]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_trim.c
zfs: merge openzfs/zfs@1f940de07
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_trim.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016, 2024 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26  * Copyright 2023 RackTop Systems, Inc.
27  */
28
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/txg.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/zap.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
39
40 /*
41  * TRIM is a feature which is used to notify a SSD that some previously
42  * written space is no longer allocated by the pool.  This is useful because
43  * writes to a SSD must be performed to blocks which have first been erased.
44  * Ensuring the SSD always has a supply of erased blocks for new writes
45  * helps prevent the performance from deteriorating.
46  *
47  * There are two supported TRIM methods; manual and automatic.
48  *
49  * Manual TRIM:
50  *
51  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
52  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53  * managing that vdev TRIM process.  This involves iterating over all the
54  * metaslabs, calculating the unallocated space ranges, and then issuing the
55  * required TRIM I/Os.
56  *
57  * While a metaslab is being actively trimmed it is not eligible to perform
58  * new allocations.  After traversing all of the metaslabs the thread is
59  * terminated.  Finally, both the requested options and current progress of
60  * the TRIM are regularly written to the pool.  This allows the TRIM to be
61  * suspended and resumed as needed.
62  *
63  * Automatic TRIM:
64  *
65  * An automatic TRIM is enabled by setting the 'autotrim' pool property
66  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
67  * top-level (not leaf) vdev in the pool.  These threads perform the same
68  * core TRIM process as a manual TRIM, but with a few key differences.
69  *
70  * 1) Automatic TRIM happens continuously in the background and operates
71  *    solely on recently freed blocks (ms_trim not ms_allocatable).
72  *
73  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
74  *    the benefit of simplifying the threading model, it makes it easier
75  *    to coordinate administrative commands, and it ensures only a single
76  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
77  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
78  *    children.
79  *
80  * 3) There is no automatic TRIM progress information stored on disk, nor
81  *    is it reported by 'zpool status'.
82  *
83  * While the automatic TRIM process is highly effective it is more likely
84  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
85  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86  * TRIM and are skipped.  This means small amounts of freed space may not
87  * be automatically trimmed.
88  *
89  * Furthermore, devices with attached hot spares and devices being actively
90  * replaced are skipped.  This is done to avoid adding additional stress to
91  * a potentially unhealthy device and to minimize the required rebuild time.
92  *
93  * For this reason it may be beneficial to occasionally manually TRIM a pool
94  * even when automatic TRIM is enabled.
95  */
96
97 /*
98  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
99  */
100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
101
102 /*
103  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
104  */
105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
106
107 /*
108  * Skip uninitialized metaslabs during the TRIM process.  This option is
109  * useful for pools constructed from large thinly-provisioned devices where
110  * TRIM operations are slow.  As a pool ages an increasing fraction of
111  * the pools metaslabs will be initialized progressively degrading the
112  * usefulness of this option.  This setting is stored when starting a
113  * manual TRIM and will persist for the duration of the requested TRIM.
114  */
115 unsigned int zfs_trim_metaslab_skip = 0;
116
117 /*
118  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
119  * concurrent TRIM I/Os issued to the device is controlled by the
120  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
121  */
122 static unsigned int zfs_trim_queue_limit = 10;
123
124 /*
125  * The minimum number of transaction groups between automatic trims of a
126  * metaslab.  This setting represents a trade-off between issuing more
127  * efficient TRIM operations, by allowing them to be aggregated longer,
128  * and issuing them promptly so the trimmed space is available.  Note
129  * that this value is a minimum; metaslabs can be trimmed less frequently
130  * when there are a large number of ranges which need to be trimmed.
131  *
132  * Increasing this value will allow frees to be aggregated for a longer
133  * time.  This can result is larger TRIM operations, and increased memory
134  * usage in order to track the ranges to be trimmed.  Decreasing this value
135  * has the opposite effect.  The default value of 32 was determined though
136  * testing to be a reasonable compromise.
137  */
138 static unsigned int zfs_trim_txg_batch = 32;
139
140 /*
141  * The trim_args are a control structure which describe how a leaf vdev
142  * should be trimmed.  The core elements are the vdev, the metaslab being
143  * trimmed and a range tree containing the extents to TRIM.  All provided
144  * ranges must be within the metaslab.
145  */
146 typedef struct trim_args {
147         /*
148          * These fields are set by the caller of vdev_trim_ranges().
149          */
150         vdev_t          *trim_vdev;             /* Leaf vdev to TRIM */
151         metaslab_t      *trim_msp;              /* Disabled metaslab */
152         range_tree_t    *trim_tree;             /* TRIM ranges (in metaslab) */
153         trim_type_t     trim_type;              /* Manual or auto TRIM */
154         uint64_t        trim_extent_bytes_max;  /* Maximum TRIM I/O size */
155         uint64_t        trim_extent_bytes_min;  /* Minimum TRIM I/O size */
156         enum trim_flag  trim_flags;             /* TRIM flags (secure) */
157
158         /*
159          * These fields are updated by vdev_trim_ranges().
160          */
161         hrtime_t        trim_start_time;        /* Start time */
162         uint64_t        trim_bytes_done;        /* Bytes trimmed */
163 } trim_args_t;
164
165 /*
166  * Determines whether a vdev_trim_thread() should be stopped.
167  */
168 static boolean_t
169 vdev_trim_should_stop(vdev_t *vd)
170 {
171         return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
172             vd->vdev_detached || vd->vdev_top->vdev_removing ||
173             vd->vdev_top->vdev_rz_expanding);
174 }
175
176 /*
177  * Determines whether a vdev_autotrim_thread() should be stopped.
178  */
179 static boolean_t
180 vdev_autotrim_should_stop(vdev_t *tvd)
181 {
182         return (tvd->vdev_autotrim_exit_wanted ||
183             !vdev_writeable(tvd) || tvd->vdev_removing ||
184             tvd->vdev_rz_expanding ||
185             spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
186 }
187
188 /*
189  * Wait for given number of kicks, return true if the wait is aborted due to
190  * vdev_autotrim_exit_wanted.
191  */
192 static boolean_t
193 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
194 {
195         mutex_enter(&vd->vdev_autotrim_lock);
196         for (int i = 0; i < num_of_kick; i++) {
197                 if (vd->vdev_autotrim_exit_wanted)
198                         break;
199                 cv_wait_idle(&vd->vdev_autotrim_kick_cv,
200                     &vd->vdev_autotrim_lock);
201         }
202         boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
203         mutex_exit(&vd->vdev_autotrim_lock);
204
205         return (exit_wanted);
206 }
207
208 /*
209  * The sync task for updating the on-disk state of a manual TRIM.  This
210  * is scheduled by vdev_trim_change_state().
211  */
212 static void
213 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
214 {
215         /*
216          * We pass in the guid instead of the vdev_t since the vdev may
217          * have been freed prior to the sync task being processed.  This
218          * happens when a vdev is detached as we call spa_config_vdev_exit(),
219          * stop the trimming thread, schedule the sync task, and free
220          * the vdev. Later when the scheduled sync task is invoked, it would
221          * find that the vdev has been freed.
