried;
111         uint8_t         mc_skipped;
112         uint8_t         mc_speculative;
113         uint8_t         mc_rebuilding;
114 } mirror_child_t;
115
116 typedef struct mirror_map {
117         int             *mm_preferred;
118         int             mm_preferred_cnt;
119         int             mm_children;
120         boolean_t       mm_resilvering;
121         boolean_t       mm_rebuilding;
122         boolean_t       mm_root;
123         mirror_child_t  mm_child[];
124 } mirror_map_t;
125
126 static const int vdev_mirror_shift = 21;
127
128 /*
129  * The load configuration settings below are tuned by default for
130  * the case where all devices are of the same rotational type.
131  *
132  * If there is a mixture of rotating and non-rotating media, setting
133  * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
134  * as it will direct more reads to the non-rotating vdevs which are more likely
135  * to have a higher performance.
136  */
137
138 /* Rotating media load calculation configuration. */
139 static int zfs_vdev_mirror_rotating_inc = 0;
140 static int zfs_vdev_mirror_rotating_seek_inc = 5;
141 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
142
143 /* Non-rotating media load calculation configuration. */
144 static int zfs_vdev_mirror_non_rotating_inc = 0;
145 static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
146
147 static inline size_t
148 vdev_mirror_map_size(int children)
149 {
150         return (offsetof(mirror_map_t, mm_child[children]) +
151             sizeof (int) * children);
152 }
153
154 static inline mirror_map_t *
155 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
156 {
157         mirror_map_t *mm;
158
159         mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
160         mm->mm_children = children;
161         mm->mm_resilvering = resilvering;
162         mm->mm_root = root;
163         mm->mm_preferred = (int *)((uintptr_t)mm +
164             offsetof(mirror_map_t, mm_child[children]));
165
166         return (mm);
167 }
168
169 static void
170 vdev_mirror_map_free(zio_t *zio)
171 {
172         mirror_map_t *mm = zio->io_vsd;
173
174         kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
175 }
176
177 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
178         .vsd_free = vdev_mirror_map_free,
179 };
180
181 static int
182 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
183 {
184         uint64_t last_offset;
185         int64_t offset_diff;
186         int load;
187
188         /* All DVAs have equal weight at the root. */
189         if (mm->mm_root)
190                 return (INT_MAX);
191
192         /*
193          * We don't return INT_MAX if the device is resilvering i.e.
194          * vdev_resilver_txg != 0 as when tested performance was slightly
195          * worse overall when resilvering with compared to without.
196          */
197
198         /* Fix zio_offset for leaf vdevs */
199         if (vd->vdev_ops->vdev_op_leaf)
200                 zio_offset += VDEV_LABEL_START_SIZE;
201
202         /* Standard load based on pending queue length. */
203         load = vdev_queue_length(vd);
204         last_offset = vdev_queue_last_offset(vd);
205
206         if (vd->vdev_nonrot) {
207                 /* Non-rotating media. */
208                 if (last_offset == zio_offset) {
209                         MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
210                         return (load + zfs_vdev_mirror_non_rotating_inc);
211                 }
212
213                 /*
214                  * Apply a seek penalty even for non-rotating devices as
215                  * sequential I/O's can be aggregated into fewer operations on
216                  * the device, thus avoiding unnecessary per-command overhead
217                  * and boosting performance.
218                  */
219                 MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
220                 return (load + zfs_vdev_mirror_non_rotating_seek_inc);
221         }
222
223         /* Rotating media I/O's which directly follow the last I/O. */
224         if (last_offset == zio_offset) {
225                 MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
226                 return (load + zfs_vdev_mirror_rotating_inc);
227         }
228
229         /*
230          * Apply half the seek increment to I/O's within seek offset
231          * of the last I/O issued to this vdev as they should incur less
232          * of a seek increment.
