]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_raidz_math.c
Merge llvm-project release/16.x llvmorg-16.0.5-0-g185b81e034ba
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_raidz_math.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
23  */
24
25 #include <sys/simd.h>
26 #include <sys/zfs_context.h>
27 #include <sys/types.h>
28 #include <sys/zio.h>
29 #include <sys/debug.h>
30 #include <sys/zfs_debug.h>
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_raidz_impl.h>
33
34 /* Opaque implementation with NULL methods to represent original methods */
35 static const raidz_impl_ops_t vdev_raidz_original_impl = {
36         .name = "original",
37         .is_supported = raidz_will_scalar_work,
38 };
39
40 /* RAIDZ parity op that contain the fastest methods */
41 static raidz_impl_ops_t vdev_raidz_fastest_impl = {
42         .name = "fastest"
43 };
44
45 /* All compiled in implementations */
46 static const raidz_impl_ops_t *const raidz_all_maths[] = {
47         &vdev_raidz_original_impl,
48         &vdev_raidz_scalar_impl,
49 #if defined(__x86_64) && defined(HAVE_SSE2)     /* only x86_64 for now */
50         &vdev_raidz_sse2_impl,
51 #endif
52 #if defined(__x86_64) && defined(HAVE_SSSE3)    /* only x86_64 for now */
53         &vdev_raidz_ssse3_impl,
54 #endif
55 #if defined(__x86_64) && defined(HAVE_AVX2)     /* only x86_64 for now */
56         &vdev_raidz_avx2_impl,
57 #endif
58 #if defined(__x86_64) && defined(HAVE_AVX512F)  /* only x86_64 for now */
59         &vdev_raidz_avx512f_impl,
60 #endif
61 #if defined(__x86_64) && defined(HAVE_AVX512BW) /* only x86_64 for now */
62         &vdev_raidz_avx512bw_impl,
63 #endif
64 #if defined(__aarch64__) && !defined(__FreeBSD__)
65         &vdev_raidz_aarch64_neon_impl,
66         &vdev_raidz_aarch64_neonx2_impl,
67 #endif
68 #if defined(__powerpc__) && defined(__altivec__)
69         &vdev_raidz_powerpc_altivec_impl,
70 #endif
71 };
72
73 /* Indicate that benchmark has been completed */
74 static boolean_t raidz_math_initialized = B_FALSE;
75
76 /* Select raidz implementation */
77 #define IMPL_FASTEST    (UINT32_MAX)
78 #define IMPL_CYCLE      (UINT32_MAX - 1)
79 #define IMPL_ORIGINAL   (0)
80 #define IMPL_SCALAR     (1)
81
82 #define RAIDZ_IMPL_READ(i)      (*(volatile uint32_t *) &(i))
83
84 static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR;
85 static uint32_t user_sel_impl = IMPL_FASTEST;
86
87 /* Hold all supported implementations */
88 static size_t raidz_supp_impl_cnt = 0;
89 static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];
90
91 #if defined(_KERNEL)
92 /*
93  * kstats values for supported implementations
94  * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s]
95  */
96 static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1];
97
98 /* kstat for benchmarked implementations */
99 static kstat_t *raidz_math_kstat = NULL;
100 #endif
101
102 /*
103  * Returns the RAIDZ operations for raidz_map() parity calculations.   When
104  * a SIMD implementation is not allowed in the current context, then fallback
105  * to the fastest generic implementation.