222          */
223         uint64_t guid = *(uint64_t *)arg;
224         uint64_t txg = dmu_tx_get_txg(tx);
225         kmem_free(arg, sizeof (uint64_t));
226
227         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
228         if (vd == NULL || vd->vdev_top->vdev_removing ||
229             !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
230                 return;
231
232         uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
233         vd->vdev_trim_offset[txg & TXG_MASK] = 0;
234
235         VERIFY3U(vd->vdev_leaf_zap, !=, 0);
236
237         objset_t *mos = vd->vdev_spa->spa_meta_objset;
238
239         if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
240
241                 if (vd->vdev_trim_last_offset == UINT64_MAX)
242                         last_offset = 0;
243
244                 vd->vdev_trim_last_offset = last_offset;
245                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
246                     VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
247                     sizeof (last_offset), 1, &last_offset, tx));
248         }
249
250         if (vd->vdev_trim_action_time > 0) {
251                 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
252                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
253                     VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
254                     1, &val, tx));
255         }
256
257         if (vd->vdev_trim_rate > 0) {
258                 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
259
260                 if (rate == UINT64_MAX)
261                         rate = 0;
262
263                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
264                     VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
265         }
266
267         uint64_t partial = vd->vdev_trim_partial;
268         if (partial == UINT64_MAX)
269                 partial = 0;
270
271         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
272             sizeof (partial), 1, &partial, tx));
273
274         uint64_t secure = vd->vdev_trim_secure;
275         if (secure == UINT64_MAX)
276                 secure = 0;
277
278         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
279             sizeof (secure), 1, &secure, tx));
280
281
282         uint64_t trim_state = vd->vdev_trim_state;
283         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
284             sizeof (trim_state), 1, &trim_state, tx));
285 }
286
287 /*
288  * Update the on-disk state of a manual TRIM.  This is called to request
289  * that a TRIM be started/suspended/canceled, or to change one of the
290  * TRIM options (partial, secure, rate).
291  */
292 static void
293 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
294     uint64_t rate, boolean_t partial, boolean_t secure)
295 {
296         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
297         spa_t *spa = vd->vdev_spa;
298
299         if (new_state == vd->vdev_trim_state)
300                 return;
301
302         /*
303          * Copy the vd's guid, this will be freed by the sync task.
304          */
305         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
306         *guid = vd->vdev_guid;
307
308         /*
309          * If we're suspending, then preserve the original start time.
310          */
311         if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
312                 vd->vdev_trim_action_time = gethrestime_sec();
313         }
314
315         /*
316          * If we're activating, then preserve the requested rate and trim
317          * method.  Setting the last offset and rate to UINT64_MAX is used
318          * as a sentinel to indicate they should be reset to default values.
319          */
320         if (new_state == VDEV_TRIM_ACTIVE) {
321                 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
322                     vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
323                         vd->vdev_trim_last_offset = UINT64_MAX;
324                         vd->vdev_trim_rate = UINT64_MAX;
325                         vd->vdev_trim_partial = UINT64_MAX;
326                         vd->vdev_trim_secure = UINT64_MAX;
327                 }
328
329                 if (rate != 0)
330                         vd->vdev_trim_rate = rate;
331
332                 if (partial != 0)
333                         vd->vdev_trim_partial = partial;
334
335                 if (secure != 0)
336                         vd->vdev_trim_secure = secure;
337         }
338
339         vdev_trim_state_t old_state = vd->vdev_trim_state;
340         boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
341         vd->vdev_trim_state = new_state;
342
343         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
344         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
345         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
346             guid, tx);
347
348         switch (new_state) {
349         case VDEV_TRIM_ACTIVE:
350                 spa_event_notify(spa, vd, NULL,
351                     resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
352                 spa_history_log_internal(spa, "trim", tx,
353                     "vdev=%s activated", vd->vdev_path);
354                 break;
355         case VDEV_TRIM_SUSPENDED:
356                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
357                 spa_history_log_internal(spa, "trim", tx,
358                     "vdev=%s suspended", vd->vdev_path);
359                 break;
360         case VDEV_TRIM_CANCELED:
361                 if (old_state == VDEV_TRIM_ACTIVE ||
362                     old_state == VDEV_TRIM_SUSPENDED) {
363                         spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
364                         spa_history_log_internal(spa, "trim", tx,
365                             "vdev=%s canceled", vd->vdev_path);
366                 }
367                 break;
368         case VDEV_TRIM_COMPLETE:
369                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
370                 spa_history_log_internal(spa, "trim", tx,
371                     "vdev=%s complete", vd->vdev_path);
372                 break;
373         default:
374                 panic("invalid state %llu", (unsigned long long)new_state);
375         }
376
377         dmu_tx_commit(tx);
378
379         if (new_state != VDEV_TRIM_ACTIVE)
380                 spa_notify_waiters(spa);
381 }
382
383 /*
384  * The zio_done_func_t done callback for each manual TRIM issued.  It is
385  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
386  * and limiting the number of in flight TRIM I/Os.
387  */
388 static void
389 vdev_trim_cb(zio_t *zio)
390 {
391         vdev_t *vd = zio->io_vd;
392
393         mutex_enter(&vd->vdev_trim_io_lock);
394         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
395                 /*
396                  * The I/O failed because the vdev was unavailable; roll the
397                  * last offset back. (This works because spa_sync waits on
398                  * spa_txg_zio before it runs sync tasks.)
399                  */
400                 uint64_t *offset =
401                     &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
402                 *offset = MIN(*offset, zio->io_offset);
403         } else {
404                 if (zio->io_error != 0) {
405                         vd->vdev_stat.vs_trim_errors++;
406                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
407                             0, 0, 0, 0, 1, zio->io_orig_size);
408                 } else {
409                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
410                             1, zio->io_orig_size, 0, 0, 0, 0);
411                 }
412
413                 vd->vdev_trim_bytes_done += zio->io_orig_size;
414         }
415
416         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
417         vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
418         cv_broadcast(&vd->vdev_trim_io_cv);
419         mutex_exit(&vd->vdev_trim_io_lock);
420
421         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
422 }
423
424 /*
425  * The zio_done_func_t done callback for each automatic TRIM issued.  It
426  * is responsible for updating the TRIM stats and limiting the number of
427  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
428  * never reissued on failure.
429  */
430 static void
431 vdev_autotrim_cb(zio_t *zio)
432 {
433         vdev_t *vd = zio->io_vd;
434
435         mutex_enter(&vd->vdev_trim_io_lock);
436
437         if (zio->io_error != 0) {
438                 vd->vdev_stat.vs_trim_errors++;
439                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
440                     0, 0, 0, 0, 1, zio->io_orig_size);
441         } else {
442                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
443                     1, zio->io_orig_size, 0, 0, 0, 0);
444         }
445
446         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
447         vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
448         cv_broadcast(&vd->vdev_trim_io_cv);
449         mutex_exit(&vd->vdev_trim_io_lock);
450
451         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
452 }
453
454 /*
455  * The zio_done_func_t done callback for each TRIM issued via
456  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
457  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
458  * effort and are never reissued on failure.