233          */
234         offset_diff = (int64_t)(last_offset - zio_offset);
235         if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
236                 MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
237                 return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
238         }
239
240         /* Apply the full seek increment to all other I/O's. */
241         MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
242         return (load + zfs_vdev_mirror_rotating_seek_inc);
243 }
244
245 static boolean_t
246 vdev_mirror_rebuilding(vdev_t *vd)
247 {
248         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
249                 return (B_TRUE);
250
251         for (int i = 0; i < vd->vdev_children; i++) {
252                 if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
253                         return (B_TRUE);
254                 }
255         }
256
257         return (B_FALSE);
258 }
259
260 /*
261  * Avoid inlining the function to keep vdev_mirror_io_start(), which
262  * is this functions only caller, as small as possible on the stack.
263  */
264 noinline static mirror_map_t *
265 vdev_mirror_map_init(zio_t *zio)
266 {
267         mirror_map_t *mm = NULL;
268         mirror_child_t *mc;
269         vdev_t *vd = zio->io_vd;
270         int c;
271
272         if (vd == NULL) {
273                 dva_t *dva = zio->io_bp->blk_dva;
274                 spa_t *spa = zio->io_spa;
275                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
276                 dva_t dva_copy[SPA_DVAS_PER_BP];
277
278                 /*
279                  * The sequential scrub code sorts and issues all DVAs
280                  * of a bp separately. Each of these IOs includes all
281                  * original DVA copies so that repairs can be performed
282                  * in the event of an error, but we only actually want
283                  * to check the first DVA since the others will be
284                  * checked by their respective sorted IOs. Only if we
285                  * hit an error will we try all DVAs upon retrying.
286                  *
287                  * Note: This check is safe even if the user switches
288                  * from a legacy scrub to a sequential one in the middle
289                  * of processing, since scn_is_sorted isn't updated until
290                  * all outstanding IOs from the previous scrub pass
291                  * complete.
292                  */
293                 if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
294                     !(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
295                     dsl_scan_scrubbing(spa->spa_dsl_pool) &&
296                     scn->scn_is_sorted) {
297                         c = 1;
298                 } else {
299                         c = BP_GET_NDVAS(zio->io_bp);
300                 }
301
302                 /*
303                  * If the pool cannot be written to, then infer that some
304                  * DVAs might be invalid or point to vdevs that do not exist.
305                  * We skip them.
306                  */
307                 if (!spa_writeable(spa)) {
308                         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
309                         int j = 0;
310                         for (int i = 0; i < c; i++) {
311                                 if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
312                                         dva_copy[j++] = dva[i];
313                         }
314                         if (j == 0) {
315                                 zio->io_vsd = NULL;
316                                 zio->io_error = ENXIO;
317                                 return (NULL);
318                         }
319                         if (j < c) {
320                                 dva = dva_copy;
321                                 c = j;
322                         }
323                 }
324
325                 mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
326                 for (c = 0; c < mm->mm_children; c++) {
327                         mc = &mm->mm_child[c];
328
329                         mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
330                         mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
331                         if (mc->mc_vd == NULL) {
332                                 kmem_free(mm, vdev_mirror_map_size(
333                                     mm->mm_children));
334                                 zio->io_vsd = NULL;
335                                 zio->io_error = ENXIO;
336                                 return (NULL);
337                         }
338                 }
339         } else {
340                 /*
341                  * If we are resilvering, then we should handle scrub reads
342                  * differently; we shouldn't issue them to the resilvering
343                  * device because it might not have those blocks.
344                  *
345                  * We are resilvering iff:
346                  * 1) We are a replacing vdev (ie our name is "replacing-1" or
347                  *    "spare-1" or something like that), and
348                  * 2) The pool is currently being resilvered.
349                  *
350                  * We cannot simply check vd->vdev_resilver_txg, because it's
351                  * not set in this path.
352                  *
353                  * Nor can we just check our vdev_ops; there are cases (such as
354                  * when a user types "zpool replace pool odev spare_dev" and
355                  * spare_dev is in the spare list, or when a spare device is
356                  * automatically used to replace a DEGRADED device) when
357                  * resilvering is complete but both the original vdev and the
358                  * spare vdev remain in the pool.  That behavior is intentional.
