]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_removal.c
MFV: expat 2.5.0
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_removal.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/arc.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
47 #include <sys/abd.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
51
52 /*
53  * This file contains the necessary logic to remove vdevs from a
54  * storage pool.  Currently, the only devices that can be removed
55  * are log, cache, and spare devices; and top level vdevs from a pool
56  * w/o raidz or mirrors.  (Note that members of a mirror can be removed
57  * by the detach operation.)
58  *
59  * Log vdevs are removed by evacuating them and then turning the vdev
60  * into a hole vdev while holding spa config locks.
61  *
62  * Top level vdevs are removed and converted into an indirect vdev via
63  * a multi-step process:
64  *
65  *  - Disable allocations from this device (spa_vdev_remove_top).
66  *
67  *  - From a new thread (spa_vdev_remove_thread), copy data from
68  *    the removing vdev to a different vdev.  The copy happens in open
69  *    context (spa_vdev_copy_impl) and issues a sync task
70  *    (vdev_mapping_sync) so the sync thread can update the partial
71  *    indirect mappings in core and on disk.
72  *
73  *  - If a free happens during a removal, it is freed from the
74  *    removing vdev, and if it has already been copied, from the new
75  *    location as well (free_from_removing_vdev).
76  *
77  *  - After the removal is completed, the copy thread converts the vdev
78  *    into an indirect vdev (vdev_remove_complete) before instructing
79  *    the sync thread to destroy the space maps and finish the removal
80  *    (spa_finish_removal).
81  */
82
83 typedef struct vdev_copy_arg {
84         metaslab_t      *vca_msp;
85         uint64_t        vca_outstanding_bytes;
86         uint64_t        vca_read_error_bytes;
87         uint64_t        vca_write_error_bytes;
88         kcondvar_t      vca_cv;
89         kmutex_t        vca_lock;
90 } vdev_copy_arg_t;
91
92 /*
93  * The maximum amount of memory we can use for outstanding i/o while
94  * doing a device removal.  This determines how much i/o we can have
95  * in flight concurrently.
96  */
97 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
98
99 /*
100  * The largest contiguous segment that we will attempt to allocate when
101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102  * there is a performance problem with attempting to allocate large blocks,
103  * consider decreasing this.
104  *
105  * See also the accessor function spa_remove_max_segment().
106  */
107 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
108
109 /*
110  * Ignore hard IO errors during device removal.  When set if a device
111  * encounters hard IO error during the removal process the removal will
112  * not be cancelled.  This can result in a normally recoverable block
113  * becoming permanently damaged and is not recommended.
114  */
115 static int zfs_removal_ignore_errors = 0;
116
117 /*
118  * Allow a remap segment to span free chunks of at most this size. The main
119  * impact of a larger span is that we will read and write larger, more
120  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121  * for iops.  The value here was chosen to align with
122  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123  * reads (but there's no reason it has to be the same).
124  *
125  * Additionally, a higher span will have the following relatively minor
126  * effects:
127  *  - the mapping will be smaller, since one entry can cover more allocated
128  *    segments
129  *  - more of the fragmentation in the removing device will be preserved
130  *  - we'll do larger allocations, which may fail and fall back on smaller
131  *    allocations
132  */
133 uint_t vdev_removal_max_span = 32 * 1024;
134
135 /*
136  * This is used by the test suite so that it can ensure that certain
137  * actions happen while in the middle of a removal.
138  */
139 int zfs_removal_suspend_progress = 0;
140
141 #define VDEV_REMOVAL_ZAP_OBJS   "lzap"
142
143 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
145
146 static void
147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
148 {
149         VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
150             DMU_POOL_DIRECTORY_OBJECT,
151             DMU_POOL_REMOVING, sizeof (uint64_t),
152             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
153             &spa->spa_removing_phys, tx));
154 }
155
156 static nvlist_t *
157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
158 {
159         for (int i = 0; i < count; i++) {
160                 uint64_t guid =
161                     fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
162
163                 if (guid == target_guid)
164                         return (nvpp[i]);
165         }
166
167         return (NULL);
168 }
169
170 static void
171 vdev_activate(vdev_t *vd)
172 {
173         metaslab_group_t *mg = vd->vdev_mg;
174         spa_t *spa = vd->vdev_spa;
175         uint64_t vdev_space = spa_deflate(spa) ?
176             vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
177
178         ASSERT(!vd->vdev_islog);
179         ASSERT(vd->vdev_noalloc);
180
181         metaslab_group_activate(mg);
182         metaslab_group_activate(vd->vdev_log_mg);
183
184         ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
185
186         spa->spa_nonallocating_dspace -= vdev_space;
187
188         vd->vdev_noalloc = B_FALSE;
189 }
190
191 static int
192 vdev_passivate(vdev_t *vd, uint64_t *txg)
193 {
194         spa_t *spa = vd->vdev_spa;
195         int error;
196
197         ASSERT(!vd->vdev_noalloc);
198
199         vdev_t *rvd = spa->spa_root_vdev;
200         metaslab_group_t *mg = vd->vdev_mg;
201         metaslab_class_t *normal = spa_normal_class(spa);
202         if (mg->mg_class == normal) {
203                 /*
204                  * We must check that this is not the only allocating device in
205                  * the pool before passivating, otherwise we will not be able
206                  * to make progress because we can't allocate from any vdevs.
207                  */
208                 boolean_t last = B_TRUE;
209                 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
210                         vdev_t *cvd = rvd->vdev_child[id];
211
212                         if (cvd == vd ||
213                             cvd->vdev_ops == &vdev_indirect_ops)
214                                 continue;
215
216                         metaslab_class_t *mc = cvd->vdev_mg->mg_class;
217                         if (mc != normal)
218                                 continue;
219
220                         if (!cvd->vdev_noalloc) {
221                                 last = B_FALSE;
222                                 break;
223                         }
224                 }
225                 if (last)
226                         return (SET_ERROR(EINVAL));
227         }
228
229         metaslab_group_passivate(mg);
230         ASSERT(!vd->vdev_islog);
231         metaslab_group_passivate(vd->vdev_log_mg);
232
233         /*
234          * Wait for the youngest allocations and frees to sync,
235          * and then wait for the deferral of those frees to finish.
236          */
237         spa_vdev_config_exit(spa, NULL,
238             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
239
240         /*
241          * We must ensure that no "stubby" log blocks are allocated
242          * on the device to be removed.  These blocks could be
243          * written at any time, including while we are in the middle
244          * of copying them.
245          */
246         error = spa_reset_logs(spa);
247
248         *txg = spa_vdev_config_enter(spa);
249
250         if (error != 0) {
251                 metaslab_group_activate(mg);
252                 ASSERT(!vd->vdev_islog);
253                 if (vd->vdev_log_mg != NULL)
254                         metaslab_group_activate(vd->vdev_log_mg);
255                 return (error);
256         }
257
258         spa->spa_nonallocating_dspace += spa_deflate(spa) ?
259             vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
260         vd->vdev_noalloc = B_TRUE;
261
262         return (0);
263 }
264
265 /*
266  * Turn off allocations for a top-level device from the pool.
267  *
268  * Turning off allocations for a top-level device can take a significant
269  * amount of time. As a result we use the spa_vdev_config_[enter/exit]
270  * functions which allow us to grab and release the spa_config_lock while
271  * still holding the namespace lock. During each step the configuration
272  * is synced out.
273  */
274 int
275 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
276 {
277         vdev_t *vd;
278         uint64_t txg;
279         int error = 0;
280
281         ASSERT(!MUTEX_HELD(&spa_namespace_lock));
282         ASSERT(spa_writeable(spa));
283
284         txg = spa_vdev_enter(spa);
285
286         ASSERT(MUTEX_HELD(&spa_namespace_lock));
287
288         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
289
290         if (vd == NULL)
291                 error = SET_ERROR(ENOENT);
292         else if (vd->vdev_mg == NULL)
293                 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
294         else if (!vd->vdev_noalloc)
295                 error = vdev_passivate(vd, &txg);
296
297         if (error == 0) {
298                 vdev_dirty_leaves(vd, VDD_DTL, txg);
299                 vdev_config_dirty(vd);
300         }
301
302         error = spa_vdev_exit(spa, NULL, txg, error);
303
304         return (error);
305 }
306
307 int
308 spa_vdev_alloc(spa_t *spa, uint64_t guid)
309 {
310         vdev_t *vd;
311         uint64_t txg;
312         int error = 0;
313
314         ASSERT(!MUTEX_HELD(&spa_namespace_lock));
315         ASSERT(spa_writeable(spa));
316
317         txg = spa_vdev_enter(spa);
318
319         ASSERT(MUTEX_HELD(&spa_namespace_lock));
320
321         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
322
323         if (vd == NULL)
324                 error = SET_ERROR(ENOENT);
325         else if (vd->vdev_mg == NULL)
326                 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
327         else if (!vd->vdev_removing)
328                 vdev_activate(vd);
329
330         if (error == 0) {
331                 vdev_dirty_leaves(vd, VDD_DTL, txg);
332                 vdev_config_dirty(vd);
333         }
334
335         (void) spa_vdev_exit(spa, NULL, txg, error);
336
337         return (error);
338 }
339
340 static void
341 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
342     int count, nvlist_t *dev_to_remove)
343 {
344         nvlist_t **newdev = NULL;
345
346         if (count > 1)
347                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
348
349         for (int i = 0, j = 0; i < count; i++) {
350                 if (dev[i] == dev_to_remove)
351                         continue;
352                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
353         }
354
355         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
356         fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
357             count - 1);
358
359         for (int i = 0; i < count - 1; i++)
360                 nvlist_free(newdev[i]);
361
362         if (count > 1)
363                 kmem_free(newdev, (count - 1) * sizeof (void *));
364 }
365
366 static spa_vdev_removal_t *
367 spa_vdev_removal_create(vdev_t *vd)
368 {
369         spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
370         mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
371         cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
372         svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
373         svr->svr_vdev_id = vd->vdev_id;
374
375         for (int i = 0; i < TXG_SIZE; i++) {
376                 svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL,
377                     0, 0);
378                 list_create(&svr->svr_new_segments[i],
379                     sizeof (vdev_indirect_mapping_entry_t),
380                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
381         }
382
383         return (svr);
384 }
385
386 void
387 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
388 {
389         for (int i = 0; i < TXG_SIZE; i++) {
390                 ASSERT0(svr->svr_bytes_done[i]);
391                 ASSERT0(svr->svr_max_offset_to_sync[i]);
392                 range_tree_destroy(svr->svr_frees[i]);
393                 list_destroy(&svr->svr_new_segments[i]);
394         }
395
396         range_tree_destroy(svr->svr_allocd_segs);
397         mutex_destroy(&svr->svr_lock);
398         cv_destroy(&svr->svr_cv);
399         kmem_free(svr, sizeof (*svr));
400 }
401
402 /*
403  * This is called as a synctask in the txg in which we will mark this vdev
404  * as removing (in the config stored in the MOS).