459  */
460 static void
461 vdev_trim_simple_cb(zio_t *zio)
462 {
463         vdev_t *vd = zio->io_vd;
464
465         mutex_enter(&vd->vdev_trim_io_lock);
466
467         if (zio->io_error != 0) {
468                 vd->vdev_stat.vs_trim_errors++;
469                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
470                     0, 0, 0, 0, 1, zio->io_orig_size);
471         } else {
472                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
473                     1, zio->io_orig_size, 0, 0, 0, 0);
474         }
475
476         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
477         vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
478         cv_broadcast(&vd->vdev_trim_io_cv);
479         mutex_exit(&vd->vdev_trim_io_lock);
480
481         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
482 }
483 /*
484  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
485  */
486 static uint64_t
487 vdev_trim_calculate_rate(trim_args_t *ta)
488 {
489         return (ta->trim_bytes_done * 1000 /
490             (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
491 }
492
493 /*
494  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
495  * and number of concurrent TRIM I/Os.
496  */
497 static int
498 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
499 {
500         vdev_t *vd = ta->trim_vdev;
501         spa_t *spa = vd->vdev_spa;
502         void *cb;
503
504         mutex_enter(&vd->vdev_trim_io_lock);
505
506         /*
507          * Limit manual TRIM I/Os to the requested rate.  This does not
508          * apply to automatic TRIM since no per vdev rate can be specified.
509          */
510         if (ta->trim_type == TRIM_TYPE_MANUAL) {
511                 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
512                     vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
513                         cv_timedwait_idle(&vd->vdev_trim_io_cv,
514                             &vd->vdev_trim_io_lock, ddi_get_lbolt() +
515                             MSEC_TO_TICK(10));
516                 }
517         }
518         ta->trim_bytes_done += size;
519
520         /* Limit in flight trimming I/Os */
521         while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
522             vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
523                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
524         }
525         vd->vdev_trim_inflight[ta->trim_type]++;
526         mutex_exit(&vd->vdev_trim_io_lock);
527
528         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
529         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
530         uint64_t txg = dmu_tx_get_txg(tx);
531
532         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
533         mutex_enter(&vd->vdev_trim_lock);
534
535         if (ta->trim_type == TRIM_TYPE_MANUAL &&
536             vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
537                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
538                 *guid = vd->vdev_guid;
539
540                 /* This is the first write of this txg. */
541                 dsl_sync_task_nowait(spa_get_dsl(spa),
542                     vdev_trim_zap_update_sync, guid, tx);
543         }
544
545         /*
546          * We know the vdev_t will still be around since all consumers of
547          * vdev_free must stop the trimming first.
548          */
549         if ((ta->trim_type == TRIM_TYPE_MANUAL &&
550             vdev_trim_should_stop(vd)) ||
551             (ta->trim_type == TRIM_TYPE_AUTO &&
552             vdev_autotrim_should_stop(vd->vdev_top))) {
553                 mutex_enter(&vd->vdev_trim_io_lock);
554                 vd->vdev_trim_inflight[ta->trim_type]--;
555                 mutex_exit(&vd->vdev_trim_io_lock);
556                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
557                 mutex_exit(&vd->vdev_trim_lock);
558                 dmu_tx_commit(tx);
559                 return (SET_ERROR(EINTR));
560         }
561         mutex_exit(&vd->vdev_trim_lock);
562
563         if (ta->trim_type == TRIM_TYPE_MANUAL)
564                 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
565
566         if (ta->trim_type == TRIM_TYPE_MANUAL) {
567                 cb = vdev_trim_cb;
568         } else if (ta->trim_type == TRIM_TYPE_AUTO) {
569                 cb = vdev_autotrim_cb;
570         } else {
571                 cb = vdev_trim_simple_cb;
572         }
573
574         zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
575             start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
576             ta->trim_flags));
577         /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
578
579         dmu_tx_commit(tx);
580
581         return (0);
582 }
583
584 /*
585  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
586  * Additional parameters describing how the TRIM should be performed must
587  * be set in the trim_args structure.  See the trim_args definition for
588  * additional information.
589  */
590 static int
591 vdev_trim_ranges(trim_args_t *ta)
592 {
593         vdev_t *vd = ta->trim_vdev;
594         zfs_btree_t *t = &ta->trim_tree->rt_root;
595         zfs_btree_index_t idx;
596         uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
597         uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
598         spa_t *spa = vd->vdev_spa;
599         int error = 0;
600
601         ta->trim_start_time = gethrtime();
602         ta->trim_bytes_done = 0;
603
604         for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
605             rs = zfs_btree_next(t, &idx, &idx)) {
606                 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
607                     ta->trim_tree);
608
609                 if (extent_bytes_min && size < extent_bytes_min) {
610                         spa_iostats_trim_add(spa, ta->trim_type,
611                             0, 0, 1, size, 0, 0);
612                         continue;
613                 }
614
615                 /* Split range into legally-sized physical chunks */
616                 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
617
618                 for (uint64_t w = 0; w < writes_required; w++) {
619                         error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
620                             rs_get_start(rs, ta->trim_tree) +
621                             (w *extent_bytes_max), MIN(size -
622                             (w * extent_bytes_max), extent_bytes_max));
623                         if (error != 0) {
624                                 goto done;
625                         }
626                 }
627         }
628
629 done:
630         /*
631          * Make sure all TRIMs for this metaslab have completed before
632          * returning. TRIM zios have lower priority over regular or syncing
633          * zios, so all TRIM zios for this metaslab must complete before the
634          * metaslab is re-enabled. Otherwise it's possible write zios to
635          * this metaslab could cut ahead of still queued TRIM zios for this
636          * metaslab causing corruption if the ranges overlap.
637          */
638         mutex_enter(&vd->vdev_trim_io_lock);
639         while (vd->vdev_trim_inflight[0] > 0) {
640                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
641         }
642         mutex_exit(&vd->vdev_trim_io_lock);
643
644         return (error);
645 }
646
647 static void
648 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
649 {
650         uint64_t *last_rs_end = (uint64_t *)arg;
651
652         if (physical_rs->rs_end > *last_rs_end)
653                 *last_rs_end = physical_rs->rs_end;
654 }
655
656 static void
657 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
658 {
659         vdev_t *vd = (vdev_t *)arg;
660
661         uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
662         vd->vdev_trim_bytes_est += size;
663
664         if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
665                 vd->vdev_trim_bytes_done += size;
666         } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
667             vd->vdev_trim_last_offset <= physical_rs->rs_end) {
668                 vd->vdev_trim_bytes_done +=
669                     vd->vdev_trim_last_offset - physical_rs->rs_start;
670         }
671 }
672
673 /*
674  * Calculates the completion percentage of a manual TRIM.
675  */
676 static void
677 vdev_trim_calculate_progress(vdev_t *vd)
678 {
679         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
680             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
681         ASSERT(vd->vdev_leaf_zap != 0);
682
683         vd->vdev_trim_bytes_est = 0;
684         vd->vdev_trim_bytes_done = 0;
685
686         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
687                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
688                 mutex_enter(&msp->ms_lock);
689
690                 uint64_t ms_free = (msp->ms_size -
691                     metaslab_allocated_space(msp)) /
692                     vdev_get_ndisks(vd->vdev_top);
693
694                 /*
695                  * Convert the metaslab range to a physical range
696                  * on our vdev. We use this to determine if we are
697                  * in the middle of this metaslab range.