359                  * It helps implement the policy that a spare should be
360                  * automatically removed from the pool after the user replaces
361                  * the device that originally failed.
362                  *
363                  * If a spa load is in progress, then spa_dsl_pool may be
364                  * uninitialized.  But we shouldn't be resilvering during a spa
365                  * load anyway.
366                  */
367                 boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
368                     vd->vdev_ops == &vdev_spare_ops) &&
369                     spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
370                     dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
371                 mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
372                     B_FALSE);
373                 for (c = 0; c < mm->mm_children; c++) {
374                         mc = &mm->mm_child[c];
375                         mc->mc_vd = vd->vdev_child[c];
376                         mc->mc_offset = zio->io_offset;
377
378                         if (vdev_mirror_rebuilding(mc->mc_vd))
379                                 mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
380                 }
381         }
382
383         return (mm);
384 }
385
386 static int
387 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
388     uint64_t *logical_ashift, uint64_t *physical_ashift)
389 {
390         int numerrors = 0;
391         int lasterror = 0;
392
393         if (vd->vdev_children == 0) {
394                 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
395                 return (SET_ERROR(EINVAL));
396         }
397
398         vdev_open_children(vd);
399
400         for (int c = 0; c < vd->vdev_children; c++) {
401                 vdev_t *cvd = vd->vdev_child[c];
402
403                 if (cvd->vdev_open_error) {
404                         lasterror = cvd->vdev_open_error;
405                         numerrors++;
406                         continue;
407                 }
408
409                 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
410                 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
411                 *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
412         }
413         for (int c = 0; c < vd->vdev_children; c++) {
414                 vdev_t *cvd = vd->vdev_child[c];
415
416                 if (cvd->vdev_open_error)
417                         continue;
418                 *physical_ashift = vdev_best_ashift(*logical_ashift,
419                     *physical_ashift, cvd->vdev_physical_ashift);
420         }
421
422         if (numerrors == vd->vdev_children) {
423                 if (vdev_children_are_offline(vd))
424                         vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
425                 else
426                         vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
427                 return (lasterror);
428         }
429
430         return (0);
431 }
432
433 static void
434 vdev_mirror_close(vdev_t *vd)
435 {
436         for (int c = 0; c < vd->vdev_children; c++)
437                 vdev_close(vd->vdev_child[c]);
438 }
439
440 static void
441 vdev_mirror_child_done(zio_t *zio)
442 {
443         mirror_child_t *mc = zio->io_private;
444
445         mc->mc_error = zio->io_error;
446         mc->mc_tried = 1;
447         mc->mc_skipped = 0;
448 }
449
450 /*
451  * Check the other, lower-index DVAs to see if they're on the same
452  * vdev as the child we picked.  If they are, use them since they
453  * are likely to have been allocated from the primary metaslab in
454  * use at the time, and hence are more likely to have locality with
455  * single-copy data.
456  */
457 static int
458 vdev_mirror_dva_select(zio_t *zio, int p)
459 {
460         dva_t *dva = zio->io_bp->blk_dva;
461         mirror_map_t *mm = zio->io_vsd;
462         int preferred;
463         int c;
464
465         preferred = mm->mm_preferred[p];
466         for (p--; p >= 0; p--) {
467                 c = mm->mm_preferred[p];
468                 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
469                         preferred = c;
470         }
471         return (preferred);
472 }
473
474 static int
475 vdev_mirror_preferred_child_randomize(zio_t *zio)
476 {
477         mirror_map_t *mm = zio->io_vsd;
478         int p;
479
480         if (mm->mm_root) {
481                 p = random_in_range(mm->mm_preferred_cnt);
482                 return (vdev_mirror_dva_select(zio, p));
483         }
484
485         /*
486          * To ensure we don't always favour the first matching vdev,
487          * which could lead to wear leveling issues on SSD's, we
488          * use the I/O offset as a pseudo random seed into the vdevs
489          * which have the lowest load.