405  *
406  * It begins the evacuation of a toplevel vdev by:
407  * - initializing the spa_removing_phys which tracks this removal
408  * - computing the amount of space to remove for accounting purposes
409  * - dirtying all dbufs in the spa_config_object
410  * - creating the spa_vdev_removal
411  * - starting the spa_vdev_remove_thread
412  */
413 static void
414 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
415 {
416         int vdev_id = (uintptr_t)arg;
417         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
418         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
419         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
420         objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
421         spa_vdev_removal_t *svr = NULL;
422         uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
423
424         ASSERT0(vdev_get_nparity(vd));
425         svr = spa_vdev_removal_create(vd);
426
427         ASSERT(vd->vdev_removing);
428         ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
429
430         spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
431         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
432                 /*
433                  * By activating the OBSOLETE_COUNTS feature, we prevent
434                  * the pool from being downgraded and ensure that the
435                  * refcounts are precise.
436                  */
437                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
438                 uint64_t one = 1;
439                 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
440                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
441                     &one, tx));
442                 boolean_t are_precise __maybe_unused;
443                 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
444                 ASSERT3B(are_precise, ==, B_TRUE);
445         }
446
447         vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
448         vd->vdev_indirect_mapping =
449             vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
450         vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
451         vd->vdev_indirect_births =
452             vdev_indirect_births_open(mos, vic->vic_births_object);
453         spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
454         spa->spa_removing_phys.sr_start_time = gethrestime_sec();
455         spa->spa_removing_phys.sr_end_time = 0;
456         spa->spa_removing_phys.sr_state = DSS_SCANNING;
457         spa->spa_removing_phys.sr_to_copy = 0;
458         spa->spa_removing_phys.sr_copied = 0;
459
460         /*
461          * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
462          * there may be space in the defer tree, which is free, but still
463          * counted in vs_alloc.
464          */
465         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
466                 metaslab_t *ms = vd->vdev_ms[i];
467                 if (ms->ms_sm == NULL)
468                         continue;
469
470                 spa->spa_removing_phys.sr_to_copy +=
471                     metaslab_allocated_space(ms);
472
473                 /*
474                  * Space which we are freeing this txg does not need to
475                  * be copied.
476                  */
477                 spa->spa_removing_phys.sr_to_copy -=
478                     range_tree_space(ms->ms_freeing);
479
480                 ASSERT0(range_tree_space(ms->ms_freed));
481                 for (int t = 0; t < TXG_SIZE; t++)
482                         ASSERT0(range_tree_space(ms->ms_allocating[t]));
483         }
484
485         /*
486          * Sync tasks are called before metaslab_sync(), so there should
487          * be no already-synced metaslabs in the TXG_CLEAN list.
488          */
489         ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
490
491         spa_sync_removing_state(spa, tx);
492
493         /*
494          * All blocks that we need to read the most recent mapping must be
495          * stored on concrete vdevs.  Therefore, we must dirty anything that
496          * is read before spa_remove_init().  Specifically, the
497          * spa_config_object.  (Note that although we already modified the
498          * spa_config_object in spa_sync_removing_state, that may not have
499          * modified all blocks of the object.)
500          */
501         dmu_object_info_t doi;
502         VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
503         for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
504                 dmu_buf_t *dbuf;
505                 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
506                     offset, FTAG, &dbuf, 0));
507                 dmu_buf_will_dirty(dbuf, tx);
508                 offset += dbuf->db_size;
509                 dmu_buf_rele(dbuf, FTAG);
510         }
511
512         /*
513          * Now that we've allocated the im_object, dirty the vdev to ensure
514          * that the object gets written to the config on disk.
515          */
516         vdev_config_dirty(vd);
517
518         zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
519             "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
520             (u_longlong_t)dmu_tx_get_txg(tx),
521             (u_longlong_t)vic->vic_mapping_object);
522
523         spa_history_log_internal(spa, "vdev remove started", tx,
524             "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
525             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
526         /*
527          * Setting spa_vdev_removal causes subsequent frees to call
528          * free_from_removing_vdev().  Note that we don't need any locking
529          * because we are the sync thread, and metaslab_free_impl() is only
530          * called from syncing context (potentially from a zio taskq thread,
531          * but in any case only when there are outstanding free i/os, which
532          * there are not).
533          */
534         ASSERT3P(spa->spa_vdev_removal, ==, NULL);
535         spa->spa_vdev_removal = svr;
536         svr->svr_thread = thread_create(NULL, 0,
537             spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
538 }
539
540 /*
541  * When we are opening a pool, we must read the mapping for each
542  * indirect vdev in order from most recently removed to least
543  * recently removed.  We do this because the blocks for the mapping
544  * of older indirect vdevs may be stored on more recently removed vdevs.
545  * In order to read each indirect mapping object, we must have
546  * initialized all more recently removed vdevs.
547  */
548 int
549 spa_remove_init(spa_t *spa)
550 {
551         int error;
552
553         error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
554             DMU_POOL_DIRECTORY_OBJECT,
555             DMU_POOL_REMOVING, sizeof (uint64_t),
556             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
557             &spa->spa_removing_phys);
558
559         if (error == ENOENT) {
560                 spa->spa_removing_phys.sr_state = DSS_NONE;
561                 spa->spa_removing_phys.sr_removing_vdev = -1;
562                 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
563                 spa->spa_indirect_vdevs_loaded = B_TRUE;
564                 return (0);
565         } else if (error != 0) {
566                 return (error);
567         }
568
569         if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
570                 /*
571                  * We are currently removing a vdev.  Create and
572                  * initialize a spa_vdev_removal_t from the bonus
573                  * buffer of the removing vdevs vdev_im_object, and
574                  * initialize its partial mapping.
575                  */
576                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
577                 vdev_t *vd = vdev_lookup_top(spa,
578                     spa->spa_removing_phys.sr_removing_vdev);
579
580                 if (vd == NULL) {
581                         spa_config_exit(spa, SCL_STATE, FTAG);
582                         return (EINVAL);
583                 }
584
585                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
586
587                 ASSERT(vdev_is_concrete(vd));
588                 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
589                 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
590                 ASSERT(vd->vdev_removing);
591
592                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
593                     spa->spa_meta_objset, vic->vic_mapping_object);
594                 vd->vdev_indirect_births = vdev_indirect_births_open(
595                     spa->spa_meta_objset, vic->vic_births_object);
596                 spa_config_exit(spa, SCL_STATE, FTAG);
597
598                 spa->spa_vdev_removal = svr;
599         }
600
601         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
602         uint64_t indirect_vdev_id =
603             spa->spa_removing_phys.sr_prev_indirect_vdev;
604         while (indirect_vdev_id != UINT64_MAX) {
605                 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
606                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
607
608                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
609                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
610                     spa->spa_meta_objset, vic->vic_mapping_object);
611                 vd->vdev_indirect_births = vdev_indirect_births_open(
612                     spa->spa_meta_objset, vic->vic_births_object);
613
614                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
615         }
616         spa_config_exit(spa, SCL_STATE, FTAG);
617
618         /*
619          * Now that we've loaded all the indirect mappings, we can allow
620          * reads from other blocks (e.g. via predictive prefetch).
621          */
622         spa->spa_indirect_vdevs_loaded = B_TRUE;
623         return (0);
624 }
625
626 void
627 spa_restart_removal(spa_t *spa)
628 {
629         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
630
631         if (svr == NULL)
632                 return;
633
634         /*
635          * In general when this function is called there is no
636          * removal thread running. The only scenario where this
637          * is not true is during spa_import() where this function
638          * is called twice [once from spa_import_impl() and
639          * spa_async_resume()]. Thus, in the scenario where we
640          * import a pool that has an ongoing removal we don't
641          * want to spawn a second thread.
642          */
643         if (svr->svr_thread != NULL)
644                 return;
645
646         if (!spa_writeable(spa))
647                 return;
648
649         zfs_dbgmsg("restarting removal of %llu",
650             (u_longlong_t)svr->svr_vdev_id);
651         svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
652             0, &p0, TS_RUN, minclsyspri);
653 }
654
655 /*
656  * Process freeing from a device which is in the middle of being removed.
657  * We must handle this carefully so that we attempt to copy freed data,
658  * and we correctly free already-copied data.
659  */
660 void
661 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
662 {
663         spa_t *spa = vd->vdev_spa;
664         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
665         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
666         uint64_t txg = spa_syncing_txg(spa);
667         uint64_t max_offset_yet = 0;
668
669         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
670         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
671             vdev_indirect_mapping_object(vim));
672         ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
673
674         mutex_enter(&svr->svr_lock);
675
676         /*
677          * Remove the segment from the removing vdev's spacemap.  This
678          * ensures that we will not attempt to copy this space (if the
679          * removal thread has not yet visited it), and also ensures
680          * that we know what is actually allocated on the new vdevs
681          * (needed if we cancel the removal).
682          *
683          * Note: we must do the metaslab_free_concrete() with the svr_lock
684          * held, so that the remove_thread can not load this metaslab and then
685          * visit this offset between the time that we metaslab_free_concrete()
686          * and when we check to see if it has been visited.
687          *
688          * Note: The checkpoint flag is set to false as having/taking
689          * a checkpoint and removing a device can't happen at the same
690          * time.
691          */
692         ASSERT(!spa_has_checkpoint(spa));
693         metaslab_free_concrete(vd, offset, size, B_FALSE);
694
695         uint64_t synced_size = 0;
696         uint64_t synced_offset = 0;
697         uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
698         if (offset < max_offset_synced) {
699                 /*
700                  * The mapping for this offset is already on disk.
701                  * Free from the new location.
702                  *
703                  * Note that we use svr_max_synced_offset because it is
704                  * updated atomically with respect to the in-core mapping.