698                  */
699                 range_seg64_t logical_rs, physical_rs, remain_rs;
700                 logical_rs.rs_start = msp->ms_start;
701                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
702
703                 /* Metaslab space after this offset has not been trimmed. */
704                 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
705                 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
706                         vd->vdev_trim_bytes_est += ms_free;
707                         mutex_exit(&msp->ms_lock);
708                         continue;
709                 }
710
711                 /* Metaslab space before this offset has been trimmed */
712                 uint64_t last_rs_end = physical_rs.rs_end;
713                 if (!vdev_xlate_is_empty(&remain_rs)) {
714                         vdev_xlate_walk(vd, &remain_rs,
715                             vdev_trim_xlate_last_rs_end, &last_rs_end);
716                 }
717
718                 if (vd->vdev_trim_last_offset > last_rs_end) {
719                         vd->vdev_trim_bytes_done += ms_free;
720                         vd->vdev_trim_bytes_est += ms_free;
721                         mutex_exit(&msp->ms_lock);
722                         continue;
723                 }
724
725                 /*
726                  * If we get here, we're in the middle of trimming this
727                  * metaslab.  Load it and walk the free tree for more
728                  * accurate progress estimation.
729                  */
730                 VERIFY0(metaslab_load(msp));
731
732                 range_tree_t *rt = msp->ms_allocatable;
733                 zfs_btree_t *bt = &rt->rt_root;
734                 zfs_btree_index_t idx;
735                 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
736                     rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
737                         logical_rs.rs_start = rs_get_start(rs, rt);
738                         logical_rs.rs_end = rs_get_end(rs, rt);
739
740                         vdev_xlate_walk(vd, &logical_rs,
741                             vdev_trim_xlate_progress, vd);
742                 }
743                 mutex_exit(&msp->ms_lock);
744         }
745 }
746
747 /*
748  * Load from disk the vdev's manual TRIM information.  This includes the
749  * state, progress, and options provided when initiating the manual TRIM.
750  */
751 static int
752 vdev_trim_load(vdev_t *vd)
753 {
754         int err = 0;
755         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
756             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
757         ASSERT(vd->vdev_leaf_zap != 0);
758
759         if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
760             vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
761                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
762                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
763                     sizeof (vd->vdev_trim_last_offset), 1,
764                     &vd->vdev_trim_last_offset);
765                 if (err == ENOENT) {
766                         vd->vdev_trim_last_offset = 0;
767                         err = 0;
768                 }
769
770                 if (err == 0) {
771                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
772                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
773                             sizeof (vd->vdev_trim_rate), 1,
774                             &vd->vdev_trim_rate);
775                         if (err == ENOENT) {
776                                 vd->vdev_trim_rate = 0;
777                                 err = 0;
778                         }
779                 }
780
781                 if (err == 0) {
782                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
783                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
784                             sizeof (vd->vdev_trim_partial), 1,
785                             &vd->vdev_trim_partial);
786                         if (err == ENOENT) {
787                                 vd->vdev_trim_partial = 0;
788                                 err = 0;
789                         }
790                 }
791
792                 if (err == 0) {
793                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
794                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
795                             sizeof (vd->vdev_trim_secure), 1,
796                             &vd->vdev_trim_secure);
797                         if (err == ENOENT) {
798                                 vd->vdev_trim_secure = 0;
799                                 err = 0;
800                         }
801                 }
802         }
803
804         vdev_trim_calculate_progress(vd);
805
806         return (err);
807 }
808
809 static void
810 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
811 {
812         trim_args_t *ta = arg;
813         vdev_t *vd = ta->trim_vdev;
814
815         /*
816          * Only a manual trim will be traversing the vdev sequentially.
817          * For an auto trim all valid ranges should be added.
818          */
819         if (ta->trim_type == TRIM_TYPE_MANUAL) {
820
821                 /* Only add segments that we have not visited yet */
822                 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
823                         return;
824
825                 /* Pick up where we left off mid-range. */
826                 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
827                         ASSERT3U(physical_rs->rs_end, >,
828                             vd->vdev_trim_last_offset);
829                         physical_rs->rs_start = vd->vdev_trim_last_offset;
830                 }
831         }
832
833         ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
834
835         range_tree_add(ta->trim_tree, physical_rs->rs_start,
836             physical_rs->rs_end - physical_rs->rs_start);
837 }
838
839 /*
840  * Convert the logical range into physical ranges and add them to the
841  * range tree passed in the trim_args_t.
842  */
843 static void
844 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
845 {
846         trim_args_t *ta = arg;
847         vdev_t *vd = ta->trim_vdev;
848         range_seg64_t logical_rs;
849         logical_rs.rs_start = start;
850         logical_rs.rs_end = start + size;
851
852         /*
853          * Every range to be trimmed must be part of ms_allocatable.
854          * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
855          * is always the case.
856          */
857         if (zfs_flags & ZFS_DEBUG_TRIM) {
858                 metaslab_t *msp = ta->trim_msp;
859                 VERIFY0(metaslab_load(msp));
860                 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
861                 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
862         }
863
864         ASSERT(vd->vdev_ops->vdev_op_leaf);
865         vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
866 }
867
868 /*
869  * Each manual TRIM thread is responsible for trimming the unallocated
870  * space for each leaf vdev.  This is accomplished by sequentially iterating
871  * over its top-level metaslabs and issuing TRIM I/O for the space described
872  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
873  * not eligible for new allocations.
874  */
875 static __attribute__((noreturn)) void
876 vdev_trim_thread(void *arg)
877 {
878         vdev_t *vd = arg;
879         spa_t *spa = vd->vdev_spa;
880         trim_args_t ta;
881         int error = 0;
882
883         /*
884          * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
885          * vdev_trim().  Wait for the updated values to be reflected
886          * in the zap in order to start with the requested settings.
887          */
888         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
889
890         ASSERT(vdev_is_concrete(vd));
891         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
892
893         vd->vdev_trim_last_offset = 0;
894         vd->vdev_trim_rate = 0;
895         vd->vdev_trim_partial = 0;
896         vd->vdev_trim_secure = 0;
897
898         VERIFY0(vdev_trim_load(vd));
899
900         ta.trim_vdev = vd;
901         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
902         ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
903         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
904         ta.trim_type = TRIM_TYPE_MANUAL;
905         ta.trim_flags = 0;
906
907         /*
908          * When a secure TRIM has been requested infer that the intent
909          * is that everything must be trimmed.  Override the default
910          * minimum TRIM size to prevent ranges from being skipped.
911          */
912         if (vd->vdev_trim_secure) {
913                 ta.trim_flags |= ZIO_TRIM_SECURE;
914                 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
915         }
916
917         uint64_t ms_count = 0;
918         for (uint64_t i = 0; !vd->vdev_detached &&
919             i < vd->vdev_top->vdev_ms_count; i++) {
920                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
921
922                 /*
923                  * If we've expanded the top-level vdev or it's our
924                  * first pass, calculate our progress.
925                  */
926                 if (vd->vdev_top->vdev_ms_count != ms_count) {
927                         vdev_trim_calculate_progress(vd);
928                         ms_count = vd->vdev_top->vdev_ms_count;
929                 }
930
931                 spa_config_exit(spa, SCL_CONFIG, FTAG);
932                 metaslab_disable(msp);
933                 mutex_enter(&msp->ms_lock);
934                 VERIFY0(metaslab_load(msp));
935
936                 /*
937                  * If a partial TRIM was requested skip metaslabs which have
938                  * never been initialized and thus have never been written.