490          */
491         p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
492         return (mm->mm_preferred[p]);
493 }
494
495 static boolean_t
496 vdev_mirror_child_readable(mirror_child_t *mc)
497 {
498         vdev_t *vd = mc->mc_vd;
499
500         if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
501                 return (vdev_draid_readable(vd, mc->mc_offset));
502         else
503                 return (vdev_readable(vd));
504 }
505
506 static boolean_t
507 vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
508 {
509         vdev_t *vd = mc->mc_vd;
510
511         if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
512                 return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
513         else
514                 return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
515 }
516
517 /*
518  * Try to find a vdev whose DTL doesn't contain the block we want to read
519  * preferring vdevs based on determined load. If we can't, try the read on
520  * any vdev we haven't already tried.
521  *
522  * Distributed spares are an exception to the above load rule. They are
523  * always preferred in order to detect gaps in the distributed spare which
524  * are created when another disk in the dRAID fails. In order to restore
525  * redundancy those gaps must be read to trigger the required repair IO.
526  */
527 static int
528 vdev_mirror_child_select(zio_t *zio)
529 {
530         mirror_map_t *mm = zio->io_vsd;
531         uint64_t txg = zio->io_txg;
532         int c, lowest_load;
533
534         ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
535
536         lowest_load = INT_MAX;
537         mm->mm_preferred_cnt = 0;
538         for (c = 0; c < mm->mm_children; c++) {
539                 mirror_child_t *mc;
540
541                 mc = &mm->mm_child[c];
542                 if (mc->mc_tried || mc->mc_skipped)
543                         continue;
544
545                 if (mc->mc_vd == NULL ||
546                     !vdev_mirror_child_readable(mc)) {
547                         mc->mc_error = SET_ERROR(ENXIO);
548                         mc->mc_tried = 1;       /* don't even try */
549                         mc->mc_skipped = 1;
550                         continue;
551                 }
552
553                 if (vdev_mirror_child_missing(mc, txg, 1)) {
554                         mc->mc_error = SET_ERROR(ESTALE);
555                         mc->mc_skipped = 1;
556                         mc->mc_speculative = 1;
557                         continue;
558                 }
559
560                 if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
561                         mm->mm_preferred[0] = c;
562                         mm->mm_preferred_cnt = 1;
563                         break;
564                 }
565
566                 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
567                 if (mc->mc_load > lowest_load)
568                         continue;
569
570                 if (mc->mc_load < lowest_load) {
571                         lowest_load = mc->mc_load;
572                         mm->mm_preferred_cnt = 0;
573                 }
574                 mm->mm_preferred[mm->mm_preferred_cnt] = c;
575                 mm->mm_preferred_cnt++;
576         }
577
578         if (mm->mm_preferred_cnt == 1) {
579                 MIRROR_BUMP(vdev_mirror_stat_preferred_found);
580                 return (mm->mm_preferred[0]);
581         }
582
583         if (mm->mm_preferred_cnt > 1) {
584                 MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
585                 return (vdev_mirror_preferred_child_randomize(zio));
586         }
587
588         /*
589          * Every device is either missing or has this txg in its DTL.
590          * Look for any child we haven't already tried before giving up.
591          */
592         for (c = 0; c < mm->mm_children; c++) {
593                 if (!mm->mm_child[c].mc_tried)
594                         return (c);
595         }
596
597         /*
598          * Every child failed.  There's no place left to look.