705                  * By contrast, vim_max_offset is not.
706                  *
707                  * This block may be split between a synced entry and an
708                  * in-flight or unvisited entry.  Only process the synced
709                  * portion of it here.
710                  */
711                 synced_size = MIN(size, max_offset_synced - offset);
712                 synced_offset = offset;
713
714                 ASSERT3U(max_offset_yet, <=, max_offset_synced);
715                 max_offset_yet = max_offset_synced;
716
717                 DTRACE_PROBE3(remove__free__synced,
718                     spa_t *, spa,
719                     uint64_t, offset,
720                     uint64_t, synced_size);
721
722                 size -= synced_size;
723                 offset += synced_size;
724         }
725
726         /*
727          * Look at all in-flight txgs starting from the currently syncing one
728          * and see if a section of this free is being copied. By starting from
729          * this txg and iterating forward, we might find that this region
730          * was copied in two different txgs and handle it appropriately.
731          */
732         for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
733                 int txgoff = (txg + i) & TXG_MASK;
734                 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
735                         /*
736                          * The mapping for this offset is in flight, and
737                          * will be synced in txg+i.
738                          */
739                         uint64_t inflight_size = MIN(size,
740                             svr->svr_max_offset_to_sync[txgoff] - offset);
741
742                         DTRACE_PROBE4(remove__free__inflight,
743                             spa_t *, spa,
744                             uint64_t, offset,
745                             uint64_t, inflight_size,
746                             uint64_t, txg + i);
747
748                         /*
749                          * We copy data in order of increasing offset.
750                          * Therefore the max_offset_to_sync[] must increase
751                          * (or be zero, indicating that nothing is being
752                          * copied in that txg).
753                          */
754                         if (svr->svr_max_offset_to_sync[txgoff] != 0) {
755                                 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
756                                     >=, max_offset_yet);
757                                 max_offset_yet =
758                                     svr->svr_max_offset_to_sync[txgoff];
759                         }
760
761                         /*
762                          * We've already committed to copying this segment:
763                          * we have allocated space elsewhere in the pool for
764                          * it and have an IO outstanding to copy the data. We
765                          * cannot free the space before the copy has
766                          * completed, or else the copy IO might overwrite any
767                          * new data. To free that space, we record the
768                          * segment in the appropriate svr_frees tree and free
769                          * the mapped space later, in the txg where we have
770                          * completed the copy and synced the mapping (see
771                          * vdev_mapping_sync).
772                          */
773                         range_tree_add(svr->svr_frees[txgoff],
774                             offset, inflight_size);
775                         size -= inflight_size;
776                         offset += inflight_size;
777
778                         /*
779                          * This space is already accounted for as being
780                          * done, because it is being copied in txg+i.
781                          * However, if i!=0, then it is being copied in
782                          * a future txg.  If we crash after this txg
783                          * syncs but before txg+i syncs, then the space
784                          * will be free.  Therefore we must account
785                          * for the space being done in *this* txg
786                          * (when it is freed) rather than the future txg
787                          * (when it will be copied).
788                          */
789                         ASSERT3U(svr->svr_bytes_done[txgoff], >=,
790                             inflight_size);
791                         svr->svr_bytes_done[txgoff] -= inflight_size;
792                         svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
793                 }
794         }
795         ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
796
797         if (size > 0) {
798                 /*
799                  * The copy thread has not yet visited this offset.  Ensure
800                  * that it doesn't.
801                  */
802
803                 DTRACE_PROBE3(remove__free__unvisited,
804                     spa_t *, spa,
805                     uint64_t, offset,
806                     uint64_t, size);
807
808                 if (svr->svr_allocd_segs != NULL)
809                         range_tree_clear(svr->svr_allocd_segs, offset, size);
810
811                 /*
812                  * Since we now do not need to copy this data, for
813                  * accounting purposes we have done our job and can count
814                  * it as completed.
815                  */
816                 svr->svr_bytes_done[txg & TXG_MASK] += size;
817         }
818         mutex_exit(&svr->svr_lock);
819
820         /*
821          * Now that we have dropped svr_lock, process the synced portion
822          * of this free.
823          */
824         if (synced_size > 0) {
825                 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
826
827                 /*
828                  * Note: this can only be called from syncing context,
829                  * and the vdev_indirect_mapping is only changed from the
830                  * sync thread, so we don't need svr_lock while doing
831                  * metaslab_free_impl_cb.
832                  */
833                 boolean_t checkpoint = B_FALSE;
834                 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
835                     metaslab_free_impl_cb, &checkpoint);
836         }
837 }
838
839 /*
840  * Stop an active removal and update the spa_removing phys.
841  */
842 static void
843 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
844 {
845         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
846         ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
847
848         /* Ensure the removal thread has completed before we free the svr. */
849         spa_vdev_remove_suspend(spa);
850
851         ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
852
853         if (state == DSS_FINISHED) {
854                 spa_removing_phys_t *srp = &spa->spa_removing_phys;
855                 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
856                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
857
858                 if (srp->sr_prev_indirect_vdev != -1) {
859                         vdev_t *pvd;
860                         pvd = vdev_lookup_top(spa,
861                             srp->sr_prev_indirect_vdev);
862                         ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
863                 }
864
865                 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
866                 srp->sr_prev_indirect_vdev = vd->vdev_id;
867         }
868         spa->spa_removing_phys.sr_state = state;
869         spa->spa_removing_phys.sr_end_time = gethrestime_sec();
870
871         spa->spa_vdev_removal = NULL;
872         spa_vdev_removal_destroy(svr);
873
874         spa_sync_removing_state(spa, tx);
875         spa_notify_waiters(spa);
876
877         vdev_config_dirty(spa->spa_root_vdev);
878 }
879
880 static void
881 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
882 {
883         vdev_t *vd = arg;
884         vdev_indirect_mark_obsolete(vd, offset, size);
885         boolean_t checkpoint = B_FALSE;
886         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
887             metaslab_free_impl_cb, &checkpoint);
888 }
889
890 /*
891  * On behalf of the removal thread, syncs an incremental bit more of
892  * the indirect mapping to disk and updates the in-memory mapping.
893  * Called as a sync task in every txg that the removal thread makes progress.
894  */
895 static void
896 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
897 {
898         spa_vdev_removal_t *svr = arg;
899         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
900         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
901         vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
902         uint64_t txg = dmu_tx_get_txg(tx);
903         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
904
905         ASSERT(vic->vic_mapping_object != 0);
906         ASSERT3U(txg, ==, spa_syncing_txg(spa));
907
908         vdev_indirect_mapping_add_entries(vim,
909             &svr->svr_new_segments[txg & TXG_MASK], tx);
910         vdev_indirect_births_add_entry(vd->vdev_indirect_births,
911             vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
912
913         /*
914          * Free the copied data for anything that was freed while the
915          * mapping entries were in flight.
916          */
917         mutex_enter(&svr->svr_lock);
918         range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
919             free_mapped_segment_cb, vd);
920         ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
921             vdev_indirect_mapping_max_offset(vim));
922         svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
923         mutex_exit(&svr->svr_lock);
924
925         spa_sync_removing_state(spa, tx);
926 }
927
928 typedef struct vdev_copy_segment_arg {
929         spa_t *vcsa_spa;
930         dva_t *vcsa_dest_dva;
931         uint64_t vcsa_txg;
932         range_tree_t *vcsa_obsolete_segs;
933 } vdev_copy_segment_arg_t;
934
935 static void
936 unalloc_seg(void *arg, uint64_t start, uint64_t size)
937 {
938         vdev_copy_segment_arg_t *vcsa = arg;
939         spa_t *spa = vcsa->vcsa_spa;
940         blkptr_t bp = { { { {0} } } };
941
942         BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
943         BP_SET_LSIZE(&bp, size);
944         BP_SET_PSIZE(&bp, size);
945         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
946         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
947         BP_SET_TYPE(&bp, DMU_OT_NONE);
948         BP_SET_LEVEL(&bp, 0);
949         BP_SET_DEDUP(&bp, 0);
950         BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
951
952         DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
953         DVA_SET_OFFSET(&bp.blk_dva[0],
954             DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
955         DVA_SET_ASIZE(&bp.blk_dva[0], size);
956
957         zio_free(spa, vcsa->vcsa_txg, &bp);
958 }
959
960 /*
961  * All reads and writes associated with a call to spa_vdev_copy_segment()
962  * are done.
963  */
964 static void
965 spa_vdev_copy_segment_done(zio_t *zio)
966 {
967         vdev_copy_segment_arg_t *vcsa = zio->io_private;
968
969         range_tree_vacate(vcsa->vcsa_obsolete_segs,
970             unalloc_seg, vcsa);
971         range_tree_destroy(vcsa->vcsa_obsolete_segs);
972         kmem_free(vcsa, sizeof (*vcsa));
973
974         spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
975 }
976
977 /*
978  * The write of the new location is done.
979  */
980 static void
981 spa_vdev_copy_segment_write_done(zio_t *zio)
982 {
983         vdev_copy_arg_t *vca = zio->io_private;
984
985         abd_free(zio->io_abd);
986
987         mutex_enter(&vca->vca_lock);
988         vca->vca_outstanding_bytes -= zio->io_size;
989
990         if (zio->io_error != 0)
991                 vca->vca_write_error_bytes += zio->io_size;
992
993         cv_signal(&vca->vca_cv);
994         mutex_exit(&vca->vca_lock);
995 }
996
997 /*
998  * The read of the old location is done.  The parent zio is the write to
999  * the new location.  Allow it to start.
1000  */
1001 static void
1002 spa_vdev_copy_segment_read_done(zio_t *zio)
1003 {
1004         vdev_copy_arg_t *vca = zio->io_private;
1005
1006         if (zio->io_error != 0) {
1007                 mutex_enter(&vca->vca_lock);
1008                 vca->vca_read_error_bytes += zio->io_size;
1009                 mutex_exit(&vca->vca_lock);
1010         }
1011
1012         zio_nowait(zio_unique_parent(zio));
1013 }
1014
1015 /*
1016  * If the old and new vdevs are mirrors, we will read both sides of the old
1017  * mirror, and write each copy to the corresponding side of the new mirror.