106  */
107 const raidz_impl_ops_t *
108 vdev_raidz_math_get_ops(void)
109 {
110         if (!kfpu_allowed())
111                 return (&vdev_raidz_scalar_impl);
112
113         raidz_impl_ops_t *ops = NULL;
114         const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
115
116         switch (impl) {
117         case IMPL_FASTEST:
118                 ASSERT(raidz_math_initialized);
119                 ops = &vdev_raidz_fastest_impl;
120                 break;
121         case IMPL_CYCLE:
122                 /* Cycle through all supported implementations */
123                 ASSERT(raidz_math_initialized);
124                 ASSERT3U(raidz_supp_impl_cnt, >, 0);
125                 static size_t cycle_impl_idx = 0;
126                 size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
127                 ops = raidz_supp_impl[idx];
128                 break;
129         case IMPL_ORIGINAL:
130                 ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl;
131                 break;
132         case IMPL_SCALAR:
133                 ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl;
134                 break;
135         default:
136                 ASSERT3U(impl, <, raidz_supp_impl_cnt);
137                 ASSERT3U(raidz_supp_impl_cnt, >, 0);
138                 if (impl < ARRAY_SIZE(raidz_all_maths))
139                         ops = raidz_supp_impl[impl];
140                 break;
141         }
142
143         ASSERT3P(ops, !=, NULL);
144
145         return (ops);
146 }
147
148 /*
149  * Select parity generation method for raidz_map
150  */
151 int
152 vdev_raidz_math_generate(raidz_map_t *rm, raidz_row_t *rr)
153 {
154         raidz_gen_f gen_parity = NULL;
155
156         switch (raidz_parity(rm)) {
157                 case 1:
158                         gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P];
159                         break;
160                 case 2:
161                         gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ];
162                         break;
163                 case 3:
164                         gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR];
165                         break;
166                 default:
167                         gen_parity = NULL;
168                         cmn_err(CE_PANIC, "invalid RAID-Z configuration %llu",
169                             (u_longlong_t)raidz_parity(rm));
170                         break;
171         }
172
173         /* if method is NULL execute the original implementation */
174         if (gen_parity == NULL)
175                 return (RAIDZ_ORIGINAL_IMPL);
176
177         gen_parity(rr);
178
179         return (0);
180 }
181
182 static raidz_rec_f
183 reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid,
184     const int nbaddata)
185 {
186         if (nbaddata == 1 && parity_valid[CODE_P]) {
187                 return (rm->rm_ops->rec[RAIDZ_REC_P]);
188         }
189         return ((raidz_rec_f) NULL);
190 }
191
192 static raidz_rec_f
193 reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid,
194     const int nbaddata)
195 {
196         if (nbaddata == 1) {
197                 if (parity_valid[CODE_P]) {
198                         return (rm->rm_ops->rec[RAIDZ_REC_P]);
199                 } else if (parity_valid[CODE_Q]) {
200                         return (rm->rm_ops->rec[RAIDZ_REC_Q]);
201                 }
202         } else if (nbaddata == 2 &&
203             parity_valid[CODE_P] && parity_valid[CODE_Q]) {
204                 return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
205         }
206         return ((raidz_rec_f) NULL);
207 }
208
209 static raidz_rec_f
210 reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
211     const int nbaddata)
212 {
213         if (nbaddata == 1) {
214                 if (parity_valid[CODE_P]) {
215                         return (rm->rm_ops->rec[RAIDZ_REC_P]);
216                 } else if (parity_valid[CODE_Q]) {
217                         return (rm->rm_ops->rec[RAIDZ_REC_Q]);
218                 } else if (parity_valid[CODE_R]) {
219                         return (rm->rm_ops->rec[RAIDZ_REC_R]);
220                 }
221         } else if (nbaddata == 2) {
222                 if (parity_valid[CODE_P] && parity_valid[CODE_Q]) {
223                         return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
224                 } else if (parity_valid[CODE_P] && parity_valid[CODE_R]) {
225                         return (rm->rm_ops->rec[RAIDZ_REC_PR]);
226                 } else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) {
227                         return (rm->rm_ops->rec[RAIDZ_REC_QR]);
228                 }
229         } else if (nbaddata == 3 &&
230             parity_valid[CODE_P] && parity_valid[CODE_Q] &&
231             parity_valid[CODE_R]) {
232                 return (rm->rm_ops->rec[RAIDZ_REC_PQR]);
233         }
234         return ((raidz_rec_f) NULL);
235 }
236
237 /*
238  * Select data reconstruction method for raidz_map
239  * @parity_valid - Parity validity flag
240  * @dt           - Failed data index array
241  * @nbaddata     - Number of failed data columns
242  */
243 int
244 vdev_raidz_math_reconstruct(raidz_map_t *rm, raidz_row_t *rr,
245     const int *parity_valid, const int *dt, const int nbaddata)
246 {
247         raidz_rec_f rec_fn = NULL;