599          */
600         return (-1);
601 }
602
603 static void
604 vdev_mirror_io_start(zio_t *zio)
605 {
606         mirror_map_t *mm;
607         mirror_child_t *mc;
608         int c, children;
609
610         mm = vdev_mirror_map_init(zio);
611         zio->io_vsd = mm;
612         zio->io_vsd_ops = &vdev_mirror_vsd_ops;
613
614         if (mm == NULL) {
615                 ASSERT(!spa_trust_config(zio->io_spa));
616                 ASSERT(zio->io_type == ZIO_TYPE_READ);
617                 zio_execute(zio);
618                 return;
619         }
620
621         if (zio->io_type == ZIO_TYPE_READ) {
622                 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
623                         /*
624                          * For scrubbing reads we need to issue reads to all
625                          * children.  One child can reuse parent buffer, but
626                          * for others we have to allocate separate ones to
627                          * verify checksums if io_bp is non-NULL, or compare
628                          * them in vdev_mirror_io_done() otherwise.
629                          */
630                         boolean_t first = B_TRUE;
631                         for (c = 0; c < mm->mm_children; c++) {
632                                 mc = &mm->mm_child[c];
633
634                                 /* Don't issue ZIOs to offline children */
635                                 if (!vdev_mirror_child_readable(mc)) {
636                                         mc->mc_error = SET_ERROR(ENXIO);
637                                         mc->mc_tried = 1;
638                                         mc->mc_skipped = 1;
639                                         continue;
640                                 }
641
642                                 mc->mc_abd = first ? zio->io_abd :
643                                     abd_alloc_sametype(zio->io_abd,
644                                     zio->io_size);
645                                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
646                                     mc->mc_vd, mc->mc_offset, mc->mc_abd,
647                                     zio->io_size, zio->io_type,
648                                     zio->io_priority, 0,
649                                     vdev_mirror_child_done, mc));
650                                 first = B_FALSE;
651                         }
652                         zio_execute(zio);
653                         return;
654                 }
655                 /*
656                  * For normal reads just pick one child.
657                  */
658                 c = vdev_mirror_child_select(zio);
659                 children = (c >= 0);
660         } else {
661                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
662
663                 /*
664                  * Writes go to all children.
665                  */
666                 c = 0;
667                 children = mm->mm_children;
668         }
669
670         while (children--) {
671                 mc = &mm->mm_child[c];
672                 c++;
673
674                 /*
675                  * When sequentially resilvering only issue write repair
676                  * IOs to the vdev which is being rebuilt since performance
677                  * is limited by the slowest child.  This is an issue for
678                  * faster replacement devices such as distributed spares.
679                  */
680                 if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
681                     (zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
682                     !(zio->io_flags & ZIO_FLAG_SCRUB) &&
683                     mm->mm_rebuilding && !mc->mc_rebuilding) {
684                         continue;
685                 }
686
687                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
688                     mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
689                     zio->io_type, zio->io_priority, 0,
690                     vdev_mirror_child_done, mc));
691         }
692
693         zio_execute(zio);
694 }
695
696 static int
697 vdev_mirror_worst_error(mirror_map_t *mm)
698 {
699         int error[2] = { 0, 0 };
700
701         for (int c = 0; c < mm->mm_children; c++) {
702                 mirror_child_t *mc = &mm->mm_child[c];
703                 int s = mc->mc_speculative;
704                 error[s] = zio_worst_error(error[s], mc->mc_error);
705         }
706
707         return (error[0] ? error[0] : error[1]);
708 }
709
710 static void
711 vdev_mirror_io_done(zio_t *zio)
712 {
713         mirror_map_t *mm = zio->io_vsd;
714         mirror_child_t *mc;
715         int c;
716         int good_copies = 0;
717         int unexpected_errors = 0;
718         int last_good_copy = -1;
719
720         if (mm == NULL)
721                 return;
722
723         for (c = 0; c < mm->mm_children; c++) {
724                 mc = &mm->mm_child[c];
725
726                 if (mc->mc_error) {
727                         if (!mc->mc_skipped)
728                                 unexpected_errors++;
729                 } else if (mc->mc_tried) {
730                         last_good_copy = c;
731                         good_copies++;
732                 }
733         }
734
735         if (zio->io_type == ZIO_TYPE_WRITE) {
736                 /*
737                  * XXX -- for now, treat partial writes as success.