1018  * If the old and new vdevs have a different number of children, we will do
1019  * this as best as possible.  Since we aren't verifying checksums, this
1020  * ensures that as long as there's a good copy of the data, we'll have a
1021  * good copy after the removal, even if there's silent damage to one side
1022  * of the mirror. If we're removing a mirror that has some silent damage,
1023  * we'll have exactly the same damage in the new location (assuming that
1024  * the new location is also a mirror).
1025  *
1026  * We accomplish this by creating a tree of zio_t's, with as many writes as
1027  * there are "children" of the new vdev (a non-redundant vdev counts as one
1028  * child, a 2-way mirror has 2 children, etc). Each write has an associated
1029  * read from a child of the old vdev. Typically there will be the same
1030  * number of children of the old and new vdevs.  However, if there are more
1031  * children of the new vdev, some child(ren) of the old vdev will be issued
1032  * multiple reads.  If there are more children of the old vdev, some copies
1033  * will be dropped.
1034  *
1035  * For example, the tree of zio_t's for a 2-way mirror is:
1036  *
1037  *                            null
1038  *                           /    \
1039  *    write(new vdev, child 0)      write(new vdev, child 1)
1040  *      |                             |
1041  *    read(old vdev, child 0)       read(old vdev, child 1)
1042  *
1043  * Child zio's complete before their parents complete.  However, zio's
1044  * created with zio_vdev_child_io() may be issued before their children
1045  * complete.  In this case we need to make sure that the children (reads)
1046  * complete before the parents (writes) are *issued*.  We do this by not
1047  * calling zio_nowait() on each write until its corresponding read has
1048  * completed.
1049  *
1050  * The spa_config_lock must be held while zio's created by
1051  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1052  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1053  * zio is needed to release the spa_config_lock after all the reads and
1054  * writes complete. (Note that we can't grab the config lock for each read,
1055  * because it is not reentrant - we could deadlock with a thread waiting
1056  * for a write lock.)
1057  */
1058 static void
1059 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1060     vdev_t *source_vd, uint64_t source_offset,
1061     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1062 {
1063         ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1064
1065         /*
1066          * If the destination child in unwritable then there is no point
1067          * in issuing the source reads which cannot be written.
1068          */
1069         if (!vdev_writeable(dest_child_vd))
1070                 return;
1071
1072         mutex_enter(&vca->vca_lock);
1073         vca->vca_outstanding_bytes += size;
1074         mutex_exit(&vca->vca_lock);
1075
1076         abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1077
1078         vdev_t *source_child_vd = NULL;
1079         if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1080                 /*
1081                  * Source and dest are both mirrors.  Copy from the same
1082                  * child id as we are copying to (wrapping around if there
1083                  * are more dest children than source children).  If the
1084                  * preferred source child is unreadable select another.
1085                  */
1086                 for (int i = 0; i < source_vd->vdev_children; i++) {
1087                         source_child_vd = source_vd->vdev_child[
1088                             (dest_id + i) % source_vd->vdev_children];
1089                         if (vdev_readable(source_child_vd))
1090                                 break;
1091                 }
1092         } else {
1093                 source_child_vd = source_vd;
1094         }
1095
1096         /*
1097          * There should always be at least one readable source child or
1098          * the pool would be in a suspended state.  Somehow selecting an
1099          * unreadable child would result in IO errors, the removal process
1100          * being cancelled, and the pool reverting to its pre-removal state.
1101          */
1102         ASSERT3P(source_child_vd, !=, NULL);
1103
1104         zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1105             dest_child_vd, dest_offset, abd, size,
1106             ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1107             ZIO_FLAG_CANFAIL,
1108             spa_vdev_copy_segment_write_done, vca);
1109
1110         zio_nowait(zio_vdev_child_io(write_zio, NULL,
1111             source_child_vd, source_offset, abd, size,
1112             ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1113             ZIO_FLAG_CANFAIL,
1114             spa_vdev_copy_segment_read_done, vca));
1115 }
1116
1117 /*
1118  * Allocate a new location for this segment, and create the zio_t's to
1119  * read from the old location and write to the new location.
1120  */
1121 static int
1122 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
1123     uint64_t maxalloc, uint64_t txg,
1124     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1125 {
1126         metaslab_group_t *mg = vd->vdev_mg;
1127         spa_t *spa = vd->vdev_spa;
1128         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1129         vdev_indirect_mapping_entry_t *entry;
1130         dva_t dst = {{ 0 }};
1131         uint64_t start = range_tree_min(segs);
1132         ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1133
1134         ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1135         ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1136
1137         uint64_t size = range_tree_span(segs);
1138         if (range_tree_span(segs) > maxalloc) {
1139                 /*
1140                  * We can't allocate all the segments.  Prefer to end
1141                  * the allocation at the end of a segment, thus avoiding
1142                  * additional split blocks.
1143                  */
1144                 range_seg_max_t search;
1145                 zfs_btree_index_t where;
1146                 rs_set_start(&search, segs, start + maxalloc);
1147                 rs_set_end(&search, segs, start + maxalloc);
1148                 (void) zfs_btree_find(&segs->rt_root, &search, &where);
1149                 range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1150                     &where);
1151                 if (rs != NULL) {
1152                         size = rs_get_end(rs, segs) - start;
1153                 } else {
1154                         /*
1155                          * There are no segments that end before maxalloc.
1156                          * I.e. the first segment is larger than maxalloc,
1157                          * so we must split it.
1158                          */
1159                         size = maxalloc;
1160                 }
1161         }
1162         ASSERT3U(size, <=, maxalloc);
1163         ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1164
1165         /*
1166          * An allocation class might not have any remaining vdevs or space
1167          */
1168         metaslab_class_t *mc = mg->mg_class;
1169         if (mc->mc_groups == 0)
1170                 mc = spa_normal_class(spa);
1171         int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
1172             zal, 0);
1173         if (error == ENOSPC && mc != spa_normal_class(spa)) {
1174                 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1175                     &dst, 0, NULL, txg, 0, zal, 0);
1176         }
1177         if (error != 0)
1178                 return (error);
1179
1180         /*
1181          * Determine the ranges that are not actually needed.  Offsets are
1182          * relative to the start of the range to be copied (i.e. relative to the
1183          * local variable "start").
1184          */
1185         range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL,
1186             0, 0);
1187
1188         zfs_btree_index_t where;
1189         range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1190         ASSERT3U(rs_get_start(rs, segs), ==, start);
1191         uint64_t prev_seg_end = rs_get_end(rs, segs);
1192         while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1193                 if (rs_get_start(rs, segs) >= start + size) {
1194                         break;
1195                 } else {
1196                         range_tree_add(obsolete_segs,
1197                             prev_seg_end - start,
1198                             rs_get_start(rs, segs) - prev_seg_end);
1199                 }
1200                 prev_seg_end = rs_get_end(rs, segs);
1201         }
1202         /* We don't end in the middle of an obsolete range */
1203         ASSERT3U(start + size, <=, prev_seg_end);
1204
1205         range_tree_clear(segs, start, size);
1206
1207         /*
1208          * We can't have any padding of the allocated size, otherwise we will
1209          * misunderstand what's allocated, and the size of the mapping. We
1210          * prevent padding by ensuring that all devices in the pool have the
1211          * same ashift, and the allocation size is a multiple of the ashift.
1212          */
1213         VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1214
1215         entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1216         DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1217         entry->vime_mapping.vimep_dst = dst;
1218         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1219                 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1220         }
1221
1222         vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1223         vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1224         vcsa->vcsa_obsolete_segs = obsolete_segs;
1225         vcsa->vcsa_spa = spa;
1226         vcsa->vcsa_txg = txg;
1227
1228         /*
1229          * See comment before spa_vdev_copy_one_child().
1230          */
1231         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1232         zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1233             spa_vdev_copy_segment_done, vcsa, 0);
1234         vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1235         if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1236                 for (int i = 0; i < dest_vd->vdev_children; i++) {
1237                         vdev_t *child = dest_vd->vdev_child[i];
1238                         spa_vdev_copy_one_child(vca, nzio, vd, start,
1239                             child, DVA_GET_OFFSET(&dst), i, size);
1240                 }
1241         } else {
1242                 spa_vdev_copy_one_child(vca, nzio, vd, start,
1243                     dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1244         }
1245         zio_nowait(nzio);
1246
1247         list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1248         ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1249         vdev_dirty(vd, 0, NULL, txg);
1250
1251         return (0);
1252 }
1253
1254 /*
1255  * Complete the removal of a toplevel vdev. This is called as a
1256  * synctask in the same txg that we will sync out the new config (to the
1257  * MOS object) which indicates that this vdev is indirect.
1258  */
1259 static void
1260 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1261 {
1262         spa_vdev_removal_t *svr = arg;
1263         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1264         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1265
1266         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1267
1268         for (int i = 0; i < TXG_SIZE; i++) {
1269                 ASSERT0(svr->svr_bytes_done[i]);
1270         }
1271
1272         ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1273             spa->spa_removing_phys.sr_to_copy);
1274
1275         vdev_destroy_spacemaps(vd, tx);
1276
1277         /* destroy leaf zaps, if any */
1278         ASSERT3P(svr->svr_zaplist, !=, NULL);
1279         for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1280             pair != NULL;
1281             pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1282                 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1283         }
1284         fnvlist_free(svr->svr_zaplist);
1285
1286         spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1287         /* vd->vdev_path is not available here */
1288         spa_history_log_internal(spa, "vdev remove completed",  tx,
1289             "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1290 }
1291
1292 static void
1293 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1294 {
1295         ASSERT3P(zlist, !=, NULL);
1296         ASSERT0(vdev_get_nparity(vd));
1297
1298         if (vd->vdev_leaf_zap != 0) {
1299                 char zkey[32];
1300                 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1301                     VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1302                 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1303         }
1304
1305         for (uint64_t id = 0; id < vd->vdev_children; id++) {
1306                 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1307         }
1308 }
1309
1310 static void
1311 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1312 {
1313         vdev_t *ivd;
1314         dmu_tx_t *tx;
1315         spa_t *spa = vd->vdev_spa;
1316         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1317
1318         /*
1319          * First, build a list of leaf zaps to be destroyed.
1320          * This is passed to the sync context thread,
1321          * which does the actual unlinking.