248
249         switch (raidz_parity(rm)) {
250         case PARITY_P:
251                 rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata);
252                 break;
253         case PARITY_PQ:
254                 rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata);
255                 break;
256         case PARITY_PQR:
257                 rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata);
258                 break;
259         default:
260                 cmn_err(CE_PANIC, "invalid RAID-Z configuration %llu",
261                     (u_longlong_t)raidz_parity(rm));
262                 break;
263         }
264
265         if (rec_fn == NULL)
266                 return (RAIDZ_ORIGINAL_IMPL);
267         else
268                 return (rec_fn(rr, dt));
269 }
270
271 const char *const raidz_gen_name[] = {
272         "gen_p", "gen_pq", "gen_pqr"
273 };
274 const char *const raidz_rec_name[] = {
275         "rec_p", "rec_q", "rec_r",
276         "rec_pq", "rec_pr", "rec_qr", "rec_pqr"
277 };
278
279 #if defined(_KERNEL)
280
281 #define RAIDZ_KSTAT_LINE_LEN    (17 + 10*12 + 1)
282
283 static int
284 raidz_math_kstat_headers(char *buf, size_t size)
285 {
286         ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
287
288         ssize_t off = kmem_scnprintf(buf, size, "%-17s", "implementation");
289
290         for (int i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
291                 off += kmem_scnprintf(buf + off, size - off, "%-16s",
292                     raidz_gen_name[i]);
293
294         for (int i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
295                 off += kmem_scnprintf(buf + off, size - off, "%-16s",
296                     raidz_rec_name[i]);
297
298         (void) kmem_scnprintf(buf + off, size - off, "\n");
299
300         return (0);
301 }
302
303 static int
304 raidz_math_kstat_data(char *buf, size_t size, void *data)
305 {
306         raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
307         raidz_impl_kstat_t *cstat = (raidz_impl_kstat_t *)data;
308         ssize_t off = 0;
309         int i;
310
311         ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
312
313         if (cstat == fstat) {
314                 off += kmem_scnprintf(buf + off, size - off, "%-17s",
315                     "fastest");
316
317                 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) {
318                         int id = fstat->gen[i];
319                         off += kmem_scnprintf(buf + off, size - off, "%-16s",
320                             raidz_supp_impl[id]->name);
321                 }
322                 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) {
323                         int id = fstat->rec[i];
324                         off += kmem_scnprintf(buf + off, size - off, "%-16s",
325                             raidz_supp_impl[id]->name);
326                 }
327         } else {
328                 ptrdiff_t id = cstat - raidz_impl_kstats;
329
330                 off += kmem_scnprintf(buf + off, size - off, "%-17s",
331                     raidz_supp_impl[id]->name);
332
333                 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
334                         off += kmem_scnprintf(buf + off, size - off, "%-16llu",
335                             (u_longlong_t)cstat->gen[i]);
336
337                 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
338                         off += kmem_scnprintf(buf + off, size - off, "%-16llu",
339                             (u_longlong_t)cstat->rec[i]);
340         }
341
342         (void) kmem_scnprintf(buf + off, size - off, "\n");
343
344         return (0);
345 }
346
347 static void *
348 raidz_math_kstat_addr(kstat_t *ksp, loff_t n)
349 {
350         if (n <= raidz_supp_impl_cnt)
351                 ksp->ks_private = (void *) (raidz_impl_kstats + n);
352         else
353                 ksp->ks_private = NULL;
354
355         return (ksp->ks_private);
356 }
357
358 #define BENCH_D_COLS    (8ULL)
359 #define BENCH_COLS      (BENCH_D_COLS + PARITY_PQR)
360 #define BENCH_ZIO_SIZE  (1ULL << SPA_OLD_MAXBLOCKSHIFT) /* 128 kiB */
361 #define BENCH_NS        MSEC2NSEC(1)                    /* 1ms */
362
363 typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn);
364
365 static void
366 benchmark_gen_impl(raidz_map_t *rm, const int fn)
367 {
368         (void) fn;
369         vdev_raidz_generate_parity(rm);
370 }
371
372 static void
373 benchmark_rec_impl(raidz_map_t *rm, const int fn)
374 {
375         static const int rec_tgt[7][3] = {
376                 {1, 2, 3},      /* rec_p:   bad QR & D[0]       */
377                 {0, 2, 3},      /* rec_q:   bad PR & D[0]       */
378                 {0, 1, 3},      /* rec_r:   bad PQ & D[0]       */
379                 {2, 3, 4},      /* rec_pq:  bad R  & D[0][1]    */
380                 {1, 3, 4},      /* rec_pr:  bad Q  & D[0][1]    */
381                 {0, 3, 4},      /* rec_qr:  bad P  & D[0][1]    */
382                 {3, 4, 5}       /* rec_pqr: bad    & D[0][1][2] */
383         };
384
385         vdev_raidz_reconstruct(rm, rec_tgt[fn], 3);
386 }
387
388 /*
389  * Benchmarking of all supported implementations (raidz_supp_impl_cnt)
390  * is performed by setting the rm_ops pointer and calling the top level
391  * generate/reconstruct methods of bench_rm.