738                  *
739                  * Now that we support write reallocation, it would be better
740                  * to treat partial failure as real failure unless there are
741                  * no non-degraded top-level vdevs left, and not update DTLs
742                  * if we intend to reallocate.
743                  */
744                 if (good_copies != mm->mm_children) {
745                         /*
746                          * Always require at least one good copy.
747                          *
748                          * For ditto blocks (io_vd == NULL), require
749                          * all copies to be good.
750                          *
751                          * XXX -- for replacing vdevs, there's no great answer.
752                          * If the old device is really dead, we may not even
753                          * be able to access it -- so we only want to
754                          * require good writes to the new device.  But if
755                          * the new device turns out to be flaky, we want
756                          * to be able to detach it -- which requires all
757                          * writes to the old device to have succeeded.
758                          */
759                         if (good_copies == 0 || zio->io_vd == NULL)
760                                 zio->io_error = vdev_mirror_worst_error(mm);
761                 }
762                 return;
763         }
764
765         ASSERT(zio->io_type == ZIO_TYPE_READ);
766
767         /*
768          * If we don't have a good copy yet, keep trying other children.
769          */
770         if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
771                 ASSERT(c >= 0 && c < mm->mm_children);
772                 mc = &mm->mm_child[c];
773                 zio_vdev_io_redone(zio);
774                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
775                     mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
776                     ZIO_TYPE_READ, zio->io_priority, 0,
777                     vdev_mirror_child_done, mc));
778                 return;
779         }
780
781         if (zio->io_flags & ZIO_FLAG_SCRUB && !mm->mm_resilvering) {
782                 abd_t *best_abd = NULL;
783                 if (last_good_copy >= 0)
784                         best_abd = mm->mm_child[last_good_copy].mc_abd;
785
786                 /*
787                  * If we're scrubbing but don't have a BP available (because
788                  * this vdev is under a raidz or draid vdev) then the best we
789                  * can do is compare all of the copies read.  If they're not
790                  * identical then return a checksum error and the most likely
791                  * correct data.  The raidz code will issue a repair I/O if
792                  * possible.
793                  */
794                 if (zio->io_bp == NULL) {
795                         ASSERT(zio->io_vd->vdev_ops == &vdev_replacing_ops ||
796                             zio->io_vd->vdev_ops == &vdev_spare_ops);
797
798                         abd_t *pref_abd = NULL;
799                         for (c = 0; c < last_good_copy; c++) {
800                                 mc = &mm->mm_child[c];
801                                 if (mc->mc_error || !mc->mc_tried)
802                                         continue;
803
804                                 if (abd_cmp(mc->mc_abd, best_abd) != 0)
805                                         zio->io_error = SET_ERROR(ECKSUM);
806
807                                 /*
808                                  * The distributed spare is always prefered
809                                  * by vdev_mirror_child_select() so it's
810                                  * considered to be the best candidate.
811                                  */
812                                 if (pref_abd == NULL &&
813                                     mc->mc_vd->vdev_ops ==
814                                     &vdev_draid_spare_ops)
815                                         pref_abd = mc->mc_abd;
816
817                                 /*
818                                  * In the absence of a preferred copy, use
819                                  * the parent pointer to avoid a memory copy.
820                                  */
821                                 if (mc->mc_abd == zio->io_abd)
822                                         best_abd = mc->mc_abd;
823                         }
824                         if (pref_abd)
825                                 best_abd = pref_abd;
826                 } else {
827
828                         /*
829                          * If we have a BP available, then checksums are
830                          * already verified and we just need a buffer
831                          * with valid data, preferring parent one to
832                          * avoid a memory copy.