1322          */
1323         svr->svr_zaplist = fnvlist_alloc();
1324         vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1325
1326         ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1327         ivd->vdev_removing = 0;
1328
1329         vd->vdev_leaf_zap = 0;
1330
1331         vdev_remove_child(ivd, vd);
1332         vdev_compact_children(ivd);
1333
1334         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1335
1336         mutex_enter(&svr->svr_lock);
1337         svr->svr_thread = NULL;
1338         cv_broadcast(&svr->svr_cv);
1339         mutex_exit(&svr->svr_lock);
1340
1341         /* After this, we can not use svr. */
1342         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1343         dsl_sync_task_nowait(spa->spa_dsl_pool,
1344             vdev_remove_complete_sync, svr, tx);
1345         dmu_tx_commit(tx);
1346 }
1347
1348 /*
1349  * Complete the removal of a toplevel vdev. This is called in open
1350  * context by the removal thread after we have copied all vdev's data.
1351  */
1352 static void
1353 vdev_remove_complete(spa_t *spa)
1354 {
1355         uint64_t txg;
1356
1357         /*
1358          * Wait for any deferred frees to be synced before we call
1359          * vdev_metaslab_fini()
1360          */
1361         txg_wait_synced(spa->spa_dsl_pool, 0);
1362         txg = spa_vdev_enter(spa);
1363         vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1364         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1365         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1366         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1367         vdev_rebuild_stop_wait(vd);
1368         ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1369         uint64_t vdev_space = spa_deflate(spa) ?
1370             vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1371
1372         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1373             ESC_ZFS_VDEV_REMOVE_DEV);
1374
1375         zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1376             (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1377
1378         ASSERT3U(0, !=, vdev_space);
1379         ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
1380
1381         /* the vdev is no longer part of the dspace */
1382         spa->spa_nonallocating_dspace -= vdev_space;
1383
1384         /*
1385          * Discard allocation state.
1386          */
1387         if (vd->vdev_mg != NULL) {
1388                 vdev_metaslab_fini(vd);
1389                 metaslab_group_destroy(vd->vdev_mg);
1390                 vd->vdev_mg = NULL;
1391         }
1392         if (vd->vdev_log_mg != NULL) {
1393                 ASSERT0(vd->vdev_ms_count);
1394                 metaslab_group_destroy(vd->vdev_log_mg);
1395                 vd->vdev_log_mg = NULL;
1396         }
1397         ASSERT0(vd->vdev_stat.vs_space);
1398         ASSERT0(vd->vdev_stat.vs_dspace);
1399
1400         vdev_remove_replace_with_indirect(vd, txg);
1401
1402         /*
1403          * We now release the locks, allowing spa_sync to run and finish the
1404          * removal via vdev_remove_complete_sync in syncing context.
1405          *
1406          * Note that we hold on to the vdev_t that has been replaced.  Since
1407          * it isn't part of the vdev tree any longer, it can't be concurrently
1408          * manipulated, even while we don't have the config lock.
1409          */
1410         (void) spa_vdev_exit(spa, NULL, txg, 0);
1411
1412         /*
1413          * Top ZAP should have been transferred to the indirect vdev in
1414          * vdev_remove_replace_with_indirect.
1415          */
1416         ASSERT0(vd->vdev_top_zap);
1417
1418         /*
1419          * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1420          */
1421         ASSERT0(vd->vdev_leaf_zap);
1422
1423         txg = spa_vdev_enter(spa);
1424         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1425         /*
1426          * Request to update the config and the config cachefile.
1427          */
1428         vdev_config_dirty(spa->spa_root_vdev);
1429         (void) spa_vdev_exit(spa, vd, txg, 0);
1430
1431         if (ev != NULL)
1432                 spa_event_post(ev);
1433 }
1434
1435 /*
1436  * Evacuates a segment of size at most max_alloc from the vdev
1437  * via repeated calls to spa_vdev_copy_segment. If an allocation
1438  * fails, the pool is probably too fragmented to handle such a
1439  * large size, so decrease max_alloc so that the caller will not try
1440  * this size again this txg.
1441  */
1442 static void
1443 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1444     uint64_t *max_alloc, dmu_tx_t *tx)
1445 {
1446         uint64_t txg = dmu_tx_get_txg(tx);
1447         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1448
1449         mutex_enter(&svr->svr_lock);
1450
1451         /*
1452          * Determine how big of a chunk to copy.  We can allocate up
1453          * to max_alloc bytes, and we can span up to vdev_removal_max_span
1454          * bytes of unallocated space at a time.  "segs" will track the
1455          * allocated segments that we are copying.  We may also be copying
1456          * free segments (of up to vdev_removal_max_span bytes).
1457          */
1458         range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1459         for (;;) {
1460                 range_tree_t *rt = svr->svr_allocd_segs;
1461                 range_seg_t *rs = range_tree_first(rt);
1462
1463                 if (rs == NULL)
1464                         break;
1465
1466                 uint64_t seg_length;
1467
1468                 if (range_tree_is_empty(segs)) {
1469                         /* need to truncate the first seg based on max_alloc */
1470                         seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs,
1471                             rt), *max_alloc);
1472                 } else {
1473                         if (rs_get_start(rs, rt) - range_tree_max(segs) >
1474                             vdev_removal_max_span) {
1475                                 /*
1476                                  * Including this segment would cause us to
1477                                  * copy a larger unneeded chunk than is allowed.
1478                                  */
1479                                 break;
1480                         } else if (rs_get_end(rs, rt) - range_tree_min(segs) >
1481                             *max_alloc) {
1482                                 /*
1483                                  * This additional segment would extend past
1484                                  * max_alloc. Rather than splitting this
1485                                  * segment, leave it for the next mapping.
1486                                  */
1487                                 break;
1488                         } else {
1489                                 seg_length = rs_get_end(rs, rt) -
1490                                     rs_get_start(rs, rt);
1491                         }
1492                 }
1493
1494                 range_tree_add(segs, rs_get_start(rs, rt), seg_length);
1495                 range_tree_remove(svr->svr_allocd_segs,
1496                     rs_get_start(rs, rt), seg_length);
1497         }
1498
1499         if (range_tree_is_empty(segs)) {
1500                 mutex_exit(&svr->svr_lock);
1501                 range_tree_destroy(segs);
1502                 return;
1503         }
1504
1505         if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1506                 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1507                     svr, tx);
1508         }
1509
1510         svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1511
1512         /*
1513          * Note: this is the amount of *allocated* space
1514          * that we are taking care of each txg.
1515          */
1516         svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1517
1518         mutex_exit(&svr->svr_lock);
1519
1520         zio_alloc_list_t zal;
1521         metaslab_trace_init(&zal);
1522         uint64_t thismax = SPA_MAXBLOCKSIZE;
1523         while (!range_tree_is_empty(segs)) {
1524                 int error = spa_vdev_copy_segment(vd,
1525                     segs, thismax, txg, vca, &zal);
1526
1527                 if (error == ENOSPC) {
1528                         /*
1529                          * Cut our segment in half, and don't try this
1530                          * segment size again this txg.  Note that the
1531                          * allocation size must be aligned to the highest
1532                          * ashift in the pool, so that the allocation will
1533                          * not be padded out to a multiple of the ashift,
1534                          * which could cause us to think that this mapping
1535                          * is larger than we intended.
1536                          */
1537                         ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1538                         ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1539                         uint64_t attempted =
1540                             MIN(range_tree_span(segs), thismax);
1541                         thismax = P2ROUNDUP(attempted / 2,
1542                             1 << spa->spa_max_ashift);
1543                         /*
1544                          * The minimum-size allocation can not fail.
1545                          */
1546                         ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1547                         *max_alloc = attempted - (1 << spa->spa_max_ashift);
1548                 } else {
1549                         ASSERT0(error);
1550
1551                         /*
1552                          * We've performed an allocation, so reset the
1553                          * alloc trace list.
1554                          */
1555                         metaslab_trace_fini(&zal);
1556                         metaslab_trace_init(&zal);
1557                 }
1558         }
1559         metaslab_trace_fini(&zal);
1560         range_tree_destroy(segs);
1561 }
1562
1563 /*
1564  * The size of each removal mapping is limited by the tunable
1565  * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1566  * pool's ashift, so that we don't try to split individual sectors regardless
1567  * of the tunable value.  (Note that device removal requires that all devices
1568  * have the same ashift, so there's no difference between spa_min_ashift and
1569  * spa_max_ashift.) The raw tunable should not be used elsewhere.
1570  */
1571 uint64_t
1572 spa_remove_max_segment(spa_t *spa)
1573 {
1574         return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1575 }
1576
1577 /*
1578  * The removal thread operates in open context.  It iterates over all
1579  * allocated space in the vdev, by loading each metaslab's spacemap.
1580  * For each contiguous segment of allocated space (capping the segment
1581  * size at SPA_MAXBLOCKSIZE), we:
1582  *    - Allocate space for it on another vdev.
1583  *    - Create a new mapping from the old location to the new location
1584  *      (as a record in svr_new_segments).
1585  *    - Initiate a physical read zio to get the data off the removing disk.
1586  *    - In the read zio's done callback, initiate a physical write zio to
1587  *      write it to the new vdev.
1588  * Note that all of this will take effect when a particular TXG syncs.
1589  * The sync thread ensures that all the phys reads and writes for the syncing
1590  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1591  * (see vdev_mapping_sync()).
1592  */
1593 static __attribute__((noreturn)) void
1594 spa_vdev_remove_thread(void *arg)
1595 {
1596         spa_t *spa = arg;
1597         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1598         vdev_copy_arg_t vca;
1599         uint64_t max_alloc = spa_remove_max_segment(spa);
1600         uint64_t last_txg = 0;
1601
1602         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1603         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1604         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1605         uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1606
1607         ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1608         ASSERT(vdev_is_concrete(vd));
1609         ASSERT(vd->vdev_removing);
1610         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1611         ASSERT(vim != NULL);
1612
1613         mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1614         cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1615         vca.vca_outstanding_bytes = 0;
1616         vca.vca_read_error_bytes = 0;
1617         vca.vca_write_error_bytes = 0;
1618
1619         mutex_enter(&svr->svr_lock);
1620
1621         /*
1622          * Start from vim_max_offset so we pick up where we left off
1623          * if we are restarting the removal after opening the pool.
1624          */
1625         uint64_t msi;
1626         for (msi = start_offset >> vd->vdev_ms_shift;
1627             msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1628                 metaslab_t *msp = vd->vdev_ms[msi];
1629                 ASSERT3U(msi, <=, vd->vdev_ms_count);
1630
1631                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1632
1633                 mutex_enter(&msp->ms_sync_lock);
1634                 mutex_enter(&msp->ms_lock);
1635
1636                 /*
1637                  * Assert nothing in flight -- ms_*tree is empty.