939                  */
940                 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
941                         mutex_exit(&msp->ms_lock);
942                         metaslab_enable(msp, B_FALSE, B_FALSE);
943                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
944                         vdev_trim_calculate_progress(vd);
945                         continue;
946                 }
947
948                 ta.trim_msp = msp;
949                 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
950                 range_tree_vacate(msp->ms_trim, NULL, NULL);
951                 mutex_exit(&msp->ms_lock);
952
953                 error = vdev_trim_ranges(&ta);
954                 metaslab_enable(msp, B_TRUE, B_FALSE);
955                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
956
957                 range_tree_vacate(ta.trim_tree, NULL, NULL);
958                 if (error != 0)
959                         break;
960         }
961
962         spa_config_exit(spa, SCL_CONFIG, FTAG);
963
964         range_tree_destroy(ta.trim_tree);
965
966         mutex_enter(&vd->vdev_trim_lock);
967         if (!vd->vdev_trim_exit_wanted) {
968                 if (vdev_writeable(vd)) {
969                         vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
970                             vd->vdev_trim_rate, vd->vdev_trim_partial,
971                             vd->vdev_trim_secure);
972                 } else if (vd->vdev_faulted) {
973                         vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
974                             vd->vdev_trim_rate, vd->vdev_trim_partial,
975                             vd->vdev_trim_secure);
976                 }
977         }
978         ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
979
980         /*
981          * Drop the vdev_trim_lock while we sync out the txg since it's
982          * possible that a device might be trying to come online and must
983          * check to see if it needs to restart a trim. That thread will be
984          * holding the spa_config_lock which would prevent the txg_wait_synced
985          * from completing.
986          */
987         mutex_exit(&vd->vdev_trim_lock);
988         txg_wait_synced(spa_get_dsl(spa), 0);
989         mutex_enter(&vd->vdev_trim_lock);
990
991         vd->vdev_trim_thread = NULL;
992         cv_broadcast(&vd->vdev_trim_cv);
993         mutex_exit(&vd->vdev_trim_lock);
994
995         thread_exit();
996 }
997
998 /*
999  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
1000  * the vdev_t must be a leaf and cannot already be manually trimming.
1001  */
1002 void
1003 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
1004 {
1005         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1006         ASSERT(vd->vdev_ops->vdev_op_leaf);
1007         ASSERT(vdev_is_concrete(vd));
1008         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1009         ASSERT(!vd->vdev_detached);
1010         ASSERT(!vd->vdev_trim_exit_wanted);
1011         ASSERT(!vd->vdev_top->vdev_removing);
1012         ASSERT(!vd->vdev_rz_expanding);
1013
1014         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1015         vd->vdev_trim_thread = thread_create(NULL, 0,
1016             vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1017 }
1018
1019 /*
1020  * Wait for the trimming thread to be terminated (canceled or stopped).
1021  */
1022 static void
1023 vdev_trim_stop_wait_impl(vdev_t *vd)
1024 {
1025         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1026
1027         while (vd->vdev_trim_thread != NULL)
1028                 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1029
1030         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1031         vd->vdev_trim_exit_wanted = B_FALSE;
1032 }
1033
1034 /*
1035  * Wait for vdev trim threads which were listed to cleanly exit.
1036  */
1037 void
1038 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1039 {
1040         (void) spa;
1041         vdev_t *vd;
1042
1043         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1044
1045         while ((vd = list_remove_head(vd_list)) != NULL) {
1046                 mutex_enter(&vd->vdev_trim_lock);
1047                 vdev_trim_stop_wait_impl(vd);
1048                 mutex_exit(&vd->vdev_trim_lock);
1049         }
1050 }
1051
1052 /*
1053  * Stop trimming a device, with the resultant trimming state being tgt_state.
1054  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1055  * provided the stopping vdev is inserted in to the list.  Callers are then
1056  * required to call vdev_trim_stop_wait() to block for all the trim threads
1057  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1058  * the spa config, as the trimming thread may try to enter the config as a
1059  * reader before exiting.
1060  */
1061 void
1062 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1063 {
1064         ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1065         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1066         ASSERT(vd->vdev_ops->vdev_op_leaf);
1067         ASSERT(vdev_is_concrete(vd));
1068
1069         /*
1070          * Allow cancel requests to proceed even if the trim thread has
1071          * stopped.
1072          */
1073         if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1074                 return;
1075
1076         vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1077         vd->vdev_trim_exit_wanted = B_TRUE;
1078
1079         if (vd_list == NULL) {
1080                 vdev_trim_stop_wait_impl(vd);
1081         } else {
1082                 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1083                 list_insert_tail(vd_list, vd);
1084         }
1085 }
1086
1087 /*
1088  * Requests that all listed vdevs stop trimming.
1089  */
1090 static void
1091 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1092     list_t *vd_list)
1093 {
1094         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1095                 mutex_enter(&vd->vdev_trim_lock);
1096                 vdev_trim_stop(vd, tgt_state, vd_list);
1097                 mutex_exit(&vd->vdev_trim_lock);
1098                 return;
1099         }
1100
1101         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1102                 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1103                     vd_list);
1104         }
1105 }
1106
1107 /*
1108  * Convenience function to stop trimming of a vdev tree and set all trim
1109  * thread pointers to NULL.
1110  */
1111 void
1112 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1113 {
1114         spa_t *spa = vd->vdev_spa;
1115         list_t vd_list;
1116         vdev_t *vd_l2cache;
1117
1118         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1119
1120         list_create(&vd_list, sizeof (vdev_t),
1121             offsetof(vdev_t, vdev_trim_node));
1122
1123         vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1124
1125         /*
1126          * Iterate over cache devices and request stop trimming the
1127          * whole device in case we export the pool or remove the cache
1128          * device prematurely.
1129          */
1130         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1131                 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1132                 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1133         }
1134
1135         vdev_trim_stop_wait(spa, &vd_list);
1136
1137         if (vd->vdev_spa->spa_sync_on) {
1138                 /* Make sure that our state has been synced to disk */
1139                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1140         }
1141
1142         list_destroy(&vd_list);
1143 }
1144
1145 /*
1146  * Conditionally restarts a manual TRIM given its on-disk state.
1147  */
1148 void
1149 vdev_trim_restart(vdev_t *vd)
1150 {
1151         ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1152             vd->vdev_spa->spa_load_thread == curthread);
1153         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1154
1155         if (vd->vdev_leaf_zap != 0) {
1156                 mutex_enter(&vd->vdev_trim_lock);
1157                 uint64_t trim_state = VDEV_TRIM_NONE;
1158                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1159                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1160                     sizeof (trim_state), 1, &trim_state);
1161                 ASSERT(err == 0 || err == ENOENT);
1162                 vd->vdev_trim_state = trim_state;
1163
1164                 uint64_t timestamp = 0;
1165                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1166                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1167                     sizeof (timestamp), 1, &timestamp);
1168                 ASSERT(err == 0 || err == ENOENT);
1169                 vd->vdev_trim_action_time = timestamp;
1170
1171                 if ((vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1172                     vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
1173                         /* load progress for reporting, but don't resume */
1174                         VERIFY0(vdev_trim_load(vd));
1175                 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1176                     vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1177                     !vd->vdev_top->vdev_rz_expanding &&
1178                     vd->vdev_trim_thread == NULL) {
1179                         VERIFY0(vdev_trim_load(vd));
1180                         vdev_trim(vd, vd->vdev_trim_rate,
1181                             vd->vdev_trim_partial, vd->vdev_trim_secure);
1182                 }
1183
1184                 mutex_exit(&vd->vdev_trim_lock);
1185         }
1186
1187         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1188                 vdev_trim_restart(vd->vdev_child[i]);
1189         }
1190 }
1191
1192 /*
1193  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1194  * every TRIM range is contained within ms_allocatable.