833                          */
834                         for (c = 0; c < last_good_copy; c++) {
835                                 mc = &mm->mm_child[c];
836                                 if (mc->mc_error || !mc->mc_tried)
837                                         continue;
838                                 if (mc->mc_abd == zio->io_abd) {
839                                         best_abd = mc->mc_abd;
840                                         break;
841                                 }
842                         }
843                 }
844
845                 if (best_abd && best_abd != zio->io_abd)
846                         abd_copy(zio->io_abd, best_abd, zio->io_size);
847                 for (c = 0; c < mm->mm_children; c++) {
848                         mc = &mm->mm_child[c];
849                         if (mc->mc_abd != zio->io_abd)
850                                 abd_free(mc->mc_abd);
851                         mc->mc_abd = NULL;
852                 }
853         }
854
855         if (good_copies == 0) {
856                 zio->io_error = vdev_mirror_worst_error(mm);
857                 ASSERT(zio->io_error != 0);
858         }
859
860         if (good_copies && spa_writeable(zio->io_spa) &&
861             (unexpected_errors ||
862             (zio->io_flags & ZIO_FLAG_RESILVER) ||
863             ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
864                 /*
865                  * Use the good data we have in hand to repair damaged children.
866                  */
867                 for (c = 0; c < mm->mm_children; c++) {
868                         /*
869                          * Don't rewrite known good children.
870                          * Not only is it unnecessary, it could
871                          * actually be harmful: if the system lost
872                          * power while rewriting the only good copy,
873                          * there would be no good copies left!
874                          */
875                         mc = &mm->mm_child[c];
876
877                         if (mc->mc_error == 0) {
878                                 vdev_ops_t *ops = mc->mc_vd->vdev_ops;
879
880                                 if (mc->mc_tried)
881                                         continue;
882                                 /*
883                                  * We didn't try this child.  We need to
884                                  * repair it if:
885                                  * 1. it's a scrub (in which case we have
886                                  * tried everything that was healthy)
887                                  *  - or -
888                                  * 2. it's an indirect or distributed spare
889                                  * vdev (in which case it could point to any
890                                  * other vdev, which might have a bad DTL)
891                                  *  - or -
892                                  * 3. the DTL indicates that this data is
893                                  * missing from this vdev
894                                  */
895                                 if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
896                                     ops != &vdev_indirect_ops &&
897                                     ops != &vdev_draid_spare_ops &&
898                                     !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
899                                     zio->io_txg, 1))
900                                         continue;
901                                 mc->mc_error = SET_ERROR(ESTALE);
902                         }
903
904                         zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
905                             mc->mc_vd, mc->mc_offset,
906                             zio->io_abd, zio->io_size, ZIO_TYPE_WRITE,
907                             zio->io_priority == ZIO_PRIORITY_REBUILD ?
908                             ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
909                             ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
910                             ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
911                 }
912         }
913 }
914
915 static void
916 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
917 {
918         if (faulted == vd->vdev_children) {
919                 if (vdev_children_are_offline(vd)) {
920                         vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
921                             VDEV_AUX_CHILDREN_OFFLINE);
922                 } else {
923                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
924                             VDEV_AUX_NO_REPLICAS);
925                 }
926         } else if (degraded + faulted != 0) {
927                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
928         } else {
929                 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
930         }
931 }
932
933 /*
934  * Return the maximum asize for a rebuild zio in the provided range.