1638                  */
1639                 for (int i = 0; i < TXG_SIZE; i++) {
1640                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1641                 }
1642
1643                 /*
1644                  * If the metaslab has ever been allocated from (ms_sm!=NULL),
1645                  * read the allocated segments from the space map object
1646                  * into svr_allocd_segs. Since we do this while holding
1647                  * svr_lock and ms_sync_lock, concurrent frees (which
1648                  * would have modified the space map) will wait for us
1649                  * to finish loading the spacemap, and then take the
1650                  * appropriate action (see free_from_removing_vdev()).
1651                  */
1652                 if (msp->ms_sm != NULL) {
1653                         VERIFY0(space_map_load(msp->ms_sm,
1654                             svr->svr_allocd_segs, SM_ALLOC));
1655
1656                         range_tree_walk(msp->ms_unflushed_allocs,
1657                             range_tree_add, svr->svr_allocd_segs);
1658                         range_tree_walk(msp->ms_unflushed_frees,
1659                             range_tree_remove, svr->svr_allocd_segs);
1660                         range_tree_walk(msp->ms_freeing,
1661                             range_tree_remove, svr->svr_allocd_segs);
1662
1663                         /*
1664                          * When we are resuming from a paused removal (i.e.
1665                          * when importing a pool with a removal in progress),
1666                          * discard any state that we have already processed.
1667                          */
1668                         range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1669                 }
1670                 mutex_exit(&msp->ms_lock);
1671                 mutex_exit(&msp->ms_sync_lock);
1672
1673                 vca.vca_msp = msp;
1674                 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1675                     (u_longlong_t)zfs_btree_numnodes(
1676                     &svr->svr_allocd_segs->rt_root),
1677                     (u_longlong_t)msp->ms_id);
1678
1679                 while (!svr->svr_thread_exit &&
1680                     !range_tree_is_empty(svr->svr_allocd_segs)) {
1681
1682                         mutex_exit(&svr->svr_lock);
1683
1684                         /*
1685                          * We need to periodically drop the config lock so that
1686                          * writers can get in.  Additionally, we can't wait
1687                          * for a txg to sync while holding a config lock
1688                          * (since a waiting writer could cause a 3-way deadlock
1689                          * with the sync thread, which also gets a config
1690                          * lock for reader).  So we can't hold the config lock
1691                          * while calling dmu_tx_assign().
1692                          */
1693                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1694
1695                         /*
1696                          * This delay will pause the removal around the point
1697                          * specified by zfs_removal_suspend_progress. We do this
1698                          * solely from the test suite or during debugging.
1699                          */
1700                         while (zfs_removal_suspend_progress &&
1701                             !svr->svr_thread_exit)
1702                                 delay(hz);
1703
1704                         mutex_enter(&vca.vca_lock);
1705                         while (vca.vca_outstanding_bytes >
1706                             zfs_remove_max_copy_bytes) {
1707                                 cv_wait(&vca.vca_cv, &vca.vca_lock);
1708                         }
1709                         mutex_exit(&vca.vca_lock);
1710
1711                         dmu_tx_t *tx =
1712                             dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1713
1714                         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1715                         uint64_t txg = dmu_tx_get_txg(tx);
1716
1717                         /*
1718                          * Reacquire the vdev_config lock.  The vdev_t
1719                          * that we're removing may have changed, e.g. due
1720                          * to a vdev_attach or vdev_detach.
1721                          */
1722                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1723                         vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1724
1725                         if (txg != last_txg)
1726                                 max_alloc = spa_remove_max_segment(spa);
1727                         last_txg = txg;
1728
1729                         spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1730
1731                         dmu_tx_commit(tx);
1732                         mutex_enter(&svr->svr_lock);
1733                 }
1734
1735                 mutex_enter(&vca.vca_lock);
1736                 if (zfs_removal_ignore_errors == 0 &&
1737                     (vca.vca_read_error_bytes > 0 ||
1738                     vca.vca_write_error_bytes > 0)) {
1739                         svr->svr_thread_exit = B_TRUE;
1740                 }
1741                 mutex_exit(&vca.vca_lock);
1742         }
1743
1744         mutex_exit(&svr->svr_lock);
1745
1746         spa_config_exit(spa, SCL_CONFIG, FTAG);
1747
1748         /*
1749          * Wait for all copies to finish before cleaning up the vca.
1750          */
1751         txg_wait_synced(spa->spa_dsl_pool, 0);
1752         ASSERT0(vca.vca_outstanding_bytes);
1753
1754         mutex_destroy(&vca.vca_lock);
1755         cv_destroy(&vca.vca_cv);
1756
1757         if (svr->svr_thread_exit) {
1758                 mutex_enter(&svr->svr_lock);
1759                 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1760                 svr->svr_thread = NULL;
1761                 cv_broadcast(&svr->svr_cv);
1762                 mutex_exit(&svr->svr_lock);
1763
1764                 /*
1765                  * During the removal process an unrecoverable read or write
1766                  * error was encountered.  The removal process must be
1767                  * cancelled or this damage may become permanent.
1768                  */
1769                 if (zfs_removal_ignore_errors == 0 &&
1770                     (vca.vca_read_error_bytes > 0 ||
1771                     vca.vca_write_error_bytes > 0)) {
1772                         zfs_dbgmsg("canceling removal due to IO errors: "
1773                             "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1774                             (u_longlong_t)vca.vca_read_error_bytes,
1775                             (u_longlong_t)vca.vca_write_error_bytes);
1776                         spa_vdev_remove_cancel_impl(spa);
1777                 }
1778         } else {
1779                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1780                 vdev_remove_complete(spa);
1781         }
1782
1783         thread_exit();
1784 }
1785
1786 void
1787 spa_vdev_remove_suspend(spa_t *spa)
1788 {
1789         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1790
1791         if (svr == NULL)
1792                 return;
1793
1794         mutex_enter(&svr->svr_lock);
1795         svr->svr_thread_exit = B_TRUE;
1796         while (svr->svr_thread != NULL)
1797                 cv_wait(&svr->svr_cv, &svr->svr_lock);
1798         svr->svr_thread_exit = B_FALSE;
1799         mutex_exit(&svr->svr_lock);
1800 }
1801
1802 /*
1803  * Return true if the "allocating" property has been set to "off"
1804  */
1805 static boolean_t
1806 vdev_prop_allocating_off(vdev_t *vd)
1807 {
1808         uint64_t objid = vd->vdev_top_zap;
1809         uint64_t allocating = 1;
1810
1811         /* no vdev property object => no props */
1812         if (objid != 0) {
1813                 spa_t *spa = vd->vdev_spa;
1814                 objset_t *mos = spa->spa_meta_objset;
1815
1816                 mutex_enter(&spa->spa_props_lock);
1817                 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1818                     1, &allocating);
1819                 mutex_exit(&spa->spa_props_lock);
1820         }
1821         return (allocating == 0);
1822 }
1823
1824 static int
1825 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1826 {
1827         (void) arg;
1828         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1829
1830         if (spa->spa_vdev_removal == NULL)
1831                 return (ENOTACTIVE);
1832         return (0);
1833 }
1834
1835 /*
1836  * Cancel a removal by freeing all entries from the partial mapping
1837  * and marking the vdev as no longer being removing.
1838  */
1839 static void
1840 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1841 {
1842         (void) arg;
1843         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1844         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1845         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1846         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1847         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1848         objset_t *mos = spa->spa_meta_objset;
1849
1850         ASSERT3P(svr->svr_thread, ==, NULL);
1851
1852         spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1853
1854         boolean_t are_precise;
1855         VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1856         if (are_precise) {
1857                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1858                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1859                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1860         }
1861
1862         uint64_t obsolete_sm_object;
1863         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1864         if (obsolete_sm_object != 0) {
1865                 ASSERT(vd->vdev_obsolete_sm != NULL);
1866                 ASSERT3U(obsolete_sm_object, ==,
1867                     space_map_object(vd->vdev_obsolete_sm));
1868
1869                 space_map_free(vd->vdev_obsolete_sm, tx);
1870                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1871                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1872                 space_map_close(vd->vdev_obsolete_sm);
1873                 vd->vdev_obsolete_sm = NULL;
1874                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1875         }
1876         for (int i = 0; i < TXG_SIZE; i++) {
1877                 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1878                 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1879                     vdev_indirect_mapping_max_offset(vim));
1880         }
1881
1882         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1883                 metaslab_t *msp = vd->vdev_ms[msi];
1884
1885                 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1886                         break;
1887
1888                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1889
1890                 mutex_enter(&msp->ms_lock);
1891
1892                 /*
1893                  * Assert nothing in flight -- ms_*tree is empty.
1894                  */
1895                 for (int i = 0; i < TXG_SIZE; i++)
1896                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1897                 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1898                         ASSERT0(range_tree_space(msp->ms_defer[i]));
1899                 ASSERT0(range_tree_space(msp->ms_freed));
1900
1901                 if (msp->ms_sm != NULL) {
1902                         mutex_enter(&svr->svr_lock);
1903                         VERIFY0(space_map_load(msp->ms_sm,
1904                             svr->svr_allocd_segs, SM_ALLOC));
1905
1906                         range_tree_walk(msp->ms_unflushed_allocs,
1907                             range_tree_add, svr->svr_allocd_segs);
1908                         range_tree_walk(msp->ms_unflushed_frees,
1909                             range_tree_remove, svr->svr_allocd_segs);
1910                         range_tree_walk(msp->ms_freeing,
1911                             range_tree_remove, svr->svr_allocd_segs);
1912
1913                         /*
1914                          * Clear everything past what has been synced,
1915                          * because we have not allocated mappings for it yet.
1916                          */
1917                         uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1918                         uint64_t sm_end = msp->ms_sm->sm_start +
1919                             msp->ms_sm->sm_size;
1920                         if (sm_end > syncd)
1921                                 range_tree_clear(svr->svr_allocd_segs,
1922                                     syncd, sm_end - syncd);
1923
1924                         mutex_exit(&svr->svr_lock);
1925                 }
1926                 mutex_exit(&msp->ms_lock);
1927
1928                 mutex_enter(&svr->svr_lock);
1929                 range_tree_vacate(svr->svr_allocd_segs,
1930                     free_mapped_segment_cb, vd);
1931                 mutex_exit(&svr->svr_lock);
1932         }
1933
1934         /*
1935          * Note: this must happen after we invoke free_mapped_segment_cb,
1936          * because it adds to the obsolete_segments.