1195  */
1196 static void
1197 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1198 {
1199         trim_args_t *ta = arg;
1200         metaslab_t *msp = ta->trim_msp;
1201
1202         VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1203         VERIFY3U(msp->ms_disabled, >, 0);
1204         VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1205 }
1206
1207 /*
1208  * Each automatic TRIM thread is responsible for managing the trimming of a
1209  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1210  *
1211  * N.B. This behavior is different from a manual TRIM where a thread
1212  * is created for each leaf vdev, instead of each top-level vdev.
1213  */
1214 static __attribute__((noreturn)) void
1215 vdev_autotrim_thread(void *arg)
1216 {
1217         vdev_t *vd = arg;
1218         spa_t *spa = vd->vdev_spa;
1219         int shift = 0;
1220
1221         mutex_enter(&vd->vdev_autotrim_lock);
1222         ASSERT3P(vd->vdev_top, ==, vd);
1223         ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1224         mutex_exit(&vd->vdev_autotrim_lock);
1225         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1226
1227         while (!vdev_autotrim_should_stop(vd)) {
1228                 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1229                 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1230                 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1231
1232                 /*
1233                  * All of the metaslabs are divided in to groups of size
1234                  * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1235                  * is composed of metaslabs which are spread evenly over the
1236                  * device.
1237                  *
1238                  * For example, when zfs_trim_txg_batch = 32 (default) then
1239                  * group 0 will contain metaslabs 0, 32, 64, ...;
1240                  * group 1 will contain metaslabs 1, 33, 65, ...;
1241                  * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1242                  *
1243                  * On each pass through the while() loop one of these groups
1244                  * is selected.  This is accomplished by using a shift value
1245                  * to select the starting metaslab, then striding over the
1246                  * metaslabs using the zfs_trim_txg_batch size.  This is
1247                  * done to accomplish two things.
1248                  *
1249                  * 1) By dividing the metaslabs in to groups, and making sure
1250                  *    that each group takes a minimum of one txg to process.
1251                  *    Then zfs_trim_txg_batch controls the minimum number of
1252                  *    txgs which must occur before a metaslab is revisited.
1253                  *
1254                  * 2) Selecting non-consecutive metaslabs distributes the
1255                  *    TRIM commands for a group evenly over the entire device.
1256                  *    This can be advantageous for certain types of devices.
1257                  */
1258                 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1259                     i += txgs_per_trim) {
1260                         metaslab_t *msp = vd->vdev_ms[i];
1261                         range_tree_t *trim_tree;
1262                         boolean_t issued_trim = B_FALSE;
1263                         boolean_t wait_aborted = B_FALSE;
1264
1265                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1266                         metaslab_disable(msp);
1267                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1268
1269                         mutex_enter(&msp->ms_lock);
1270
1271                         /*
1272                          * Skip the metaslab when it has never been allocated
1273                          * or when there are no recent frees to trim.
1274                          */
1275                         if (msp->ms_sm == NULL ||
1276                             range_tree_is_empty(msp->ms_trim)) {
1277                                 mutex_exit(&msp->ms_lock);
1278                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1279                                 continue;
1280                         }
1281
1282                         /*
1283                          * Skip the metaslab when it has already been disabled.
1284                          * This may happen when a manual TRIM or initialize
1285                          * operation is running concurrently.  In the case
1286                          * of a manual TRIM, the ms_trim tree will have been
1287                          * vacated.  Only ranges added after the manual TRIM
1288                          * disabled the metaslab will be included in the tree.
1289                          * These will be processed when the automatic TRIM
1290                          * next revisits this metaslab.
1291                          */
1292                         if (msp->ms_disabled > 1) {
1293                                 mutex_exit(&msp->ms_lock);
1294                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1295                                 continue;
1296                         }
1297
1298                         /*
1299                          * Allocate an empty range tree which is swapped in
1300                          * for the existing ms_trim tree while it is processed.
1301                          */
1302                         trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1303                             0, 0);
1304                         range_tree_swap(&msp->ms_trim, &trim_tree);
1305                         ASSERT(range_tree_is_empty(msp->ms_trim));
1306
1307                         /*
1308                          * There are two cases when constructing the per-vdev
1309                          * trim trees for a metaslab.  If the top-level vdev
1310                          * has no children then it is also a leaf and should
1311                          * be trimmed.  Otherwise our children are the leaves
1312                          * and a trim tree should be constructed for each.
1313                          */
1314                         trim_args_t *tap;
1315                         uint64_t children = vd->vdev_children;
1316                         if (children == 0) {
1317                                 children = 1;
1318                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1319                                     children, KM_SLEEP);
1320                                 tap[0].trim_vdev = vd;
1321                         } else {
1322                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1323                                     children, KM_SLEEP);
1324
1325                                 for (uint64_t c = 0; c < children; c++) {
1326                                         tap[c].trim_vdev = vd->vdev_child[c];
1327                                 }
1328                         }
1329
1330                         for (uint64_t c = 0; c < children; c++) {
1331                                 trim_args_t *ta = &tap[c];
1332                                 vdev_t *cvd = ta->trim_vdev;
1333
1334                                 ta->trim_msp = msp;
1335                                 ta->trim_extent_bytes_max = extent_bytes_max;
1336                                 ta->trim_extent_bytes_min = extent_bytes_min;
1337                                 ta->trim_type = TRIM_TYPE_AUTO;
1338                                 ta->trim_flags = 0;
1339
1340                                 if (cvd->vdev_detached ||
1341                                     !vdev_writeable(cvd) ||
1342                                     !cvd->vdev_has_trim ||
1343                                     cvd->vdev_trim_thread != NULL) {
1344                                         continue;
1345                                 }
1346
1347                                 /*
1348                                  * When a device has an attached hot spare, or
1349                                  * is being replaced it will not be trimmed.
1350                                  * This is done to avoid adding additional
1351                                  * stress to a potentially unhealthy device,
1352                                  * and to minimize the required rebuild time.
1353                                  */
1354                                 if (!cvd->vdev_ops->vdev_op_leaf)
1355                                         continue;
1356
1357                                 ta->trim_tree = range_tree_create(NULL,
1358                                     RANGE_SEG64, NULL, 0, 0);
1359                                 range_tree_walk(trim_tree,
1360                                     vdev_trim_range_add, ta);
1361                         }
1362
1363                         mutex_exit(&msp->ms_lock);
1364                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1365
1366                         /*
1367                          * Issue the TRIM I/Os for all ranges covered by the
1368                          * TRIM trees.  These ranges are safe to TRIM because
1369                          * no new allocations will be performed until the call
1370                          * to metaslab_enabled() below.