392  */
393 static void
394 benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
395 {
396         uint64_t run_cnt, speed, best_speed = 0;
397         hrtime_t t_start, t_diff;
398         raidz_impl_ops_t *curr_impl;
399         raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
400         int impl, i;
401
402         for (impl = 0; impl < raidz_supp_impl_cnt; impl++) {
403                 /* set an implementation to benchmark */
404                 curr_impl = raidz_supp_impl[impl];
405                 bench_rm->rm_ops = curr_impl;
406
407                 run_cnt = 0;
408                 t_start = gethrtime();
409
410                 do {
411                         for (i = 0; i < 5; i++, run_cnt++)
412                                 bench_fn(bench_rm, fn);
413
414                         t_diff = gethrtime() - t_start;
415                 } while (t_diff < BENCH_NS);
416
417                 speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC;
418                 speed /= (t_diff * BENCH_COLS);
419
420                 if (bench_fn == benchmark_gen_impl)
421                         raidz_impl_kstats[impl].gen[fn] = speed;
422                 else
423                         raidz_impl_kstats[impl].rec[fn] = speed;
424
425                 /* Update fastest implementation method */
426                 if (speed > best_speed) {
427                         best_speed = speed;
428
429                         if (bench_fn == benchmark_gen_impl) {
430                                 fstat->gen[fn] = impl;
431                                 vdev_raidz_fastest_impl.gen[fn] =
432                                     curr_impl->gen[fn];
433                         } else {
434                                 fstat->rec[fn] = impl;
435                                 vdev_raidz_fastest_impl.rec[fn] =
436                                     curr_impl->rec[fn];
437                         }
438                 }
439         }
440 }
441 #endif
442
443 /*
444  * Initialize and benchmark all supported implementations.
445  */
446 static void
447 benchmark_raidz(void)
448 {
449         raidz_impl_ops_t *curr_impl;
450         int i, c;
451
452         /* Move supported impl into raidz_supp_impl */
453         for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
454                 curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i];
455
456                 if (curr_impl->init)
457                         curr_impl->init();
458
459                 if (curr_impl->is_supported())
460                         raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl;
461         }
462         membar_producer();              /* complete raidz_supp_impl[] init */
463         raidz_supp_impl_cnt = c;        /* number of supported impl */
464
465 #if defined(_KERNEL)
466         abd_t *pabd;
467         zio_t *bench_zio = NULL;
468         raidz_map_t *bench_rm = NULL;
469         uint64_t bench_parity;
470
471         /* Fake a zio and run the benchmark on a warmed up buffer */
472         bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
473         bench_zio->io_offset = 0;
474         bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */
475         bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE);
476         memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE);
477
478         /* Benchmark parity generation methods */
479         for (int fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
480                 bench_parity = fn + 1;
481                 /* New raidz_map is needed for each generate_p/q/r */
482                 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
483                     BENCH_D_COLS + bench_parity, bench_parity);
484
485                 benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl);
486
487                 vdev_raidz_map_free(bench_rm);
488         }
489
490         /* Benchmark data reconstruction methods */
491         bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
492             BENCH_COLS, PARITY_PQR);
493
494         /* Ensure that fake parity blocks are initialized */
495         for (c = 0; c < bench_rm->rm_row[0]->rr_firstdatacol; c++) {
496                 pabd = bench_rm->rm_row[0]->rr_col[c].rc_abd;
497                 memset(abd_to_buf(pabd), 0xAA, abd_get_size(pabd));
498         }
499
500         for (int fn = 0; fn < RAIDZ_REC_NUM; fn++)
501                 benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);
502
503         vdev_raidz_map_free(bench_rm);
504
505         /* cleanup the bench zio */
506         abd_free(bench_zio->io_abd);
507         kmem_free(bench_zio, sizeof (zio_t));
508 #else
509         /*
510          * Skip the benchmark in user space to avoid impacting libzpool
511          * consumers (zdb, zhack, zinject, ztest).  The last implementation
512          * is assumed to be the fastest and used by default.