1937          */
1938         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1939
1940         ASSERT3U(vic->vic_mapping_object, ==,
1941             vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1942         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1943         vd->vdev_indirect_mapping = NULL;
1944         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1945         vic->vic_mapping_object = 0;
1946
1947         ASSERT3U(vic->vic_births_object, ==,
1948             vdev_indirect_births_object(vd->vdev_indirect_births));
1949         vdev_indirect_births_close(vd->vdev_indirect_births);
1950         vd->vdev_indirect_births = NULL;
1951         vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1952         vic->vic_births_object = 0;
1953
1954         /*
1955          * We may have processed some frees from the removing vdev in this
1956          * txg, thus increasing svr_bytes_done; discard that here to
1957          * satisfy the assertions in spa_vdev_removal_destroy().
1958          * Note that future txg's can not have any bytes_done, because
1959          * future TXG's are only modified from open context, and we have
1960          * already shut down the copying thread.
1961          */
1962         svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1963         spa_finish_removal(spa, DSS_CANCELED, tx);
1964
1965         vd->vdev_removing = B_FALSE;
1966
1967         if (!vdev_prop_allocating_off(vd)) {
1968                 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1969                 vdev_activate(vd);
1970                 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1971         }
1972
1973         vdev_config_dirty(vd);
1974
1975         zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1976             (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
1977         spa_history_log_internal(spa, "vdev remove canceled", tx,
1978             "%s vdev %llu %s", spa_name(spa),
1979             (u_longlong_t)vd->vdev_id,
1980             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1981 }
1982
1983 static int
1984 spa_vdev_remove_cancel_impl(spa_t *spa)
1985 {
1986         int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1987             spa_vdev_remove_cancel_sync, NULL, 0,
1988             ZFS_SPACE_CHECK_EXTRA_RESERVED);
1989         return (error);
1990 }
1991
1992 int
1993 spa_vdev_remove_cancel(spa_t *spa)
1994 {
1995         spa_vdev_remove_suspend(spa);
1996
1997         if (spa->spa_vdev_removal == NULL)
1998                 return (ENOTACTIVE);
1999
2000         return (spa_vdev_remove_cancel_impl(spa));
2001 }
2002
2003 void
2004 svr_sync(spa_t *spa, dmu_tx_t *tx)
2005 {
2006         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2007         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2008
2009         if (svr == NULL)
2010                 return;
2011
2012         /*
2013          * This check is necessary so that we do not dirty the
2014          * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2015          * is nothing to do.  Dirtying it every time would prevent us
2016          * from syncing-to-convergence.
2017          */
2018         if (svr->svr_bytes_done[txgoff] == 0)
2019                 return;
2020
2021         /*
2022          * Update progress accounting.
2023          */
2024         spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2025         svr->svr_bytes_done[txgoff] = 0;
2026
2027         spa_sync_removing_state(spa, tx);
2028 }
2029
2030 static void
2031 vdev_remove_make_hole_and_free(vdev_t *vd)
2032 {
2033         uint64_t id = vd->vdev_id;
2034         spa_t *spa = vd->vdev_spa;
2035         vdev_t *rvd = spa->spa_root_vdev;
2036
2037         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2038         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2039
2040         vdev_free(vd);
2041
2042         vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2043         vdev_add_child(rvd, vd);
2044         vdev_config_dirty(rvd);
2045
2046         /*
2047          * Reassess the health of our root vdev.
2048          */
2049         vdev_reopen(rvd);
2050 }
2051
2052 /*
2053  * Remove a log device.  The config lock is held for the specified TXG.
2054  */
2055 static int
2056 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2057 {
2058         metaslab_group_t *mg = vd->vdev_mg;
2059         spa_t *spa = vd->vdev_spa;
2060         int error = 0;
2061
2062         ASSERT(vd->vdev_islog);
2063         ASSERT(vd == vd->vdev_top);
2064         ASSERT3P(vd->vdev_log_mg, ==, NULL);
2065         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2066
2067         /*
2068          * Stop allocating from this vdev.
2069          */
2070         metaslab_group_passivate(mg);
2071
2072         /*
2073          * Wait for the youngest allocations and frees to sync,
2074          * and then wait for the deferral of those frees to finish.
2075          */
2076         spa_vdev_config_exit(spa, NULL,
2077             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2078
2079         /*
2080          * Cancel any initialize or TRIM which was in progress.
2081          */
2082         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2083         vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2084         vdev_autotrim_stop_wait(vd);
2085
2086         /*
2087          * Evacuate the device.  We don't hold the config lock as
2088          * writer since we need to do I/O but we do keep the
2089          * spa_namespace_lock held.  Once this completes the device
2090          * should no longer have any blocks allocated on it.
2091          */
2092         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2093         if (vd->vdev_stat.vs_alloc != 0)
2094                 error = spa_reset_logs(spa);
2095
2096         *txg = spa_vdev_config_enter(spa);
2097
2098         if (error != 0) {
2099                 metaslab_group_activate(mg);
2100                 ASSERT3P(vd->vdev_log_mg, ==, NULL);
2101                 return (error);
2102         }
2103         ASSERT0(vd->vdev_stat.vs_alloc);
2104
2105         /*
2106          * The evacuation succeeded.  Remove any remaining MOS metadata
2107          * associated with this vdev, and wait for these changes to sync.
2108          */
2109         vd->vdev_removing = B_TRUE;
2110
2111         vdev_dirty_leaves(vd, VDD_DTL, *txg);
2112         vdev_config_dirty(vd);
2113
2114         /*
2115          * When the log space map feature is enabled we look at
2116          * the vdev's top_zap to find the on-disk flush data of
2117          * the metaslab we just flushed. Thus, while removing a
2118          * log vdev we make sure to call vdev_metaslab_fini()
2119          * first, which removes all metaslabs of this vdev from
2120          * spa_metaslabs_by_flushed before vdev_remove_empty()
2121          * destroys the top_zap of this log vdev.
2122          *
2123          * This avoids the scenario where we flush a metaslab
2124          * from the log vdev being removed that doesn't have a
2125          * top_zap and end up failing to lookup its on-disk flush
2126          * data.
2127          *
2128          * We don't call metaslab_group_destroy() right away
2129          * though (it will be called in vdev_free() later) as
2130          * during metaslab_sync() of metaslabs from other vdevs
2131          * we may touch the metaslab group of this vdev through
2132          * metaslab_class_histogram_verify()
2133          */
2134         vdev_metaslab_fini(vd);
2135
2136         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2137         *txg = spa_vdev_config_enter(spa);
2138
2139         sysevent_t *ev = spa_event_create(spa, vd, NULL,
2140             ESC_ZFS_VDEV_REMOVE_DEV);
2141         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2142         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2143
2144         /* The top ZAP should have been destroyed by vdev_remove_empty. */
2145         ASSERT0(vd->vdev_top_zap);
2146         /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2147         ASSERT0(vd->vdev_leaf_zap);
2148
2149         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2150
2151         if (list_link_active(&vd->vdev_state_dirty_node))
2152                 vdev_state_clean(vd);
2153         if (list_link_active(&vd->vdev_config_dirty_node))
2154                 vdev_config_clean(vd);
2155
2156         ASSERT0(vd->vdev_stat.vs_alloc);
2157
2158         /*
2159          * Clean up the vdev namespace.
2160          */
2161         vdev_remove_make_hole_and_free(vd);
2162
2163         if (ev != NULL)
2164                 spa_event_post(ev);
2165
2166         return (0);
2167 }
2168
2169 static int
2170 spa_vdev_remove_top_check(vdev_t *vd)
2171 {
2172         spa_t *spa = vd->vdev_spa;
2173
2174         if (vd != vd->vdev_top)
2175                 return (SET_ERROR(ENOTSUP));
2176
2177         if (!vdev_is_concrete(vd))
2178                 return (SET_ERROR(ENOTSUP));
2179
2180         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2181                 return (SET_ERROR(ENOTSUP));
2182
2183         /*
2184          * This device is already being removed
2185          */
2186         if (vd->vdev_removing)
2187                 return (SET_ERROR(EALREADY));
2188
2189         metaslab_class_t *mc = vd->vdev_mg->mg_class;
2190         metaslab_class_t *normal = spa_normal_class(spa);
2191         if (mc != normal) {
2192                 /*
2193                  * Space allocated from the special (or dedup) class is
2194                  * included in the DMU's space usage, but it's not included
2195                  * in spa_dspace (or dsl_pool_adjustedsize()).  Therefore
2196                  * there is always at least as much free space in the normal
2197                  * class, as is allocated from the special (and dedup) class.
2198                  * As a backup check, we will return ENOSPC if this is
2199                  * violated. See also spa_update_dspace().
2200                  */
2201                 uint64_t available = metaslab_class_get_space(normal) -
2202                     metaslab_class_get_alloc(normal);
2203                 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2204                 if (available < vd->vdev_stat.vs_alloc)
2205                         return (SET_ERROR(ENOSPC));
2206         } else if (!vd->vdev_noalloc) {
2207                 /* available space in the pool's normal class */
2208                 uint64_t available = dsl_dir_space_available(
2209                     spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2210                 if (available < vd->vdev_stat.vs_dspace)
2211                         return (SET_ERROR(ENOSPC));
2212         }
2213
2214         /*
2215          * There can not be a removal in progress.
2216          */
2217         if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2218                 return (SET_ERROR(EBUSY));
2219
2220         /*
2221          * The device must have all its data.
2222          */
2223         if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2224             !vdev_dtl_empty(vd, DTL_OUTAGE))
2225                 return (SET_ERROR(EBUSY));
2226
2227         /*
2228          * The device must be healthy.
2229          */
2230         if (!vdev_readable(vd))
2231                 return (SET_ERROR(EIO));
2232
2233         /*
2234          * All vdevs in normal class must have the same ashift.
2235          */
2236         if (spa->spa_max_ashift != spa->spa_min_ashift) {
2237                 return (SET_ERROR(EINVAL));
2238         }
2239
2240         /*
2241          * A removed special/dedup vdev must have same ashift as normal class.