1371                          */
1372                         for (uint64_t c = 0; c < children; c++) {
1373                                 trim_args_t *ta = &tap[c];
1374
1375                                 /*
1376                                  * Always yield to a manual TRIM if one has
1377                                  * been started for the child vdev.
1378                                  */
1379                                 if (ta->trim_tree == NULL ||
1380                                     ta->trim_vdev->vdev_trim_thread != NULL) {
1381                                         continue;
1382                                 }
1383
1384                                 /*
1385                                  * After this point metaslab_enable() must be
1386                                  * called with the sync flag set.  This is done
1387                                  * here because vdev_trim_ranges() is allowed
1388                                  * to be interrupted (EINTR) before issuing all
1389                                  * of the required TRIM I/Os.
1390                                  */
1391                                 issued_trim = B_TRUE;
1392
1393                                 int error = vdev_trim_ranges(ta);
1394                                 if (error)
1395                                         break;
1396                         }
1397
1398                         /*
1399                          * Verify every range which was trimmed is still
1400                          * contained within the ms_allocatable tree.
1401                          */
1402                         if (zfs_flags & ZFS_DEBUG_TRIM) {
1403                                 mutex_enter(&msp->ms_lock);
1404                                 VERIFY0(metaslab_load(msp));
1405                                 VERIFY3P(tap[0].trim_msp, ==, msp);
1406                                 range_tree_walk(trim_tree,
1407                                     vdev_trim_range_verify, &tap[0]);
1408                                 mutex_exit(&msp->ms_lock);
1409                         }
1410
1411                         range_tree_vacate(trim_tree, NULL, NULL);
1412                         range_tree_destroy(trim_tree);
1413
1414                         /*
1415                          * Wait for couples of kicks, to ensure the trim io is
1416                          * synced. If the wait is aborted due to
1417                          * vdev_autotrim_exit_wanted, we need to signal
1418                          * metaslab_enable() to wait for sync.
1419                          */
1420                         if (issued_trim) {
1421                                 wait_aborted = vdev_autotrim_wait_kick(vd,
1422                                     TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1423                         }
1424
1425                         metaslab_enable(msp, wait_aborted, B_FALSE);
1426                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1427
1428                         for (uint64_t c = 0; c < children; c++) {
1429                                 trim_args_t *ta = &tap[c];
1430
1431                                 if (ta->trim_tree == NULL)
1432                                         continue;
1433
1434                                 range_tree_vacate(ta->trim_tree, NULL, NULL);
1435                                 range_tree_destroy(ta->trim_tree);
1436                         }
1437
1438                         kmem_free(tap, sizeof (trim_args_t) * children);
1439
1440                         if (vdev_autotrim_should_stop(vd))
1441                                 break;
1442                 }
1443
1444                 spa_config_exit(spa, SCL_CONFIG, FTAG);
1445
1446                 vdev_autotrim_wait_kick(vd, 1);
1447
1448                 shift++;
1449                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1450         }
1451
1452         for (uint64_t c = 0; c < vd->vdev_children; c++) {
1453                 vdev_t *cvd = vd->vdev_child[c];
1454                 mutex_enter(&cvd->vdev_trim_io_lock);
1455
1456                 while (cvd->vdev_trim_inflight[1] > 0) {
1457                         cv_wait(&cvd->vdev_trim_io_cv,
1458                             &cvd->vdev_trim_io_lock);
1459                 }
1460                 mutex_exit(&cvd->vdev_trim_io_lock);
1461         }
1462
1463         spa_config_exit(spa, SCL_CONFIG, FTAG);
1464
1465         /*
1466          * When exiting because the autotrim property was set to off, then
1467          * abandon any unprocessed ms_trim ranges to reclaim the memory.
1468          */
1469         if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1470                 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1471                         metaslab_t *msp = vd->vdev_ms[i];
1472
1473                         mutex_enter(&msp->ms_lock);
1474                         range_tree_vacate(msp->ms_trim, NULL, NULL);
1475                         mutex_exit(&msp->ms_lock);
1476                 }
1477         }
1478
1479         mutex_enter(&vd->vdev_autotrim_lock);
1480         ASSERT(vd->vdev_autotrim_thread != NULL);
1481         vd->vdev_autotrim_thread = NULL;
1482         cv_broadcast(&vd->vdev_autotrim_cv);
1483         mutex_exit(&vd->vdev_autotrim_lock);
1484
1485         thread_exit();
1486 }
1487
1488 /*
1489  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1490  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1491  */
1492 void
1493 vdev_autotrim(spa_t *spa)
1494 {
1495         vdev_t *root_vd = spa->spa_root_vdev;
1496
1497         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1498                 vdev_t *tvd = root_vd->vdev_child[i];
1499
1500                 mutex_enter(&tvd->vdev_autotrim_lock);
1501                 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1502                     tvd->vdev_autotrim_thread == NULL &&
1503                     !tvd->vdev_rz_expanding) {
1504                         ASSERT3P(tvd->vdev_top, ==, tvd);
1505
1506                         tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1507                             vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1508                             maxclsyspri);
1509                         ASSERT(tvd->vdev_autotrim_thread != NULL);
1510                 }
1511                 mutex_exit(&tvd->vdev_autotrim_lock);
1512         }
1513 }
1514
1515 /*
1516  * Wait for the vdev_autotrim_thread associated with the passed top-level
1517  * vdev to be terminated (canceled or stopped).
1518  */
1519 void
1520 vdev_autotrim_stop_wait(vdev_t *tvd)
1521 {
1522         mutex_enter(&tvd->vdev_autotrim_lock);
1523         if (tvd->vdev_autotrim_thread != NULL) {
1524                 tvd->vdev_autotrim_exit_wanted = B_TRUE;
1525                 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1526                 cv_wait(&tvd->vdev_autotrim_cv,
1527                     &tvd->vdev_autotrim_lock);
1528
1529                 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1530                 tvd->vdev_autotrim_exit_wanted = B_FALSE;
1531         }
1532         mutex_exit(&tvd->vdev_autotrim_lock);
1533 }
1534
1535 void
1536 vdev_autotrim_kick(spa_t *spa)
1537 {
1538         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1539
1540         vdev_t *root_vd = spa->spa_root_vdev;
1541         vdev_t *tvd;
1542
1543         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1544                 tvd = root_vd->vdev_child[i];
1545
1546                 mutex_enter(&tvd->vdev_autotrim_lock);
1547                 if (tvd->vdev_autotrim_thread != NULL)
1548                         cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1549                 mutex_exit(&tvd->vdev_autotrim_lock);
1550         }
1551 }
1552
1553 /*
1554  * Wait for all of the vdev_autotrim_thread associated with the pool to
1555  * be terminated (canceled or stopped).