935  */
936 static uint64_t
937 vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
938     uint64_t max_segment)
939 {
940         (void) start;
941
942         uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
943             SPA_MAXBLOCKSIZE);
944
945         return (MIN(asize, vdev_psize_to_asize(vd, psize)));
946 }
947
948 vdev_ops_t vdev_mirror_ops = {
949         .vdev_op_init = NULL,
950         .vdev_op_fini = NULL,
951         .vdev_op_open = vdev_mirror_open,
952         .vdev_op_close = vdev_mirror_close,
953         .vdev_op_asize = vdev_default_asize,
954         .vdev_op_min_asize = vdev_default_min_asize,
955         .vdev_op_min_alloc = NULL,
956         .vdev_op_io_start = vdev_mirror_io_start,
957         .vdev_op_io_done = vdev_mirror_io_done,
958         .vdev_op_state_change = vdev_mirror_state_change,
959         .vdev_op_need_resilver = vdev_default_need_resilver,
960         .vdev_op_hold = NULL,
961         .vdev_op_rele = NULL,
962         .vdev_op_remap = NULL,
963         .vdev_op_xlate = vdev_default_xlate,
964         .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
965         .vdev_op_metaslab_init = NULL,
966         .vdev_op_config_generate = NULL,
967         .vdev_op_nparity = NULL,
968         .vdev_op_ndisks = NULL,
969         .vdev_op_type = VDEV_TYPE_MIRROR,       /* name of this vdev type */
970         .vdev_op_leaf = B_FALSE                 /* not a leaf vdev */
971 };
972
973 vdev_ops_t vdev_replacing_ops = {
974         .vdev_op_init = NULL,
975         .vdev_op_fini = NULL,
976         .vdev_op_open = vdev_mirror_open,
977         .vdev_op_close = vdev_mirror_close,
978         .vdev_op_asize = vdev_default_asize,
979         .vdev_op_min_asize = vdev_default_min_asize,
980         .vdev_op_min_alloc = NULL,
981         .vdev_op_io_start = vdev_mirror_io_start,
982         .vdev_op_io_done = vdev_mirror_io_done,
983         .vdev_op_state_change = vdev_mirror_state_change,
984         .vdev_op_need_resilver = vdev_default_need_resilver,
985         .vdev_op_hold = NULL,
986         .vdev_op_rele = NULL,
987         .vdev_op_remap = NULL,
988         .vdev_op_xlate = vdev_default_xlate,
989         .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
990         .vdev_op_metaslab_init = NULL,
991         .vdev_op_config_generate = NULL,
992         .vdev_op_nparity = NULL,
993         .vdev_op_ndisks = NULL,
994         .vdev_op_type = VDEV_TYPE_REPLACING,    /* name of this vdev type */
995         .vdev_op_leaf = B_FALSE                 /* not a leaf vdev */
996 };
997
998 vdev_ops_t vdev_spare_ops = {
999         .vdev_op_init = NULL,
1000         .vdev_op_fini = NULL,
1001         .vdev_op_open = vdev_mirror_open,
1002         .vdev_op_close = vdev_mirror_close,
1003         .vdev_op_asize = vdev_default_asize,
1004         .vdev_op_min_asize = vdev_default_min_asize,
1005         .vdev_op_min_alloc = NULL,
1006         .vdev_op_io_start = vdev_mirror_io_start,
1007         .vdev_op_io_done = vdev_mirror_io_done,
1008         .vdev_op_state_change = vdev_mirror_state_change,
1009         .vdev_op_need_resilver = vdev_default_need_resilver,
1010         .vdev_op_hold = NULL,
1011         .vdev_op_rele = NULL,
1012         .vdev_op_remap = NULL,
1013         .vdev_op_xlate = vdev_default_xlate,
1014         .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
1015         .vdev_op_metaslab_init = NULL,
1016         .vdev_op_config_generate = NULL,
1017         .vdev_op_nparity = NULL,
1018         .vdev_op_ndisks = NULL,
1019         .vdev_op_type = VDEV_TYPE_SPARE,        /* name of this vdev type */
1020         .vdev_op_leaf = B_FALSE                 /* not a leaf vdev */
1021 };
1022
1023 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW,
1024         "Rotating media load increment for non-seeking I/Os");
1025
1026 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT,
1027         ZMOD_RW, "Rotating media load increment for seeking I/Os");
1028
1029 /* BEGIN CSTYLED */
1030 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT,
1031         ZMOD_RW,
1032         "Offset in bytes from the last I/O which triggers "
1033         "a reduced rotating media seek increment");
1034 /* END CSTYLED */
1035
1036 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT,
1037         ZMOD_RW, "Non-rotating media load increment for non-seeking I/Os");
1038
1039 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT,
1040         ZMOD_RW, "Non-rotating media load increment for seeking I/Os");