2242          */
2243         ASSERT(!vd->vdev_islog);
2244         if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2245             vd->vdev_ashift != spa->spa_max_ashift) {
2246                 return (SET_ERROR(EINVAL));
2247         }
2248
2249         /*
2250          * All vdevs in normal class must have the same ashift
2251          * and not be raidz or draid.
2252          */
2253         vdev_t *rvd = spa->spa_root_vdev;
2254         for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2255                 vdev_t *cvd = rvd->vdev_child[id];
2256
2257                 /*
2258                  * A removed special/dedup vdev must have the same ashift
2259                  * across all vdevs in its class.
2260                  */
2261                 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2262                     cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2263                     cvd->vdev_ashift != vd->vdev_ashift) {
2264                         return (SET_ERROR(EINVAL));
2265                 }
2266                 if (cvd->vdev_ashift != 0 &&
2267                     cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2268                         ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2269                 if (!vdev_is_concrete(cvd))
2270                         continue;
2271                 if (vdev_get_nparity(cvd) != 0)
2272                         return (SET_ERROR(EINVAL));
2273                 /*
2274                  * Need the mirror to be mirror of leaf vdevs only
2275                  */
2276                 if (cvd->vdev_ops == &vdev_mirror_ops) {
2277                         for (uint64_t cid = 0;
2278                             cid < cvd->vdev_children; cid++) {
2279                                 if (!cvd->vdev_child[cid]->vdev_ops->
2280                                     vdev_op_leaf)
2281                                         return (SET_ERROR(EINVAL));
2282                         }
2283                 }
2284         }
2285
2286         return (0);
2287 }
2288
2289 /*
2290  * Initiate removal of a top-level vdev, reducing the total space in the pool.
2291  * The config lock is held for the specified TXG.  Once initiated,
2292  * evacuation of all allocated space (copying it to other vdevs) happens
2293  * in the background (see spa_vdev_remove_thread()), and can be canceled
2294  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
2295  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2296  */
2297 static int
2298 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2299 {
2300         spa_t *spa = vd->vdev_spa;
2301         boolean_t set_noalloc = B_FALSE;
2302         int error;
2303
2304         /*
2305          * Check for errors up-front, so that we don't waste time
2306          * passivating the metaslab group and clearing the ZIL if there
2307          * are errors.
2308          */
2309         error = spa_vdev_remove_top_check(vd);
2310
2311         /*
2312          * Stop allocating from this vdev.  Note that we must check
2313          * that this is not the only device in the pool before
2314          * passivating, otherwise we will not be able to make
2315          * progress because we can't allocate from any vdevs.
2316          * The above check for sufficient free space serves this
2317          * purpose.
2318          */
2319         if (error == 0 && !vd->vdev_noalloc) {
2320                 set_noalloc = B_TRUE;
2321                 error = vdev_passivate(vd, txg);
2322         }
2323
2324         if (error != 0)
2325                 return (error);
2326
2327         /*
2328          * We stop any initializing and TRIM that is currently in progress
2329          * but leave the state as "active". This will allow the process to
2330          * resume if the removal is canceled sometime later.
2331          */
2332
2333         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2334
2335         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2336         vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2337         vdev_autotrim_stop_wait(vd);
2338
2339         *txg = spa_vdev_config_enter(spa);
2340
2341         /*
2342          * Things might have changed while the config lock was dropped
2343          * (e.g. space usage).  Check for errors again.
2344          */
2345         error = spa_vdev_remove_top_check(vd);
2346
2347         if (error != 0) {
2348                 if (set_noalloc)
2349                         vdev_activate(vd);
2350                 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2351                 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2352                 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2353                 return (error);
2354         }
2355
2356         vd->vdev_removing = B_TRUE;
2357
2358         vdev_dirty_leaves(vd, VDD_DTL, *txg);
2359         vdev_config_dirty(vd);
2360         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2361         dsl_sync_task_nowait(spa->spa_dsl_pool,
2362             vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2363         dmu_tx_commit(tx);
2364
2365         return (0);
2366 }
2367
2368 /*
2369  * Remove a device from the pool.
2370  *
2371  * Removing a device from the vdev namespace requires several steps
2372  * and can take a significant amount of time.  As a result we use
2373  * the spa_vdev_config_[enter/exit] functions which allow us to
2374  * grab and release the spa_config_lock while still holding the namespace
2375  * lock.  During each step the configuration is synced out.
2376  */
2377 int
2378 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2379 {
2380         vdev_t *vd;
2381         nvlist_t **spares, **l2cache, *nv;
2382         uint64_t txg = 0;
2383         uint_t nspares, nl2cache;
2384         int error = 0, error_log;
2385         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2386         sysevent_t *ev = NULL;
2387         const char *vd_type = NULL;
2388         char *vd_path = NULL;
2389
2390         ASSERT(spa_writeable(spa));
2391
2392         if (!locked)
2393                 txg = spa_vdev_enter(spa);
2394
2395         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2396         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2397                 error = (spa_has_checkpoint(spa)) ?
2398                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2399
2400                 if (!locked)
2401                         return (spa_vdev_exit(spa, NULL, txg, error));
2402
2403                 return (error);
2404         }
2405
2406         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2407
2408         if (spa->spa_spares.sav_vdevs != NULL &&
2409             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2410             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2411             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2412                 /*
2413                  * Only remove the hot spare if it's not currently in use
2414                  * in this pool.
2415                  */
2416                 if (vd == NULL || unspare) {
2417                         char *type;
2418                         boolean_t draid_spare = B_FALSE;
2419
2420                         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2421                             == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2422                                 draid_spare = B_TRUE;
2423
2424                         if (vd == NULL && draid_spare) {
2425                                 error = SET_ERROR(ENOTSUP);
2426                         } else {
2427                                 if (vd == NULL)
2428                                         vd = spa_lookup_by_guid(spa,
2429                                             guid, B_TRUE);
2430                                 ev = spa_event_create(spa, vd, NULL,
2431                                     ESC_ZFS_VDEV_REMOVE_AUX);
2432
2433                                 vd_type = VDEV_TYPE_SPARE;
2434                                 vd_path = spa_strdup(fnvlist_lookup_string(
2435                                     nv, ZPOOL_CONFIG_PATH));
2436                                 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2437                                     ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2438                                 spa_load_spares(spa);
2439                                 spa->spa_spares.sav_sync = B_TRUE;
2440                         }
2441                 } else {
2442                         error = SET_ERROR(EBUSY);
2443                 }
2444         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2445             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2446             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2447             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2448                 vd_type = VDEV_TYPE_L2CACHE;
2449                 vd_path = spa_strdup(fnvlist_lookup_string(
2450                     nv, ZPOOL_CONFIG_PATH));
2451                 /*
2452                  * Cache devices can always be removed.
2453                  */
2454                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2455
2456                 /*
2457                  * Stop trimming the cache device. We need to release the
2458                  * config lock to allow the syncing of TRIM transactions
2459                  * without releasing the spa_namespace_lock. The same
2460                  * strategy is employed in spa_vdev_remove_top().
2461                  */
2462                 spa_vdev_config_exit(spa, NULL,
2463                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2464                 mutex_enter(&vd->vdev_trim_lock);
2465                 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2466                 mutex_exit(&vd->vdev_trim_lock);
2467                 txg = spa_vdev_config_enter(spa);
2468
2469                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2470                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2471                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2472                 spa_load_l2cache(spa);
2473                 spa->spa_l2cache.sav_sync = B_TRUE;
2474         } else if (vd != NULL && vd->vdev_islog) {
2475                 ASSERT(!locked);
2476                 vd_type = VDEV_TYPE_LOG;
2477                 vd_path = spa_strdup((vd->vdev_path != NULL) ?
2478                     vd->vdev_path : "-");
2479                 error = spa_vdev_remove_log(vd, &txg);
2480         } else if (vd != NULL) {
2481                 ASSERT(!locked);
2482                 error = spa_vdev_remove_top(vd, &txg);
2483         } else {
2484                 /*
2485                  * There is no vdev of any kind with the specified guid.
2486                  */
2487                 error = SET_ERROR(ENOENT);
2488         }
2489
2490         error_log = error;
2491
2492         if (!locked)
2493                 error = spa_vdev_exit(spa, NULL, txg, error);
2494
2495         /*
2496          * Logging must be done outside the spa config lock. Otherwise,
2497          * this code path could end up holding the spa config lock while
2498          * waiting for a txg_sync so it can write to the internal log.
2499          * Doing that would prevent the txg sync from actually happening,
2500          * causing a deadlock.
2501          */
2502         if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2503                 spa_history_log_internal(spa, "vdev remove", NULL,
2504                     "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2505         }
2506         if (vd_path != NULL)
2507                 spa_strfree(vd_path);
2508
2509         if (ev != NULL)
2510                 spa_event_post(ev);
2511
2512         return (error);
2513 }
2514
2515 int
2516 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2517 {
2518         prs->prs_state = spa->spa_removing_phys.sr_state;
2519
2520         if (prs->prs_state == DSS_NONE)
2521                 return (SET_ERROR(ENOENT));
2522
2523         prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2524         prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2525         prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2526         prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2527         prs->prs_copied = spa->spa_removing_phys.sr_copied;
2528
2529         prs->prs_mapping_memory = 0;
2530         uint64_t indirect_vdev_id =
2531             spa->spa_removing_phys.sr_prev_indirect_vdev;
2532         while (indirect_vdev_id != -1) {
2533                 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2534                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2535                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2536
2537                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2538                 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2539                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2540         }
2541
2542         return (0);
2543 }
2544
2545 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2546         "Ignore hard IO errors when removing device");
2547
2548 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
2549         "Largest contiguous segment to allocate when removing device");
2550
2551 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
2552         "Largest span of free chunks a remap segment can span");
2553
2554 /* BEGIN CSTYLED */
2555 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
2556         "Pause device removal after this many bytes are copied "
2557         "(debug use only - causes removal to hang)");
2558 /* END CSTYLED */
2559
2560 EXPORT_SYMBOL(free_from_removing_vdev);
2561 EXPORT_SYMBOL(spa_removal_get_stats);
2562 EXPORT_SYMBOL(spa_remove_init);
2563 EXPORT_SYMBOL(spa_restart_removal);
2564 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2565 EXPORT_SYMBOL(spa_vdev_remove);
2566 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2567 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2568 EXPORT_SYMBOL(svr_sync);