513          */
514         memcpy(&vdev_raidz_fastest_impl,
515             raidz_supp_impl[raidz_supp_impl_cnt - 1],
516             sizeof (vdev_raidz_fastest_impl));
517         strcpy(vdev_raidz_fastest_impl.name, "fastest");
518 #endif /* _KERNEL */
519 }
520
521 void
522 vdev_raidz_math_init(void)
523 {
524         /* Determine the fastest available implementation. */
525         benchmark_raidz();
526
527 #if defined(_KERNEL)
528         /* Install kstats for all implementations */
529         raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc",
530             KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
531         if (raidz_math_kstat != NULL) {
532                 raidz_math_kstat->ks_data = NULL;
533                 raidz_math_kstat->ks_ndata = UINT32_MAX;
534                 kstat_set_raw_ops(raidz_math_kstat,
535                     raidz_math_kstat_headers,
536                     raidz_math_kstat_data,
537                     raidz_math_kstat_addr);
538                 kstat_install(raidz_math_kstat);
539         }
540 #endif
541
542         /* Finish initialization */
543         atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
544         raidz_math_initialized = B_TRUE;
545 }
546
547 void
548 vdev_raidz_math_fini(void)
549 {
550         raidz_impl_ops_t const *curr_impl;
551
552 #if defined(_KERNEL)
553         if (raidz_math_kstat != NULL) {
554                 kstat_delete(raidz_math_kstat);
555                 raidz_math_kstat = NULL;
556         }
557 #endif
558
559         for (int i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
560                 curr_impl = raidz_all_maths[i];
561                 if (curr_impl->fini)
562                         curr_impl->fini();
563         }
564 }
565
566 static const struct {
567         const char *name;
568         uint32_t sel;
569 } math_impl_opts[] = {
570                 { "cycle",      IMPL_CYCLE },
571                 { "fastest",    IMPL_FASTEST },
572                 { "original",   IMPL_ORIGINAL },
573                 { "scalar",     IMPL_SCALAR }
574 };
575
576 /*
577  * Function sets desired raidz implementation.
578  *
579  * If we are called before init(), user preference will be saved in
580  * user_sel_impl, and applied in later init() call. This occurs when module
581  * parameter is specified on module load. Otherwise, directly update
582  * zfs_vdev_raidz_impl.
583  *
584  * @val         Name of raidz implementation to use
585  * @param       Unused.
586  */
587 int
588 vdev_raidz_impl_set(const char *val)
589 {
590         int err = -EINVAL;
591         char req_name[RAIDZ_IMPL_NAME_MAX];
592         uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl);
593         size_t i;
594
595         /* sanitize input */
596         i = strnlen(val, RAIDZ_IMPL_NAME_MAX);
597         if (i == 0 || i == RAIDZ_IMPL_NAME_MAX)
598                 return (err);
599
600         strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX);
601         while (i > 0 && !!isspace(req_name[i-1]))
602                 i--;
603         req_name[i] = '\0';
604
605         /* Check mandatory options */
606         for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
607                 if (strcmp(req_name, math_impl_opts[i].name) == 0) {
608                         impl = math_impl_opts[i].sel;
609                         err = 0;
610                         break;
611                 }
612         }
613
614         /* check all supported impl if init() was already called */
615         if (err != 0 && raidz_math_initialized) {
616                 /* check all supported implementations */
617                 for (i = 0; i < raidz_supp_impl_cnt; i++) {
618                         if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) {
619                                 impl = i;
620                                 err = 0;
621                                 break;
622                         }
623                 }
624         }
625
626         if (err == 0) {
627                 if (raidz_math_initialized)
628                         atomic_swap_32(&zfs_vdev_raidz_impl, impl);
629                 else
630                         atomic_swap_32(&user_sel_impl, impl);
631         }
632
633         return (err);
634 }
635
636 #if defined(_KERNEL) && defined(__linux__)
637
638 static int
639 zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp)
640 {
641         return (vdev_raidz_impl_set(val));
642 }
643
644 static int
645 zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp)
646 {
647         int i, cnt = 0;
648         char *fmt;
649         const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
650
651         ASSERT(raidz_math_initialized);
652
653         /* list mandatory options */
654         for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) {
655                 fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s ";
656                 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt,
657                     math_impl_opts[i].name);
658         }
659
660         /* list all supported implementations */
661         for (i = 0; i < raidz_supp_impl_cnt; i++) {
662                 fmt = (i == impl) ? "[%s] " : "%s ";
663                 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt,
664                     raidz_supp_impl[i]->name);
665         }
666
667         return (cnt);
668 }
669
670 module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set,
671     zfs_vdev_raidz_impl_get, NULL, 0644);
672 MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation.");
673 #endif