1556  */
1557 void
1558 vdev_autotrim_stop_all(spa_t *spa)
1559 {
1560         vdev_t *root_vd = spa->spa_root_vdev;
1561
1562         for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1563                 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1564 }
1565
1566 /*
1567  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1568  */
1569 void
1570 vdev_autotrim_restart(spa_t *spa)
1571 {
1572         ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1573             spa->spa_load_thread == curthread);
1574         if (spa->spa_autotrim)
1575                 vdev_autotrim(spa);
1576 }
1577
1578 static __attribute__((noreturn)) void
1579 vdev_trim_l2arc_thread(void *arg)
1580 {
1581         vdev_t          *vd = arg;
1582         spa_t           *spa = vd->vdev_spa;
1583         l2arc_dev_t     *dev = l2arc_vdev_get(vd);
1584         trim_args_t     ta = {0};
1585         range_seg64_t   physical_rs;
1586
1587         ASSERT(vdev_is_concrete(vd));
1588         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1589
1590         vd->vdev_trim_last_offset = 0;
1591         vd->vdev_trim_rate = 0;
1592         vd->vdev_trim_partial = 0;
1593         vd->vdev_trim_secure = 0;
1594
1595         ta.trim_vdev = vd;
1596         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1597         ta.trim_type = TRIM_TYPE_MANUAL;
1598         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1599         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1600         ta.trim_flags = 0;
1601
1602         physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1603         physical_rs.rs_end = vd->vdev_trim_bytes_est =
1604             vdev_get_min_asize(vd);
1605
1606         range_tree_add(ta.trim_tree, physical_rs.rs_start,
1607             physical_rs.rs_end - physical_rs.rs_start);
1608
1609         mutex_enter(&vd->vdev_trim_lock);
1610         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1611         mutex_exit(&vd->vdev_trim_lock);
1612
1613         (void) vdev_trim_ranges(&ta);
1614
1615         spa_config_exit(spa, SCL_CONFIG, FTAG);
1616         mutex_enter(&vd->vdev_trim_io_lock);
1617         while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1618                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1619         }
1620         mutex_exit(&vd->vdev_trim_io_lock);
1621
1622         range_tree_vacate(ta.trim_tree, NULL, NULL);
1623         range_tree_destroy(ta.trim_tree);
1624
1625         mutex_enter(&vd->vdev_trim_lock);
1626         if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1627                 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1628                     vd->vdev_trim_rate, vd->vdev_trim_partial,
1629                     vd->vdev_trim_secure);
1630         }
1631         ASSERT(vd->vdev_trim_thread != NULL ||
1632             vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1633
1634         /*
1635          * Drop the vdev_trim_lock while we sync out the txg since it's
1636          * possible that a device might be trying to come online and
1637          * must check to see if it needs to restart a trim. That thread
1638          * will be holding the spa_config_lock which would prevent the
1639          * txg_wait_synced from completing. Same strategy as in
1640          * vdev_trim_thread().
1641          */
1642         mutex_exit(&vd->vdev_trim_lock);
1643         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1644         mutex_enter(&vd->vdev_trim_lock);
1645
1646         /*
1647          * Update the header of the cache device here, before
1648          * broadcasting vdev_trim_cv which may lead to the removal
1649          * of the device. The same applies for setting l2ad_trim_all to
1650          * false.
1651          */
1652         spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1653             RW_READER);
1654         memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1655         l2arc_dev_hdr_update(dev);
1656         spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1657
1658         vd->vdev_trim_thread = NULL;
1659         if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1660                 dev->l2ad_trim_all = B_FALSE;
1661
1662         cv_broadcast(&vd->vdev_trim_cv);
1663         mutex_exit(&vd->vdev_trim_lock);
1664
1665         thread_exit();
1666 }
1667
1668 /*
1669  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1670  * to vd->vdev_trim_thread variable. This facilitates the management of
1671  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1672  * to a pool or pool creation or when the header of the device is invalid.
1673  */
1674 void
1675 vdev_trim_l2arc(spa_t *spa)
1676 {
1677         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1678
1679         /*
1680          * Locate the spa's l2arc devices and kick off TRIM threads.
1681          */
1682         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1683                 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1684                 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1685
1686                 if (dev == NULL || !dev->l2ad_trim_all) {
1687                         /*
1688                          * Don't attempt TRIM if the vdev is UNAVAIL or if the
1689                          * cache device was not marked for whole device TRIM
1690                          * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1691                          * is valid with trim_state = VDEV_TRIM_COMPLETE and
1692                          * l2ad_log_entries > 0).
1693                          */
1694                         continue;
1695                 }
1696
1697                 mutex_enter(&vd->vdev_trim_lock);
1698                 ASSERT(vd->vdev_ops->vdev_op_leaf);
1699                 ASSERT(vdev_is_concrete(vd));
1700                 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1701                 ASSERT(!vd->vdev_detached);
1702                 ASSERT(!vd->vdev_trim_exit_wanted);
1703                 ASSERT(!vd->vdev_top->vdev_removing);
1704                 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1705                 vd->vdev_trim_thread = thread_create(NULL, 0,
1706                     vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1707                 mutex_exit(&vd->vdev_trim_lock);
1708         }
1709 }
1710
1711 /*
1712  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1713  * on leaf vdevs.
1714  */
1715 int
1716 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1717 {
1718         trim_args_t ta = {0};
1719         range_seg64_t physical_rs;
1720         int error;
1721         physical_rs.rs_start = start;
1722         physical_rs.rs_end = start + size;
1723
1724         ASSERT(vdev_is_concrete(vd));
1725         ASSERT(vd->vdev_ops->vdev_op_leaf);
1726         ASSERT(!vd->vdev_detached);
1727         ASSERT(!vd->vdev_top->vdev_removing);
1728         ASSERT(!vd->vdev_top->vdev_rz_expanding);
1729
1730         ta.trim_vdev = vd;
1731         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1732         ta.trim_type = TRIM_TYPE_SIMPLE;
1733         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1734         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1735         ta.trim_flags = 0;
1736
1737         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1738
1739         if (physical_rs.rs_end > physical_rs.rs_start) {
1740                 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1741                     physical_rs.rs_end - physical_rs.rs_start);
1742         } else {
1743                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1744         }
1745
1746         error = vdev_trim_ranges(&ta);
1747
1748         mutex_enter(&vd->vdev_trim_io_lock);
1749         while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1750                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1751         }
1752         mutex_exit(&vd->vdev_trim_io_lock);
1753
1754         range_tree_vacate(ta.trim_tree, NULL, NULL);
1755         range_tree_destroy(ta.trim_tree);
1756
1757         return (error);
1758 }
1759
1760 EXPORT_SYMBOL(vdev_trim);
1761 EXPORT_SYMBOL(vdev_trim_stop);
1762 EXPORT_SYMBOL(vdev_trim_stop_all);
1763 EXPORT_SYMBOL(vdev_trim_stop_wait);
1764 EXPORT_SYMBOL(vdev_trim_restart);
1765 EXPORT_SYMBOL(vdev_autotrim);
1766 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1767 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1768 EXPORT_SYMBOL(vdev_autotrim_restart);
1769 EXPORT_SYMBOL(vdev_trim_l2arc);
1770 EXPORT_SYMBOL(vdev_trim_simple);
1771
1772 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1773         "Max size of TRIM commands, larger will be split");
1774
1775 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1776         "Min size of TRIM commands, smaller will be skipped");
1777
1778 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1779         "Skip metaslabs which have never been initialized");
1780
1781 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1782         "Min number of txgs to aggregate frees before issuing TRIM");
1783
1784 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1785         "Max queued TRIMs outstanding per leaf vdev");